Past and present missions:
Mobile Asteroid Surface Scout (MASCOT)
Jens Biele

Who am I?

- After some fun with chemistry (<18), became clear to study physics
- (Experimental) physics 1985-93 Univ. K-Town/Germany, Imperial College/London, Diploma (~masters), laser spectroscopy&molecular physics. Some hesitation what to do next...
- PhD 1995-98 at AWI institute, Potsdam/Berlin (polar atmospheric research in the Arctic, LIDAR, expeditions and all)
- Some hesitation what to do next...
- Moved to Cologne. Found job at DLR by chance: payload manager for Rosetta/Philae, liked it, stayed on, moved to other projects like MASCOT...
- Broad range of interests and, luckily, quite some freedom to pursue scientific interests even if not immediately necessary for project task at hand
- Explorations and science mission specialist for the business development group of the DLR-RB institute.
- Key experience and focus: testing and operations of science instruments in space, Solar system exploration in general, geophysics (atmosphere, solar system ices), thermodynamics, systems and subsystems for mmall spacecraft and surface science packages.
- Thesis supervisor for several master and diploma theses at DLR
- Occasional lectures at the University of Cologne, Department of Geophysics (Celestial mechanics and Coordinate Systems; Geodynamics/Rotation of the Earth)

MASCOT

 Mobile Asteroid Surface Scout with a suite of 4 scientific instruments onboard Hayabusa2

Target Object: NEA Ruygu/1999JU3 (C-Typ)

JAXA Design	Reference
-------------	-----------

Parameters		
Mean volume-equivalent	0.87±0.03	
diameter (km)		
Bulk density (kg/m³)	1300	
Spin period (hrs)	7.63±0.01	
Spin axis (J2000),	λ_ecl = 73.1°	
positive pole	β_ecl=-62.3°	
	retrograde	
	rotation	
	Obliquity=151	
	.6°	
V _{esc} (m/s)	0.37±0.03	
Thermal inertia (global	Notional: 400	
average) (Jm ⁻² s ^{-0.5} K ⁻¹)		
Emissivity	0.9 (assumed)	
g (m/s²)	1.5 × 10 ⁻⁴	
Surface fraction covered	0.4 - 0.9	
with craters		

MASCOT will serve as ground truth tie point between sample science (10⁻³-10⁻⁶m) & remote sensing sciences (10³ - 10⁻³m)

The MASCOT Concept, Requirements and Technical Realization

Top Level Requirements:

- The maximum mass is 11 kg
- The maximum volume is $0.3 \times 0.3 \times 0.2 \text{m}^3$
- Separation & descent during a sampling dress rehearsal
- Operation during two asteroid rotations
- Autonomous operations on asteroid surface
- Self right and relocation ability via mobility

... that have implication on the system design & development

Support

- ⇒ Shared communication with Minerva Rovers (via CCOM & OME-A Antenna)
- ⇒ During cruise: "wireless" communication with MESS antenna
- ⇒ On asteroid: shared communication with OME-A

MASCOT Concept

Agile, light & compact nano-lander for in-situ
 asteroid research

Total mass: ~10 kg

PLs: MASCAM, μOmega, MARA, MASMAG

 Developed by DLR in collaboration with CNES for the Hayabusa 2 Mission

On-Asteroid ops: ~Oct 3, 2018

Hayabusa2 (HY2)

= Hayabusa Immediate follow-on Asteroid Sample Return Mission (JAXA/ISAS)

Launch: Dec 2014

Arrival + Ops: 2018/2019

Return to Earth: 2020

Mass ~ 600 kg

 Dimensions of main structure: 1.om x 1.6m x 1.4m (Paddle span: 6.om)

PL: Four orbiter
 experiments, impactor,
 sampler, 3 Minerva rovers
 + MASCOT (DLR/CNES)

MASCOT Baseline Design - Summary

- Configuration/Structure: highly integrated carbon-fibre composite structure with separate payload and warm compartment (including common E-box for all instrument electronics)
- Power: Primary battery only; redundant power supply from main-S/C during cruise
- Communication: common communication based on Minerva transceiver, on MASCOT: omnidirectional, redundant link with one antenna on each side
- DHS/OBC: Redundant on-board computer, Mascot Autonomy Manager (MAM)
- Mechanisms: uprighting and hopping using motor/drive/excenter
- GNC (attitude): using proximity sensors (baseline optical + backup)
- Thermal: semi-active;
- Cruise: active (heater power and control from HY2)
- On surface: passive (MLI and coatings)
- MESS: physical interface to HY2

Payload Accomodation

MASCOT Science Payload

Camera (MasCam)/DLR PF

- Ground truth for orbital measurements of the HY2 instruments and the in-situ MSC sensor suite
- Geological context of the samples

Radiometer (MARA)/DLR PF

- Surface brightness temperature for a full asteroid rotation
- Surface inertia and spectral slope in the IR

Magnetometer (MasMag)/TU Braunschweig

- Observe the magnetic field profile during descent and hopping
- Identification of global and local magnetization of asteroid and reconstruct the coordinate system of the magnetic field vector

IR Hyper-Spectral Imager (MicrOmega)/IAS Paris

- Composition of the asteroid's surface, at grain scale in terms of minerals (pristine, altered), ices/frosts, organics
- Microscopic structure of the soil, and the relation between the various phases of distinct compositions.

The Mass and Volume Requirements

- Maximum mass (incl. MESS) ≤11 kg!
- Maximum volume (incl. antenna, etc..) ≤ 0.3x0.3x0.2m³!
 - \Rightarrow Lander structure (CFRP) \approx 0,56 kg
 - \Rightarrow MESS structure (CFRP) ≈ 0,7 kg
 - ⇒ Payload/System Mass Ratio ≈ 3:7

L	ander Module	N

MASCOT Lander	Mass [kg]		
Mobility	0,52		
GNC	0,26		
OBC	0,49		
Communication	0,52		
Power (Batteries and PCDU)	1,82		
Structure (incl. Ebox)	2,13		
Thermal	0,41		
Harness	0,55		
Payload			
MicrOmega	2,1		
MAG	0,24		
MARA	0,26		
MASCAM	0,46		
MASCOT MESS	1,23		
Total	11,02		

\Rightarrow High integration density:

- Most harness is replaced by a backplane
- E-box (Al, thickness ≈ 1,5 mm) contains nearly all PCBs & Mobility S/S

Separation and Landing

MASCOT will be separated during a 'Touch and Go' maneuver of HY2 at an altitude of ~100m and free fall on asteroid surface

- ⇒ MASCOT will be ejected via separation mechanism (NEA, push plate, spring) from HY2 & MESS
 - Relative separation velocity \approx 5 cm/s
 - V_{impact} < 50% then asteroid escape velocity(≈ 32 cm/s)

Separation direction

Operational Requirements

- The landing package shall operate at least during two complete asteroid rotations
- The landing package shall autonomously perform nominal operations when ground intervention is not possible

MASCOT

- ⇒ Primary batteries (i.e. LSH20 SAFT; Philae/Rosetta)
- ⇒ MSC Autonomy Manager: State

 Machine as App on On-Board Comput

 ¶

Degree of Autonomy

- Level 0 Automatic system, i.e. monitoring of parameters and autonomous
 - Mode switching in failure cases
- Level 1 Low level intelligent functions identify errors
 - Voting mechanism & logic-based function
- Level 2 Flexible, knowledge-based fault diagnosis
 - Knowledge-based reactive on-board planning & operations optimization

Level n

rom: Eickhoff, J.; Simulating Spacecraft Systems, Springer-Verlag Berlin Heidelberg, 2009

Mobility

- Upright capability & change of surface site
 - ⇒ Upright and hopping mechanism via mobility s/s (motor/control electronics/excenter arm)
 - ⇒ OPS to detect asteroid surface
 - \Rightarrow Redundancy via PEC to detect Sun vector

Thermal Requirements

- Temperatures during cruise (4 years): -30 < t < +60 °C
 - Max. heat transfer between MSC & HY2 ~ 5W
- Temperatures on the asteroid surface : -60 < t < +77 °C
- Warm compartment (Ebox, batteries) ⇔ Cold compartment (PL)
 - ⇒ Semi-active Thermal Control System

Passive Thermal Control Part

- ⇒ Super-insulation (MLI) on MESS
- ⇒ E-box & batteries in super-insulating layers (MLI)
- ⇒ SLI: Insulated sides to reduce heat input from ground (landed) or heat exchange to HY2 (cruise)
- ⇒ Radiator & Heat Pipes (Main Actor during In-flight switch on)

Thermal Control via HY2 S/C

- ⇒ Redundant heater on MASCOT for thermal control of batteries (+ Ebox and MMEGA)
 - grant survival temperature of batteries during cruise
 - preheat MASCOT before commissioning phases & shortly before landing.

S/C Requirements: Heat Transfer to the S/C				
	Cold Case	Hot Case		
Maximum Heat Transfer	-5W	5W		

Hayabusa2 Mission Baseline

Ion Engine Powered Cruise #3

Dec 3, 2014: Launch

HY2 will fly once around the Sun

(Note: similar to Earth's orbit)

End of 2015: Earth swing-by

- After the swing-by HY2
 goes into an orbit similar to
 NEA Ryugu.
- ~ 2 rounds around the Sun to arrive at NEA Ryugu.

Summer 2018: Arrival at the asteroid – Stay there for about 18 months.

- Remote observation incl. Near InfraRed Spectrometer (NIRS3) and Thermal Infrared Imager (TIR).
- Separation of small rovers "MINERVA" and small lander "MASCOT".
- Sampling surface of the asteroid.
- Small Carry-on Impactor (SCI) separation → artificial crater, touch down & sampling

Materials:

- Ho, T.-M., et al. (2016). "MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission." <u>Space Science Reviews: 1-</u> 36.
- Ulamec, S., et al. (2011). "Hopper concepts for small body landers." Advances in Space Research No. 47: 428-439.
- Biele, J., et al. (2017) Experimental Determination of the Structural Coefficient of Restitution of a Bouncing Asteroid Lander. <u>ArXiv e-prints</u> **1705.00701**
- Maurel, C., et al. (2017). "Numerical simulations of the contact between the lander MASCOT and a regolith-covered surface."
 Advances in Space Research.
- Grundmann, J. T., et al. (2015). Mobile Asteroid Surface Scout (MASCOT) Design, Development and Delivery of a Small Asteroid Lander Aboard Hayabusa2. 4th IAA Planetary Defense Conference – PDC 2015. W. Ailor and R. Tremayne-Smith. Frascati, Rom, Italien, IAA.
- Biele, J., et al. (2015). Landing on small bodies: From the Rosetta lander to MASCOT and beyond. <u>AstroRecon. Phoenix, USA.</u>
- MASCOT2 A small body lander to investigate the interior of 65803 Didymos' moon in the frame of the AIDA/AIM mission. Acta Astronautica 149 (2018) 25–34
- Herique, A., et al. (2018). "A radar package for asteroid subsurface investigations: Implications of implementing and integration into the MASCOT nanoscale landing platform from science requirements to baseline design." <u>Acta Astronautica.</u>

Questions?

