Coupled Aero-Structural Modelling and Optimisation of Deployable Mars Aero-Decelerators

Lisa Peacocke, Paul Bruce and Matthew Santer

International Planetary Probe Workshop
11-15 June 2018
Boulder, CO, USA
Deployable Aero-Decelerators

- Enable large masses to be delivered to Mars surface
 - Also enable higher elevation landing sites and more precise landing

- Other advantages
 - Can be deployed and restowed
 - Resilient to micrometeoroid impact
 - Can withstand dual heat pulse
 - Could enable guidance by individual control of ribs
 - Could use ribs as landing gear

Savino et al. (2015)
Wiegand & Konigsmann (1996)
Akin (1990)
Venkatapathy et al. (2011)
Mass Estimation

- Widely varying mass assessments for all concepts
 - 8% - 46% of entry vehicle mass
 - Different margin assumptions
 - Hard to compare against inflatables and rigid bodies

- Robust mass estimates are key for determining performance
 - A coupled aero-structural tool will improve deployable rib mass estimation process

- Enables assessment of different architectures/concepts
Coupled Aero-Structural Model

6DOF entry trajectory simulator + Structural model of deployable ribs
- Geometry mesh of any shape/size
- European Mars Climate Database
- Modified Newtonian method
- Equations of motion integrated
- Aerodynamic forces & coefficients updated at each timestep
- Aerodynamic forces across TPS summed and applied to rib nodes
- Euler-Bernoulli beam model
- Numerical integration method
- Individual ribs deform separately
- Updated shape passed back

Undeformed Mesh

Mesh at Peak Deformation
Correlation and Validation

• Trajectory Simulator
 • Correlated against results from internal Airbus tool BL43
 • Schiaparelli-based rigid entry vehicle
 • Validated against published NASA flight data

• Structural Model
 • Correlated against deflection results from Abaqus FEA model
 • 5% deflection error with mesh points > 15 along rib length
Reference Mission

<table>
<thead>
<tr>
<th>Mission</th>
<th>Human Cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Payload</td>
<td>20 tonnes</td>
</tr>
<tr>
<td>Stowed Diameter</td>
<td>4.5 m</td>
</tr>
<tr>
<td>Entry Strategy</td>
<td>Direct entry from transfer trajectory</td>
</tr>
<tr>
<td>Entry Velocity</td>
<td>6 km/s</td>
</tr>
<tr>
<td>Descent Strategy</td>
<td>Supersonic retropropulsion at Mach 3.5 above 3 km altitude</td>
</tr>
<tr>
<td>Landing Site Elevation</td>
<td>0 km MOLA</td>
</tr>
</tbody>
</table>

Credit: NASA
Deformation Animations

Variable parameters include:

- All 6DOF trajectory initial conditions
- Entry vehicle size and shape
- Number of ribs
- Rib cross-section, dimensions and material properties
- Support strut location
- Payload centre of gravity
Rib Stiffness Variation

- Varied bending stiffness of ribs
 - EI range: $4-84 \times 10^6 \text{ Nm}^2$
 - Reference Human Cargo mission assumed

- Clear effect on drag coefficient

- Only very flexible ribs show significant effect on trajectory
 - $EI \leq 7 \times 10^6 \text{ Nm}^2$
 - 25% higher velocity at 10 km
 - 7% increase in peak heat flux
 - 13% decrease in peak g-load
Rib Stiffness Variation

• Increasing rib flexibility damps attitude oscillations more effectively
 • New deformed shape is more stable
 • e.g. similar to 45° sphere-cone having greater stability

• Flexibility alone does not lead to beneficial effects on trajectory
Rib Tapering Effect

• Mass savings from flexible tapered ribs => increase entry vehicle diameter
 • Maintained entry vehicle mass
 • Balanced decreased rib mass with increased TPS mass
• Beneficial trajectory effect
 • Larger diameters decelerate more effectively at higher altitudes
 • Lowers peak heat flux significantly (42 => 30 W/cm²)
• Reallocating the mass gained from flexibility is very beneficial
Number of Ribs

• Maintained total rib mass by balancing rib size/stiffness with number of ribs
• Very large effect on trajectory
 • Drag coefficient varies significantly
 • Fewer stiffer ribs deform less but give lower drag coefficient initially
 • Prefer larger number of more flexible ribs – to a limit
 • e.g. 16 ribs in this case
• Optimise number of ribs for each specific mission – more flexible ribs generally preferred

![Diagram showing drag coefficient and altitude for different number of ribs](image-url)
Support Strut Location

- Strut can be located at any point along deployed element
 - Investigated for **one rib design case**
 - Improvement in drag coefficient with strut distance from hinge
 - Minor (< 3%) change in peak heat flux, g-load, velocity at 10 km
- => Strut location should be based on maximum principal stress
 - Ensure material yield strength including safety factor is not exceeded
- Optimise with rib flexibility for lowest mass design
Conclusions and Next Steps

• Aero-structural simulator tool developed to assess deployable aero-decelerator concepts and improve mass estimates
 • Continue using tool to investigate variables and optimise designs
• Flexible deployable ribs are beneficial if resulting mass savings are reallocated to increase vehicle diameter
 • Decreases peak heat flux significantly
 • Attitude damping increases with flexibility
• Number of ribs has a large effect on the drag properties and must be optimised for each mission
• Next steps: validation of aero-structural effects via experiment
 • Lab-scale test to investigate TPS flexure/wrinkling as ribs deform
 • High-speed wind tunnel test to investigate stability
Backup Slides
Mesh Convergence

![Graph showing mesh convergence]

- **Maximum Deflection [m]**
- **No. of Mesh Elements**
- **Matlab**
- **Abaqus**
- **Converged Solution**