

Biochar Optimization for Water Treatment Using Coffee Byproducts

Civil, Environmental and Architectural Engineering

UNIVERSITY OF COLORADO BOULDER

Alex Nolan, Matt Bentley, Scott Summers

Department of Civil, Environmental and Architectural Engineering at the University of Colorado Boulder

Introduction

Water Quality

- Organic contaminants that are not removed in conventional water treatment are often present in drinking water sources.
- Specifically, pesticides and pharmaceuticals often go unnoticed and can impact water quality for those that use it.
- Developing countries typically have fewer environmental regulations and low access to expensive treatment measures

Biochar

- Adsorptive media used in water treatment, similar to activated carbon
- Cheaper and easier to make than alternatives used today
- Organic material with high porosity and surface area
- Made by pyrolysis (high heat in absence of oxygen)
- Can be made from any organic material

Objectives

- Explore possibility of making biochar using coffee byproducts
- Determine which coffee feedstock produces superior biochar
- Experiment with pretreament applications to improve biochar sorption of a pesticide and pharmaceutical
- Test biochars in different waters to compare effectiveness

Biochar Production & Test

Materials

- Biochar made from coffee byproducts that have limited commercial use
- Coffee cherry and parchment used as feedstocks for biochar production
- Ash made from both feedstocks to test sorption improvements

Coffee cherries are analagous to peanut shells Coffee parchment is similar to papery material around peanut (coffee bean)

removal

Results

Coffee Parchment Biochar > Coffee Cherry Biochar

Ash Treatment Improves Sorption for Both Materials

Ash Treatment improved Coffee Cherry Biochar by more than 3x Ash Treatment improved Coffee Parchment Biochar sorptive capacity by ~2x.

Discussion

Applications

- Given minimal uses for coffee byproducts, applications in water treatment are feasible
- Removal of contaminants such as pesticides and pharmaceuticals is difficult and often unaddressed in many water treatment facilities
- Developing countries could benefit from biochar treatment of drinking water sources (i.e. lake and river water)

Future Work

Examining how biochars perform in other water sources (lake water, stormwater, wastewater, rivers, etc.)

Initial test in lake water showed reduced removal rates compared to purified (DI) water

Conclusion

- Biochar from coffee byproducts shows promise for a material that is largely unused on a global scale
- Coffee is grown worldwide, utilizing coffee byproducts to effectively treat contaminated water is highly sustainable
- Developing communities would benefit greatly, given that activated carbon is less accessible

Acknowledgements

- Matt Bentley
- Scott Summers
- **DLA Program**
- Mortenson Center in Engineering for Developing
- College of Engineering and Applied Science
- Yunnan Coffee Traders
- Teagan Glass and Tashi Hackett