Scientific rationale for Uranus and Neptune in situ explorations

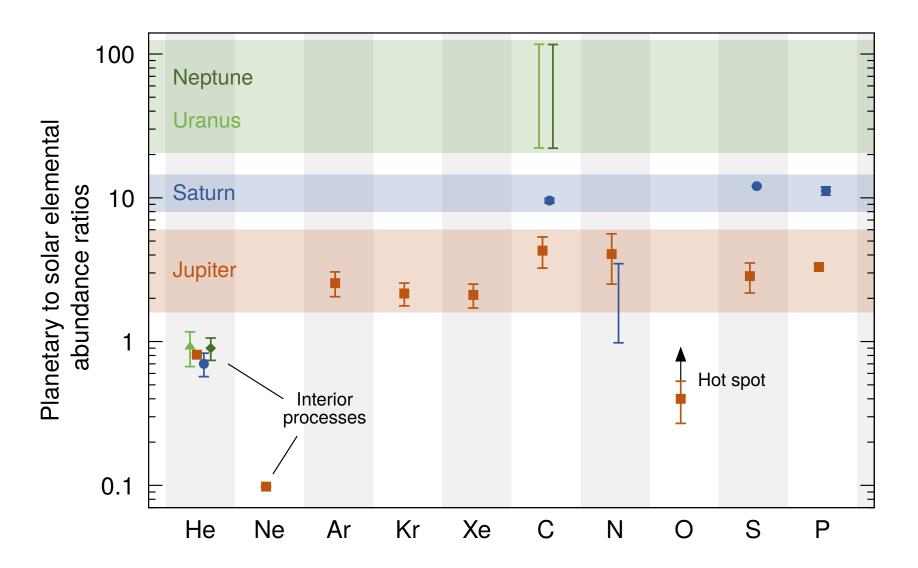
O. Mousis¹, D.H. Atkinson², T. Cavalié³, L.N. Fletcher⁴, M.J. Amato⁵, S. Aslam⁵, F. Ferri⁶, J.-B. Renard⁷, T. Spilker⁸, E. Venkatapathy⁹, and P. Wurz¹⁰

¹Laboratoire d'Astrophysique de Marseille, Aix Marseille Université, Marseille, France, ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA, ³LESIA, Observatoire de Paris, Meudon, France, ⁴Department of Physics & Astronomy, University of Leicester, Leicester, UK, ⁵NASA Goddard Space Flight Center, Greenbelt, USA, ⁶Università degli Studi di Padova, CISAS, Padova, Italy, ⁷LPC2E, CNRS-Université d'Orléans, Orléans, France, ⁸Solar System Science & Exploration, Monrovia, USA, ⁹NASA Ames Research Center, Moffett field, USA, ¹⁰Space Science & Planetology, Physics Institute, University of Bern, Bern, Switzerland

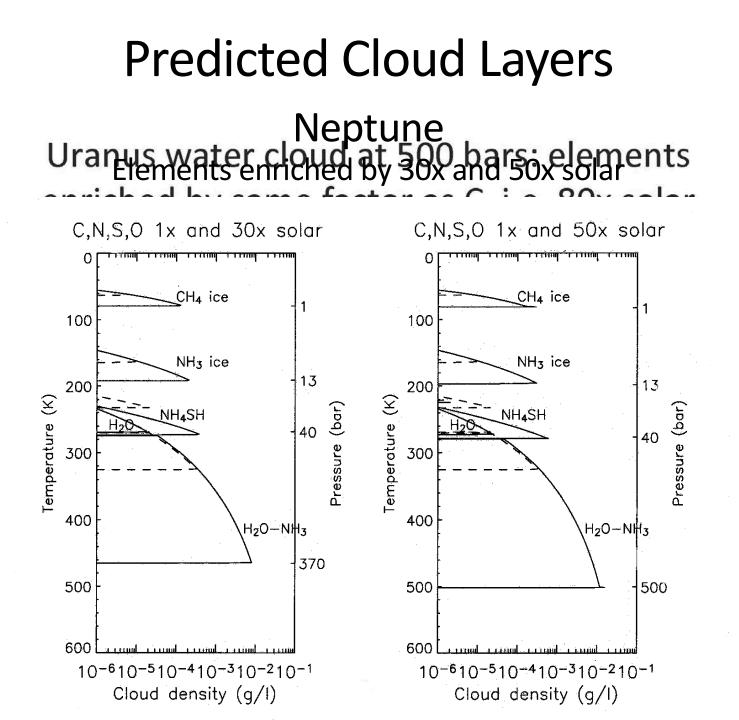
International Planetary Probe Workshop, Boulder

15 June 2018

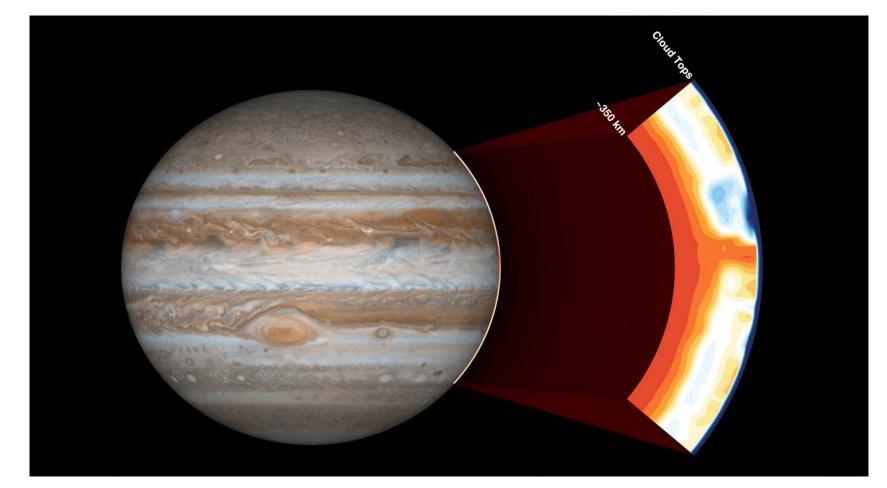
Motivation and Background


- Giant planets have played a significant role in shaping the architecture of the solar system, including the smaller, inner terrestrial planets.
- The efficiency of remote sensing observations has some limitations, especially to study the bulk atmospheric composition. In particular, the measurement of noble gas and helium abundances requires in situ measurements.
- The Galileo probe provided a giant step forward regarding our understanding of Jupiter.

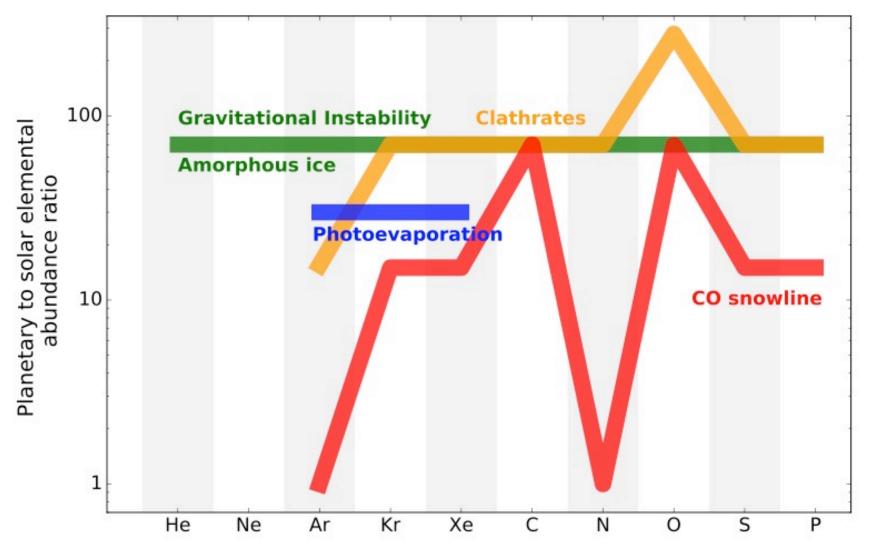
However, it remains unknown whether these measurements are unique to Jupiter or are representative of all gas giants including Saturn, and how the composition, processes, and dynamics of the giant planets are similar and different from the ice giants.


Key Measurements Needed

- Bulk composition: Elemental abundances including
 O, C, N, S, He, Ne, Ar, Kr, Xe
- Isotopic ratios: Noble gas isotopes, D/H, ¹³C/¹²C, ¹⁵N/¹⁴N
- He/H₂ ratio: For planetary heat balance, interior processes, and thermal history
- Ortho/Para H₂ ratio: For thermal structure and deep dynamics


Existing Measurements

Atreya et al. (2018), Mousis et al. (2018)


Lessons From Juno

Jupiter thermochemical equilibrium models predict NH₃ cloud base at ~700mb.

However Juno MWR data show a highly complex distribution of ammonia over Jupiter. Near the equator, well-mixed ammonia is reached at atmospheric pressures ~100 bars. (Bolton et al. 2017; Ingersoll et al. 2017)

Different Scenarios of Giant Planet Volatile Enrichment

Mousis et al. 2018, PSS, in press

Strawman Science Payload

Instrument	Measurement	
Mass Spectrometer	Elemental and chemical composition, especially noble gases and key isotopes	
Atmospheric Structure Inst.	Pressure and Temperature → Thermal structure, density, stability Entry Accelerations → Density	
Radio Science Experiment	Atmospheric dynamics: winds and waves; Atmospheric absorption \rightarrow composition	
Nephelometer	Cloud structure, microphysics, aerosol number densities & characteristics	
Net Flux Radiometer	Net radiative fluxes: Thermal IR, solar visible	
Helium Abundance Detector	Helium Abundance	

Core mission profile modeled after Galileo probe

NASA provided HEEET would enable significant mass savings over CP for range of EFPAs

Table E.1 Entry System Mass Estimates					
Entry Flight Path Angle (EFPA), degrees	-8		-19		
	Mass, kg				
TPS Material	HEEET	Carbon Phenolic	HEEET	Carbon Phenolic	
Entry System (total mass)	215	255	199	223	
Deceleration module	92.6	132.6	76.6	100.6	
Forebody TPS (HEEET)	40	80	24	48	
Afterbody TPS	10.5	10.5	10.5	10.5	
Structure	18.3	18.3	18.3	18.3	
Parachute	8.2	8.2	8.2	8.2	
Separate Hardware	6.9	6.9	6.9	6.9	
Harness	4.3	4.3	4.3	4.3	
Thermal Control	4.4	4.4	4.4	4.4	
Descent Module	122.7	122.7	122.7	122.7	
Communication	13	13	13	13	
C&DH Subsystem	18.4	18.4	18.4	18.4	
Power Subsystem	22^{1}	22^{1}	22^{1}	22^{1}	
Structure	30	30	30	30	
Harness	9.1	9.1	9.1	9.1	
Thermal Control	4.3	4.3	4.3	4.3	
Science Instrument	25	25	25	25	
Separate Hardware	0.9	0.9	0.9	0.9	

Note. Deceleration of (or Entry System) module 1m diameter aeroshell, 36 km/s inertial velocity, 10 deg latitude). The descent module mass estimate, except for the Science Instruments, are the same as that of Galileo Probe. Additional mass savings are likely when the descent system structure is adjusted for reduction in scale as well as entry g-load. Galileo design-to g-load was 350. Saturn probe entry g-load with 3-sigma excursions will be less than 150 g's.

Next Stop: Ice Giants!

Analytic order 21 Control 2017 2012-0012-01 2017 Harves Ltd. AD optics control