Going to the Water

Key Technology Needs for Accessing the Ocean of an Icy Moon

Tom Cwik, Wayne Zimmerman, Andrew Gray, Bill Nesmith, Anita Sengupta*

Jet Propulsion Laboratory, California Institute of Technology
*Hyperloop One

15th International Planetary Probe Workshop
University of Colorado, Boulder,
June 11-15, 2018

A Potential for Life

Energy Source

Biologically Essential Elements

Liquid Water

Time
From Europan orbit: deorbit, descend and land, establish a surface system, travel through the ice, enter the ocean, and determine whether-or-not there is extant life

Landing Phase
- Deorbit
- Descend
- Land

Surface Phase
- Release probe into ice
- Communications: DTE and/or to orbiter; Tethered or wireless to probe
- Maintain operations in radiation

Ice Mobility Phase
- Mobility to Ocean
- Communications to surface
- Science Instrumentation

Ocean Access and Mobility Phase
- Entry into ocean at ice-ocean interface
- Explore ice interface and open ocean
- Maintain planetary protection
Europan Ice Probe Trade Space

- **Landing Phase**
 - Deorbit, Descent and Landing
 - Descent method
 - Landing Precision
 - Landing Method

- **Surface and Ice Phases**
 - Ice Descent Method
 - Cutting
 - Water Jetting
 - Melting
 - Power System
 - Method
 - Packaging
 - Energy Conversion
 - Thermal Control
 - Passive
 - Active
 - Autonomous Navigation & Operations
 - Passive Nav
 - Active Nav
 - Autonomous Operations

- **Ocean Access Phase**
 - Communications
 - Surface Comm
 - Subsurface Comm
 - Ocean Comm
 - Ocean Science
 - Nose in
 - Ice-Surface access
 - Underwater vehicle
Ice Descent

Melt Probe
- Thermal energy melts ice ahead and along probe
- Power can be aboard probe or transferred by tether from surface
- Rate of travel depends on amount of thermal energy
- **Water Jets** can be added to further melt ice and move melt water – electrical energy needed to drive pumps

Mechanical Cutting
- Electrical energy drives blade to shave ice
- Chips need to be moved from front of probe
Ice Mobility – Days for Melt Probe to Travel 10Km

Days to Descend 10 km Temperature Profiled Europian Ice Shell
Sensitivity to Thermal Conductivity Variations & Ice Types

- 0.160 m Dia x 2.418 m Long, 87.3 Liters, SR = 19.1 (optimized SR)
- Power of 7.5 kW @ 85% Thermal Efficiency (net 6.3 kW)
- MS7 “like” ice: Extrapolated thermal conductivity & specific heat for MgSO4 - 7H2O, epsomite (W.B. Durham et al, 2010), remaining properties of pure H2O Ice

10km depth reached in half the time if salty intrusion present

MgSO4 ice
Pure H2O ice

Stone Aerospace
Ice Mobility – Heat and Electric Source

Type

- **Nuclear**
 - Reactor
 - ASRG (Stirling)
 - RTG (Thermo-Electric)
 - GPHS
 - Pellets or other (new)

- **Stored**
 - Battery
 - Fuel Cell
 - Fly-wheel

- **Solar**

Rationale:

- **Nuclear:** 9 year mission life necessitated active power generation.
- **GPHS:** Solar is deemed insufficient for zeroth order thermal energy needed to melt ice.
- **Energy density and form factor would necessitate new PuO₂ pellets.**

General Purpose Heat Source (GPHS) Module

- 27 GPHS Blocks
 - 6.75kW thermal

- 1.57 m
Communications in Ice and to Earth

Orbiter Configuration
- 2 m antenna
- 100 W TWTA
- X-band

Lander Configuration
- 27 dBi surface antenna
- 4 W RF
- X-band

Probe Configuration
- 5 comm pucks
- Turbo coding
- 100 MHz
Autonomous Guidance Navigation and Operations

Science Comm
- Science Ops
- Science Transmit

Puck Release
- Release Puck
- Anchor Puck
- Transmit Checkout

Navigate
- Radar / Sonar
- Differential Heating
- Differential Jetting

Ice Descent
- Melt
- Water Jet and Cut
- Unfurl Tether
- Sense Position/Orientation
- Tx Housekeeping Data
Surface Phase: Initial Access into Ice

SOL 0
- Lower and level
- Initial System checkout
- Install cap at surface

SOL 1
- System checkout
- Initial melt, cut and water jet operations

SOL 2
- Melt cut and water jet ~meters
- Deposit lander electronics
- Relay telecom checkout
- Science instrument checkout

SOL 3 to n
- Melt, cut and jet
- Unfurl tether
- Release puck
- Transmit science
Landing Phase

Deorbit – Descent – Landing (DDL)

Europa Lander Heritage
Elimination of Skycrane
Prior Knowledge of Landing Site
Prior knowledge of ice thickness
Ocean Access and Mobility: Four Science Segments

1 - Probe Nose In
 Anchor
 Image ocean
 Sample water

2 - Probe Fully Submersed
 Deploy ocean probe
 Tethered Ops

3 - Underwater Vehicle Ops
 Buoyant operation
 Science Ops
 Mobility Ops

4 - Free Fall & End Of Mission
 Cut Tether
Ice Mobility – Melt Probe Power

Amount of thermal energy needed to melt ice:

- *Aamot* model provides first order requirements vs melt rate
- Dependent on diameter and length of probe
- Assumptions
 - Temperature vs Depth
 - Thermal Conductivity, Specific Heat & Ice Density vs Temperature
 - Salt Content
 - Sublimation (especially at ice interface)
 - Viscous friction, tether effects, salt layering, voids, ...

Weiss, Planetary and Space Science 56 (2008) 1280–1292
Looking ahead: What we will know and have shown

Ice shell structure by RADAR
- Resolution of +/-10m @3km depth and +/-100m @30km depth

Detailed topographic surface map
- At 50m with higher resolution regions

Surface thermal map
- Identification of higher temp anomaly zones suggesting recent up-welling or cryo-volcanism

Mapping image spectroscopy

Powered landing to 100m accuracy
- Terrain relative navigation
- Hazard detection LIDAR

High resolution descent/surface imaging

Surface operations
- Cutting and handling of ice and salts at temperature

Organic/inorganic quantification at surface

Seismometer sensing of crustal motion

Europa Ocean Exploration

Europa Clipper

Europa Lander Concept
Ice Mobility – Water Jetting and Cutting

In addition to melting ice for mobility, need to
 • Travel through potential sediment layers
 • Force sediment and melt water past probe

Include
 • Water jetting by pumping and ejecting melt water at nose
 • Cutting with motorized blade and removing chips

Requires electrical power drawn from thermal energy
 • Balance of RTG electrical generation and thermal
Probe start-up activity
• Release Europan probe into ice
• Control initial sublimation at ice/salt surface

Survive radiation through mission life
• Use ice to protect electronics from radiation
• Melt electronics package into ice

Communication
• Direct to Earth or through Orbiter
• To and from Europan ice probe
Ice Mobility – Communications

RF Communications in ice is feasible
- Data rate depends on ice temperature dependent attenuation
- Released pucks can store and forward data
 Requires stand-alone power

Tether allows max bandwidth
- Mechanical strength in Europian ice is unknown

Combine pucks and tether (and acoustic)?
Probe Thermal Configuration

- **Power Electronics (C&DH and Nav)**
- **Science Payload**
 (submersible)
- **Comm (5 pucks)**
- **Cut and Jet**
 (Rotary bit with water jets)

Thermal Zones
- **Thermal Zone 1**: < 1100 C Needs > 1000 W heat from source
- **Thermal Zone 2**: ~ -20 to 50 C, 45 W
- **Thermal Zone 3**: > 50 C
- **Thermal Zone 4**: Shunt Fin
 Thermal Zone 4

Temperature Ranges
- ~ -34 to 70 C? Non operational Temperature?
- ~ -20 to 50 C, 45 W
Design Assumptions

Begin with Europa Lander systems and mass parameters
- SLS launch with same dry mass as Lander concept project
- Same trajectory design to Jupiter and Europa
- Same Deorbit system
- Same Mass to the surface (but not skycrane lander system)

Begin with known power sources (radioisotope)
- What advances can we make?

Baseline 10Km ice thickness
- Baseline Ice temperature profile, salt content

Set approximately two-year time for ice travel
Conceptual Design

7 KWth Main + 1 KWth Nose Power Sources

<table>
<thead>
<tr>
<th>Ice Probe</th>
<th>CBE Mass (Kg)</th>
<th>CBE Power (We)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Probe</td>
<td>210.8</td>
<td>597.6</td>
</tr>
<tr>
<td>Navigation</td>
<td>4.59</td>
<td>11.4</td>
</tr>
<tr>
<td>C&DH</td>
<td>1.50</td>
<td>10.0</td>
</tr>
<tr>
<td>Power</td>
<td>33.26</td>
<td>4.0</td>
</tr>
<tr>
<td>Telecommunication</td>
<td>5.55</td>
<td>30.0</td>
</tr>
<tr>
<td>Drilling / Water Jet</td>
<td>16.00</td>
<td>400.0</td>
</tr>
<tr>
<td>Submarine payload</td>
<td>26.70</td>
<td>27.2</td>
</tr>
<tr>
<td>Structure</td>
<td>112.00</td>
<td>5.0</td>
</tr>
<tr>
<td>Thermal</td>
<td>11.20</td>
<td>110.0</td>
</tr>
<tr>
<td>Margin (%)</td>
<td>41</td>
<td>29</td>
</tr>
</tbody>
</table>

*Mass margin calculated against 335 Kg landed mass allocation for Europa Lander Class DDL
*Power margin based on 836 WEOL (9 years)