
IPPW-15 @ University of Colorado, BOULDER2018/05/28Short Course : Small SatelliteSmallSat Efforts in JAPANfor future planetary exploration.Kazuhiko Yamada (JAXA/ISAS)

Self introduction

Name: Kazuhiko Yamada Affiliation : JAXA/ISAS My major : Atmospheric entry technology

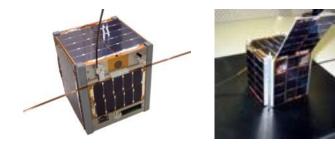
"especially",

deployable membrane aeroshell for atmospheric-entry capsule.

I have led Japanese activity related to the research and development related to deployable aeroshell since I was a student in 2000.

- 2004 : 1st balloon drop test
- 2009 : 2nd balloon drop test
- 2012 : Suborbital reentry demonstration using sounding rocket
- **2017 : Nanosatellite EGG with deployable aeroshell**

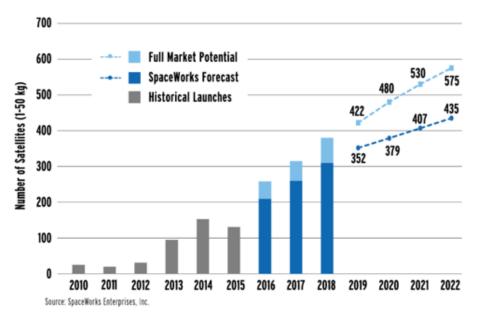
CONTENTS


- Background Potential of Small satellite.
- PROCYON's challenge to planetary exploration
- Next challenge using SLS opportunity EQUULEUS OMOTENASHI
- Innovation of Atmospheric-entry technology Deployable aeroshell for small sat EGG → BEAK → SPUR
- Future vision and Summery New exploration world with small-sat tech.

Start of Small-satellite Era

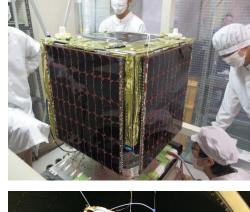
1999 : Cube-sat spec. development

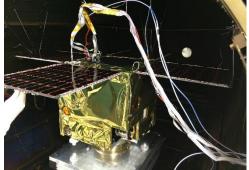
2003 : First launches of 1U-Cubesat s


(From SpaceNews Magazine)

HODOYOSHI series (2014-)

Nano/microsatellite launch history and forecast


Projections based on announced and future plans of developers and programs indicate as many as 3,000 nano/microsatellites will require a launch from 2016 through 2022.



Many small-satellites have been launched and operated in LEO. It is time to challenge to next field, that is, "planetary exploration"

PROCYON's challenge

<u>PROCYON : The first interplanetary Full-scale Micro-spacecraft</u> PROCYON was developed by The University of Tokyo with collaboration team of many universities and JAXA/ISAS.

Size:	0.55m x 0.55m x 0.67m + 4 SAPs
Weight:	<70kg (wet), payload(camera) 10kg.
Power	>240W SAP and Li-ion BAT 5.3Ahr
AOCS	4RW and 3-axis FOG, STT, NSAS <0.002deg/s, <0.01deg
Propulsion	Cold gas RCS (22mN, 24s ISP) and Ion propulsion(0.3mN, 1000s ISP) 2.5kg Xenon installed
Communicat ion	X-band, DDOR (HGAx1, MGAx1, uplink LGAx2, downlink LGA x2), >15W

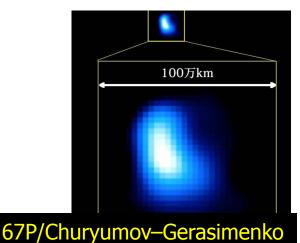
PROCYON spec.

PROCYON was developed in only 14months utilizing the heritage of Cube-sat and HODOYOSHI-series and launched in Dec. 2014.

PROCYON's achievement

Demonstration of deep space bus system

including deep space communication and trajectory guidance/navigation/control \rightarrow success!

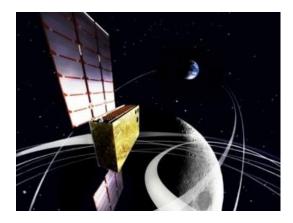

Scientific mission

(geocorona observation and observation of hydrogen emission around 67P/C-G) \rightarrow success!

All the mission were successful except for:

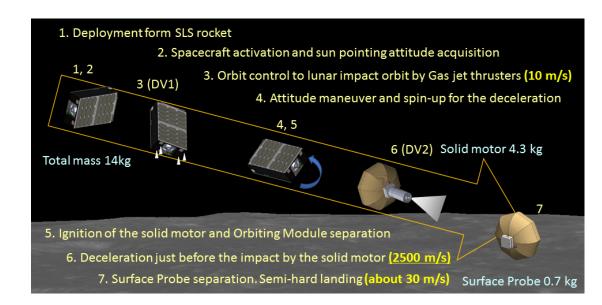
- long-time deep space maneuver by the ion thruster
- actual asteroid flyby

Within the very limited development time (14 months) and budget (a few M\$), we could **demonstrated the capability** of this class of spacecraft to perform deep space mission by itself and it can be a useful tool of deep space exploration.



PRYCYON proved technical readiness to deep space exploration by small satellite.

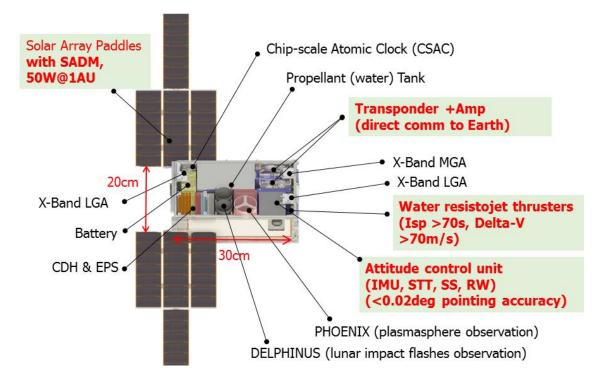
Next Challenges using SLS opportunity


Two Japanese 6U satellites to challenge for planetary exploration are selected and developed as SLS secondary payload.

EQULLEUS & OMOTENASHI

OMOTENASHI has been developed by JAXA. OMOTENASHI aims to be the smallest lunar lander in world using retrojet(solid motor), airbag and crushable material.

EQULLEUS (EQUIIIbrium Lunear-Earth point 6U Spacecraft) EQULLEUS have been developed by JAXA and the University of Tokyo. EQULLEUS aims to be the first CubeSat to Lunar Lagrange point using water resistojet thrusters.


Overview of EQULLEUS

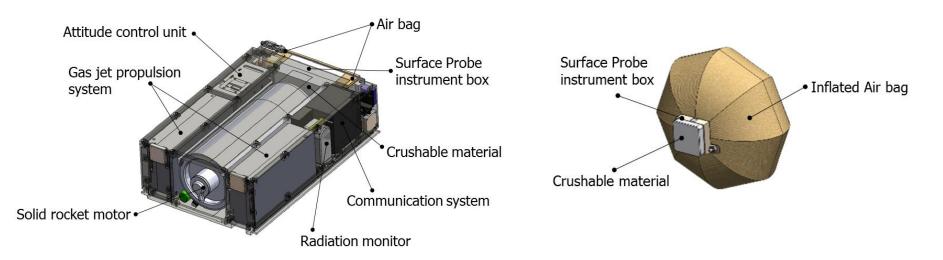
[Engineering Objective] (primary mission)

Demonstration of **the trajectory control techniques within the Sun-Earth-Moon region** (<~1.5M km from Earth) by a nano-spacecraft through the flight to the Earth-Moon Lagrange point L2 (EML2)

[Science Objectives]

- *Imaging observation of the Earth's plasmasphere
- *Lunar impact flash observation
- *Dust environment measurement in the cislunar region

Overview of OMOTENASHI


< Objectives >

*Development of the smallest lunar lander in the world and demonstrate the feasibility of the hardware for distributed cooperative nano-exploration system. Small landers will enable multi-point exploration which is complementary with large-scale human exploration system.

*Observation of radiation and soil environment of the moon surface by active radiation monitors and touchdown acceleration measurements.

Launch configuration

Landing configuration

What is next step ?

In order to realize an attractive and valuable planetary exploration, "orbiters" and "landers" on a planets with gravity and atmosphere are necessary and indispensable.

Can we realize "orbiters" and "landers" under the restricted resource constraint in small satellite ?

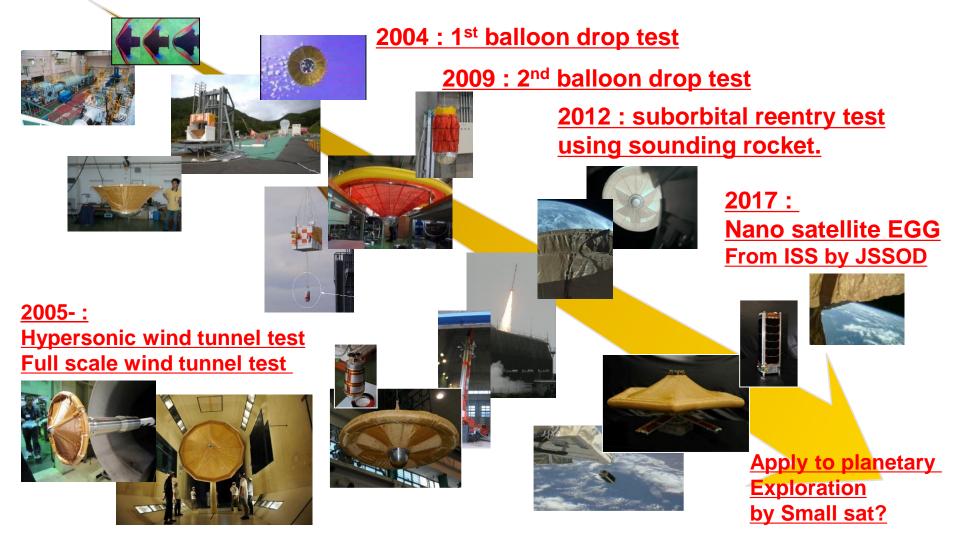
* Lander (Entry, Descent, and Landing) technology

Conventional EDL technique (ablator and parachute) required a large resource, high cost and complex systems.

→ Need innovative technique, like <u>a deployable aeroshell</u>.

***** Orbiter (orbit insertion) technology

Conventional propulsion technique required a large resource.

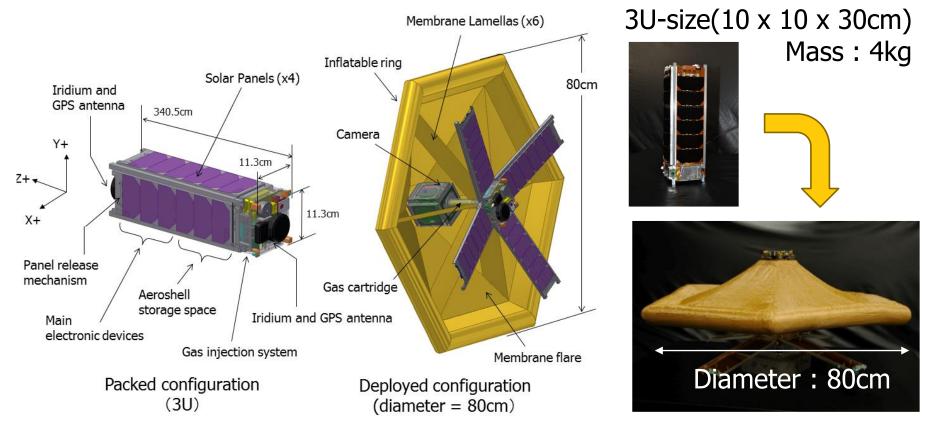

→ Need innovative technique, like <u>an aerocapture by a drag</u> <u>modulation using deployable aeroshell and jettison.</u>

"Deployable aeroshell" is the final key technology to enhance a value of planetary exploration by small satellites.

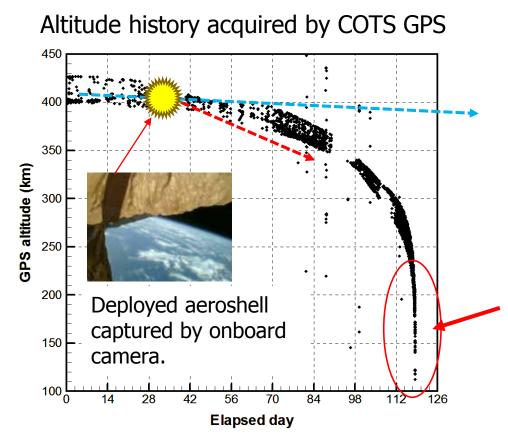
Development of deployable aeroshell

Driven by The University of Tokyo and many Universities and JAXA/ISAS

2000 : fundamental study (wind tunnel test and numerical simulation)



Overview of EGG


"EGG" ~re-Entry satellite with Gossamer aeroshell and GPS/Iridium is a 3U-nanosatellite deployed from ISS using JSSOD system equipped in KIBO

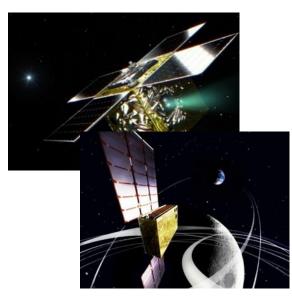
<EGG's objective>

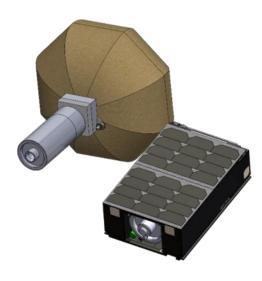
To demonstrate indispensable technologies for a future atmospheric-entry flight test of the inflatable aeroshell in Low-Earth-Orbit

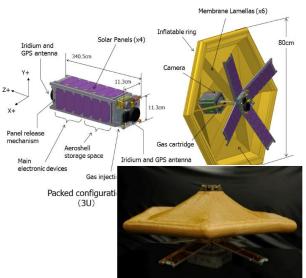
EGG' Achievements and to BEAK

- Demonstration of aeroshell deployment system installed in 3U nanosatellite in LEO.
- COTS GPS receiver (firefly) can identify EGG's position during flight and acquired the orbital decay process of EGG.
- Observation of orbital decay process due to aerodynamic force acting on the deployed aeroshell and reentry phase using Iridium SBD Tele-com system

Next planned demonstrator utilizing EGG's Heritage


2020: BEAK (*Breakthrough by EGG-derived Aerocapture Kilt Vehicle*) → Aero-assisted orbit change of drag moderation will be demonstrated **by a jettison of the deployable aeroshell in Earth's atmospheres.**


Future vision


PROCYON & EQUULEUS

OMOTENASHI

EGG & BEAK

*Small sat spacecraft bus system technology *Orbital maneuver technique with ion thruster and/or water resist jet

*Landing technology (air bag, retrojet, crushable)
*Solid motor technology for small satellite

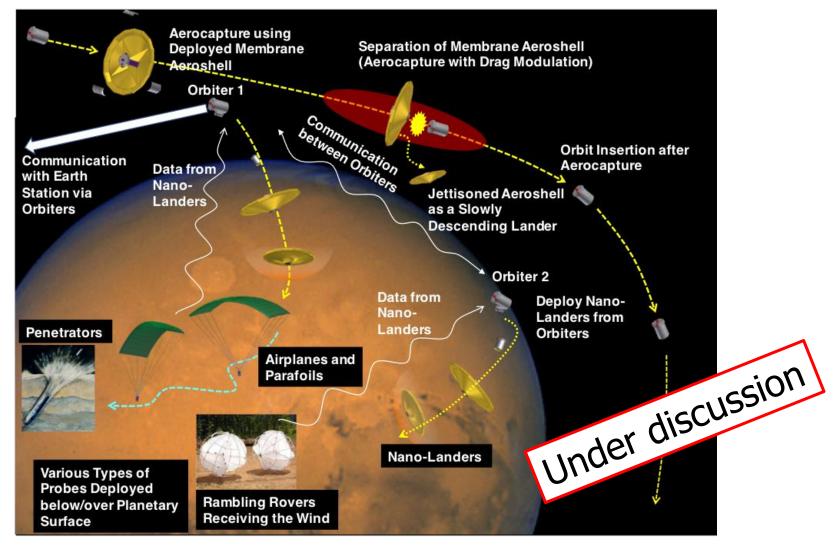
- * Deployable aeroshell technique for atmosphericentry.
- * Orbital insertion technique by drag modulation aerocapture

Open a door of planetary exploration by small satellites

Paradigm shift in planetary exploration

Network-Type Exploration By flock of scattered probes

Complementary


*Detailed and Precise information available *Mobility is a problem *Hard to understand as "a SYSTEM of complexity"

Understanding of planet as "a SYSTEM of Complexity" based on synthesis of information obtained by simultaneous and Multipoint observation using a group of spatially dispersed probes.

Small sat and nano-landers technique can realize this network exploration.

Proposed next projects

SPUR Scattered nano Probes Unfolded Reconnaissance

Summery

In Japan, some planetary exploration missions by small satellite-class is active on the heritage the cube-sat, hodoyoshi-sat and ISAS's small flight vehicle experiment (balloon and rocket) technology.

These projects are driven by collaborating with JAXA/ISAS, the University of Tokyo and many universities.

Small satellite technology has a potential as game changer for planetary exploration. For example, it may open a new world, that is, network exploration on the planet by scattered probes.