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Problem Description & Motivation  
❖ Blackout Phenomena

• Freestream is rapidly disassociated by aerodynamic heating in the 

shock layer

• Electromagnetic interference caused by highly dense plasma 

• Blackout due to refractive index [1]

❖Missions 
• Mars Pathfinder at 7.5km/s -30 second blackout at x-band [2]

• MSL suffered a period of ~70s of brownout and blackout 

at UHF [3] and ExoMars 2016 had a ~60s blackout at UHF

• Future missions require increased landing performance [4] [5]
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Novelty of Research
In literature, typically use CFD to characterize the reentry plasma [1-3]

• Multi-temperature models & extensive chemical mechanisms add to computational cost
• 3D simulations including two temperature model, 20 chemical species at 10 trajectory points of 

MSL [1] 

❖ Apply a computationally inexpensive approach to extract electron density

fields 

❖ Ray tracing [1],[5]

• A method to estimate the most likely signal path

• In literature, consider transmission of signal along Line of Sight (LOS)

Implement and Apply Tools for Predicting CO2 Blackout

Introduce improved physics modeling 

Validate these tools on literature data from previous missions 
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Methodology & Approach  
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https://github.com/andrealani/COOLFluiD/wiki


COOLFluiD
• Parallel, structured/unstructured 2D/3D finite-volume

CFD code that has the capability to simulate hypersonic reacting flows [8] 

• Implicit time stepping 

• Viscous Navier-Stokes Equations in chemical non-equilibrium and 

thermal equilibrium

• [CO2 O2 C O C2 CO]- Mars6 

• (Continuity equations for 6 species, 2 momentum equations,

and 1 energy equation solved)

• Finite volume formulation where numerical convective fluxes 

are computed using AUSM+ scheme

• Boundary Conditions (100% CO2) 
• Supersonic Inlet and Outlet

• 2-D axis-symmetric 

• Isothermal no-slip wall 1500 K 
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ExoMars Schiaparelli 

70⁰ sphere cone frontshield

47⁰ conical backshield

Nose radius 0.6 m 

Vehicle Diameter 2.4m

https://github.com/andrealani/COOLFluiD/wiki



LARSEN
● A solver that is able to refine a baseline solution along a streamline by introducing new chemical species and 

internal temperatures  [9]

● Assumptions
– Velocity and density field are taken from the baseline simulation

– The mass and momentum equations for the whole mixture are no longer necessary

● Governing Equations
– Mass Conservation equation for each chemical species

–
𝐷𝑦𝑖

𝐷𝑡
=

1

𝜌
ሶ𝜔𝑖 − ∇ ∙ 𝐉𝒊

– Total energy conservation equation (thermal equilibrium)  

– 𝜌
𝐷𝐻

𝐷𝑡
= 𝜙 = ∇ ∙ 𝐪 + ∇ ∙ 𝐮 ∙ 𝝉

– 𝜙 = 𝜌
𝐷𝐻

𝐷𝑡 𝑟𝑒𝑓
Energy Flux is taken from reference simulation

–
𝐷𝑇

𝐷𝑡
= 𝜙 −

𝐷𝑢2/2

𝐷𝑡
− σ𝑖𝜖𝑠

ℎ𝑖 ሶ𝜔𝑖

𝜌
/ σ𝑖𝜖𝑠 𝑦𝑖𝑐𝑝,𝑖 Give T, 𝜌, u, 𝑦𝑖 along streamline from neutral simulation
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Flowfield Reconstruction

❖ Create contour plots from streamline data

❖ ExoMars t=123s  [Safely after blackout]  

u =1441 m/s,  T=205 K,  𝜌𝐶𝑂2 = 2.606𝑥10−3 ൗ𝑘𝑔
𝑚3

❖Vortex region and stagnation region avoided 

❖ Temperature in wake will not create a sufficient 
electron density to cause blackout 

400 Mhz 2x1015 e-/m3
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BlackOut RAyTracer [BORAT]

• Iterative marching application of Snell’s Law

• 𝜇 𝑠𝑖𝑛α1 = 𝜇2 𝑠𝑖𝑛𝛼2

• In typical reentry application rays from antenna 

move from a relatively cold region to a hot region

• Step size chosen as to resolve the gradients 

in the refractive index accurately [0.02 m]

• Assume antenna is omni-directional with equally

strong signals in all directions [400 MHz]
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Results 
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t= 17s t= 22s t= 38s

• Brownout to eventually blackout where rays are confined to the axis 



Results 
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t= 50s t= 73s t= 80s

• Blackout to brownout as rays are initially confined to the axis and gradually move away 



Results 
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t= 85s t= 92s

• Brownout to no blackout

• Improved physics modeling 
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Comparing 
with Flight Data 



Conclusions 

❖ Implemented and validated blackout analysis tools 
• Lagrangian approach applied to retrieve electron density [LARSEN]

• Raytracing applied to CO2 flows [BORAT] 
-Apply more accurate modeling of the physics 

-LOS method is not accurate [signal is bent by electron density gradients in plasma]

• Results are in good agreement with flight data

❖ Developed a computationally inexpensive way to examine blackout 
• Run CFD with 6 species, use LARSEN to reconstruct the electron density, then BORAT 
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Backup Slides 

Blackout Analysis of  Reentry Vehicles for Martian Missions 17



Plasma Cut-off Frequency

• 𝑓𝑝 =
1

2𝜋

𝑛𝑒𝑒
2

𝑚𝑒𝜖0
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𝑓𝑝 plasma cutoff frequency, Hz

𝑛𝑒 electron density, m-3

𝑒 electron charge, 1.6x10-19 C

𝑚𝑒 electron mass, 9.1x10-31 kg

𝜖0 permittivity in free space



Electromagnetic Wave Propagation 
• Refractive index (μ) and absorption coefficient (χ) are described by the Appleton Equation [8]

• 𝑛2 = (μ − 𝑖χ) 2= 1 −
𝑋

1−𝑍𝑖

• 𝑋 =
𝑛𝑒

2

𝜖0𝑚𝜔2 , 𝑍 =
𝜈

𝜔

• Neglecting collision frequency

• 𝑛 = 𝜇= 1 − 𝑋 = 1 −
𝑓𝑝

𝑓

2

• 𝑓𝑝 is measure of the oscillatory movement of electrons in plasma

• Consider collision frequency

• 𝜇 = 1 −
𝑋

1−𝑍𝑖
, 𝜅 =

𝜔

𝑐
𝜒 =

𝑒2 𝑛𝑒𝜈

2𝜖0𝑚𝑐𝜇 𝜔2+𝜈2

• the collision frequency reduces the effect of the electron density

[Can predict a weaker signal if you neglect collisions]
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𝜅 absorption factor, Np/m 
m   electron mass, 9.1x10-31 kg 

𝑒 electron charge, 1.6x10-19 C

𝜔 radio angular frequency, rad/s

𝑛 complex refractive index 
ne electron density, m-3

𝜈 collision frequency, s-1

μ real part of refractive index
χ imaginary part of refractive index

𝑓𝑝 plasma cutoff frequency, Hz

𝑓 frequency band, Hz 



Computational Matrix 
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Blackout occurs between [30s-80s]



Chemical NEQ Model 
❖ 1-D Stagnation Line Code [R=1m sphere]  [5]

❖ ExoMars → t=38seconds

❖ T=175.5, Tw=1500K, u=5856.2 m/s

– 𝜌𝐶𝑂2 = 3.6258𝑥10−5 ൗ𝑘𝑔
𝑚3

– 𝜌𝑁2 = 9.6027𝑥10−7 ൗ𝑘𝑔
𝑚3

❖ Mars19 [Park]
❖ [e- CO2 N2 C N O O2 CO NO C2 CN]  
❖ Ions: [CO+ NO+ C+ O+ O2+ N+ N2+ CN+]

❖ Mars14 [Park]
❖ [ e- CO2 N2 C N O O2 CO NO ]
❖ Ions [CO+ NO+ C+ O+ O2+ ]
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Electron Density

• Maximum reentry velocity of ExoMars Schiaparelli ~5900 m/s 

• The Mars14 chemical NEQ model will be sufficient in predicting the electron density



CO2 Modeling Validation 

• Numerical results in good agreement with CFD++ [12] and the DLR TAU Code by Fertig [13]

• Supercatalytic Boundary used in CFD++ 
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