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Distinctive features like [±voice] and [±sonorant] have been a core construct of phonological theory for
many decades [44, 25, 7, 8], and psycholinguistic evidence suggests that they are cognitively available
to both adults [6] and infants [27, 22, 47]. Nonetheless, distinctive features are not directly observed by
humans; they are abstractions that must be inferred from dense perceptual information (sound waves)
during language acquisition and comprehension, which raises questions about how they are learned and
recognized. Recent work on child language acquisition has stressed the importance of top-down (e.g.
lexical and phonotactic) information for acquiring phonemic categories [34, 42, 17, 28, 32, 18, 12]. But
to prevent the acquisition process from being circular, the acoustic signal must also provide evidence for
phonemic categories. Furthermore, top-down guidance is likely less reliable to young infants, who must
therefore rely more heavily on bottom-up perceptual information. To a learner faced with the immense
challenge of discovering structure in dense perceptual input, do theory-driven phonological features “stand
out” or are they swamped by noise?

We address this question through computational acquisition modeling, which permits fine-grained anal-
ysis of the learned representations that is not possible to obtain from human infants. Our acquisition model
takes as a starting point cognitive evidence that brains actively model their perceptual world [16, 41, 49],
that autoassociation characterizes the behavior of many brain regions [43, 39], that language comprehen-
sion and production might be linked through a sensorimotor loop [24, 15, 46, 48, 38, 26, 4], that limited
auditory memory requires austere compression of dense acoustic percepts during real-time language com-
prehension [3, 2, 14], that featural decomposition of phone segments occurs during the acquisition process
[27, 22, 47], and that there are broad tendencies toward categorical perception in human cognition [20],
including that of infants [13]. The computational learners used in this study have all of these characteris-
tics: they are deep neural autoencoders (percept modeling, autoassociation, sensorimotor loop) that force
acoustic information from phone segments through a tight 8-dimensional representational bottleneck (com-
pression) consisting of discrete binary stochastic neurons or BSNs (feature decomposition, categorical
perception). Our learners thus have a representational capacity of 256 discrete phone categories, decom-
posable along 8 binary feature dimensions, with which to describe their variegated perceptual world. This
setup allows us to evaluate degrees of correspondence between these perceptually-driven unsupervised
representations and theory-driven phonological representations.

We deploy these models to answer two questions about the data available to young learners whose
training signal must primarily be extracted from bottom-up perceptual information: (1) to what extent can
phoneme categories emerge from a drive to model auditory percepts, and (2) how perceptually available are
theory-driven phonological features? We apply our models to naturally-occurring acoustic phone segments
from two typologically unrelated languages: the Xitsonga [10] and English [35] corpora from the Zerospeech
2015 shared task [45]. Unsupervised phone classification metrics homogeneity (H), completeness (C),
and V-measure (V) [40] are given in Tables 1a & 1b. As shown, much phonemic structure is perceptually
available from acoustics alone (20-40x clustering improvement over a random baseline). We further analyze
the recoverability of theory-driven phonological features from the learners’ latent bit patterns, using random
forest classifiers [33] to fit propositional logical statements that map from latent bits to binary featurizations
of the true segment labels [21, 19]. Precision (P), recall (R), and F-scores (F) are given in Tables 1c & 1d.
Patterns of feature availability are remarkably consistent across languages, suggesting that the models
are capturing generalized perceptual patterns. Furthermore, there are strong asymmetries in perceptual
availability, with good recovery of voicing features and features that distinguish prototypical consonants from
prototypical vowels, along with comparatively poorer recovery of e.g. certain place and manner distinctions.
These findings align with attested patterns of infant phone discrimination [1, 11, 31, 36, 30, 5, 29, 37, 9, 23].

Our results show (1) that phonemic structures emerge naturally but imperfectly from perceptual re-
construction and (2) that theory-driven features differ in degree of perceptual availability. Together, these
findings suggest that reliable cues to phonemic structure are immediately available to infants from bottom-
up perceptual characteristics alone, but that these cues must eventually be supplemented by top-down
lexical and phonotactic information to achieve adult-like phone discrimination. Our results also suggest
fine-grained differences in degree of perceptual availability between features, yielding testable predictions
as to which features might depend more or less heavily on top-down cues during child language acquisition.

1



Model H C V
Random Baseline 0.023 0.013 0.016
BSN Autoencoder 0.462 0.268 0.33

(a) Xitsonga clustering

Model H C V
Random Baseline 0.006 0.004 0.005
BSN Autoencoder 0.270 0.180 0.216

(b) English clustering

Feature P R F
voice 0.9767 0.9033 0.9386

sonorant 0.9249 0.9085 0.9166
continuant 0.9492 0.7936 0.8645

consonantal 0.8314 0.8915 0.8604
approximant 0.8998 0.8192 0.8576

syllabic 0.8278 0.8523 0.8398
dorsal 0.8935 0.7703 0.8273

strident 0.6991 0.9594 0.8089
low 0.7175 0.8978 0.7976

front 0.6590 0.8101 0.7268
high 0.5875 0.7882 0.6732
back 0.5352 0.8527 0.6577

round 0.5332 0.8551 0.6568
labial 0.5669 0.7725 0.6539

coronal 0.5382 0.8301 0.6530
tense 0.5208 0.8115 0.6344

delayed release 0.5468 0.7226 0.6225
anterior 0.4078 0.8355 0.5481

nasal 0.3635 0.8796 0.5144
distributed 0.2459 0.8537 0.3819

constricted glottis 0.1762 0.9007 0.2948
lateral 0.1536 0.8062 0.2581

labiodental 0.0934 0.7980 0.1672
trill 0.0809 0.7401 0.1458

spread glottis 0.0671 0.5856 0.1204
implosive 0.0041 0.4041 0.0081

(c) Xitsonga feature recovery

Feature P R F
voice 0.9244 0.8567 0.8893

sonorant 0.8544 0.8862 0.8700
approximant 0.8005 0.8370 0.8183

continuant 0.8577 0.7669 0.8098
consonantal 0.8249 0.7357 0.7777

syllabic 0.6624 0.8426 0.7417
dorsal 0.7046 0.7114 0.7080

strident 0.5505 0.9027 0.6839
coronal 0.5758 0.7066 0.6345
anterior 0.5251 0.7280 0.6101

delayed release 0.4413 0.7374 0.5521
front 0.4322 0.7407 0.5459
high 0.3841 0.6931 0.4943

tense 0.3275 0.7101 0.4483
back 0.3128 0.7504 0.4416

nasal 0.2796 0.7544 0.4080
labial 0.2541 0.7077 0.3739

low 0.2410 0.7787 0.3680
distributed 0.2203 0.6881 0.3337

stress 0.2052 0.8027 0.3269
diphthong 0.2039 0.8051 0.3254

round 0.1665 0.7012 0.2692
lateral 0.1484 0.8333 0.2519

labiodental 0.0787 0.6756 0.1410
spread glottis 0.0377 0.6683 0.0714

(d) English feature recovery
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