A Case for High-fidelity Material Response Modeling

Michael Barnhardta, Nagi Mansoura, Francesco Paneraic, Adam Amarb, Todd Whitea, Michael Wrighta

aNASA Ames Research Center
bNASA Johnson Space Center
cAMA Inc.

International Planetary Probe Workshop | 06.14.2018
Acknowledgements

Ethiraj Venkatapathy

CHAR Team
• Adam Amar
• Brandon Oliver
• Giovanni Salazar
• Ben Kirk

Icarus Team
• Eric Stern
• Joey Schulz
• Grant Palmer
• Justin Haskins
• Josh Monk

FIAT Team
• Frank Milos
• Y-K Chen

PATO/PuMA/SPARTA-N Team
• Nagi Mansour
• Francesco Panerai
• Joseph Ferguson
• Arnaud Borner
• Jeremie Meurisse
• Josh Monk
• Jean Lachaud

Academic Partners
• Doug Fletcher
• Deborah Levin
• Alexandre Martin
• Tim Minton
• Marco Panesi
• Tom Schwartzentruber
• Michael Tonks
Material response models have been very effective for TPS design for 50+ years

- **CMA, 1960s**
 - The “original” material response model
- **FIAT, 1997**
 - Implicit numerics makes CMA model much more robust
- **CHAR, Icarus, PATO and more**
 - Three-dimensional, unstructured
 - Parallel computing architecture
 - Pyrolysis gas flow
Characteristics of a High-fidelity Model

Calibrated fundamental experiments inform physics-based models

Micro-scale simulations provide material statistics and effective properties

Macro-scale simulations enable analysis of complex, fully-featured systems

(Courtesy of Tim Minton, MSU)
Missions are becoming less risk-tolerant over time

- Billions of dollars and human lives at stake
- Tighter mass and performance requirements
- High-fidelity models can reduce uncertainty and support more efficient margin policies

Woven TPS and additive manufacturing technologies lend themselves to optimization
TPS Failure and Reliability Modeling

- Planetary Protection: 1 in 10^6 reliability requirement for MSR
- Multi-element campaign demands higher reliability for each element in the operational sequence

Schematic of Mars Sample Return Earth Entry Vehicle (MSR-EEV)

How do defects, damage, and features in TPS become failures?

MMOD Damage
Avcoater specimen showing carbon and silica at the surface (Courtesy of Alunni and Gökçen, AIAA 2016-3534)

Avcoat heatshield is instrumented with thermocouples, pressure ports, and radiometers to enable aerothermal environment reconstruction and TPS performance assessment

Aerothermal environment reconstructions are no more accurate than the material response model

- Inverse algorithms employ material response model to reconstruct surface environments from in-depth thermocouple data

Sufficiently accurate reconstruction requires better models than presently exist. Higher fidelity models should include

1. In-depth condensation models for carbon and water
2. Kinetic gas-surface interaction models with multiple condensed species (silica and carbon)
3. More accurate high temperature material properties
4. Effects of surface coatings such as paint, pore sealer, and tape
5. Multi-dimensional modeling of thermal interference effects
6. Uncertainty quantification on final environment reconstruction

Apollo post-flight density profile. Increased density near surface indicates presence of condensed carbon (NASA TN D-5969)

Realizable mission impacts

- Mass margin reduction
- Increased downrange
- Higher entry velocities
- Greater range of entry flight path angles

Avcoat arcjet specimen showing carbon and silica at the surface (Courtesy of Alunni and Gökçen, AIAA 2016-3534)
The MSL heatshield, including the MEDLI plugs, were coated with a silicone-based coating called NuSil CV-1144-0 (RTV Silicone Protective Oxygen Overcoat).

The MEDLI2 plugs will also be coated with NuSil, impeding MEDLI2’s ability to achieve its Level 1 requirement for aeroheating reconstruction.

NuSil fundamentally changes the surface material properties of the PICA material and therefore the material thermal response.

A validated high-fidelity PICA-N response model can enable MEDLI2 to meet its requirement, while also increasing our understanding of original MEDLI data.

(Bomer et al, IPPW 2018)
Questions?