Pterodactyl: Integrated Control Design for Precision Targeting of Deployable Entry Vehicles

Dr. Sarah D’Souza, Principal Investigator
NASA Ames Research Center

15th International Planetary Probe Workshop
June 12, 2018
Background

- Funded by NASA’s Space Technology Mission Directorate as part of the Early Career Initiative program

- Goal is to grow early career employees while advancing NASA’s mission
What is Pterodactyl?

A design, build, and test capability for finding optimal, scalable Guidance & Control (G&C) solutions for Deployable Entry Vehicles (DEVs) to enable precision targeting
Large to Small Mass Missions are driving the development of DEVs!

Adaptable, Deployable Entry Placement Technology (ADEPT)

Hypersonic Inflatable Aerodynamic Decelerator (HIAD)
Research Question: What control system will enable steering these vehicles to a location of our choosing, precisely?

Relevant applications: large mass to Mars, science missions that require timely recovery or arrival at a specific location
Lifting Nano-ADEPT
Asymmetric, 1+ meter diameter
mass = 55.2 kg, $\beta = 40 \text{ kg/m}^2$
Pterodactyl Mission Roadmap

DEV Technology Goals:
G&C solution that provides precision targeting and scalability

Currently funded
- FY18 - FY20
 - Ground Testing and Prototyping
- FY20+
 - Earth Flight Test

Lunar Return Mission

Then Mars!
Pterodactyl Design Overview

"Stepping Stone" Approach

POINT OF DEPARTURE: Design feasible G&C solutions with a notional ConOps

<table>
<thead>
<tr>
<th>Planet</th>
<th>Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Type</td>
<td>Direct, high speed (> 9 km/s)</td>
</tr>
<tr>
<td>Mission</td>
<td>NASA missions used as analogs to stress design for scalability and precision targeting</td>
</tr>
<tr>
<td>Justification</td>
<td>High entry velocity results in high aerodynamic and heat loading impacts G&C design</td>
</tr>
</tbody>
</table>

Each iteration (stepping stone) of the design becomes more specific to a particular mission on the Pterodactyl Technology Roadmap.
Lunar Return
Earth Direct Entry to UTTR – 2100km range

De-orbit/Stabilization

Entry Interface Attitude
- $h_{EI} = 122$ km
- $V_{EI} = 11.0$ km/s
- $\gamma_{EI} = -5.5^\circ$

Active Guidance
- $a_{\text{guid}} = \text{TBD}$ or
- $a_{\text{sensed}} = 0.2\text{g's}$

Entry Phase

Descent System Activation
- $Ma = 2.0$
Pterodactyl Design Process Overview

Lifting Nano-ADEPT
Asymmetric, 1+ meter diameter

Identify Potential Control Systems
Tabs, RCS, etc.

Develop Vehicle and Control System Simulations
Varied Fidelity

Integrate Models into MDAO Framework
Multi-disciplinary, Design, Analysis and Optimization
*Garcia et al., AIAA 2010-5052

Select Optimal Design
MDAO output, SMEs

*COBRA-Pt
Optimizes control system mass and target ellipse

CAD Models
Aerodynamics
Aerothermodynamics
Guidance & Control
Structures Analysis
TPS Sizing
Earth Flight Test Overview

POINT OF DEPARTURE: Prototype potential flight test article for LEO mission Planet Earth

Entry Type: Direct

Mission: Secondary Payload on Atlas V target to Kwajelein (pacific ocean)

Justification:
- Proof of concept for integrated design
- Validation of: hardware & environment models, software executing a mission, system performance predictions

DEV Technology Goals:
* G&C solution that provides precision targeting and scalability

Then Mars!

Lunar Return Mission

FY18 - FY20
Ground Testing and Prototyping

FY20+
Earth Flight Test
De-orbit/Stabilization

Entry Interface Attitude

- $h_{El} = 122 \text{ km}$
- $V_{El} = 7.89 \text{ km/s}$
- $\gamma_{El} = -6.8^\circ$

Active Guidance

- $q_{guid} = \text{TBD}$ or
- $a_{sensed} = 0.2g's$

Descent System

Activation

- $Ma = 2.0$

Water Impact

Data recorder recovery

(U.S. Air Force photo by Tech. Sgt. Kristine Dreyer)
Pterodactyl Testing Plan Overview

<table>
<thead>
<tr>
<th>Test</th>
<th>Requires G&C Algorithms</th>
<th>Pterodactyl Testing Timeline</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6DOF Simulation</td>
<td>✓</td>
<td>FY19</td>
<td>G&C logic development, System performance predictions, Monte Carlo analyses</td>
</tr>
<tr>
<td>Bench Tests of Hardware</td>
<td></td>
<td>FY19-20</td>
<td>Validate simulation hardware and hardware interfaces to software</td>
</tr>
<tr>
<td>Hardware in the Loop Tests</td>
<td>✓</td>
<td>FY19-20</td>
<td>Validate compiled software operation on the flight processor, computational loading, and timing to/from hardware</td>
</tr>
<tr>
<td>Vertical Motion Simulator</td>
<td></td>
<td>Optional</td>
<td>Validate navigation algorithms/sensors given physical motion</td>
</tr>
<tr>
<td>Captive Flight Tests</td>
<td>✓</td>
<td>if necessary</td>
<td>Validate flight software & mission states, navigation software in flight, telemetry collection</td>
</tr>
<tr>
<td>Flight Tests</td>
<td>✓</td>
<td>Notionally FY22-23</td>
<td>Validate hardware & environment models, software executing a mission, system performance predictions</td>
</tr>
</tbody>
</table>
Pterodactyl Team

Dr. Wendy Okolo, Brandon Smith, Ben Nikaido,
Dr. Alan Cassell, Bryan Yount, Xun Jiang
NASA Ames Research Center

Breanna Johnson
NASA Johnson Space Center

Ken Hibbard, Jeff Barton, Gabe Lopez, and Andrew Sanders
Space Exploration Sector
JHU Applied Physics Laboratory

Dr. Steve Robinson
Center for Human-Systems Engineering
University of California at Davis

Questions?
Back-up Slides
Deployable Entry Vehicle Technology Challenge Areas

<table>
<thead>
<tr>
<th>CHALLENGE AREAS</th>
<th>TECHNOLOGY DEVELOPMENT</th>
<th>TECHNOLOGY DEMONSTRATIONS</th>
<th>DESIGN REFERENCE MISSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PTERODACTYL</td>
<td>ADEPT</td>
<td>DESCENT SYSTEMS STUDY</td>
</tr>
<tr>
<td>Guidance Algorithm Validation</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Control Effector Design, Analysis & Characterization</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Static Aerodynamic Database</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Guidance & Control System Validation</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Electro-mechanical Deployment System</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Carbon Fabric Packing & Tension Management</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>System Level Aerothermal Analysis</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Scalability</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Carbon Fabric Response Model</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>System Thermo-structural Performance</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Payload Thermal Control</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Safe & Precise Landing Integrated Capability</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Propulsive Descent</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Control Surface Effectiveness</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Parametric Mass Model</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Pterodactyl Development Roadmap

LNA Technical Challenge Areas

Stakeholder Needs & System Design
1. End-to-End mission concept(s) definition
2. Payload thermal environment management
3. Guidance algorithm
4. Control effector performance mapping
5. IMU sensor characterization
6. Real-time state estimation (e.g. EKF)
7. GN&C system validation

Structures and Mechanisms
8. Control effector design
9. Fabric packing and tension management
10. Electro-mechanical deployment system

Aero/Aerothermal & Materials
11. Static aerodynamic performance
12. Mid-fidelity carbon fabric response model
13. System thermo-structural performance

Test/Analysis Activity Mapping

CY18-CY19 Pterodactyl (STMD ECI)
- COBRA-Pt MDAO tool development
- GN&C algorithm development
- GN&C algorithm validation via Monte Carlo simulation AND/OR hardware-in-the-loop test
- IMU requirements development and hardware options identification
- Control effector thermo-structural analysis
- System-level aerothermal analysis (e.g. shock-interaction, wake impingement)
- Mid-fidelity static aerodynamic database development (CBAERO anchored to NS)

CY19 Pterodactyl (STMD ECI)
- Deployment system benchtop test
- Control effector performance characterization

Path to TRL 6

Residual Risks

Flight Test:
Guided entry at Earth from orbital velocity

Flight Test Objective:
Retire residual risks that were not addressed in other test/analysis activities

Unplanned, unfunded work

Component thermo-structural load testing
Stagnation and SPRITE-C arc jet testing
Analog Missions

- Use analog missions to develop a notional Concept of Operations
- Trade between what we want to account for in the design process versus capability at landing site

<table>
<thead>
<tr>
<th>Mission</th>
<th>Return From</th>
<th>Entry Trajectory</th>
<th>Guided</th>
<th>Entry Velocity (km/s)</th>
<th>Recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apollo</td>
<td>Lunar</td>
<td>Direct (some lofted)</td>
<td>Yes</td>
<td>11.0</td>
<td>yes</td>
</tr>
<tr>
<td>Orion EFT-1</td>
<td>LEO</td>
<td>Direct</td>
<td>Yes</td>
<td>8.93</td>
<td>yes</td>
</tr>
<tr>
<td>Orion EM-1</td>
<td>Lunar</td>
<td>Skip</td>
<td>Yes</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>Stardust</td>
<td>comet</td>
<td>Direct</td>
<td>No</td>
<td>12.9</td>
<td>yes</td>
</tr>
<tr>
<td>Genesis</td>
<td>L1</td>
<td>Direct</td>
<td>No</td>
<td>11.1</td>
<td>yes</td>
</tr>
<tr>
<td>Mars Sample Return</td>
<td>Mars</td>
<td>Direct</td>
<td>?</td>
<td>11.0-12.0</td>
<td></td>
</tr>
<tr>
<td>MSL</td>
<td>Earth</td>
<td>Direct</td>
<td>Yes</td>
<td>5.9</td>
<td>yes</td>
</tr>
</tbody>
</table>