

IPPW 15, Boulder, Colorado, USA 14th June 2018

DEFENCE AND SPACE

Mars Sample Return (MSR)

GAMMa

<u>G</u>emeinsamkeiten von <u>A</u>ufstiegsstufen für <u>M</u>ond und <u>Ma</u>rs

Human assisted

Sample Return

(HERACLES)

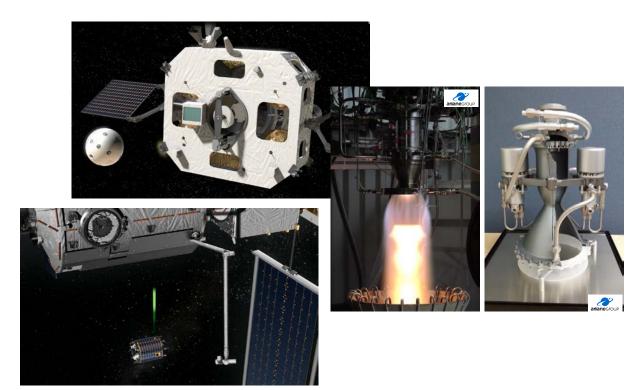
Motivation behind GAMMa

- Cornerstone missions are expensive "one-offs";
 - → 40% cost reduction could be achieved by multi use of design

- Cornerstone missions are planned to be cooperative
 - → programmatic independence by modular design
- Skunk works approach can reduce development time
 - → Cost and risk reduction by in-flight qualification

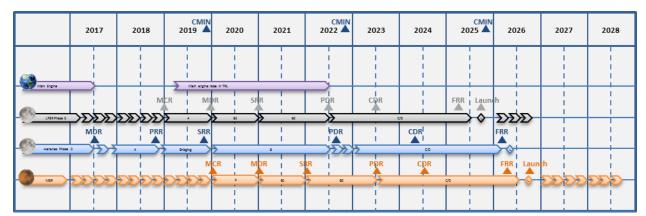
Modular Ascender Family

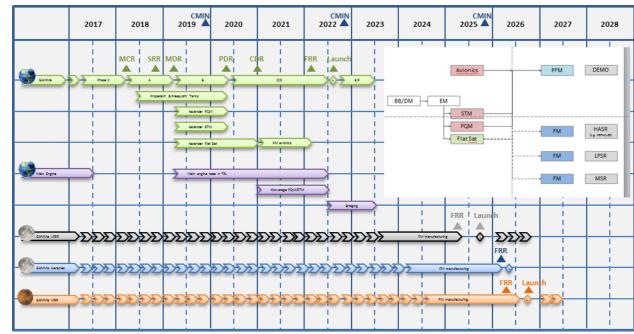
- Lunar Robotic Ascender
- Lunar Human Assisted Ascender with Kickstage
- Mars Robotic Ascender with Kickstage



Benefit Analysis - Top Level Risks

- Rendezvous and capture of an orbiting sample
 - Free flying capture has low TRL
 - Retrial options for this mission critical element are limited
- Rendezvous and berthing with a man-tended habitat
 - HERACLES robotic demonstrator will serve as demonstrator for a human architecture
 - The demonstrator will rendezvous and berth with the DSG
- Availability and maturity of main engine
 - No flight proven MSR or HERACLES engine is existing today
 - BERTA engine demonstrator could be scaled and qualified but is currently not man-rated
 - Solid rocket options require further analyses but cannot be scaled easily to human architecture
- Programmatic schedule of cooperative projects
 - Plans for MSR, LPSR and HERACLES are all in cooperation with international partners and schedules are likely to shift



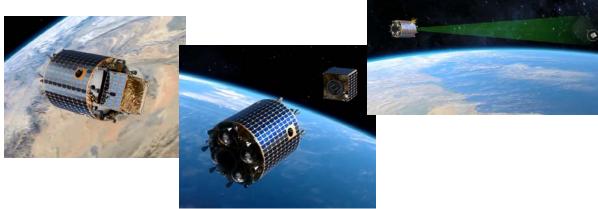

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
			i				1		N I		
I PSR) B1) B2		C/I	D	1	255		
									Y22		
MSR	DDDDD	0	DDDD	_ A	B1	B2			C/D	> ⋄ ¹	100
6 20	MDR 🛦	PRR 🛕	SRR 🛕			PDR 🛦		CDR A	FRI	•	
Heracles Phas	*0 \\	A	Bridging	>	В	$\sum \sum$	>	C/D		O	
60.						1 %		1	1		
DSG	DDDD	A/81	PWR/	Prop Bus, Com. El. 1+	2, Airlocks & Log. Mc	od. 1+2 FM-3	EM-48	ELVI A EM-	ELV, EM-	6 & ELV2 \ \(\rangle \rangle \)	SON
					1		1		1	T 4	

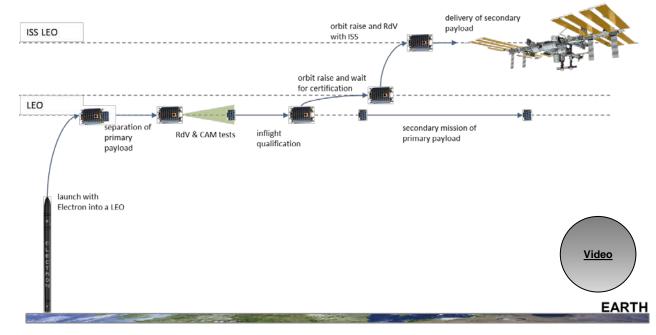
Benefit Analysis - Development Plan and Master Schedule

- Classical development approach
 - **HERACLES**
 - 7 years development time, QM/FM approach
 - Pre-development for engine and TRL<6 items
 - **LPSR**
 - 5.5 years development time
 - PFM approach
 - - 7 years development time
 - PFM approach
 - Pre-development for engine and TRL<6 items
- GAMMa development approach
 - GAMMa Ascender Demonstrator
 - 3-4 years development time for ascender, PFM approach
 - Pre-development for propellant and pressurant tanks
 - HERACLES, LPSR, MSR
 - 2 years FM re-built
 - Pre-development for main engine and kick-stage tanks

Benefit Analysis – Full-scale Technology Demonstration

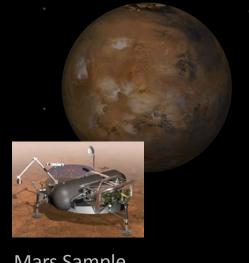
Demonstration objectives:


- Early hardware demonstration and in-flight qualification of ascender system to achieve a "real" TRL increase
- Qualification and certification of rendezvous and proximity operation related functions in real operational environment


Primary mission scenario:

- Launch on low cost micro launcher (e.g. ELECTRON) into LEO
- Deploy passenger payload
- Perform rendezvous experiments
 - on-board rendezvous sensors on ascender and target marker on passenger payload
 - inter-satellite link between ascender and payload
- Demonstrate safe modes, hold points, and CAM

Secondary mission scenario:

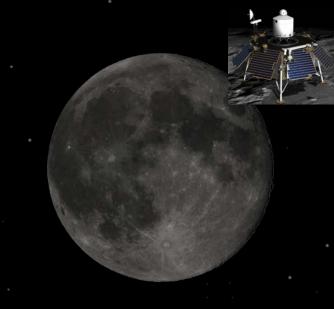

- Science mission of passenger payload
- Rendezvous and berthing demonstration at ISS + disposal
- Optional delivery and hand over of high risk payload
- Optional science mission

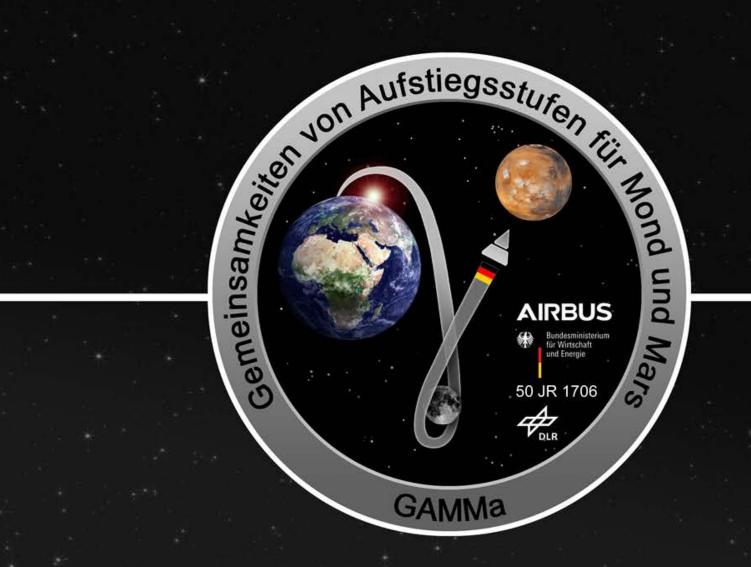
Mars Sample Return (MSR)

GAMMa

Gemeinsamkeiten von Aufstiegsstufen für Mond und Mars

GAMMa modular ascender family


- Single stage to orbit for LPSR
- LPSR ascender + kick-stage to adapt to MSR mission profile
- MSR ascender + body kit to account for human assisted sample return architecture (HERACLES)
- → Programmatic independence and reduced cost and risk by multi-mission layout and technology transfer
- → In-flight qualification opportunity on micro launcher



Human assisted Sample Return (HERACLES)

AIRBUS