Analysis for Lithium-Combustion Power Systems for Extreme Environment Spacecraft

Christopher J. Greer1, Michael V. Paul2, Alexander S. Rattner1

1Penn State’s Mechanical & Nuclear Engineering Department, 2John Hopkins University Applied Physics Laboratory

June 11, 2018
A longer duration mission to the surface of Venus will require a different power system

Venus Surface:
- 740 K
- 92 Bar
- ~1-2 m/s wind speeds
- 96.5% CO₂, 3.5% N₂, other trace gases

Venera 13:
- Battery powered lander
- Planned duration: 32 minutes
- Actual duration: 127 minutes
ALIVE mission concept could enable a 5 day surface mission without high temperature electronics

Power plant requirements:
- 13.3 kW$_{th}$ at 850°C
- 120 hour duration
- Total 213 kg
- Duplex Stirling engine for cooling (2.0 kW$_{pv}$) & power (0.33 kW$_{e}$)

Lithium combustion systems provide greater energy density systems than alternative options.

Combustion Reaction [2] [3]:

\[5\text{Li} + \text{CO}_2 \rightarrow 2\text{Li}_2\text{O} + 0.5\text{Li}_2\text{C}_2 + \text{Heat} \]

\[\text{Li}_2 + \text{CO}_2 \rightarrow \text{Li}_2\text{CO}_3 + \text{Heat} \]

Energy Density [3]:

- **Li/CO\textsubscript{2} Burner**
 - 650 kW-hr/m3 system energy density

- **NaS Battery**:
 - 350 kW-hr/m3 system energy density
Computational analysis were performed for the energy/mass balance and natural convection in the reactor.

EES: Control Volume Analysis

COMSOL: Natural Convection Model

Acta Astronautica Publication Link [4]:
https://doi.org/10.1016/j.actaastro.2018.05.039
Experimental testing was performed to validate model data and to prove the concept.
Reactor 1.0: Controlled burn of lithium and carbon dioxide while removing heat
Reactor 2.0: Controlled burn of lithium and carbon dioxide producing electricity with a TEG
Reactor 3.0: The next reactor test will require a new injector mechanism

Injector test with chamber at vacuum pressure

Injector test with chamber at 30 psig
Future Work: Selected proposal for NASA SMD’s Hot Operating Temperature Technology (HOTTCH)

- HOTLINE project (Hot Operating Temperature Lithium combustion for IN situ Energy and Power)

- Designing a lithium combustion reactor driven mercury vapor turbine power cycle with an integrated cooling system
Thanks To:

- NASA Innovative Advanced Concepts Office in STMD (Grant # NNX15AQ30G)

- NASA SMD for selecting the HOTLINE project (Award # 80NSSC17K0591)

- CU Boulder for hosting IPPW-15

- IPPW for supporting me with a student scholarship
References

Backup

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV-1</td>
<td>Oxidizer Isolation Valve</td>
</tr>
<tr>
<td>HV-2</td>
<td>Oxidizer Vacuum/Vent Valve</td>
</tr>
<tr>
<td>MFC-1</td>
<td>Oxidizer Mass Flow Controller</td>
</tr>
<tr>
<td>REG-1</td>
<td>Oxidizer Regulator</td>
</tr>
<tr>
<td>SV-1</td>
<td>Fail Closed Solenoid Valve</td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Fi-1,2,3</td>
<td>Flow Indicators</td>
</tr>
<tr>
<td>PG-1</td>
<td>Oxidizer Pressure Gauge</td>
</tr>
<tr>
<td>PT-1</td>
<td>Reactor Pressure Transducer</td>
</tr>
<tr>
<td>PT-2,3,4</td>
<td>Oxidizer Inlet Transducer</td>
</tr>
<tr>
<td>TC-1</td>
<td>Oxidizer Thermocouple</td>
</tr>
<tr>
<td>TC-2,3,4</td>
<td>Reactor Bath Thermocouples</td>
</tr>
<tr>
<td>TC-5,6</td>
<td>Reactor Wall Thermocouple</td>
</tr>
<tr>
<td>TC-7,8,9,10</td>
<td>Reactor Insulation Thermocouples</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Vacuum Pump</td>
<td>Reactor Vacuum Pump</td>
</tr>
<tr>
<td>Heater</td>
<td>Reactor Cable Heater</td>
</tr>
</tbody>
</table>

Valve Access:
- Control Room: Manual
- Control Room: Remote Electrical
- Test Cell: Manual