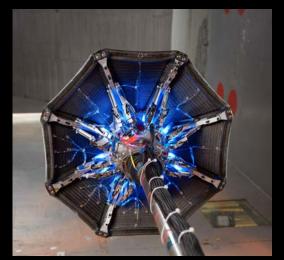
Pterodactyl: Integrated Control Design for Precision Targeting of Deployable Entry Vehicles

Dr. Sarah D'Souza, Principal Investigator NASA Ames Research Center

15th International Planetary Probe Workshop June 12, 2018

Background

Funded by NASA's Space Technology Mission
Directorate as part of the Early Career
Initiative program



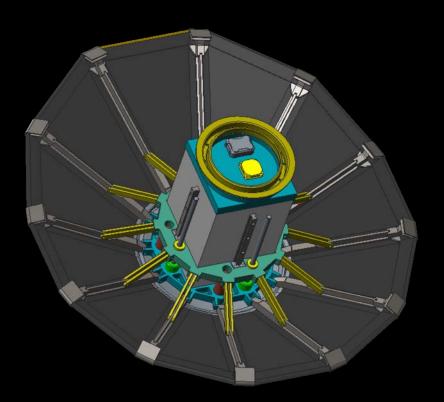
- Goal is to grow early career employees while advancing NASA's mission

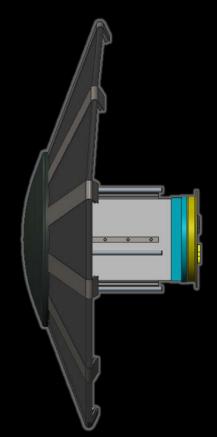
What is Pterodactyl?

A design, build, and test capability for finding optimal, scalable Guidance & Control (G&C) solutions for Deployable Entry Vehicles (DEVs) to enable precision targeting

Large to Small Mass Missions are driving the development of DEVs!

Adaptable, Deployable Entry Placement Technology (ADEPT)


Hypersonic Inflatable Aerodynamic Decelerator (HIAD)


Research Question: What control system will enable steering these vehicles to a location of our choosing, precisely?

Relevant applications: large mass to Mars, science missions that require timely recovery or arrival at a specific location

Lifting Nano-ADEPT

Asymmetric, 1+ meter diameter mass = 55.2 kg, $\underline{\beta}$ = 40 kg/m²

Pterodactyl Mission Roadmap

DEV Technology Goals: *G&C solution that provides precision targeting and scalability*

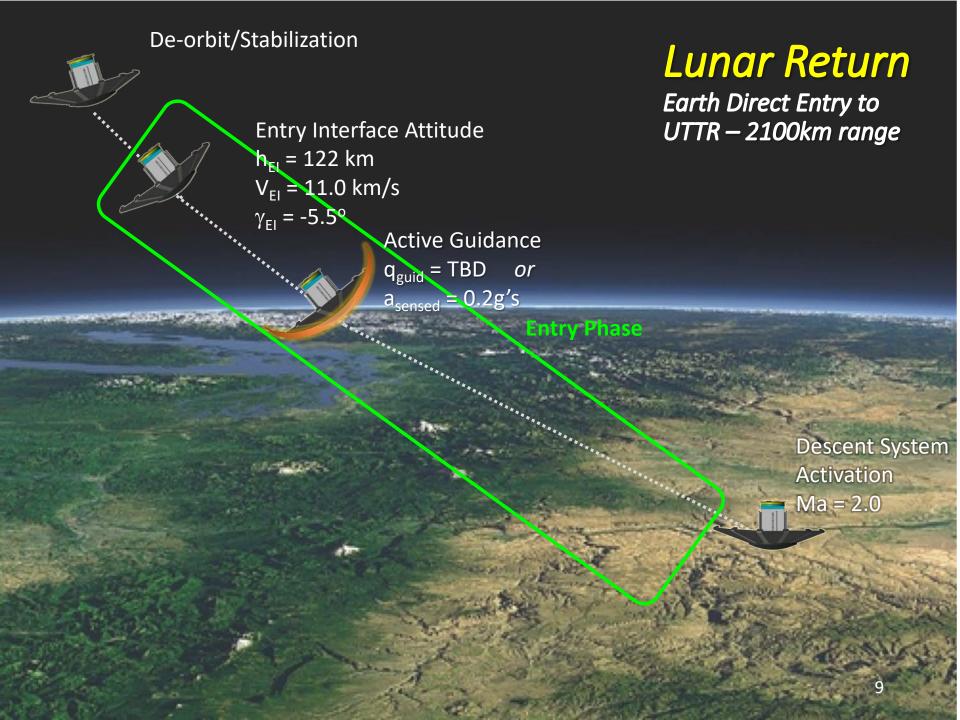
Then Mars!

Lunar Return Mission

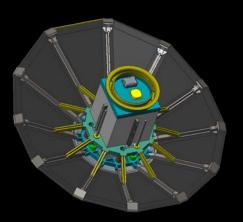
Currently funded

FY18 - FY20 *Ground Testing and Prototyping*

FY20+ *Earth Flight Test*


Pterodactyl Design Overview

"Stepping Stone" Approach


POINT OF DEPARTURE: Design feasible G&C solutions with a notional ConOps

Planet	Earth
Entry Type	Direct, high speed (> 9 km/s)
Mission	NASA missions used as analogs to stress design for scalability and precision targeting
Justification	High entry velocity results in high aerodynamic and heat loading impacts G&C design

Each iteration (stepping stone) of the design becomes more specific to a particular mission on the Pterodactyl Technology Roadmap

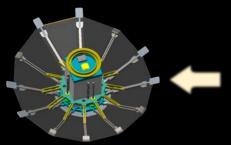
Pterodactyl Design Process Overview

Lifting Nano-ADEPT

Asymmetric, 1+ meter diameter

Identify Potential Control Systems Tabs, RCS, etc. CAD Models

Aerodynamics Aerothermodynamics


Guidance & Control

Structures Analysis

TPS Sizing

Develop Vehicle and Control System Simulations Varied Fidelity

Select Optimal Design MDAO output, SMEs

*COBRA-Pt Optimizes control system mass and target ellipse Integrate Models into MDAO Framework Multi-disciplinary, Design, Analysis and Optimization *Garcia et al., AIAA 2010-5052

📐 Pterodactyl Mission Roadmap

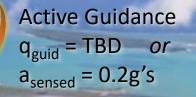
DEV Technology Goals: G&C solution that provides precision targeting and scalability

> Lunar Return Mission

FY18 - FY20 *Ground Testing and Prototyping*

NASA

Then Mars!



De-orbit/Stabilization

LEO Return

Earth Direct Entry to Kwajalein – 1000km

Descent System Activation Ma = 2.0

> Water Impact Data recorder recovery

Pterodactyl Testing Plan Overview

	Test	Requires G&C Algorithms	Pterodactyl Testing Timeline	Purpose
	6DOF Simulation	\checkmark	FY19	G&C logic development, System performance predictions, Monte Carlo analyses
	Bench Tests of Hardware		FY19-20	Validate simulation hardware and hardware interfaces to software
	Hardware in the Loop Tests	\checkmark	FY19-20	Validate compiled software operation on the flight processor, computational loading, and timing to/from hardware
	Vertical Motion Simulator		Optional	Validate navigation algorithms/sensors given physical motion
	Captive Flight Tests	\checkmark	if necessary	Validate flight software & mission states, navigation software in flight, telemetry collection
	Flight Tests	\checkmark	Notionally FY22-23	Validate hardware & environment models, software executing a mission, system performance predictions 13

FUNDED

TBD

Pterodactyl Team

Dr. Wendy Okolo, Brandon Smith, Ben Nikaido, Dr. Alan Cassell, Bryan Yount, Xun Jiang NASA Ames Research Center

> Breanna Johnson NASA Johnson Space Center

Ken Hibbard, Jeff Barton, Gabe Lopez, and Andrew Sanders

Space Exploration Sector JHU Applied Physics Laboratory

Dr. Steve Robinson Center for Human-Systems Engineering University of California at Davis

Back-up Slides

Deployable Entry Vehicle Technology Challenge Areas

		TECHNOLOGY DEVELOPMENT			TECHNOLOGY DEMONSTRATIONS		DESIGN REFERENCE MISSIONS	
		PTERODACTYL	ADEPT	DESCENT SYSTEMS STUDY	LOW EARTH ORBIT FLIGHT TEST	LUNAR RETURN FLIGHT TEST	LUNAR SAMPLE RETURN MISSION	HUMAN MARS EXPLORATION MISSIONS
	Guidance Algorithm Validation	✓			✓	✓	✓	
CHALLENGE AREAS	Control Effector Design, Analysis & Characterization	✓			√	√	√	
	Static Aerodynamic Database	✓			✓	✓	✓	
	Guidance & Control System Validation	✓			✓	✓	✓	
	Electro-mechanical Deployment System	✓			√	√	√	
	Carbon Fabric Packing & Tension Management	✓			√	√	√	
	System Level Aerothermal Analysis	✓			✓	✓	✓	
	Scalability	✓				✓	✓	
	Carbon Fabric Response Model		✓		✓	✓	✓	
	System Thermo-structural Performance		✓		✓	✓	✓	
	Payload Thermal Control		✓		✓	✓	✓	
	Safe & Precise Landing Integrated Capability			✓			✓	
	Propulsive Descent			✓			✓	
	Control Surface Effectiveness			✓		✓	✓	16
	Parametric Mass Model			✓			✓	Ŧ

Pterodactyl Development Roadmap

LNA Technical Challenge Areas

Stakeholder Needs & System Design

- 1. End-to-End mission concept(s) definition
- 2. Payload thermal environment management

<u>GN&C</u>

- 3. Guidance algorithm
- 4. Control effector performance mapping
 - 5. IMU sensor characterization
 - 6. Real-time state estimation (e.g. EKF)
 - 7. GN&C system validation –

Structures and Mechanisms

8. Control effector design — 9. Fabric packing and tension management 10. Electro-mechanical deployment system

Aero/Aerothermal & Materials

- 11. Static aerodynamic performance
- 12. Mid-fidelity carbon fabric response model
 - 13. System thermo-structural performance

Test/Analysis Activity Mapping

CY18-CY19 Pterodactyl (STMD ECI)

COBRA-Pt MDAO tool development GN&C algorithm development GN&C algorithm validation via Monte Carlo simulation AND/OR hardware-in-the-loop test IMU requirements development and hardware options identification

Control effector thermo-structural analysis

- System-level aerothermal analysis (e.g. shockinteraction, wake impingement)
- Mid-fidelity static aerodynamic database development (CBAERO anchored to NS)

CY19 Pterodactyl (STMD ECI) Deployment system benchtop test Control effector performance characterization

Unplanned, unfunded work

- Component thermo-structural load testing
- Stagnation and SPRITE-C arc jet testing

Path to TRL 6

Residual Risks

Flight Test: Guided entry at Earth from orbital velocity

<u>Flight Test Objective:</u> Retire residual risks that were not addressed in other test/analysis activities

Analog Missions

- Use analog missions to develop a notional Concept of Operations
- Trade between what we want to account for in the design process versus capability at landing site

Mission	Return From	Entry Trajectory	Guided	Entry Velocity (km/s)	Recovered
Apollo	Lunar	Direct (some lofted)	Yes	11.0	yes
Orion EFT-1	LEO	Direct	Yes	8.93	yes
Orion EM-1	Lunar	Skip	Yes	11.1	
Stardust	comet	Direct	No	12.9	yes
Genesis	L1	Direct	No	11.1	yes
Mars Sample Return	Mars	Direct	?	1112.0	
MSL	Earth	Direct	Yes	5.9	yes