International Planetary Probes Workshop (IPPW) June 2018 Surface and Subsurface Sampling Drills for Life Detection on Ocean Worlds

Fredrik Rehnmark

Senior Systems Engineer Honeybee Robotics Exploration Technology Group (ETG) rehnmark@honeybeerobotics.com

Image courtesy NASA

HONEYBEE ROBOTICS Spacecraft Mechanisms Corporation

Contributors

Honeybee Robotics

Kris Zacny (PI)^{1,2} Fredrik Rehnmark (Systems, Drilling)^{1,2} Tighe Costa (Pneumatics, Drilling)^{1,2} Zach Mank (Sample Manipulation)¹ Jameil Bailey (Avionics)¹ Joey Sparta (Pneumatics, Testing)¹ Paul Chow (Thermal Analysis)² Nick Traeden (Mechanical Support)¹

Ralph Lorenz (Co-I)¹

1. COLD (Concepts for Oceanworlds Life Detection) Technologies 2. SLUSH (Search for Life Using Submersible Heated) Drill SBIR

The Challenge

- The search for life beyond Earth is a search for similar or analogous environmental conditions, including abundant liquid water.
- Recent discoveries of water on ocean worlds including Titan and Europa have piqued interest in these destinations but liquid water is buried kilometers deep beneath an icy crust.
- State-of-the-art in ultra-deep drilling on Earth
 - Kola Superdeep Borehole: 23 cm diameter, 12 km deep, 19 years (1970-1989)
 - Vostok Hole: 13.7-16.5 cm diameter, 4 km deep, 22 years (1990-2012)
- State-of-the-art in deep drilling on the Moon.
 - Apollo Lunar Surface Drill: 2 cm diameter, 3 m deep, 1 cm/sec
- New planetary drilling methods are needed to reach subsurface water on ocean worlds. Drilling will take time and plenty of power.
- In the meantime, surface sampling at sites of scientific interest could take advantage of natural transport and preservation processes to collect early data more quickly and easily.

Planetary Excavation Methods



Method	Material Strength	Sample Alteration	Ease of Delivery	Max. Depth	Power*
Scooping	Loose, unconsolidated surface material	No heating	Can be problematic with sticky material (e.g., Phoenix) and highly variegated particle size	~10 cm	0 W
Rasping, Abrading	Hard rock and ice	Minimal heating, generates small particles	Cuttings scattered	~1 cm	~30 W
Sawing	Hard rock and ice	Minimal heating, generates small particles	Cuttings scattered	~10 cm	~100 W
Coring	Soft surface material	Minimal heating, preserves stratigraphy	Removing core can be difficult	~10 cm	~100 W
Drilling	Hard rock and ice	Minimal heating, generates small particles	Cuttings deposited around bit	>10 m	~100 W - 1 kW
Melting	Hard ice	Release of volatiles, possible chemical alteration	Liquid water or slush can be easily pumped	>10 m	~10 kW

Drilling is suitable for both surface and deep cryogenic sample acquisition with minimal risk of sample alteration.

* note: estimates do not include power consumed by deployment system (e.g., robotic arm, etc.)

Extrapolation Based on Field Tests

Arctic: water-ice and permafrost at 265K

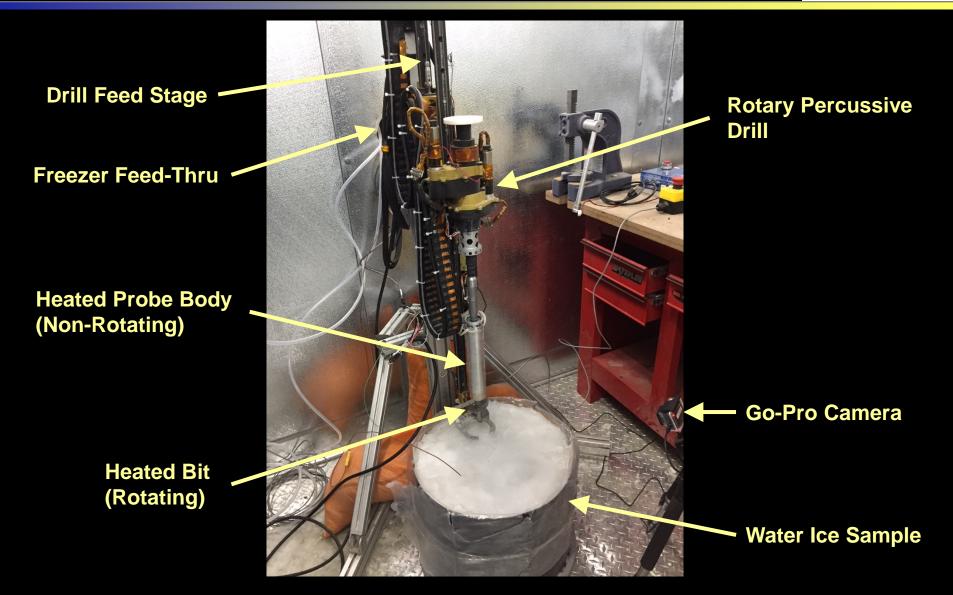
- 1300 Watt, 6 inch (15.2 cm), rotary-only
- ROP: 50 cm in 4 min = 7.5 m/hr
- Energy: 173 Whr/m
- Specific Energy: 10 kWhr/m^3

Extrapolate to 90K (ROP drop by 50%)

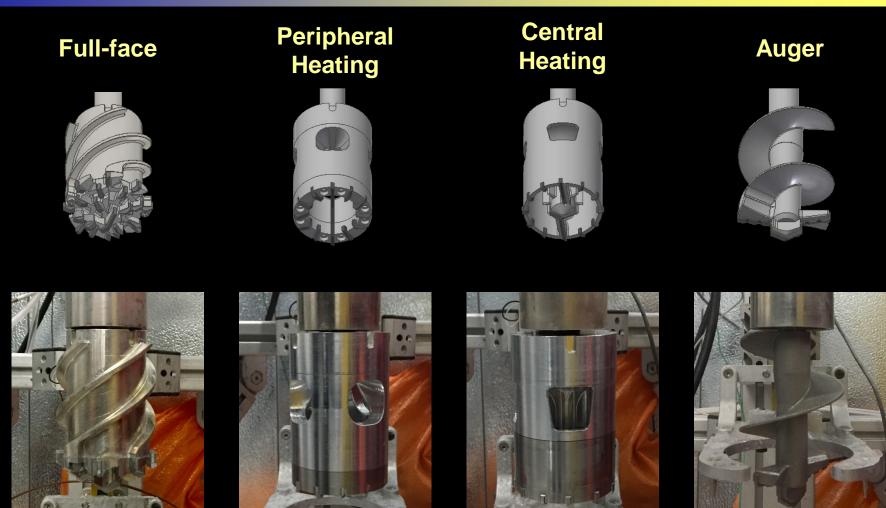
- 1300 Watt, 6 inch (15.2 cm), rotary-only
- ROP: 50 cm in 2 min = 3.6 m/hr
- Energy: 320 Whr/m
- Specific Energy: 20 kWhr/m^3

Greenland: water-ice at 260K

- 1400 Watt, 4 inch (10 cm), rotary-percussive
- ROP: 1 ft in 1 min = 18 m/hr
- Energy: 78 Whr/m
- Specific Energy: 10 kWhr/m^3

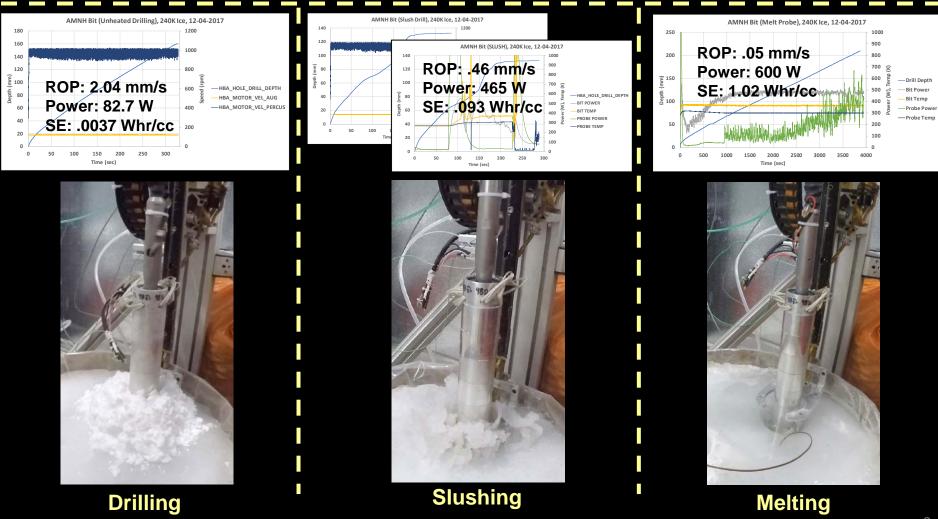

Extrapolate to 90K (ROP drop by 50%)

- 1400 Watt, 4 inch (10 cm), rotary-percussive
- ROP: 6 inch in 1 min = 9 m/hr
- Energy: 156 Whr/m
- Specific Energy: 20 kWhr/m^3

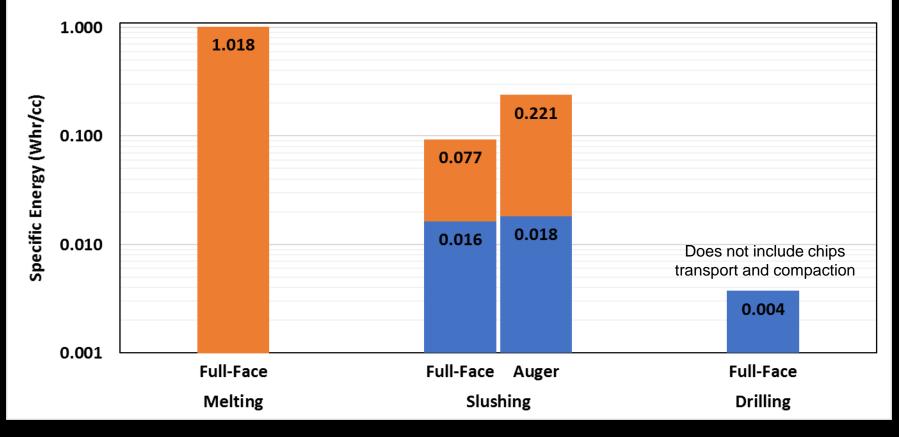

Instrumented Drilling Testbed



Heated Bits (6.2cm Dia)

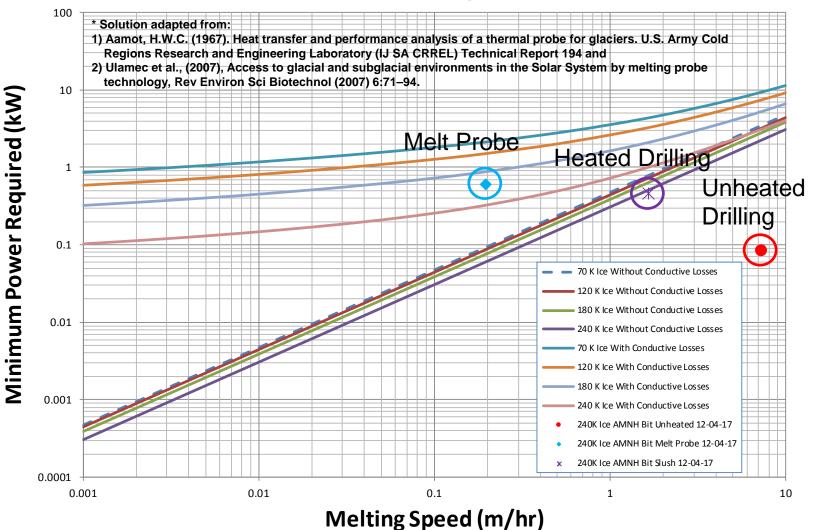


Drilling Modes Comparison (240K)


Drilling, Melting and Slushing (WOB controlled to 100N) Baselined with full-face bit in 240K water ice to compare power consumption.

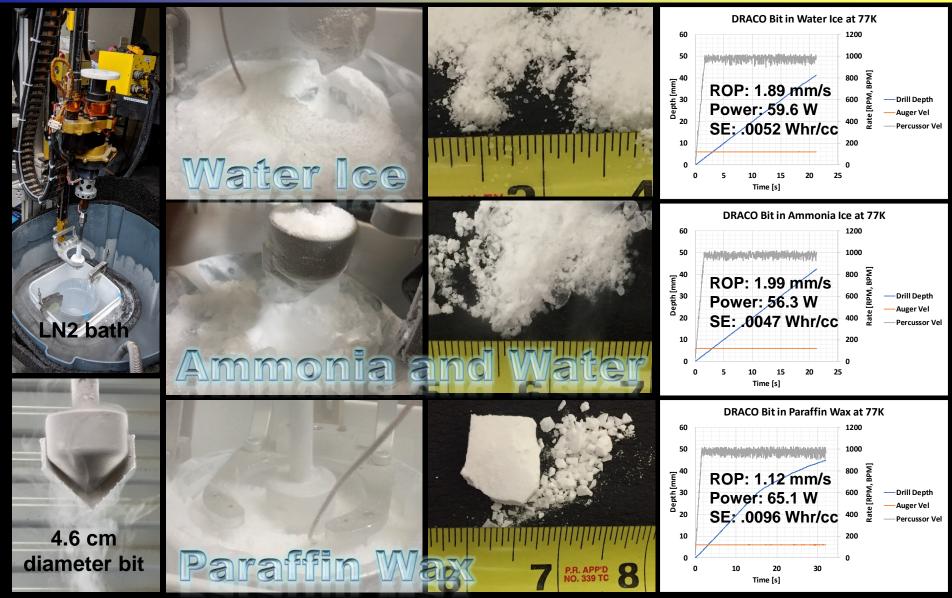
Goal: Repeat test with each prototype bit and cryogenic simulants.

Energy Required for Melting vs. Slushing vs. Drilling Through 240K Water Ice



Mechanical Thermal

Theoretical Melting Speed*



Minimum Power Required vs. Melting Speed 6.2 cm Diameter, 1 m Long Melt Probe

Drilling in Cryogenic Simulants (77K)

- Deep Drilling (Melting vs. Slushing vs. Unheated Drilling):
 - Melt probe is at a disadvantage in cryogenic water ice due to enhanced thermal conductivity
 - Energy required for unheated drilling is least but depth is limited by risk of ice melting and re-freezing around bit, causing it to get stuck
 - For deep drilling, slushing avoids sticking and facilitates transport of cuttings away from drill bit however tether management is still a complication
- Surface Drilling (Cryogenic Material):
 - Minimizing temperature rise of sample preserves volatiles and makes fines easier to transport
 - Depending on the hardness and brittleness of the sample, rotaryonly mode may avoid cracking sample into large chunks that cannot be further reduced in size for easy transport

• Combine drill with pneumatic transport and sample delivery subsystems for end-to-end testing of the entire sampling chain at 100K

- This work was funded by NASA's Concepts for Ocean worlds Life Detection Technology (COLDTech) program and by NASA's Small Business Innovative Research (SBIR) program.
- We owe our sincere thanks and appreciation to the COLDTech program director Ryan Stephan (NASA HQ) and the SBIR COTR Juergen Mueller (JPL/Caltech).

Questions

