Overview of the First Two Flights of the ASPIRE Supersonic Parachute Test Program

15th International Planetary Probe Workshop
June 11-15, 2018 – Boulder, CO

Bryan Sonneveldt, Clara O’Farrell, Ian Clark
Jet Propulsion Laboratory, California Institute of Technology

Supersonic Parachute Testing Heritage

- Disk Gap Band (DGB) Parachute developed in 60’s & 70’s for the Viking program
- DGB development included the Planetary Entry Parachute Program (PEPP) which used sounding rockets and high-altitude balloon launched vehicles to test supersonic parachutes in Atmospheric conditions analogous to Mars:

- DGB has been used successfully on 5 Mars Missions (leveraged Viking development)
- The Low-Density Supersonic Decelerators (LDSD) Project saw failures of two supersonic Ringsail parachutes
- LDSD experience showed that stresses seen in subsonic testing may not bound the stresses seen in supersonic testing, at least for some parachutes
- **ASPIRE project was started as a risk reduction activity for the Mars 2020 mission**
The ASPIRE Project

ASPIRE = Advanced Supersonic Parachute Inflation Research and Experiments

- **Objective**: Expose two candidate M2020 parachute designs to a supersonic inflation environment and acquire sufficient data to characterize the flight environment, loads, performance of the parachute.

- **Launch Site**: Wallops Flight Facility at Wallops Island, VA
- **Launch Vehicle**: Terrier Black Brant IX Sounding Rocket
- **Launch Provider**: NASA Sounding Rocket Program (NSROC)

Three Flights (nominal)
- Flight 1: MSL Build-to-Print Chute at 35 klbf
- Flight 2: Strengthened Chute at 47 klbf
- Flight 3: Strengthened Chute at 70 klbf
- Flight 4: (optional) Strengthened Chute at 70 klbf

Test Architecture
- Rail-launched
- Spin-stabilized at 4 Hz
- Yo-yo de-spin after 2nd stage burnout
- Mortar-deployed full-scale DGB
- Cold gas ACS before mortar fire
- Payload recovered in Atlantic Ocean

Timeline
- 1st stage Terrier burnout: L+5.2 s, Alt: 0.7 km, Mach: 0.8
- 2nd stage Brant Ignition: L+8.0 s, Alt: 1.4 km, Mach: 0.7
- 2nd stage Brant burnout: L+35.5 s, Alt: 16 km, Mach: 3.2
- 1st stage Terrier burnout: L+5.2 s, Alt: 0.7 km, Mach: 0.8
- Payload Sep: L+104 s, Alt: ~50 km, Mach: 1.2
- Mortar Fire (MF): L+160-170 s, Alt: 39-45 km, q∞: 360-820 Pa, Mach: 1.65-1.9
- Line Stretch MF+ ~1 s, Alt: 39-45 km, q∞: 400-930 Pa, Mach: 1.68
- Peak Load MF+ ~2 s, Alt: 39-45 km, q∞: 400-930 Pa, Mach: 1.64
- Nosecone Jettison: L+ ~160 s, Alt: 3 km
- Splashdown: L+ ~30 min

Launch Site
- WFF

Atlantic Ocean
- ~60 - 100 km
Payload Configuration & Instrumentation

Ballast (jettisoned before splashdown)

Buoyancy Aid (foam) & electronics

Telemetry (sealed)

Attitude Control System

Parachute Experiment Section

Aft transition & separation Hardware

De-spin hardware

Onboard Instrumentation

<table>
<thead>
<tr>
<th>Instrument Description</th>
<th>Rate</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLN-MAC IMU</td>
<td>400 Hz</td>
<td>-</td>
</tr>
<tr>
<td>GPS</td>
<td>20 Hz</td>
<td>-</td>
</tr>
<tr>
<td>C-band transponder (radar tracking)</td>
<td>50 Hz</td>
<td>-</td>
</tr>
<tr>
<td>Parachute Triple-Bridle Load Pins</td>
<td>1 kHz</td>
<td>1100 lbf</td>
</tr>
<tr>
<td>High Speed Cameras (x3)</td>
<td>1000 fps</td>
<td>3840x2400</td>
</tr>
<tr>
<td>Situational Video (x3)</td>
<td>120 fps*</td>
<td>1920x1080*</td>
</tr>
</tbody>
</table>

*One Situational Video Camera set to 4K resolution and 30 fps

Meteorological instrumentation:

- 6x meteorological balloons carrying Radiosondes: temperature, density, winds to 37 km
- GEOS Analysis: temperature, density, winds above 37 km

58 ft.
Mars 2020 Supersonic Parachute Test
Flight Test #1
ASPIRE Flight 2 Footage
Payload Recovery

- Payload is recovered from the Atlantic Ocean in order to extract onboard data that is not telemetered during flight.
- Payload recovery was successful for both ASPIRE flights with no recovery-induced damage to the parachute or instrumentation.
ASPIRE Flight 1 & 2 Results

- ASPIRE Flight 1 & 2 were a success
- Both Parachutes survived their flight loads and showed no significant damage from inflation
- See C. O’Farrell et al “Reconstructed disk-gap-band parachute performance during the first two ASPIRE supersonic flight tests” (presentation)

Flight 1

Parachute peak load: 32.4 +/- 1.1 klbf

Flight 2

Parachute peak load: 55.8 +/- 1.1 klbf
What’s next? Overview of ASPIRE Flight 3

- 21.5 meter Airborne Strengthened DGB parachute
- Target Parachute peak Load of 70,000 lbf
- Launch planned for July/August 2018
Acknowledgements

The success of these two flights is due to the greater ASPIRE Team

Project Manager: Tom Randolph
Project Manager Emeritus: Mark Adler
Principal Investigator: Ian Clark
Parachute CogE: Chris Tanner
Flight Performance (JPL): Mark Ivanov
Flight Performance (LaRC): Eric Queen
Aerosciences: Suman Muppidi
Sounding Rocket Lead: Brian Hall
NSROC Mission Manager: Jay Scott
WFF Range Lead: John Valliant
Recovery Lead: John McCann

And many others from the Jet Propulsion Laboratory, NASA Langley Research Center, NASA Ames Research Center, NASA Wallops Flight Facility, and the Thomas Reed Boat Recovery Crew
Backup
Overview of ASPIRE Flight 1 and Flight 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Flight 1</th>
<th>Flight 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Date</td>
<td>October 4(^{th}), 2017</td>
<td>March 31(^{st}), 2018</td>
</tr>
<tr>
<td>Launch Time</td>
<td>6:45 am local time</td>
<td>12:19 pm local time</td>
</tr>
<tr>
<td>Parachute</td>
<td>21.3 meter Pioneer MSL Build-to-Print DGB chute</td>
<td>21.5 meter Airborne Strengthened DGB chute</td>
</tr>
<tr>
<td>Parachute Pack Mass</td>
<td>61 kg (134 lbm)</td>
<td>82 kg (181 lbm)</td>
</tr>
<tr>
<td>Mass underneath the Parachute</td>
<td>1,121 kg (2,471 lbm)</td>
<td>1,121 kg (2,471 lbm)</td>
</tr>
<tr>
<td>Target Peak Parachute Load</td>
<td>35,000 lbf (~156 kN)</td>
<td>47,000 lbf (~209 kN)</td>
</tr>
<tr>
<td>Flight Peak Parachute Load</td>
<td>32,400 lbf (~144 kN)</td>
<td>55,800 lbf (~248 kN)</td>
</tr>
<tr>
<td>Mach at Full Inflation</td>
<td>1.77</td>
<td>1.97</td>
</tr>
</tbody>
</table>