

Jet Propulsion Laboratory California Institute of Technology

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Adam Nelessen / Alex Austin / Joshua Ravich / Bill Strauss NASA Jet Propulsion Laboratory

Ethiraj Venkatapathy / Robin Beck / Paul Wercinski / Mike Wilder / Gary Allen / Michael Aftomis NASA Ames Research Center

> Robert Braun / Michael Werner / Evan Roelke University of Colorado Boulder

> > June 14, 2018

© 2018. All rights reserved.

St.

Overview

- A multi-organizational team is developing an aerocapture system for Small Satellites
 - Currently in year 1 of a 2-year effort
- Utilize drag modulation flight control to mitigate atmospheric & navigation uncertainties
 - Initially studied by Putnam and Braun in "Drag Modulation Flight Control System Options for Planetary Aerocapture"
 - Simplest form is the single event jettison
 - Ballistic coefficient ratio (β2/β1) provides control authority
- Study addresses key tall tent pole challenges
 - 1. Orbit targeting accuracy
 - 2. Thermal protection system feasibility
 - 3. Stability before, during, and after jettison event
- Technology development has so far been "mission-agnostic"
 - Pursue a notional flight system design and target orbit to demonstrate existence proof
 - Design and tools can be custom-tailored for a range of possible science missions

Mission Applicability

- Potential Destinations:
 - Venus
 - Earth
 - Mars
 - Titan
 - Ice Giants
- Vehicle Options:
 - Mechanical deployable drag skirt
 - Rigid drag skirt
- Delivery Schemes:
 - Dedicated launch & cruise
 - Delivery by host spacecraft

Mission Applicability

- Potential Destinations:
 - Venus
 - Earth
 - Mars
 - Titan
 - Ice Giants
- Vehicle Options:
 - Mechanical deployable drag skirt
 - Rigid drag skirt
- Delivery Schemes:
 - Dedicated launch & cruise
 - Delivery by host spacecraft

Initial Focus:

Chose Venus to bound the technology's capability. Can scale to "easier" destinations. Chose rigid drag skirt and host spacecraft delivery to minimize system complexity.

ConOps: Exo-Atmospheric

Potential Hosts:

- Dedicated carrier spacecraft
- Discovery or New Frontiers missions that target or fly by Venus

Coast to Atmospheric Entry

Atmospheric Entry Entry Velocity = 11 km/s Flight Path Angle γ = -5.40 deg

Deploy from host S/C

ConOps: Atmospheric

ConOps: Post-Aerocapture

Drop Heat Shield + Periapsis Raise Maneuver Nominal Time: Atm. Exit + ½ Period Trigger: Timer

ConOps: Post-Aerocapture

Final Orbit Periapsis: 200 km Apoapsis: 2000 km Period: 1.85 hr

Drop Heat Shield + Periapsis Raise Maneuver Nominal Time: Atm. Exit + ½ Period Trigger: Timer

Representative Flight System

Pre-Jettison Configuration

Delivered Flight System

- Science Payload
 - ~1.5U available volume
- Telecom (~2.5 kbps to 70m DSN)
 - IRIS X-Band Radio
 - X-Band Patch Antenna
 - X-Band Circular Patch Array HGA
- ACS (~10 arcsec pointing accuracy)
 - BCT Star Tracker, Sun Sensors (x4), and Control Electronics
 - BCT Reaction Wheels (x3)
 - Sensonor IMU
- C&DH
 - JPL Sphinx Board
 - Pyro Control Board

Total Margined Mass = 69kg

- Thermal
 - Kapton Film Heaters
 - MLİ
- Power (~25 W with body mounted solar cells)
 - Solar Arrays
 - Clyde Space EPS
 - 18650 Li-ion batteries (x11) (~180 Wh)
- Propulsion (~70 m/s delta-V)
 - 0.5 N Monoprop Thrusters (x4)
- Mechanical
 - Structure, TPS, Rails, Rollers, Separation Hardware

Drag Skirt Deployment System

- 3 separation bolts fire when triggered by the flight computer MSL-inspired rail & roller design reduces re-contact risk during drag skirt separation Drag skirt fabrication from MSL-style aluminum honeycomb with composite facesheets Heatshield made of solid carbon composite •

- Backshell made of solid aluminum

Mass Efficiency Comparison

 The aerocapture-based orbit insertion system can deliver up to 85% more useful mass to orbit than a propulsive system, depending on target orbit

Orbit Delivery Accuracy

- 3DOF Monte Carlo runs in JPL's DSENDS trajectory tool used to assess orbit targeting accuracy
 - VenusGRAM atmospheric model with 3-sigma variability in density and wind speeds
- Options for improving orbit targeting accuracy are under investigation
 - Reduce EFPA error
 - Increase ballistic coefficient ratio
 - Improve G&C algorithm for drag skirt separation timing

Aerothermal & TPS

Stagnation Point Heating vs Time

	Nose	Flank (est)	Skirt (est)
Peak Heatflux (W/cm2)	383.3	191.65	191.65
Peak Heatload (J/cm2)	45179	22590	3840
Peak Pressure (Pa)	8800	4400	3650
C-PICA thickness (cm)	2.58	1.88	0.72
PICA thickness (cm)	4.125	3.51	1.11
C-PICA mass (kg)	0.13	0.80	4.56
PICA mass (kg)	0.20	1.45	6.83

Total heat-shield only TPS mass for pre-and post-jettisoned bodies combined:

C-PICA 5.49 kg (Un-margined engineering estimate)PICA 8.48 kg (Un-margined engineering estimate)

Aerodynamics

- CFD simulation development in Cart3D underway at CU Boulder
 - Currently troubleshooting coefficient errors vs. Newtonian aerodynamics
- Objectives

6/14/18

- Analyze forces & moments during separation event
- Generate 6DOF aerodynamic database

Ballistic Range Testing

- Ballistic range at NASA Ames has been modified to image the separation event
- Several exploratory test shots have been performed this year
- Ballistic range test articles based on final study design to be fabricated by end of FY18
- Multiple ballistic range shots planned for FY19

Shot 2798: P_{∞} = 114 Torr (0.15 atm), ρ_{∞} = 0.181 kg/m³

Conclusions and Future Work

This initiative addresses the following key challenges for drag modulation aerocapture at Venus:

- Orbit targeting accuracy 1.
 - 3DOF Monte Carlo simulations of the maneuver
 - G&C algorithm improvements (Work to Go)
- 2. Thermal protection systems
 - Preliminary aerothermal assessment and TPS design
 CFD detailed aerothermal assessment (In Progress)
- Stability before, during, and after jettison event Preliminary 6 degree-of-freedom DSENDS simulations З.

 - CFD analysis of dynamics of drag skirt separation (In Progress)
 - CFD aerodynamic database generation (Work to Go)
 - Ballistic range testing (Work to Go)
- To improve mission accommodation options, investigating an ADEPT-based mechanical deployable drag skirt option

6DOF Trajectory Simulation

CFD Separation Analysis

Ballistic Range Model Design

Thank you!

Internal Flight System Configuration

TPS Material Selection

- Available volume in the nose of the spacecraft is important
 - Give space for components to keep the CG forward
 - Give space for the propulsion system to perform the PRM
- Required PICA thickness results in too little space, but C-PICA is much more flexible.
- Rough calculation: Every 1 cm increase in the spacecraft diameter requires ~8 cm increase in the drag skirt diameter to maintain the same beta ratio.
- To remain as compatible as possible with hosts, growing the drag skirt is not desirable, therefore we choose C-PICA.

STRUCTURE PICA

PICA TPS