

National Aeronautics and Space Administration

A COMMON PROBE DESIGN FOR MULTIPLE PLANETARY DESTINATIONS

Helen H. Hwang NASA Ames Research Center

2018 International Planetary Probe Workshop

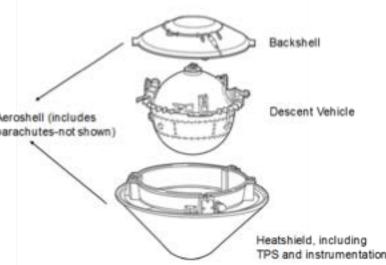
June 12, 2018

Common Probe Study Team Members

- NASA Ames Research Center (ARC)
 - Gary A. Allen, Jr. (AMA, Inc.)
 - Antonella I. Alunni (AMA, Inc.)
 - Jay D. Feldman
 - Frank S. Milos
 - Keith H. Peterson
 - Dinesh K. Prabhu (AMA, Inc.)
 - Todd R. White
- NASA Goddard Space Flight Center (GSFC)
 - Michael J. Amato
 - Greg C. Marr
 - Kyle M. Hughes

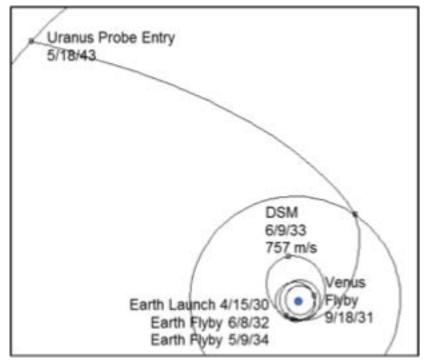
- Jet Propulsion Laboratory (JPL)
 - David H. Atkinson
 - Bernie J. Bienstock
 - John O. Elliott
 - Mark D. Hofstadter
 - Marcus A. Lobbia
 - Kim R. Reh
- NASA Langley Research Center (LaRC)
 - Juan R. Cruz
 - Robert A. Dillman
 - Soumyo Dutta
 - Alicia Dwyer Cianciolo

Background and study goals



- At IPPW-14 (in 2017), during the Outer Planets session it was noted that many of the atmospheric probe designs seemed similar
 - Are we designing the same probe over and over again?
 - Can we increase efficiency by designing one probe and using that design at multiple destinations?
 - Can we further increase efficiency by building multiple copies of that probe and store them for future use (and offer to mission designers as GFE)?
 - What potential risks or inefficiencies are introduced by using a common design and building multiple copies?
- The Planetary Science Division of the NASA Science Mission Directorate funded a study from October 2017 – June 2018, involving 4 NASA Centers (ARC, GSFC, JPL, and LaRC), to address these issues

Study scope and assumptions


- Venus, Jupiter, Saturn, Uranus, and Neptune as destinations considered
 - In scope: missions with direct, ballistic entries
 - Out of scope:
 - Earth return, Mars, and Titan as destinations
 - Aerocapture
 - Large landers at Venus
- Carrier spacecraft provides power and communications during cruise (details not studied)

- Mass and instrumentation for descent vehicle considered, but detailed mechanical design and interface out of scope of study
- Leverage previous missions and studies for detailed analysis, otherwise use mid-fidelity tools for design estimates
 - Utilize current methods and technologies for design basis (*e.g.*, composite structures, heritage materials, etc.)

Interplanetary Trajectories

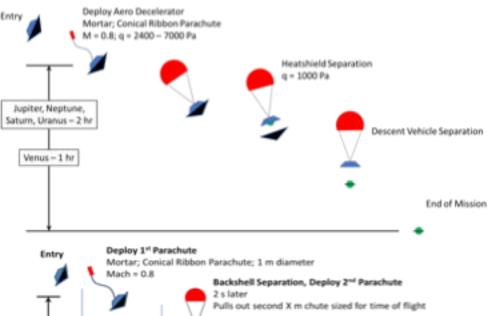
Assumptions

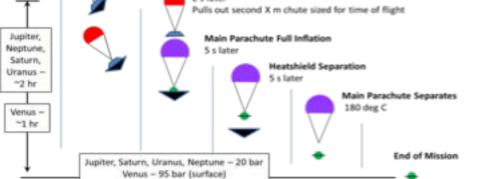
- Launch vehicle with current all-chemical capabilities (ΔV)
- Time of flight < 15 years
- "Shallow" (50-g) and "steep" (150 200-g) trajectories for each destination

*Note: Uranus entries are retrograde

Please see "INTERPLANETARY TRAJECTORY DESIGN FOR NASA'S COMMON PROBE STUDY," K. Hughes, *et al.*, poster session

Strawman Payloads


- Science and payload team (JPL, GSFC) examined potential instruments for missions to 5 destinations and prioritized based on Tier 1 and 2 science
- Estimated a descent module of 0.75 m diameter could accommodate the minimum payload at the 5 destinations based on packaging ratios from previous missions and studies

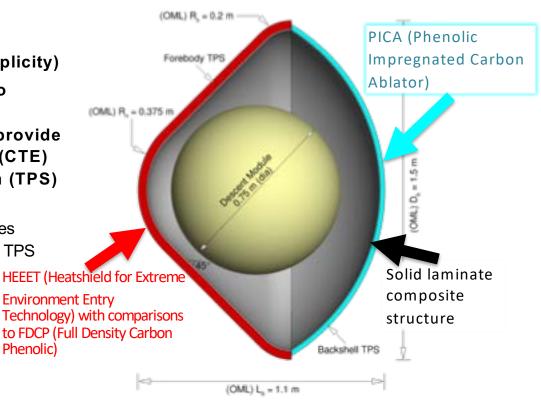

	Instrument	Measurement
Tier 1	Mass Spectrometer	Elemental and chemical composition, especially noble gases and key isotopes
	Atmospheric Structure Instrument (ASI)	Pressure and Temperature → Thermal Structure, Density, Stability Entry Accelerations → Density
Tier 2	Radio Science Experiment	Atmospheric dynamics: winds and waves: atmospheric absorption → composition
	Nephelometer	Cloud structure, aerosol number densities & characteristics
	Net Flux Radiometer	Net radiative fluxes: Thermal IR, solar visible

Details in "SCIENCE GOALS AND PAYLOADS FOR COMMON PROBE MISSIONS TO VENUS AND THE GIANT PLANETS," D. Atkinson, *et al.*, following presentation

EDL ConOps + Mission Design

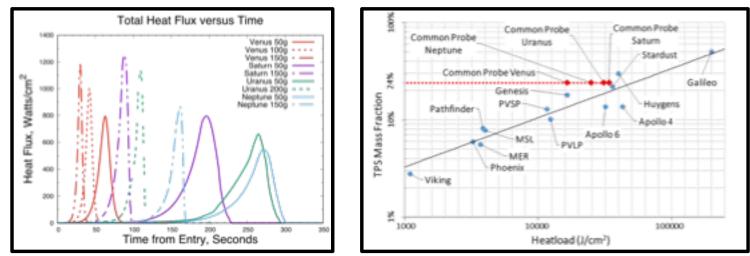
Two different scenarios

- 1 main parachute, 2.0 m diam conical ribbon, works for all 5 destinations
- 1 pilot + 1 main:
 - Pilot is 1 m diam conical ribbon
 - Main parachute sized for destination
- Both options are feasible, indicating flexibility in designing a concept of operations for Entry, Descent, and Landing


Please see "EVALUATION OF COMMON PROBE TRAJECTORIES AT MULTIPLE SOLAR SYSTEM DESTINATIONS," A. Cianciolo, *et al.*, later this session

Aeroshell design assumptions

- 45°-sphere cone forebody (aerodynamic stability)
- Hemispherical-cap backshell (design simplicity)
- Probe diameter and nose radius similar to **Pioneer Venus Large Probe (PVLP)**
- Structure is solid laminate composite to provide a better coefficient of thermal expansion (CTE) match with the thermal protection system (TPS) materials
 - Pioneer Venus and Galileo were metallic structures
 - Mass of structure assumed to be the same for all TPS thickness


	Base diamete r (m)	Nose radius (m)	Ballistic Coefficient (kg/m²)	Entry mass (kg)
Common Probe	1.5	0.375	216	400
PVLP	1.42	0.36	188	316
Galileo	1.26	0.222	256	335

Phenolic)

Thermal Protection System (TPS) sizing

- Aerothermal environments (radiative + convective heating) estimated on the forebody stagnation point using a 3DOF simulation, TRAJ
- 2 forebody materials considered: HEEET and FDCP, sized using FIAT
- Backshell TPS assumed to be PICA: mass estimated based on forebody stagnation point environments
- Common TPS thickness viable for 4 destinations but not Jupiter (heat loads 10x higher)
- TPS mass fraction in-family with historical missions

Please see "AEROTHERMAL DESIGN OF A COMMON PROBE FOR MULTIPLE PLANETARY DESTINATIONS," G. A. Allen, Jr., *et al.*, poster presentation

Master Equipment List

Probe - Total		FLIGHT HARDWARE MA				
Dub				Total Mass, kg (CBE)	Contingency %	Total Mass, kg (CBE+Cont.)
Subsystem/Component Probe				(CDE)	Contingency %	(CBE+Cont.)
Descent Vehicle				108.1	30.0%	140.5
Instruments		34.2	30.0% 30.0%	140.5 44.5		
		34.2 193.3	30.0% 30.0%	44.5 251.2		
Aeroshell Total Mass				335.5	30.0% 30.0%	436.2
Probe - Descent Vehicle (DV)	# OF UNITS					
Subsystem/Component	Unit Mass, kg (CBE)	Unit Power, W (CBE)	Flight Units	Total Mass, kg (CBE)	Contingency %	Total Mass, kg (CBE+Cont.)
C&DH	3.3	9.0	1	3.3	30.0%	4.3
Power	12.4	5.0	1	12.4	30.0%	16.2
Structure & Mechanisms	68.6	0.0	1	68.6	30.0%	89.1
Telecom	13.2	243.0	1	13.2	30.0%	17.1
Thermal	10.6	0.0	1	10.6	30.0%	13.8
Total Mass	1010	0.0		108.1	30.0%	140.5
Probe - Instruments			# OF UNITS		HT HARDWARE MAS	SES
	Unit Mass. kg	Unit Power, W		Total Mass. kg		Total Mass, kg
Subsystem/Component	(CBE)	(CBE)	Flight Units	(CBE)	Contingency %	(CBE+Cont.)
MS	16.0	65.0	1	16.0	30.0%	20.8
TLS	6.5	35.0	1	6.5	30.0%	8.5
ASI	3.0	3.5	1	3.0	30.0%	3.9
NFR	2.0	4.5	1	2.0	30.0%	2.6
Ortho/Para	3.0	4.0	1	3.0	30.0%	3.9
Nephelometer	2.3	3.0	1	2.3	30.0%	3.0
Helium Abundance Detector	1.4	0.9	1	1.4	30.0%	1.8
Total Mass				34.2	30.0%	44.5
Probe - Aeroshell (AS)			# OF UNITS	FLIGHT HARDWARE MASSES		SES
	Unit Mass, kg	Unit Power, W		Total Mass, kg		Total Mass, kg
Subsystem/Component	(CBE)	(CBE)	Flight Units	(CBE)	Contingency %	(CBE+Cont.)
Heatshield	144.1		1	144.1	30.0%	187.3
Heatshield structure (composite)	53.8					
Heatshield TPS (HEEET)	73.4					
Heatshield separation system	7.0					
Aeroshell instrumentation	10.0					
Backshell	25.1		1	25.1	30.0%	32.7
Backshell structure (composite)	13.4					
Backshell TPS (PICA)	11.7					
Mechanisms etc	4.0		1	4.0	30.0%	5.2
Parachutes	20.0		1	20.0	30.0%	26.0
Total Mass			193.3	30.0%	251.2	

- HEEET baselined for mass and cost (more mass efficient plus investments by NASA)
- Initial estimate had 400 kg for probe mass
- Including 30% contingency for growth allowance for all items, mass of "common" design is 436 kg (within 10% of original estimate)
- Additional mass is due to pressure vessel (required only for Venus)
- Another design iteration needed to incorporate updated masses

Special considerations due to "make ahead"

- Typically, probes are designed and optimized based on specific mission needs.
- Building a probe once a decade has sustainability issues
 - Maintaining heritage material availability (*e.g.*, precursor and constituents to carbon phenolic)
 - Skilled labor for assembly and integration (HEEET requires use of gap fillers and specially-developed integration techniques)
- Building multiple copies of a common design can alleviate the sustainability issues, but introduces new risks:
 - Long term storage and aging of the system
 - Will HEEET and a cyanate ester composite structure age at the same rate when bonded together?
 - Can accelerated aging coupon tests be performed?
 - Galileo and Phoenix are data points for ground storage
 - Qualification of the design across multiple destinations

Cost to build multiple copies of aeroshell

- Preliminary costing which estimates the non-recurring vs recurring engineering portions indicates that cost savings could be realized by building multiple units at the same time
 - Structure
 - Parachutes
 - TPS
 - EDL instrumentation
- Storage costs not included in roll up
- As an example, building 5 units could reduce the cost of a probe by factor of ~3 (potentially less than \$20M per probe)
- Higher fidelity costing is recommended as a follow-on activity

Summary and recommendations

- A common atmospheric probe design for Venus, Saturn, Uranus, and Neptune missions is feasible
- Missions to Jupiter should be considered separately due to heat loads
- Further analysis is needed
 - Additional design cycle to account for updated masses, trajectory changes, etc.
 - Higher fidelity tools (CFD, structural analysis, etc) for better mass estimates
 - Better cost estimates
- Using one design to build multiple copies and store for later use can offset the risk of losing skills and material resources decades downstream
 - Venus missions in particular pay a mass penalty—but consequently may have greater mission flexibility (low-g entries)
 - Should explore optimal number of units to build based on cost and schedule
- Risk of aging should be explored by building coupons and testing (accelerated aging?)

Next steps

- Report drafted and will be submitted to PSD/SMD
 - Will be published as a NASA TM
- Community feedback!
 - IPPW
 - OPAG
 - VEXAG
- Next round of analysis is desired:
 - High fidelity analysis (CFD for convective aerothermal heating, detailed radiative heating calculations, structural sizing, costing, etc.)
 - Project formulation (~one year to scope effort to design and build multiple copies?)

Questions?

Images: NASA/JPL-Caltech