Effects of probe shape and surface topography in deployment to small bodies

Stefaan Van wal
Daniel Scheeres

15th International Planetary Probe Workshop
June 14th, 2018
Boulder, Colorado
Small-body exploration

- Current baseline: remote sensing operations
- Increased return: *surface exploration*
Surface exploration: Past

- Minerva-I (Hayabusa-1)

- Philae (Rosetta)

Lander deployment is challenging!
Hayabusa-2:
- Minerva-II and Mascot rovers

- Deployed before Hayabusa-2 sample acquisition
- Rovers must avoid sampling site exclusion zone

Planning of rover deployment requires simulation of bouncing trajectories
Modeling: Shape

- Signed distance field (SDF):
 - Implicit shape model
 - Gridded 3D sampling of distance function \(d(x) \)
 - Linearly interpolated to yield \(d(x) \) and \(N(x) = \nabla d(x) \)
 - Inexpensive collision detection vs. classical polyhedron model
Modeling: Surface features

- Asteroids and comets are covered with rocks of various sizes
- Global shape models are smooth with only large features
- Example: Itokawa

- Presence can affect motion of a probe
- How to account for millions/billions of rocks?
Modeling: Surface features

- Procedurally seeded rocks:
 - Aperiodic tiling of seeding texture
 - Texture can be tuned to match observations
 - Numerical cost is two additional SDF samplings
 - Example of different rock populations:
Modeling: Gravity

❖ Voxelized gravity field:
 ➢ Pre-compute polyhedron gravity $g(x)$ at 3D mesh points
 ➢ Interpolate gravitational perturbation $\Delta g(x) = g(x) - (\mu/r^3)x$ at field point x
 ➢ Inexpensive evaluation of complex gravity field
Modeling: Contact

- Hard contact model with normal and friction forces:
 - The forces are coupled for *eccentric* collisions!
 - Numerical integration is required to evaluate effect
 - Based on model by Stronge
- Model is governed by:
 - Coefficient of restitution e and friction f
 - Assumed independent of velocity and attitude
- Distinguish between slip and stick of contact point
- Impulsive collision *vs.* continued contact motion
A single simulation
A batch of simulations

- Parallel implementation on GPU enables broad studies

surface dispersion

settling time
Effect of lander shape

- Repeat nominal scenario for different shapes:

- Different shapes experience notably different dynamics!
- Implications for lander design
Effect of lander shape

- Behavior of Minerva-II-1:

- Presence of rocks?
Effect of rocks

- Using procedurally seeded rocks, varying spatial density k_0:
 - Settling time statistics:
 - Rocks resist the ‘rolling’ motion of a probe
 - They are important to model!
 - Results hold for normal & grazing impacts
 - Implications for Minerva-II-1 rover
Effect of mass distribution

- Repeat nominal scenarios for varying j:

- Further implications for lander design
Questions?

stefaan.vanwal@colorado.edu