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Motivation & Background

Background: Who we are

-Spin.Works S.A.

-Aerospace and Defence Company based in Lisbon, Portugal

-Founded in 2006

Some Background Work

-NEXT-Moon (2007-2010)

- Part of Consortium led by OHB (Germany)

- Elaboration of Hazard Avoidance Strategies for Lunar Landing

- Initial Implementation of G&C, Data Fusion algorithms (CAM + Lidar)

-FUSION (2011-2014)

- Prime contractor

- Development of Intelligent Decision Making for HDA 

- Fuzzy Reasoning, Probabilistic Reasoning, Evidential Reasoning

- Enhancement of original HDA, G&C, Data Fusion algorithms

- Application to Mars + Phobos landings
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Motivation & Background

Background Work (cont’d)

-StarTiger Dropter (2013/2014)

- Part of consortium led by Airbus D&S Germany

- Implementation of Visual Navigation + HDA on RTSW

- Construction of 40m x 40m Mars-representative terrain

- Limited flight-testing using visual camera multi-copter

-AVERT (2015-2018)

- Prime contractor, supported by Uninova (PT), Ruag (SE), Irida (GR)

- Hardware acceleration (w/ FPGA) of VN&HDA, impl. in space HW

- Construction of new 120m x 120m Mars-representative terrain

- New copter for 100s of flight tests (validation of VN&HDA approach)

-ANPLE (2017-2018)

- Prime contractor, supported by DLR

- Development of pinpoint landing techniques for the Moon & Mars

- Basis for present work, G&C is less detailed

- GNC for Mars pinpoint landing w/ Supersonic Retropropulsion: IAC 2018
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Motivation & Background

Motivation

-Recent History of Lunar Landing Missions

- Last 2 soft lunar landings: Luna 24 (USSR, 1976) Chang’e 3 (China, 2013)

-…proposed until 2021: China (Chang’e 4/5), India (Chandrayaan 2), Japan (SLIM), Russia (Luna-25)

-Lunar X Prize (until March 2018)

- Inspired substantial investment in Lunar Landing technologies

- 5 Teams confirmed launch contracts (SpaceIL, MoonExpress, Synergy Moon, TeamIndus, HAKUTO)

- Prize not claimed

-Post-lunar X Prize

- Several private teams have received funding for multiple Lunar missions

- Typical: Lunar orbit in 2019, landing in 2020/21, commercial missions thereafter

- Questions remain on feasibility (technical, cost, time)

- NASA CATALYST, CLPS suggest a COTS-like enviroment for developing Commercial Lunar Landers

is being established
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Motivation & Background

End Goals

-Demonstrate a feasible GNC Design for a Precise, Safe Lunar Landing mission:
- Trajectory Design: Descent and landing from a Near Rectilinear Orbit

- Orbit determination + control: included in design cycle (reference timelines and clear separation between

ground + onboard functions)

- GN&C: 6DOF system applicable to all mission phases from de-orbit to touchdown

- HDA: Camera-only, specific phase included in trajectory design, automated real-time divert trajectory

generation & tracking assessed

- Validation: via MC sims, targeting <10m landing accuracy (using terrain-relative navigation)

-Mature Avionics + GN&C technologies
- Design to Real-time Implementation: considers real, available sensors + processing units, computational

costs, data acquisition + processing timing constraints, storage, etc.

- Performance, constraints and limitations of vision-based algorithms as known from AVERT flight test

data (accuracy of IP, FOV, frame rate and resolution, angular rate limitations, etc)

- Designed for Processor-in-the-loop compatibility
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Mission Analysis – Trajectory Design

June 12, 2018

Trajectory Design

-Initial Point: along an NRO (optimized)

-De-orbit: impulsive manoeuver

-Powered Descent: 

-Phased: Main Braking, Pitch-up, HDA, TD

-MB: Thrust@95% (allowing for corrections)

-Pitch-up/HDA:

- Thrust back to ~2/3 of original (2440N)

- Restrictions: thrust mag., angular rates + acc., 

sensor offset from thrust vector, LS direction

-Terminal Descent:

- Pure vertical descent

- Vertical attitude at 10m height

- Zero horizontal velocity at 10m height

Spacecraft Parameters

Mass 1,500 kg

Max. Thrust 3.5 kN

Isp 311 s

NRO characteristics

Periselene 7,000 km

Aposelene 61,500 km

NRO dep. 

burn (L-5h)
PDI (L-600s) Pitch-up

maneuver (L-70s)

Terminal descent

(L-14s)
Landing

Transfer to descent altitude Main braking HDA Phase Terminal Descent
2 km 40 m

7,000 km 103 km
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Mission Analysis – Covariance Analysis 
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Covariance Analysis

-Propagation of Onboard State Knowledge
(along reference descent trajectory from NRO)

-Dynamic Model includes gravity (Lunar, Earth), 

continuous thrust (incl. perturbations@2%, 3σ)

-A Priori Knowledge assumed ground-based, 

calculated via OD cycle while in NRO

-Sensors and Actuators:

- IMU: LN-200 assumed

- RAD: European PALT

- CAM: 1024x1024 camera, 20/50º FOV (side/btm)

- Airbus 220N+500N thrusters (trajectory control), 

22N (attitude control)

-Optional sensor suite trade-off :
- Side/bottom CAM (w/ terr. matching + ft. tracking)

- Doppler radar

- Pre-landed beacons

- LIDAR (ranging, navigation)
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Mission Analysis – Covariance Analysis 
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Navigation Solution Trade-off

-Side Camera (Terrain Matching)

- Essential to provide accurate absolute 

navigation information

-Bottom Camera (Terrain Matching+Ft. Track.)

- Lighter alternative to Radar Doppler

-LiDAR Imaging

- Enables the detection of hazards

- Accurate ranging measurements

-Surface Beacons

- Provide accurate observations during 

almost all the descent trajectory

-Radar Doppler

- During the descent, provides accurate 

velocity and altitude measurements to 

enable soft landing
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Navigation

June 12, 2018

Navigation (Image Processing)

-Feature Tracking

-Produces observations of S/C terrain-

relative velocity (expressed on camera sensor 

plane)

-Used from 390 m up to 20 m altitude (plume 

impingement on ground blinds sensor thereafter)

-Terrain Matching

-Produces observations of “absolute” S/C 

horizontal position (relative to a global map)

-6 Images taken at 73 km, 40 km, 19 km, 8 

km, 2.4 km, 390 m

-Altitudes selected iteratively (min # of maps, 

while achieving mission goals)
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Navigation
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Navigation (Filters)

-Translational Navigation filter

-Type: EKF-based discrete navigation filter

-States: S/C position and velocity w.r.t. to 

the target body (inertial reference frame)

-State Propagation: Accelerometer meas. 

and (simple) gravity model

-State Update: Optical measurements

-Attitude Navigation Filter

-Type: EKF-based discrete navigation filter 

-States: S/C attitude quaternion, w.r.t. to the 

inertial frame

-State Propagation: Gyroscope 

measurements 

-State Update: Star Tracker measurements 

(when available)
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Navigation (Results)
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Guidance & Control

Guidance & Control

-Main Braking and Pitch Up phases:

- Reference trajectory tracking w.r.t. estimated velocity
(onboard-stored polynomials, using limited # of segments);

-Trajectory control forces S/C to converge to reference

trajectory from feasible initial state dispersions to within

20m, prior to HDA phase;

-Sensor + actuator noise + misalignments considered;

-Control gains tuned for fully closed-loop mission

-HDA phase:

-Piecewise polynomial divert maneuver generated

online (acceleration + deceleration periods);

-Maneuver timings kept fixed (while magnitude is tuned to 

allow for ~20 m diverts from 100 m altitude with reasonable 

angular rates and accelerations)
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Guidance & Control

Guidance & Control

-Reference Trajectory: Interpolates the reference trajectory (position, velocity, 

acceleration and attitude) optimized offline using the estimated velocity;

-Trajectory Controller: Computes acceleration commands in order to track the 

reference trajectory based on a PD control law (with scheduled gains);

-Attitude Commander: Computes an attitude command that aligns the lander’s 

thrusters with the commanded acceleration;

-Attitude Controller: Tracks the commanded attitude by issuing an appropriate 

torque command according to a PD control law (with scheduled gains).
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Guidance & Control (Results)
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Monte Carlo Simulations

Monte Carlo

June 12, 2018

Block Description Parameter Value

Initial 

Conditions

At the start of the Main Braking 

phase (from covariance analysis)

Mass Nominal: 1219.4 kg, 3σ: 1 %

Position
Altitude Nominal: 103.4 km, 3σ: 4.3 km

Along-Track Nominal: 672 km, 3σ: 11.1 km

Velocity
Norm Nominal: 2093.8 m/s, 3σ: 2.98 m/s

FP Angle Nominal: -12.9 º, 3σ: 0.21 º

Actuators

Idealized thrust along fixed in 

body direction and 3-axis torque. 

Both subject to constant random 

misalignment and multiplicative 

noise

Thrust
Noise 0.33 % (1σ, multiplicative)

Misalignment Nominal: 0 º, 3σ: 1 º

Torque
Noise 0.33 % (1σ, multiplicative)

Misalignment Nominal: 0 º, 3σ: 1 º

Sensors

IMU model including white noise 

components and bias (used to 

model bias calibration error)

Gyroscope
ARW 0.07 º/√hr (1σ)

Bias Nominal: 0 º/hr, 3σ: 0.3 º/hr

Accelerometer
Noise 35 μg/√Hz (1σ)

Bias Nominal: 0 μg, 3σ: 90 μg

Models a small angle noise Star-Tracker NEA 2/3 arcsec (1σ)

Outpus range to surface with a 

multiplicative error
Range-Finder

Noise 0.33 % (1σ, multiplicative)

Bias Nominal: 0 m, 3σ: 2.4 m
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Monte Carlo Simulations

Monte Carlo
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Block Description Parameter Value

Initial 

Navigation

Error

Initial navigation error at the start 

of the Main Braking phase (from 

covariance analysis)

Position
Altitude Nominal: 103.4 km, 3σ: 851 m

Along-Track Nominal: 672 km, 3σ: 1.52 km

Velocity
Norm Nominal: 2093.8 m/s, 3σ: 0.56 m/s

FP Angle Nominal: -12.9 º, 3σ: 1.83 ‘

Image 

Processing

Performance model parameters 

selected based on previous

experience of algorithm 

performance

Feature 

Tracking
Noise 0.14 pix (1σ)

Terrain 

Matching

Noise 0.5 pix (1σ)

Map Tie Error Nominal: 0 m, 3σ: 40 m

HDA
Random HDA divert commanded 

at a specified rate 

Probability of Divert 90 %

Divert Magnitude Uniform in Disk of Radius: 20 m
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Monte Carlo Simulations
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Conclusions

Summary & Conclusions

-A complete mission design cycle was carried out to frame the development of a 

realistic GN&C for Powered Descent and Landing of future Lunar Landing missions

-A covariance analysis was performed for the complete descent, to identify most

suitable sensor suite (from a list of existing sensors & processing units).

-A dispersion analysis was carried out to obtain traj. dispersions → initial conditions

-Navigation knowledge is initialized using knowledge covariance statistics

-Only onboard sensors contribute to trajectory knowledge after last OD cycle (at NRO)

-GN&C Algorithms were developed with real-time implementation in mind:

- Image processing performance from flight test data of implemented algorithms

-Algorithm structure designed for compatibility with stored & selected sensor data

-Communications, timing, storage aspects taken into account

-A 6DOF Monte-Carlo simulation campaign was carried out to demonstrate feasibility

-An End-to-End GN&C for Safe, Precise Lunar Landing has been validated
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