Metamorphism & Metamorphic Rocks

(adapted from Brunkel, 2012)

Metamorphic Rocks

Changed rocks- with heat and pressure
But not melted
Change in the solid state
Textural changes (always)
Mineralogy changes (usually)

Metamorphism

The mineral changes that transform a parent rock to into a new metamorphic rock by exposure to heat, stress, and fluids unlike those in which the parent rock formed.

granite

Geothermal gradient

Copyright © 2005 Pearson Prentice Hall, Inc.

Types of Metamorphism

<u>Contact</u> metamorphism –
 – Happens in wall rock next to intrusions
 – HEAT is main metamorphic agent

Contact metamorphism

Contact Metamorphism

- Local- Usually a zone only a few meters wide
- Heat from plutons intruded into "cooler" country rock
- Usually forms nonfoliated rocks

в

Types of Metamorphism

<u>Hydrothermal</u> metamorphism – – Happens along fracture conduits – HOT FLUIDS are main metamorphic agent

Types of Metamorphism

Regional metamorphism –

- Happens during mountain building
- Most significant type
- STRESS associated with plate convergence &

- HEAT associated with burial (geothermal gradient) are main metamorphic agents

Regional metamorphism

Other types of Metamorphism

- Burial
- Fault zones
- Impact metamorphism

Copyright © 2005 Pearson Prentice Hall, Inc.

Metamorphism and Plate Tectonics

Fault zone metamorphism

Mélange- chaotic mixture of materials that have been crumpled together

Stress (pressure)

- From burial beneath younger sediments
 (lithostatic stress

 -equal in all directions)
- From tectonic stress at convergent margins (differential stress
 -different in all directions)

Metamorphic textures

- Texture refers to the size, shape, and arrangement of grains within a rock
- Foliation any planar arrangement of mineral grains or structural features within a rock

Examples of foliation

 Parallel alignment of platy and/or elongated minerals

Before metamorphism

After metamorphism

Recrystallization Of minerals in the direction of preferred orientation

Change of shape equidimensional grains changed into elongated shapes that are aligned

D. Flattened rock exhibiting distorted quartz grains

Metamorphic Rock Names: 2 Types:

1. FOLIATED Metamorphic Rocks

Named mainly from their foliation type <u>NAME</u> FOLIATION TYPE

-Slate (Phyllite) -Schist -Gneiss

Slaty texture

Schistocity Gneissic Texture

2. <u>NON-FOLIATED</u> metamorphic rocks

Increasing Metamorphic Grade for same parent rock (Note increase in size of crystals)

Slaty texture

- Closely spaced planar surfaces along which rocks split

 Formed by alignment of microscopic mica through rotation, recrystallization, and change in shape.

Rock Name: Slate
Parent: Shale

Slate and Phyllite

Copyright © 2005 Pearson Prentice Hall, Inc.

Schistosity

 Foliation formed mainly by visible platy minerals (muscovite, biotite)

Rock Name: Schist

- with modifier for dominant mineral: biotite schist, muscovite schist
- Parent: Slate

Gneissic Texture

- -Foliation due to segregation of minerals into:
 - -light bands of nonferromagnesian silicates (quartz, feldspar, muscovite)
 - -dark bands of ferromagnesian silicates (biotite, amphibole, pyroxene)

Gneissic Texture

- -Highest grade of metamorphic rock (most heat & stress)
- Rock Name: Gneiss -with modifier for dominant dark mineral: biotite gneiss, hornblende gneiss

Metamorphic grade in foliated rocks For same parent rock (i.e., shale), transitions from slate to gneiss indicate increasing depth of burial inside a mountain belt along a convergent plate boundary

Metamorphic grade in foliated rocks For same parent rock (shale), transitions from slate to gneiss also display change in metamorphic minerals.

finely crystalline

coarsely crystalline

Metamorphic Rock Names: 2 Types 1. FOLIATED Metamorphic Rocks –layered or banded

2. NON-FOLIATED metamorphic rocks
 Named mainly from the mineralogy inherited from their parent rock

	MINERAL	PARENT
Marble	Calcite	Limestone
Quartzite	Quartz	Quartz Sandstone

Nonfoliated metamorphic rocks

Quartizite – formed from quartz-rich sandstones, often have a "sugary" surface

Nonfoliated metamorphic rocks

Marble – metamorphosed limestones and dolomites, texture is inter-grown calcite x-tals

Engineering with Metamorphic

- Jointing
- Foliation sheets anisotropy
- Weathering products
- Discontinuity infilling
- Grade variablilty