Dynamics of Gyroscopes

Matthew Eby
February 10

Questions: Matthew.Eby@Colorado.edu
Gyroscopes

- **Basic Definition:** A gyroscope measures angular orientation either directly, or through integrating a measured rotational rate or acceleration.

- **Uses:**
 - Navigation
 - Control Systems (i.e. anti-skid in cars)
 - Combine with accelerometer to form IMU

- **Desirable Qualities:**
 - High Sensitivity—Minimum detectable rate.
 - Stability—Over time, or environmental change.
 - Broad Range—Accuracy at both low and high rates.
Types of Gyroscopes

- **Classic Spinning Disk**
 - Based on gyroscopic effect of a of rotating object with angular momentum.

 \[
 \tau = \frac{dh}{dt}
 \]

- **Vibratory**
 - Based on Coriolis force on an object in a rotating reference frame.

 \[
 F_{\text{coriolis}} = 2m(\vec{v} \times \vec{U})
 \]

- **Laser (Ring, IFOG)**
 - Based on “timing” the travel of light through a course whose length varies with the rotation of the course.

 \[
 \text{Speed of Light} = c = \text{Constant}
 \]
Interferometric Fiber Optic Gyroscope (IFOG)

- Coherent (laser) light travels in opposite directions around a fiber optic coil.
- Rotation of the coil creates a path difference between the signals.
- Measuring the phase shift between the signals provides a rotation rate measurement.
Path Difference

- Distance Traveled by Clockwise Signal:
 \[ct_- = 2\pi R - R\dot{\theta} t_- \Rightarrow ct_- = \frac{2\pi c R}{c + R\theta}. \]

- Distance Traveled by Counterclockwise Signal:
 \[ct_+ = 2\pi R + R\dot{\theta} t_+ \Rightarrow ct_+ = \frac{2\pi c R}{c - R\theta}. \]
Path Difference

- Take difference of distance traveled by each signal.

\[dL = c(t_+ - t_-) = 2\pi cR \left[\frac{1}{(c - R\dot{\theta})} - \frac{1}{(c + R\dot{\theta})} \right] \]

\[dL = 2\pi cR \left[\frac{(c + R\dot{\theta})}{(c^2 - R^2\dot{\theta}^2)} - \frac{(c - R\dot{\theta})}{(c^2 - R^2\dot{\theta}^2)} \right] = 2\pi cR \left[\frac{2R\dot{\theta}}{(c^2 - R^2\dot{\theta}^2)} \right] \]

\[dL = \frac{4\pi cR^2\ddot{\theta}}{c^2 - R^2\dot{\theta}^2} \]

- Path Difference:

\[dL = \frac{4\pi R^2\ddot{\theta}}{c} \]

\[c >> R^2\dot{\theta}^2 \]
Light Interference

- The coherent light exiting after traveling different distances have a phase difference proportional to rotation rate.

\[dL = \frac{4\pi R^2 \dot{\theta}}{c} \]

\[dL = \lambda \frac{d\phi}{2\pi} \]

\[\Rightarrow \dot{\theta} = \frac{\lambda c}{8\pi^2 R^2} d\phi \]
IFOG Summary

• Advantages
 – No mechanical parts
 – Resistant to shock and vibration
 – Long-lived
 – Accurate
 – **Commercially Available**: First Used in Boeing 777

• Disadvantages
 – Speed of light is “fast” and thus requires many loops of fiber optic fiber to create a detectable phase angle.
Coriolis Force Gyroscope

\[F_{\text{coriolis}} = 2m(\vec{\nu} \times \vec{U}) \]

a.) Excite Primary Mode

b.) Coriolis Force Develops

c.) Excites Secondary Mode
Coriolis Force Gyroscope

• To characterize the dynamics of a vibratory gyroscope we need to:
 – Create a simple model to account for the principle features.
 – Find generalized coordinates.
 – Calculate system energy as a function of the generalized coordinates.
 – Develop the equations of motion by the Lagrangian method.
 – Evaluate the E.O.M. to determine the system response to an input rotation rate.

• Simple Model: One Axis Gyroscope
 – Vibrating mass with two orthogonal vibration modes (one for forcing and the other for sensing).
 – Rotation axis perpendicular to vibration plane.
Generalized Coordinates Review

- A set of coordinates \((q_1, q_2, \ldots)\) which:
 - Fully describes the position and orientation of the system at any time.
 - Each coordinate is independent from every other coordinate. In other words each coordinate can be set independently without violating the physical system.

\[q_1 \neq f(q_2, q_3, \ldots) \]

- Example: Find Coordinates for a Compound Pendulum (2 D.O.F.)

- Correct?
Generalized Coordinates Review

• Fulfills condition 1. but not 2. (Note dependence of coordinates):

\[y_1 = \sqrt{L_1^2 - x_1^2} \]

• Instead Consider Angles (generalized coordinates are often non-unique)
Generalized Coordinates For One Axis
Coriolis Gyroscope

- Generalized coordinates θ, x, y with x,y relative to frame.
- Rotation about z-axis, with steady oscillation along x-axis.
- Response develops along y-axis.
Rotating Reference Frame

- Inertial frame XYZ and rotating frame xyz.
- Position/velocity in rotating reference frame:
 \[
 \vec{r}_{xyz} = r_x \hat{i} + r_y \hat{j} + r_z \hat{k}
 \]
 \[
 \vec{v}_{xyz} = \dot{r}_x \hat{i} + \dot{r}_y \hat{j} + \dot{r}_z \hat{k}
 \]
- The velocity in the fixed frame can be found by treating the unit vectors as variable:
 \[
 \vec{r}_{XYZ} = \dot{r}_x \hat{i} + \dot{r}_y \hat{j} + \dot{r}_z \hat{k} + r_x \ddot{i} + r_y \ddot{j} + r_z \ddot{k}
 \]
Rotating Reference Frame

\[\dot{\vec{r}}_{XYZ} = \dot{\vec{r}}_{xyz} + r_x \hat{i} + r_y \hat{j} + r_z \hat{k} \]

- Consider \(r = \text{constant} \)

\[\dot{\vec{r}}_{XYZ} = r_x \hat{i} + r_y \hat{j} + r_z \hat{k} \]

- Velocity of Pure Angular Motion:

\[\dot{\vec{r}}_{XYZ} = \Omega \times \vec{r}_{xyz} \]

\[\Rightarrow \dot{\vec{r}}_{XYZ} = \dot{\vec{r}}_{xyz} + \Omega \times \vec{r}_{xyz} \]

\[\vec{v} = \vec{v}_{\text{rotating}} + \Omega \times \vec{r}_{\text{rotating}} \]
System Energy

K.E. and P.E. as a Function of Generalized Coordinates:

\[r_{\text{rotating}} = x \hat{i} + y \hat{j} \quad v_{\text{rotating}} = \dot{x} \hat{i} + \dot{y} \hat{j} \]

\[v = v_{\text{rotating}} + \Omega \times r_{\text{rotating}} \]

\[v = (\dot{x} \hat{i} + \dot{y} \hat{j}) + \dot{\theta} \hat{k} \times (x \hat{i} + y \hat{j}) \]

\[v = (\dot{x} - \theta \dot{y}) \hat{i} + (\dot{y} + \theta \dot{x}) \hat{j} \]

\[T = \frac{1}{2} m \left[(\dot{x} - \theta \dot{y})^2 + (\dot{y} + \theta \dot{x})^2 \right] \]

\[V = \frac{1}{2} k_x x^2 + \frac{1}{2} k_y y^2 \]
Lagrangian

- Three generalized coordinates x, y, θ.
 - The angular displacement is imposed on the device, while the x direction is forced with sinusoidal oscillation amplitude of x_0.
 - We are interested in the response occurring in the y coordinate, so let's examine the equation of motion for $q_i=y$.

$$ \mathbf{L} = T - V $$

$$ L = \frac{1}{2} m \left[(\dot{x} - \dot{\theta} y)^2 + (\dot{y} + \dot{\theta} x)^2 \right] - \left[\frac{1}{2} k_x x^2 + \frac{1}{2} k_y y^2 \right] $$

$$ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i $$

$$ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) - \frac{\partial L}{\partial y} = Q_y $$
Formulate Equation of Motion

\[L = \frac{1}{2} m \left[(\dot{x} - \theta \dot{y})^2 + (\dot{y} + \theta \dot{x})^2 \right] - \left[\frac{1}{2} k_x x^2 + \frac{1}{2} k_y y^2 \right] \]

- \(y \) coordinate:

\[\frac{\partial L}{\partial \dot{y}} = m (\dot{y} + \theta \dot{x}) \]

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) = m (\ddot{y} + \ddot{\theta} x + \dot{\theta} \dot{x}) \]

\[-\frac{\partial L}{\partial y} = -m (\dot{x} - \theta \dot{y})(-\theta) + k_y y \]

\[m (\ddot{y} + \ddot{\theta} x + \dot{\theta} \dot{x}) + m \dot{\theta}(\dot{x} - \theta \dot{y}) + k_y y = Q_y \]

\[m \ddot{y} + 2 m \dot{\theta} \dot{x} - m \dot{\theta}^2 y + m \ddot{\theta} x + k_y y = Q_y \]
Formulate Equation of Motion

- Add non-conservative damping forces.

\[\delta W_{\text{non-consv.}} = F_{\text{damper}} \delta y = -c_y \dot{y} \delta y \]

\[Q_y = -c_y \dot{y} \]

\[m \ddot{y} + 2m \dot{\theta} \dot{x} - m \dot{\theta}^2 y + m \ddot{\theta} \cdot x + k_y y = -c_y \dot{y} \]

\[m \ddot{y} + c_y \dot{y} + 2m \dot{\theta} \dot{x} - m \dot{\theta}^2 y + m \ddot{\theta} \cdot x + k_y y = 0 \]

- Assume for our case the Coriolis force dominates the other introduced inertial forces. (rotation rate small and steady)

Coriolis Force

Additional Inertial Forces Due to Rotating Ref. Frame
Find Response Amplitude

• Generally interested in the response amplitude not the full solution.
• Consider the Coriolis force as an external forcing function:

\[m\ddot{y} + c_y \dot{y} + 2m\dot{\theta} \dot{x} + k_y y = 0 \]

\[\Rightarrow m\ddot{y} + c_y \dot{y} + k_y y = -2m\dot{\theta} \dot{x} \]

• Invoke complex analysis of forced (particular) response.
• Control scheme provides a sinusoidal oscillation in x with amplitude of \(x_0 \) and frequency \(\omega_d \) (Drive Frequency).

\[x = x_0 \sin(\omega_d t) \Rightarrow \dot{x} = x_0 \omega_d \cos(\omega_d t) \]

\[e^{\pm i\theta} = \cos(\theta) \pm i \sin(\theta) \]

\[\dot{x} = \text{Re}[x_o \omega_d e^{i\omega_d t}] \]
Find Response Amplitude

- Complex representation of forcing function:
 \[F_{\text{coriolis}} = \text{Re}\left[-2m\dot{\theta} x_o \omega_d e^{i\omega_d t}\right] \]

- Particular solution has the form:
 \[y_p = \text{Re}\left[Y e^{i\omega_d t}\right] \]

- Insert these equations back into the equation of motion:
 \[\dot{y}_p = \text{Re}\left[iY\omega_d e^{i\omega_d t}\right] \quad \ddot{y}_p = \text{Re}\left[-Y\omega_d^2 e^{i\omega_d t}\right] \]

- Leave out Re symbol for now (just remember we want the real part)
 \[
 m\left(-Y\omega_d^2 e^{i\omega_d t}\right) + c_y \left(iY\omega_d e^{i\omega_d t}\right) + k_y \left(Y e^{i\omega_d t}\right) = -2m\dot{\theta} x_o \omega_d e^{i\omega_d t} \\
 Y\left(-m\omega_d^2 + ic_y \omega_d + k_y\right) = -2m\dot{\theta} x_o \omega_d
 \]
Find Response Amplitude

- Continued:

\[Y \left(-m \omega_d^2 + ic_y \omega_d + k_y \right) = -2 \dot{x}_o \omega_d \]

\[c_y = 2m \xi \omega_{n-y} \]

\[Y \left(-\omega_d^2 + i2\xi \omega_{n-y} \omega_d + \omega_{n-y}^2 \right) = -2 \dot{x}_o \omega_d \]

\[Y = \frac{-2 \dot{x}_o \omega_d}{\left[\left(-\omega_d^2 + \omega_{n-y}^2 \right) + i2\xi \omega_{n-y} \omega_d \right]} \]

- Multiply top and bottom by:

\[\left[\left(-\omega_d^2 + \omega_{n-y}^2 \right) - i2\xi \omega_{n-y} \omega_d \right] \]

\[Y = \frac{-2 \dot{x}_o \omega_d \left[\left(-\omega_d^2 + \omega_{n-y}^2 \right) - i2\xi \omega_{n-y} \omega_d \right]}{\left[\left(-\omega_d^2 + \omega_{n-y}^2 \right)^2 + \left(2\xi \omega_{n-y} \omega_d \right)^2 \right]} \]
Find Response Amplitude

- We now have complex amplitude \(Y \):
 \[
 Y = a + ib
 \]
 \[
 y_p = \text{Re}[Ye^{i\omega_d t}]
 \]
- Complex Identity:
 \[
 a + ib = Ae^{i\phi}, \quad A = \sqrt{a^2 + b^2}
 \]
 \[
 y_p = A \text{Re}[e^{i\omega_d t + \phi}]
 \]
- Thus, the real response has an amplitude of \(A \).

\[
A^2 = \left(-2\dot{x}_o \omega_d\right)^2 \left[\frac{\left(-\omega_d^2 + \omega_{n-y}^2\right)^2}{\left(-\omega_d^2 + \omega_{n-y}^2\right)^2 + \left(2\xi \omega_{n-y} \omega_d\right)^2} \right] + \left[\frac{\left(2\xi \omega_{n-y} \omega_d\right)^2}{\left(-\omega_d^2 + \omega_{n-y}^2\right)^2 + \left(2\xi \omega_{n-y} \omega_d\right)^2} \right]
\]

\[
A^2 = \left(-2\dot{x}_o \omega_d\right)^2 \left[\frac{\left(-\omega_d^2 + \omega_{n-y}^2\right)^2 + \left(2\xi \omega_{n-y} \omega_d\right)^2}{\left(-\omega_d^2 + \omega_{n-y}^2\right)^2 + \left(2\xi \omega_{n-y} \omega_d\right)^2} \right]
\]
Gyroscopic Response (Accuracy)

- Simplification yields the response amplitude for small, steady rotation input $\dot{\theta}$.

$$A = \frac{-2\dot{\theta} x_o \omega_d}{\sqrt{\left(\omega_{n-y}^2 - \omega_d^2\right)^2 + \left(2\xi \omega_{n-y} \omega_d\right)^2}}$$

- Equation extremely useful in designing a gyroscope with maximum response amplitude (increased accuracy).
- Foremost notice the amplitude decreases if the drive frequency differs from the natural frequency in the y-direction.
- Since one would select the drive frequency roughly equal to the natural frequency in the x-direction (maximize x_o), an optimal gyroscope has matched modes.
Gyroscopic Response (Accuracy)

• Now consider a matched mode gyroscope:
 \[\omega_d = \omega_{n-x} = \omega_{n-y} \]
 \[A = \frac{-\dot{\theta} x_o}{\xi \omega_n} \]

• Introduce the Quality (Q) Factor

\[Q = \frac{1}{2\zeta} \]

\[Q = \frac{\omega_{center}}{\text{bandwidth}} \]
Gyroscopic Response (Accuracy)

- Amplitude becomes:

\[A = \frac{-2Qx_0 \dot{\theta}}{\omega_n} \]

- Two Key Observations
 - Want to maximize the quality factor (MEMS resonators can have Q-factors > 20,000, which makes MEMS gyroscopes interesting)
 - Want to decrease the fundamental frequency of the device. Usually set at ~20 kHz to avoid interaction with low frequency environmental noise.
 - This last fact leads to some interesting dimensions for MEMS structures.
Group Work (Two Teams)

- MUMPs Gyroscope
- Find \(L, w \) of beams and \(L_{\text{plate}} \) such that the gyroscope has a fundamental frequency of \(~20\, \text{kHz}\).
- Useful Facts
 - \(E=160\, \text{GPa}, \rho=2330\, \text{kg/m}^3 \)
 - Thickness=2\(\mu \text{m} \)
 - Assume cantilever spring
 - \(k_{eq} = \frac{3EI}{L^3} \)
 - \(I = \frac{1}{12} wt^3 \)
 - \(\omega = \sqrt{\frac{2k_{\text{cantilever}}}{m_{\text{plate}}}} \)
 - Neglect spring mass
 - Plate to substrate separation is 1.5\(\mu \text{m} \).
 - Minimum feature size also 2\(\mu \text{m} \).
Rigorous Amplitude Derivation

- Equations of Motion for x, y Coordinates:

\[
\begin{bmatrix}
 m & 0 \\
 0 & m
\end{bmatrix}
\begin{bmatrix}
 \ddot{x} \\
 \ddot{y}
\end{bmatrix}
+ \begin{bmatrix}
 c_x & -2m\dot{\theta} \\
 2m\dot{\theta} & c_y
\end{bmatrix}
\begin{bmatrix}
 \dot{x} \\
 \dot{y}
\end{bmatrix}
+ \begin{bmatrix}
 k_x & 0 \\
 0 & k_y
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
= \begin{bmatrix}
 f_x \\
 0
\end{bmatrix}
\]

- Complex Representation:

\[
x_j = X_j e^{i\omega_d t} \quad f_j = F_j e^{i\omega_d t}
\]

\[
\begin{bmatrix}
 -m\omega_d^2 + ic \omega_d + k_x \\
 2m\dot{\theta} \omega_d
\end{bmatrix}
\begin{bmatrix}
 X \\
 Y
\end{bmatrix}
= \begin{bmatrix}
 F_x \\
 0
\end{bmatrix}
= \begin{bmatrix}
 k_x x_0 \\
 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
 Z_{11} & Z_{12} \\
 Z_{21} & Z_{22}
\end{bmatrix}
\begin{bmatrix}
 X \\
 Y
\end{bmatrix}
= \begin{bmatrix}
 F_{10} \\
 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
 X \\
 Y
\end{bmatrix}
= \begin{bmatrix}
 Z_{11} & Z_{12} \\
 Z_{21} & Z_{22}
\end{bmatrix}^{-1}
\begin{bmatrix}
 F_{10} \\
 0
\end{bmatrix}
\]
Rigorous Amplitude Derivation

\[Y = \frac{-Z_{12}F_{10}}{Z_{11}Z_{22} - Z_{21}Z_{12}} \]

\[Y = \frac{-2m\dot{\omega} d F_x}{m^2 \left[\left(-\omega_d^2 + \omega_{n-x}^2 + i2\xi_x\omega_{n-x}\omega_d \right) \left(-\omega_d^2 + \omega_{n-y}^2 + i2\xi_y\omega_{n-y}\omega_d \right) + \left(2\dot{\theta} \omega_d \right)^2 \right]} \]

\[Y = \frac{-2\dot{\theta} \omega_d \omega_{n-x}^2 x_0}{\left[\left(-\omega_d^2 + \omega_{n-x}^2 + i2\xi_x\omega_{n-x}\omega_d \right) \left(-\omega_d^2 + \omega_{n-y}^2 + i2\xi_y\omega_{n-y}\omega_d \right) + \left(2\dot{\theta} \omega_d \right)^2 \right]} \]

- **Matched Modes Case:**

\[Y = \frac{-\dot{x}_0}{2\omega \left[\left(-\xi_x\xi_y \right) + \left(\frac{\dot{\theta}}{\omega} \right)^2 \right]} \]
How Steady?

- Derivation assumed a small and steady rotation rate.
- To provide a feel for how steady, find the time required to reduce the homogenous solution to 10% its original value.
- Assumptions:
 - \(Q = 10,000 \)
 - \(\omega = 20 \text{ kHz} = 125,000 \text{ rad/sec} \)

\[
Q = \frac{1}{2\zeta}
\]
Coriolis Gyroscope Summary

• Advantages
 – Scales down with increased accuracy
 – MEMS implementation (small and light)
 – MEMS devices can be integrated directly with associated electronics
 – No relative motion (i.e. no bearings, shafts, gears)
 – Low wear

• Disadvantages
 – Lower accuracy due to difficulty inherent in measuring motion of MEMS devices.
 – Devices often “flimsy” with length to thickness (slenderness) ratios often approaching 1000.
 – Susceptible to shock.
 – As with most MEMS devices the reliability is low due to stiction.
 – Still in research phase
Research Project

• Recall, for a Coriolis gyro., the accuracy is proportional to Q-factor.

\[A = \frac{-2Qx_0 \dot{\theta}}{\omega_n} \]

• The total quality factor combines the losses attributed to friction, thermoelastic, air, and anchor dissipation mechanisms.

\[\frac{1}{Q} = \sum \frac{1}{Q_i} = \frac{1}{Q_{TED}} + \frac{1}{Q_{Volumetric}} + \frac{1}{Q_{Surface}} + \frac{1}{Q_{Air}} + \frac{1}{Q_{Anchor}} \]

• Despite the often limiting nature of anchor loss, this source has received insufficient study.
Analytical Anchor Loss Relationship

Analytical model derived by assuming an equivalent single d.o.f. resonator:

\[Q_{\text{anchor}} = 2\pi \frac{W_0}{\Delta W} \]

\[W_0 = \frac{1}{2} k_r \bar{x}^2 \]

\[P_a(\omega) = \int_0^T W dt = \frac{\Delta W}{T} \Rightarrow \Delta W = TP_a(\omega) \]

\[H_s(\omega) = \frac{(k_s - m_s \omega^2) - ic_s \omega}{(k_s - m_s \omega^2)^2 + (c_s \omega)^2} \]

\[P_a(\omega) = \frac{1}{2} \text{Re}\left[i\omega F_0^* H_s(\omega) F_0\right] \]

\[P_a(\omega) = \frac{1}{2} \omega k_r^2 \bar{x}^2 \left(\frac{c_s \omega}{(k_s - m_s \omega^2)^2 + (c_s \omega)^2} \right) \]

\[Q_{\text{anchor}} = \frac{1}{\omega k_r \left(\frac{c_s}{(k_s - m_s \omega^2)^2 + (c_s \omega)^2} \right)} \]

\[F(t) = F_0 \sin(\omega t) \]

\[Q_{\text{anchor}} = \frac{1}{k_r \text{Im}[-H_s(\omega)]]} \]
Parametric Examples-Cantilever

- A Cantilever example highlights the general trends apparent in many resonator structures.

 \[k_{\text{cantilever}} = \frac{E \cdot w \cdot th^3}{4L^3} \]

 \[Q_{\text{anchor-cantilever}} = \frac{1}{\text{Im}[H_s(\omega)]} \cdot \frac{4}{Ew} \cdot \frac{L^3}{th^3} \]

- Relationship reveals an anchor loss dependency upon resonator slenderness, width, Young’s modulus, and frequency dependent substrate properties.
- Alternative substrate materials offer significant rigidity improvement.

![Graph showing Young's Modulus and Strength](Image)
Combing anchor loss model with modal amplitude equation yields additional insight unique to gyroscopes.

\[A = \frac{-2Qx_0 \dot{\theta}}{\omega_n} \]

\[A = \beta (\dot{\theta} x_o) \left(\frac{1}{E} \right) \left(\frac{1}{w \left(\frac{L}{th} \right)^3} \right) \left(\frac{1}{\omega_n} \right) \left(\frac{1}{\text{Im}[H_s(\omega)]} \right) \]

Five relevent terms to work with in maximizing the sense amplitude; an input term, a ligament material term, a ligament geometry term, a frequency term, and a substrate term.
MUMP's Test Chip

- METAL
- POLY2
- HOLE2
- ANCHOR2
- POLY1_POLY2_VIA
- POLY1
- HOLE1
- ANCHOR1
- POLY0

1 mm
MUMPs Test Chip

- Series of cantilever structures to test width, frequency, and slenderness dependence of anchor loss.
- Results applicable not only to gyroscopes but to other applications involving resonators (filters).
Conclusions

• Examining the dynamics of two new classes of gyroscopes provides the design intuition to:
 – Identify the design parameters which control the sensitivity.
 – Maximize the sensitivity to input rotation through parametric design.
 – Identify deficiencies in current understanding and develop new research projects.
 – Point out the relative strengths and weakness of each, and what applications are best suited for each.