

End-to-end GN&C for the Powered Descent and Safe, Precise Lunar Landing

João Ferreira, David Esteves, João Seabra. Tiago Hormigo (speaker)

June 12, 2018

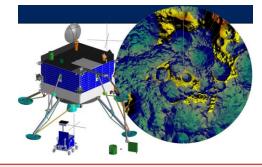
Spin.Works, S.A. Av. da Igreja 42, 6^o 1700-239 Lisboa Tel. 21 012 8452 ● Fax. 21 012 8452 info@spinworks.pt ● www.spinworks.pt

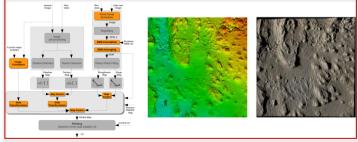
Agenda

- -Background and Motivation
- -Mission Analysis
- -Navigation
- -Guidance and Control
- -Monte Carlo Simulations
- -Conclusions

Motivation & Background

Background: Who we are


- -Spin.Works S.A.
 - -Aerospace and Defence Company based in Lisbon, Portugal
 - -Founded in 2006


Some Background Work

- -NEXT-Moon (2007-2010)
 - Part of Consortium led by OHB (Germany)
 - Elaboration of Hazard Avoidance Strategies for Lunar Landing
 - Initial Implementation of G&C, Data Fusion algorithms (CAM + Lidar)

-FUSION (2011-2014)

- Prime contractor
- Development of Intelligent Decision Making for HDA
 - Fuzzy Reasoning, Probabilistic Reasoning, Evidential Reasoning
- Enhancement of original HDA, G&C, Data Fusion algorithms
- Application to Mars + Phobos landings

Motivation & Background

Background Work (cont'd)

- StarTiger Dropter (2013/2014)

- Part of consortium led by Airbus D&S Germany
- Implementation of Visual Navigation + HDA on RTSW
- Construction of 40m x 40m Mars-representative terrain
- Limited flight-testing using visual camera multi-copter

-AVERT (2015-2018)

- Prime contractor, supported by Uninova (PT), Ruag (SE), Irida (GR)
- Hardware acceleration (w/ FPGA) of VN&HDA, impl. in space HW
- Construction of new 120m x 120m Mars-representative terrain
- New copter for 100s of flight tests (validation of VN&HDA approach)

-ANPLE (2017-2018)

- Prime contractor, supported by DLR
- Development of pinpoint landing techniques for the Moon & Mars
- Basis for present work, G&C is less detailed
- GNC for Mars pinpoint landing w/ Supersonic Retropropulsion: IAC 2018

Motivation & Background

Motivation

- Recent History of Lunar Landing Missions

- Last 2 soft lunar landings: Luna 24 (USSR, 1976) Chang'e 3 (China, 2013)
- ...proposed until 2021: China (Chang'e 4/5), India (Chandrayaan 2), Japan (SLIM), Russia (Luna-25)

- Lunar X Prize (until March 2018)

- Inspired substantial investment in Lunar Landing technologies
- 5 Teams confirmed launch contracts (SpaceIL, MoonExpress, Synergy Moon, TeamIndus, HAKUTO)
- Prize not claimed

-Post-Iunar X Prize

- Several private teams have received funding for multiple Lunar missions
 - Typical: Lunar orbit in 2019, landing in 2020/21, commercial missions thereafter
- Questions remain on feasibility (technical, cost, time)
- NASA CATALYST, CLPS suggest a COTS-like environment for developing Commercial Lunar Landers is being established

Motivation & Background

End Goals

-Demonstrate a feasible GNC Design for a Precise, Safe Lunar Landing mission:

- Trajectory Design: Descent and landing from a Near Rectilinear Orbit
- Orbit determination + control: included in design cycle (reference timelines and clear separation between ground + onboard functions)
- GN&C: 6DOF system applicable to all mission phases from de-orbit to touchdown
- HDA: Camera-only, specific phase included in trajectory design, automated real-time divert trajectory generation & tracking assessed
- Validation: via MC sims, targeting <10m landing accuracy (using terrain-relative navigation)

-Mature Avionics + GN&C technologies

- **Design to Real-time Implementation:** considers real, available sensors + processing units, computational costs, data acquisition + processing timing constraints, storage, etc.
- Performance, constraints and limitations of vision-based algorithms as known from AVERT flight test data (accuracy of IP, FOV, frame rate and resolution, angular rate limitations, etc)
- Designed for Processor-in-the-loop compatibility

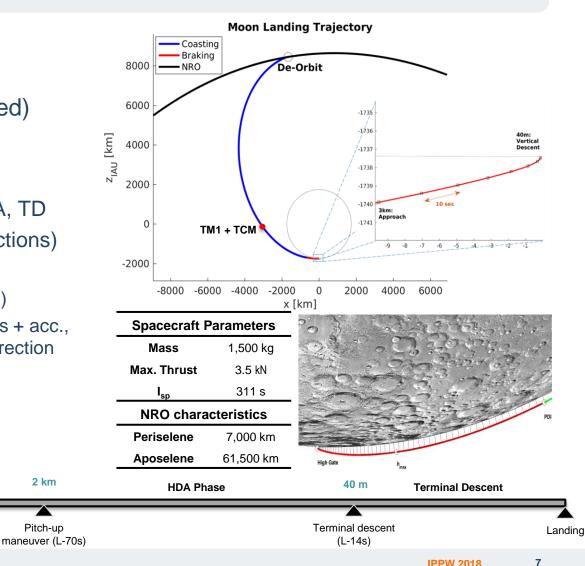
Mission Analysis – Trajectory Design

Trajectory Design

- -Initial Point: along an NRO (optimized)
- -De-orbit: impulsive manoeuver
- -Powered Descent:
 - -Phased: Main Braking, Pitch-up, HDA, TD
 - -MB: Thrust@95% (allowing for corrections)
 - -Pitch-up/HDA:
 - Thrust back to ~2/3 of original (2440N)
 - Restrictions: thrust mag., angular rates + acc., sensor offset from thrust vector, LS direction

Main braking

2 km


Pitch-up

- -Terminal Descent:
 - Pure vertical descent

103 km

PDI (L-600s)

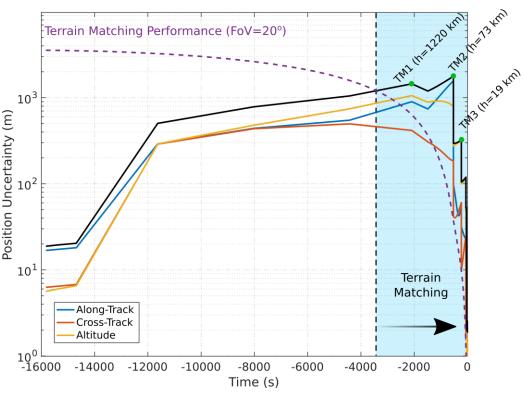
- Vertical attitude at 10m height
- Zero horizontal velocity at 10m height

www.spinworks.pt • June 12, 2018

Transfer to descent altitude

7.000 km

NRO dep.


burn (L-5h)

Mission Analysis – Covariance Analysis

Covariance Analysis

- Propagation of Onboard State Knowledge (along reference descent trajectory from NRO)
- **Dynamic Model** includes gravity (Lunar, Earth), continuous thrust (incl. perturbations @2%, 3σ)
- -A Priori Knowledge assumed ground-based, calculated via OD cycle while in NRO
- -Sensors and Actuators:
 - IMU: LN-200 assumed

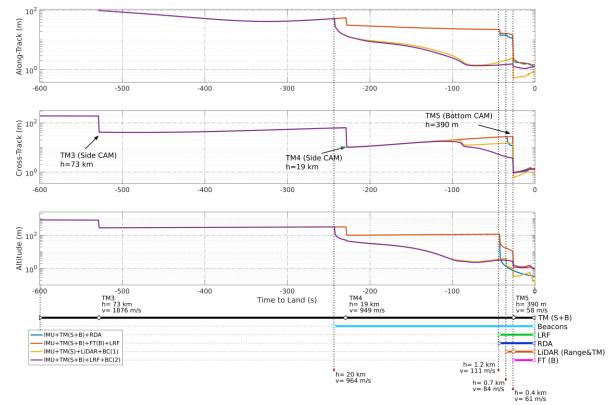
 - RAD: European PALT CAM: 1024x1024 camera, 20/50° FOV (side/btm)
 - Airbus 220N+500N thrusters (trajectory control), **22N** (attitude control)
- -Optional sensor suite trade-off :
 - Side/bottom CAM (w/ terr. matching + ft. tracking)
 - Doppler radar
 - Pre-landed beacons
 - LIDAR (ranging, navigation)

Mission Analysis – Covariance Analysis

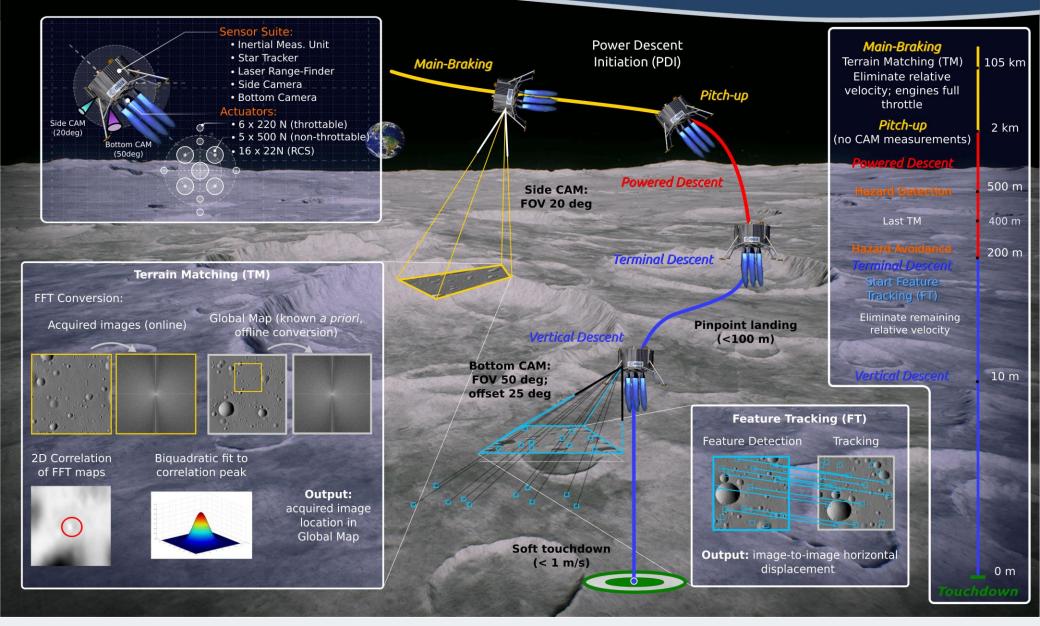
Navigation Solution Trade-off

- Side Camera (Terrain Matching)
 - Essential to provide accurate absolute navigation information
- -Bottom Camera (Terrain Matching+Ft. Track.)
 - Lighter alternative to Radar Doppler

-LiDAR Imaging


- Enables the detection of hazards
- Accurate ranging measurements

-Surface Beacons


- Provide accurate observations during almost all the descent trajectory

-Radar Doppler

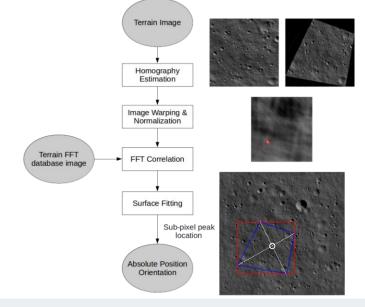
- During the descent, provides accurate velocity and altitude measurements to enable soft landing

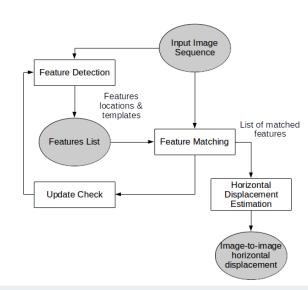
9

www.spinworks.pt • June 12, 2018

The current information does not reflect the official opinion of the European Space Agency

Navigation

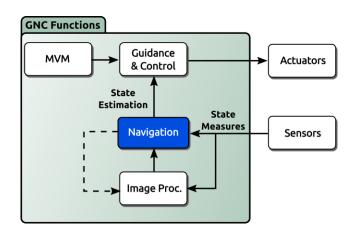

Navigation (Image Processing)


-Feature Tracking

- Produces observations of S/C terrainrelative velocity (expressed on camera sensor plane)
- Used from 390 m up to 20 m altitude (plume impingement on ground blinds sensor thereafter)

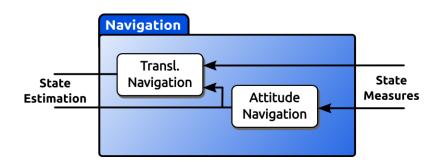
-Terrain Matching

- Produces observations of "absolute" S/C horizontal position (relative to a global map)
- -6 Images taken at 73 km, 40 km, 19 km, 8 km, 2.4 km, 390 m
- Altitudes selected iteratively (min # of maps, while achieving mission goals)

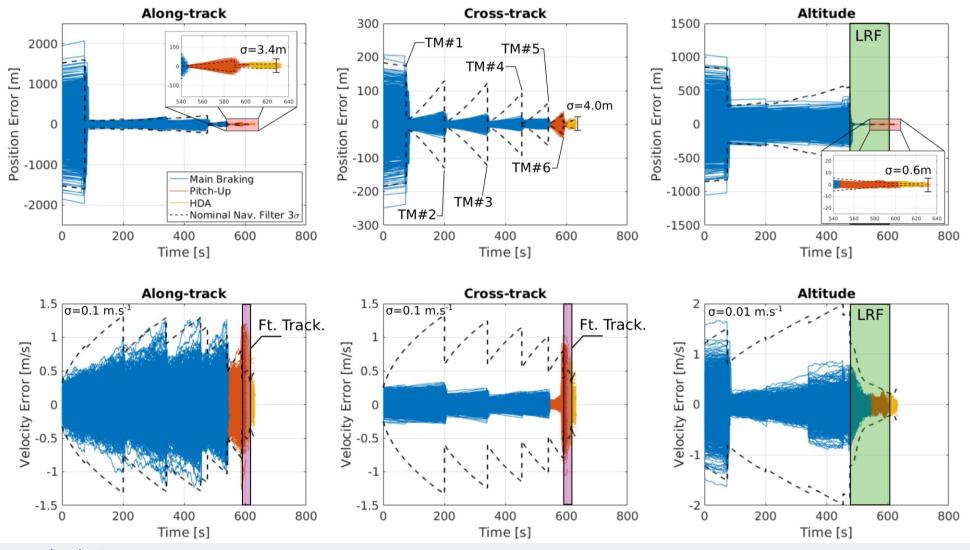


Navigation

Navigation (Filters)


-Translational Navigation filter

- -Type: EKF-based discrete navigation filter
- **States:** S/C position and velocity w.r.t. to the target body (inertial reference frame)
- **State Propagation:** Accelerometer meas. and (simple) gravity model
- State Update: Optical measurements



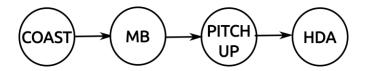
-Attitude Navigation Filter

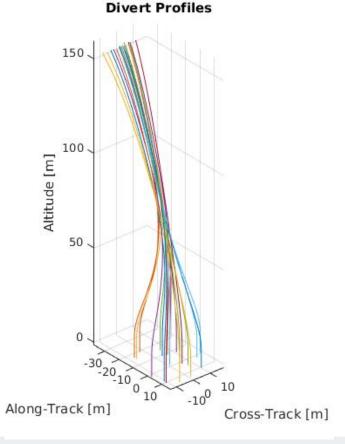
- Type: EKF-based discrete navigation filter
- States: S/C attitude quaternion, w.r.t. to the inertial frame
- State Propagation: Gyroscope measurements
- **State Update:** Star Tracker measurements (when available)

Navigation (Results)

www.spinworks.pt • June 12, 2018

Guidance & Control

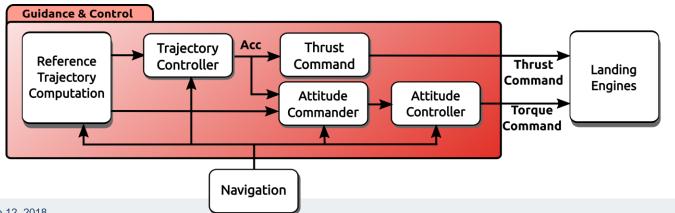

Guidance & Control

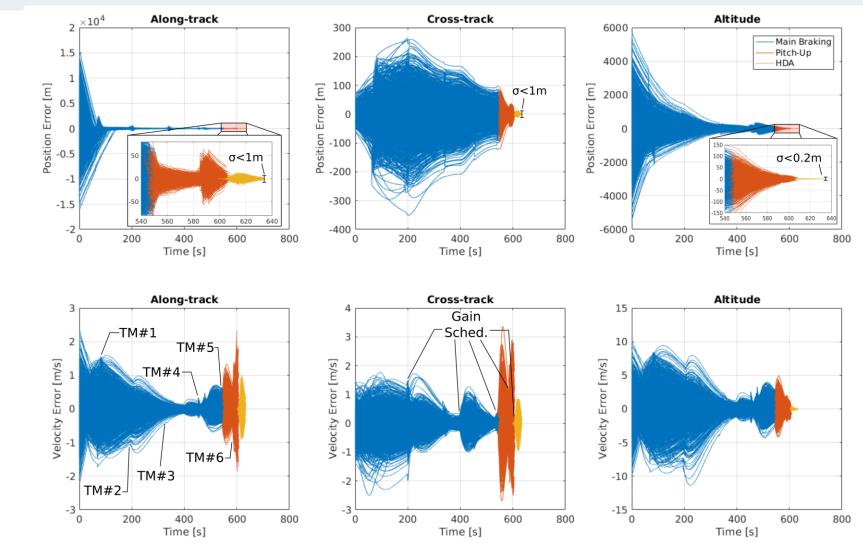

-Main Braking and Pitch Up phases:

- Reference trajectory tracking w.r.t. estimated velocity (onboard-stored polynomials, using limited # of segments);
- -Trajectory control forces S/C to converge to reference trajectory from feasible initial state dispersions to within 20m, prior to HDA phase;
- -Sensor + actuator noise + misalignments considered;
- -Control gains tuned for fully closed-loop mission

-HDA phase:

- Piecewise polynomial divert maneuver generated online (acceleration + deceleration periods);
- Maneuver timings kept fixed (while magnitude is tuned to allow for ~20 m diverts from 100 m altitude with reasonable angular rates and accelerations)





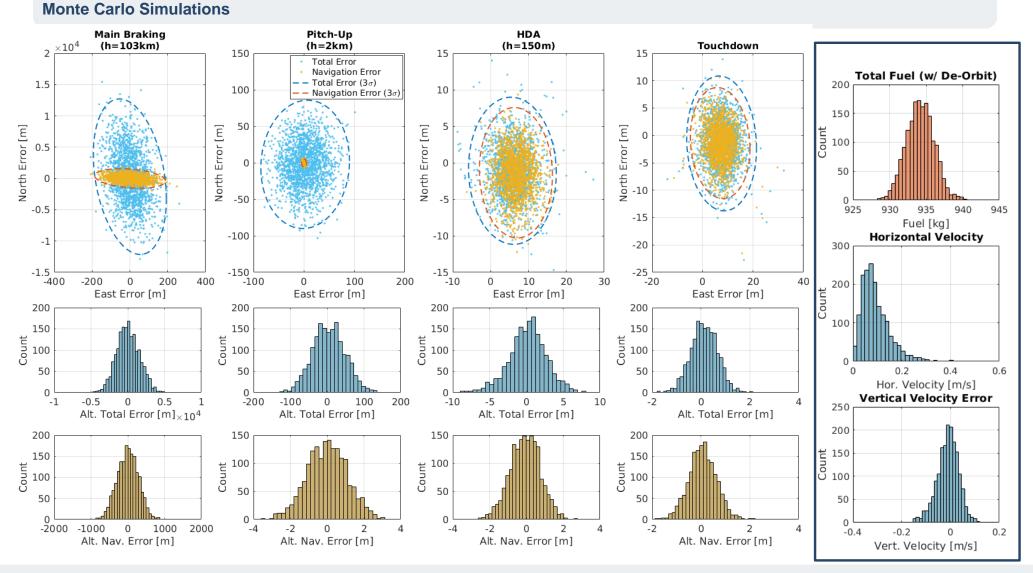
Guidance & Control

Guidance & Control

- -Reference Trajectory: Interpolates the reference trajectory (position, velocity, acceleration and attitude) optimized offline using the estimated velocity;
- -**Trajectory Controller:** Computes acceleration commands in order to track the reference trajectory based on a PD control law (with scheduled gains);
- -Attitude Commander: Computes an attitude command that aligns the lander's thrusters with the commanded acceleration;
- -Attitude Controller: Tracks the commanded attitude by issuing an appropriate torque command according to a PD control law (with scheduled gains).

Guidance & Control (Results)

Monte Carlo Simulations


Monte Carlo

Block	Description	Parameter		Value
Initial Conditions	At the start of the Main Braking phase (from covariance analysis)	Mass		Nominal: 1219.4 kg, 3σ: 1 %
		Position	Altitude	Nominal: 103.4 km, 3σ: 4.3 km
			Along-Track	Nominal: 672 km, 3σ: 11.1 km
		Velocity	Norm	Nominal: 2093.8 m/s, 3σ: 2.98 m/s
			FP Angle	Nominal: -12.9 °, 3σ: 0.21 °
Actuators	Idealized thrust along fixed in body direction and 3-axis torque. Both subject to constant random misalignment and multiplicative noise	Thrust	Noise	0.33 % (1σ, multiplicative)
			Misalignment	Nominal: 0 °, 3 σ: 1 °
		Torque	Noise	0.33 % (1σ, multiplicative)
			Misalignment	Nominal: 0 °, 3σ: 1 °
Sensors	IMU model including white noise components and bias (used to model bias calibration error)	Gyroscope	ARW	0.07 °/√hr (1σ)
			Bias	Nominal: 0 º/hr, 3σ: 0.3 º/hr
		Accelerometer	Noise	35 μg/√Hz (1σ)
			Bias	Nominal: 0 μg, 3σ: 90 μg
	Models a small angle noise	Star-Tracker	NEA	2/3 arcsec (1σ)
	Outpus range to surface with a multiplicative error	Range-Finder	Noise	0.33 % (1σ, multiplicative)
			Bias	Nominal: 0 m, 3σ: 2.4 m

Monte Carlo Simulations

Monte Carlo

Block	Description	Parameter		Value
Initial Navigation Error	Initial navigation error at the start of the Main Braking phase (from covariance analysis)	Position	Altitude	Nominal: 103.4 km, 3σ: 851 m
			Along-Track	Nominal: 672 km, 3σ: 1.52 km
		Velocity	Norm	Nominal: 2093.8 m/s, 3σ: 0.56 m/s
			FP Angle	Nominal: -12.9 °, 3σ: 1.83 '
Image Processing	Performance model parameters selected based on previous experience of algorithm performance	Feature Tracking	Noise	0.14 pix (1σ)
		Terrain Matching	Noise	0.5 pix (1σ)
			Map Tie Error	Nominal: 0 m, 3σ: 40 m
HDA	Random HDA divert commanded at a specified rate	Probability of Divert		90 %
		Divert Magnitude		Uniform in Disk of Radius: 20 m

Conclusions

Summary & Conclusions

- -A <u>complete mission design cycle</u> was carried out to frame the development of a realistic GN&C for Powered Descent and Landing of future Lunar Landing missions
- -A **covariance analysis** was performed for the complete descent, to identify most suitable sensor suite (from a list of existing sensors & processing units).
 - -A <u>dispersion analysis</u> was carried out to obtain traj. dispersions \rightarrow initial conditions
 - -Navigation knowledge is initialized using knowledge covariance statistics
 - -Only onboard sensors contribute to trajectory knowledge after last OD cycle (at NRO)
- -GN&C Algorithms were developed with real-time implementation in mind:
 - -Image processing performance from flight test data of implemented algorithms
 - Algorithm structure designed for compatibility with stored & selected sensor data
 - -Communications, timing, storage aspects taken into account
- -A 6DOF Monte-Carlo simulation campaign was carried out to demonstrate feasibility

-An End-to-End GN&C for Safe, Precise Lunar Landing has been validated