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Appendix A1  
Overview of Research Methods for the IBL Mathematics Centers Study 

A1.1 Introduction  

We conducted a large, mixed-methods study of inquiry-based learning (IBL) in college 
mathematics, comprised of six linked sub-studies of inquiry-based and comparative courses that 
were developed and taught at four university IBL Mathematics Centers.  The study was designed 
to examine the following questions: 

1) What are the student outcomes—including learning, attitudes, beliefs, career and 
education plans—of IBL mathematics courses?   

2) How do these outcomes vary among student groups, and how do they compare with other 
types of courses? 

3) How do these outcomes come about?  In particular, what is the role of students, 
instructors and teaching assistants, course materials, assignments, assessments, and other 
classroom practices? 

4) What are the costs and benefits for instructors and departments who teach with IBL 
methods? 

The full report described selected results from our analyses.  Chapters 2-8 each focus on the 
results from a particular sub-study.  To communicate these results efficiently, we do not provide 
technical details of our research methods in the chapters.  Rather, we summarize our approach to 
each in Chapter 1 of the report, highlighting the strengths and limitations of each method.  We 
strongly encourage readers to begin with this chapter to understand the study as a whole, as well 
as the purpose and scope of this report.  We also briefly recap the sub-study conceptual design at 
the start of each findings chapter. 

A1.2 Organization of the Appendices 

Our methods of data-gathering and analysis, and the samples for each sub-study, are described in 
an appendix corresponding to each chapter, as listed in Table A1.1.  Some of the tools that we 
developed may be useful to other evaluators or researchers, such as observation and interview 
protocols and survey instruments.  These are included as exhibits, labeled E2.1, E2.2, and so on, 
and they follow the appendix to which they are relevant.  These are also listed in Table A1.1.  All 
the appendices are available online at: 
http://www.colorado.edu/eer/research/steminquiry.html#Reports  
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Table A1.1:  List of Appendices and Exhibits of Research Methods 

Chapter Appendix Topic 
1 A1 Introduction & background of the study; overview of methods 
2 A2 Classroom observations 

E2.1 - summary sheet 
E2.2 - observer survey 
E2.3 - classroom log 

3 A3 Student surveys 
E3.1 - attitudinal pre-survey 
E3.2 - learning gains post-survey (SALG-M) 

4 A4 Linkages between observations and surveys 
5 A5 Mathematics tests 

E5.1 - proof test questions 
E5.2 - instructor ratings, questions 

6 A6 Student academic records 
7  
8 

A7 Student interviews 
Instructor interviews 

E7.1 - instructor interview protocol 
E7.2 - student interview protocol 

 

A1.3 Broad Design of the Study 
As discussed in Chapter 1, the overall project addresses the broad question of whether, how, and 
for whom IBL teaching and learning approaches are effective in college mathematics. We sought 
to examine a range of student learning and affective outcomes as well as longer-term impacts on 
students’ education and career paths.  We studied the classroom context and the teaching and 
learning processes that took place in and out of class, and the contextual factors that influenced 
instructors’ choices and the success and sustainability of the IBL programs on each campus. 

With these goals, the study was designed as a checkerboard of sub-studies (Figure A1.1) that 
combine to build a detailed picture of where and how IBL methods do and do not “work” for 
students and their instructors.  Classroom observations provide a foundation enabling us to 
describe the teaching methods in use and link student outcomes to particular teaching 
approaches.  Surveys, tests, academic records, and interviews allow us to probe both student 
outcomes and learning processes using multiple methods.  End-of-course measures focus on 
student outcomes, while pre-course measures let us assess whether students are selectively 
choosing (or being advised) into and out of IBL courses.  Interviews with faculty and TAs 
provide their observations of student outcomes, crucial perspectives on teaching goals and 
methods, and document the costs, benefits and career impact of teaching an IBL course. 
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Figure A1.1:  Design Matrix for Investigation of Student Outcomes:  
Approaches for Examining Outcomes for Key Student Audiences 
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*  Comparative data was gathered from non-IBL sections of some courses. 

 
Table A1.2 shows the total amount of data gathered in the study.  The numbers of participating 
IBL Mathematics Centers, course sections (IBL and non-IBL), and individuals (students, faculty 
or TAs; IBL and non-IBL) are itemized.  By any measure, this is a large study. 

 
Table A1.2:  Data Gathered for IBL Mathematics Centers Evaluation Study, 2008-2010 

INSTRUMENT IBL 
Centers 

IBL 
Sections 

Non-IBL 
Sections 

IBL 
Individuals 

Non-IBL 
Individuals 

Individuals 
Total 

Attitudinal surveys 

Pre-survey 4 47 17 847 399 1246 
Learning gains 3 6 1 112 88 200 
Post-survey 4 55 18 840 325 1165 

Mathematical Knowledge and Thinking 

LMT pre-test 2 9 - 187 - 187 
LMT post-test 2 9 - 173 - 173 
Proof test 2 8 8 87 35 122 

Academic Records 

Transcripts 3 28 110 552 2866 3418 

Interviews 

Students 4 15 - 68 - 68 
Faculty 4 N/A - 23 - 23 
TAs 4 N/A - 20 - 20 

Observation IBL 
Centers 

IBL 
Sections 

Non-IBL 
Sections 

IBL  
Class Sessions 

Non-IBL  
Class Sessions 

Sessions  
Total 

Courses 3 36 15 213 89 302 
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Appendix A2  
Study Methods:  Classroom Observation 

A2.1 Introduction 

The classroom observation study was designed to document classroom practices and interactions 
so that we could characterize IBL and non-IBL teaching practices, including their variation, and 
link these practices to student outcomes.  We sought to address the following questions 

• How are classrooms designated “IBL” alike or different from comparative classrooms? 

• What practices and features are commonly applied in IBL courses, and what are the 
variations among them? 

• What classroom features are seen in course sections where there are good student 
outcomes?  How do these compare with classroom features of sections where outcomes 
are less positive? 

We sought to address these questions with high-quality, internally consistent data yet without 
extensive investment of both observation and analysis time.  Thus we designed a protocol that 
could be largely completed during class in real time, by trained but non-expert observers.  The 
protocol documented classroom activities with simple, quantifiable indicators of student and 
faculty behaviors, rather than requiring subtle judgments of pedagogical effectiveness as used in 
instruments such as the Reformed Teaching Observation Protocol (RTOP) (Pilburn et al., 2000). 
To augment the quantitative data, we asked observers to provide notes and comments to help us 
interpret the data and to capture their own evidence-based judgments of less tangible variables 
such as classroom atmosphere.  Moreover, we did not videotape or transcribe course sessions, 
because of the cost involved of collecting and, especially, analyzing such data.  These choices 
sacrifice some detail but enabled us to gather a large volume of data across many sections.   

A2.2 Study sample 

Three campuses participated in the observation study.  Altogether, 52 course sections were 
observed for multiple class sessions by trained observers, 36 sections in Year 1 and 16 in Year 2.  
Seven of the Year 2 sets were omitted from the analysis because there was a high incidence of 
missing data or too few hours of class time were observed.  Another set of observations was 
procedurally valid but was omitted from the data analysis as representing an “experimental” 
hybrid course that was not easily classified as IBL or non-IBL.   

For two large lecture courses that also included a recitation session, we sought to ensure that the 
observation data to represent a student’s overall experience, not just the lecture.  The lecture 
session was observed for multiple periods, and separately, a sample of recitation periods was 
observed (e.g. 6 recitations taught by different TAs).  Observation data from lecture and 
recitation were combined in a 3:1 weighted average to reflect the three hours of lecture and one 
hour of recitation that any student would experience in a week.   
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With these adjustments, the total observation sample included 42 course sections:  31 IBL and 11 
non-IBL sections of 18 different courses on 3 campuses.  All the non-IBL sections observed 
were chosen from courses that also offered IBL sections, but fewer non-IBL sections were 
observed because (1) a comparable non-IBL section was not available for every IBL course we 
wished to observe; (2) some non-IBL instructors declined to participate; and (3) the non-IBL 
courses emphasized lecture.  Since these were more homogeneous in style, a smaller sample 
seemed to be representative.  This last assumption is borne out by the data:  non-IBL courses 
exhibit much narrower distributions around the mean for nearly every practice-oriented variable. 

A2.3 Observation protocol 

The observation protocol was based on a study by Gutwill-Wise (2001; see also ModularCHEM 
Consortium, 1998, 1999) comparing active-learning and more traditional versions of a reformed 
undergraduate chemistry courses at two institutions.  The content of the protocol was adapted 
using information from a preliminary study of five IBL Mathematics Centers, which included 
sites visits and observation of two to six IBL class sessions at each campus.  Additional 
information was drawn from focus groups with students and graduate teaching assistants, and 
interviews with campus leaders and faculty.  The protocol included three main components: 

A. A summary sheet, where observers recorded basic data about the time and date of the 
class, the instructor, and the number, gender and apparent ethnicity of students 
attending.  Observers also provided, in writing, their overall impressions of features 
such as classroom interactions, mood, morale, and any special context features (e.g., 
class held the day before an exam).  This sheet is included as Exhibit E2.1. 

B. An observer survey, where observers estimated the proportion of students who 
participated in class and rated the frequency of 14 student and instructor behaviors on a 
5-point Likert-like scale (1=never to 5=very often).  Behaviors included offering ideas, 
asking questions, working with others, listening to others, setting the pace or direction, 
giving feedback, and were chosen as indicators of the classroom atmosphere and 
interactions of class members.  The observer survey is included as Exhibit E2.2. 

C. A classroom log, where observers tracked class activities, leadership roles, and 
question-asking behaviors, as detailed below. The classroom log is included as Exhibit 
E2.3. 

The classroom log included three different classification schemes, each based on a set of simple 
letter codes to record categories of behavior:  class activities, leadership roles, and question-
asking.  The scheme for class activities (Scheme 1) was adapted from Gutwill-Wise (2001) to 
incorporate all activity types observed or reported in the preliminary site visits.  Coding 
classroom activities enables us to determine differences in practice between IBL and non-IBL 
courses, and to gather a rough measure of the level of inquiry actually implemented in an IBL 
course. Scheme 2 was added to document the active roles of instructors, TAs, and students.  
Scheme 3 addressed the nature of questions asked by instructors and students. 
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Starting at the beginning of class, observers recorded the clock time and categorized the main 
activity and the lead role, using Schemes 1 and 2 respectively. 

Scheme 1:  Main activity 
B Addressing class business, procedural activity (e.g. returning papers) 
L Professor lecturing—presenting previously prepared material.  This may include 

response to student questions during a lecture, but the L code is retained if the question 
does not turn into a multi-student discussion.  

E Extended explaining, in response to question or difficulty (instructor or student).  This 
is an extended discourse or mini-lecture, different from L because it is not pre-planned, 
but responsive to an issue that arises on the spot.   

G Working on a problem or an example in groups, in seats or at the board (informal—
class working in groups on problems, instructors circulate among groups) 

P Students presenting a solution or proof (individuals or groups).   
D Class discussing or critiquing a solution that has been presented.  Usually whole-class. 
C Students working at computers—on a problem, modeling task, visualization, etc. 
O Other (describe) 

Scheme 2:  Lead role (these codes also used to identify anyone asking a question) 

f Faculty or lead instructor 
t Teaching assistant—any graduate or undergraduate student assisting the lead instructor 
s Single student 
ns New student (first time to participate today)  
rs Repeat student (has already participated today) 
g Group of students 
c Whole class/multiple roles  

Observers were asked to make a real-time judgment of when the activity or lead role changed, 
and to record the time and the new letter code when either changed.  They could also write 
comments to clarify activities or transitions.  In practice, this required some judgment, since 
many activities changed spontaneously and observers had to decide, for example, at what point a 
dialogue between one student and a professor became a whole-class discussion involving 
multiple students.  Leadership by a “new” or “repeat” student was recorded so that we could 
distinguish participation by a few, very active students, or a broader group. 

In addition to the activity and role codes, observers recorded and coded each question that was 
asked by an instructor or student.  We focused on question-asking because questions are central 
to “inquiry.” Summaries of the literature indicates that questions are related to students’ 
cognitive activity (Gall, 1970; Wilen, 1982; Edwards & Bowman, 1996).  Teachers tend to ask 
mostly low-level questions requiring recall rather than higher-order reflection, but the cognitive 
level of teachers’ questions correlates positively to the cognitive level of students’ reply.  Thus 
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the type of questions asked by instructors should relate to students’ thinking and learning.  
Student question-asking has been studied less than instructor questioning, but Edwards and 
Bowman (1996) suggest that a shift in the incidence of student-asked questions may reflect a 
shift in the view of the teacher from sole classroom authority to one who guides student-teacher 
interaction.  Kawanaka and Stigler (1999) argue that not only the number but the type of student 
questions is related to learning. Thus we documented the frequency and type of student 
questions, as a further indicator of the cognitive demand and inquiry nature of a course.   

Observers used Scheme 2 to indicate the question-asker and Scheme 3 to indicate the question 
type.  Scheme 3 is a simplified version of Bloom’s taxonomy (1956) adapted from Gall (1970) to 
include questions with functions other than cognitive ones.  

Scheme 3:  Question type 
R Recall or factual.  Closed-ended; there is a right answer.  Lowest in cognitive demand. 
E Explanatory/descriptive—seeks to draw out or build toward an explanation of how or 

why something is done.  More cognitively demanding than recall questions.  
C Critiquing—asking for evaluation or judgment of an idea. High in cognitive demand. 
S Stretching/linking—asking for expansion, connection, creativity. These are high on 

cognitive demand.  
M Monitoring/involving.  Includes instructor monitoring (Did you understand this? Are 

we ready to move on?) and student self-monitoring, checking, clarifying (Am I sure I 
understood this?).   Also questions intended to generate metacognition or to involve 
others (Sally, what do you think?).  These are process-oriented more than cognitive. 

B Business/procedural, accomplishing course business (Did everyone get their paper 
back?  Who wants to present next?  When is our homework due?  Will that be on the 
test?) 

X Other, unknown, or unclear in type 

Question types were linked to the activity episode during which each question occurred, based 
on findings by Edwards and Bowman (1996) that student questions are influenced by the 
instructional format in which the question occurred.  Thus, for example, we can analyze the 
number and types of questions that occurred during lecture or during discussion.  Observers 
listened but did not track questions during small group work, because they could not attend to 
more than one group at a time and we did not have a way to choose a group randomly.   In 
practice, observers found categorizing question types (Scheme 3) to be more difficult than 
categorizing the activity or lead role (Schemes 1 and 2).    

A2.4 Data Collection 

Because the research team members could not be present on all three campuses for the length of 
time needed to observe multiple class sessions, we recruited classroom observers on each 
campus.  We provided a job description to the campus leader or internal evaluator, who then 
recruited or circulated the description.  Different pools of people were available on different 
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campuses, but all the observers had degrees in mathematics and interest in teaching, including 
graduate students in mathematics and mathematics education and a doctorally trained 
mathematics education researcher. 

We trained the initial group of observers in a 2-3 hour session conducted in person at their own 
campus.  Observers read advance materials about the study design and observation protocols, 
and in the training session we reviewed the materials and practiced applying the protocol to 
video-recordings of two different IBL classrooms.  Every observer signed a confidentiality 
agreement to keep the data and their own opinions confidential. On two campuses, we retained 
our observers from Year 1 to Year 2.  On the third campus, the campus project evaluator, who 
had previously participated in the training, trained a new graduate student, and we held a 
conference call to discuss the protocol and answer his questions.  At the beginning of Year 2, we 
also sent new copies of the protocol (with a few minor revisions called out) and a reminder of 
responsibilities to the returning observers. 

To ensure a representative sampling of actual classroom processes, each class was visited 
multiple times  at least two different points in the academic term.  The aim was to capture 8-12 
hours of class time for each course section.  In practice, observers’ adherence to this schedule 
varied, but we were nonetheless able to document several class sessions for every section 
observed.   On average, 6.9 hours of class time were observed for every section included in the 
analysis, for a total of 298 hours of observation.  During this time, over 2200 distinct episodes of 
instructional activity and over 10,300 questions were logged.   

A2.5 Data analysis 

Raw data were entered into a pre-formatted Excel spreadsheet by undergraduate assistants, who 
also assisted with compiling and tallying data for individual class sections, using Excel’s 
conditional counting and summing functions.  Text data (such as comments and notes) were 
transcribed for qualitative analysis. 

For the observer survey, we computed mean ratings for each survey item across all observed 
sessions.  For the classroom log data, most variables were analyzed on a cumulative or average 
basis over all class hours observed, rather than by class session, because class sessions varied in 
length from 45 to 90 minutes. Frequencies of specific behaviors or events are normalized to an 
hourly basis (e.g. episodes of discussion per hour of class time).However, variables that depend 
on student attendance (e.g. % of all students who ask a question) are necessarily based on class 
sessions, because attendance varies by session.  For question-asking variables, we normalize to 
hours of non-group work, because questions were not tracked during small group work (e.g. 
questions asked by students per hour of non-group work).  

Variables constructed for analysis included: 

• Percentage of observed class time spent on each of the activity types in Scheme 1 

• Mean frequency of each activity in Scheme 1, per hour of class observed 
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• Percentage of observed class time under leadership by each participant type in Scheme 
2 

• Mean frequency of each leadership role in Scheme 2, per hour of class observed 

• Mean number of questions asked by each participant type in Scheme 2, per hour of 
non-group work 

• Percentage of all questions asked by each participant type in Scheme 2 

• Mean number of students, and percentage of all students in attendance, who asked a 
question, for a given class session 

• Percentage of all questions of each question type in Scheme 3 

• Mean number of questions per hour of each question type in Scheme 3 

• Mean frequency of Scheme 3 question types for each Scheme 1 activity type (e.g. 
number of recall questions per hour during discussion or during lecture) 

We computed basic descriptive statistics for IBL and non-IBL courses, and t-tests for statistical 
significance, using Microsoft Excel.  Analyses of correlations among observation variables and 
relationships between observation and student survey data were conducted using SPSS.   

A2.6 Data reliability and validity 

We performed several types of checks on the data to ensure that they were as precise and 
accurate as possible.  Observer coding omissions represent one type of uncertainty in the data.  
Observers omitted very few codes for class time by instructional activities and leadership role 
(Schemes 1 & 2).  Counting and coding questions was more difficult, in part because questions 
sometimes came rapidly.  Questions that were uncategorized by asker (Scheme 2) accounted for 
1.2% of all questions, and those uncategorized by type (Scheme 3) accounted for 4.5% of all 
questions.  Because Scheme 2 is straightforward to apply, we use that omission rate to estimate 
the rate of simple error (forgetting to circle a choice), i.e. 1.2%.  Because Scheme 3 is more 
difficult to apply, the higher omission rate likely reflects real difficulty in categorizing questions.   

Early in the study, some pairs of observers visited the same class session so that they could 
compare notes and discuss issues.  We used these observations as a check on inter-rater 
reliability, though we did not repeat this test after observers were experienced and confident.  
Comparison of independent observations show that observers agreed to a very high extent in 
categorizing the nature of the activity (Scheme 1) and lead role (Scheme 2) but were less well 
aligned in recording question-asking behaviors. The total counts of questions were most variable, 
depending on how observers counted a single utterance with multiple embedded questions (e.g. 
recording “What do you think?  Did everybody follow?” as 1 or 2 questions).  Observers 
categorized questions with reasonable consistency, however:  While their raw numbers of 
questions varied, the percentages of questions categorized both by asker (Scheme 2) and type 
(Scheme 3) were the same within 5 to 20%.   
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On the observer survey, observers did not differ by more than one point on any single item in 
their rating of the frequency of various student and instructor behaviors.  Typically, they agreed 
exactly on a majority of the items, and the sum of their scores on all 14 ratings differed by less 
than 5% of the total possible rating points. 

Given the high volume of data, data entry errors are another potential source of uncertainty.  
Because two codes were recorded for classroom time (Schemes 1 and 2) and two codes for 
question (Schemes 2 and 3), we could catch most data-entry errors by comparing the number of 
minutes or questions logged under each scheme, which should be identical.  Where the totals did 
not match, we checked the spreadsheet data against the raw data and were able to identify and 
correct nearly all such errors.  We estimate the proportion of undetected data entry errors as 
rather less than 0.5%. 
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Exhibit E2.1:  COVER SHEET and SUMMARY 
Classroom Observation Protocol for Mathematics 

 

Date:       Class start time:   Observer: 
   Class end time:   

Course name/number:      Instructor:   
 

Description of student population     counted         or    estimated (circle one) 

# of students White women White men Women of color Men of color TOTAL 

Present at start       

Entering later      

 

Notes – class context, interactions, mood, morale.  What was interesting about this class?  Please 
record what you observed as well as how you interpret it.   

 
 

 
 

 
 

 
 

 
 

 



Exhibit E2.2:  Classroom Observation Post-Survey 

 

Fill out this survey right after observing a class.  It aims to capture some general features to 
complement the detailed log.  Use your own assessment based on what you saw and experienced, 
using the scale (1 = Never to 5 = Very often) to indicate the extent to which the activity or 
feature occurred in the session you saw. Please add any explanatory comments. 

A.  What percentage of students (approximately) participated in class? (circle one) 
 0-25% 25-50% 50-75% 75-100% 

 Was participation generally representative by gender and ethnicity?   Yes  No  
 Please comment. 

 
B. To what extent did (single or groups of) students …  Never                               Very  

     often 
 1. Offer their own ideas during class? 1 2 3 4 5 

 2. Ask instructor/TAs questions? 1 2 3 4 5 

 3. Review or challenge other students’ work? 1 2 3 4 5 

 4. Work together with other students? 1 2 3 4 5 

 5. Set the pace or direction of class time? 1 2 3 4 5 

 6. Get help from other students? 1 2 3 4 5 

 7. Receive personal feedback on their work? 1 2 3 4 5 

C. To what extent did the instructor and TAs …  Never                               Very  
     often 

 1. Listen to students’ ideas/explanations? 1 2 3 4 5 

 2. Express their own ideas or solutions to problems? 1 2 3 4 5 

 3. Set the pace or direction of class time? 1 2 3 4 5 

 4. Give concrete feedback on students’ work? 1 2 3 4 5 

 5. Offer help to students? 1 2 3 4 5 

 6. Establish an overall positive atmosphere? 1 2 3 4 5  

 7.  Summarize or place class work in a broader context? 1 2 3 4 5 



Exhibit E2.3:  Classroom Observation Log – Classroom Activities & Questioning Behaviors 
Date:                   Course:                   Observer:                                  Page  _____   of _______ 

I.  Classroom Activities.  Mark start 
time & general activity at each change. 

II.  Question-Asking Behaviors.  Mark asker & 
categorize. 

Time  Main activity  

B L E G P D C O 

Lead role 

f  t  s  g  c 

Asked  by Question type (with notes) 

   f    t    ns    rs R       E       C       S       M      B     X 

 

   f    t    ns    rs R       E       C       S       M      B     X 
 

   f    t    ns    rs R       E       C       S       M      B     X 
 

   f    t    ns    rs R       E       C       S       M      B     X 
 

   f    t    ns    rs R       E       C       S       M      B     X 

 

   f    t    ns    rs R       E       C       S       M      B     X 

 

   f    t    ns    rs R       E       C       S       M      B     X 

 

   f    t    ns    rs R       E       C       S       M      B     X 

 

   f    t    ns    rs R       E       C       S       M      B     X 
 

   f    t    ns    rs R       E       C       S       M      B     X 

 

   f    t    ns    rs R       E       C       S       M      B     X 
 

   f    t    ns    rs R       E       C       S       M      B     X 

 

   f    t    ns    rs R       E       C       S       M      B     X 
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Appendix A3: Study Methods for Student Surveys 

A3.1 Introduction 

We used two survey instruments to measure student outcomes from inquiry-based learning in 
undergraduate mathematics and to compare these outcomes between various student groups, in 
particular, between IBL and non-IBL students. The attitudinal survey was designed to detect the 
quality of and changes in students’ mathematical beliefs, affect, learning goals, and mathematical 
problem-solving strategies. The learning gains survey (SALG-M) measured students’ 
experiences of class activities and their cognitive, affective and social gains from a college 
mathematics class. The surveys addressed the following questions  

• What learning gains do students report from an IBL mathematics class? 

• How do students experience IBL class activities? How do students’ class experiences 
account for their gains? 

• What kind of beliefs, affect, goals and strategies do IBL students report at the start of a 
mathematics course? 

• How do these approaches change during a college mathematics course? How do these 
changes relate to or explain students’ learning gains? 

• For each of these outcomes—learning gains, experiences, attitudinal measures, and 
changes—how do the outcomes for IBL students differ from those of non-IBL students, 
and among IBL student sub-groups?  

The survey instruments provided us with large student data sets from four campuses, gathered 
during the two academic years 2008-2010. They offered us a comprehensive picture of students’ 
approaches to learning college mathematics as well as of their experiences and gains from IBL 
classes. Moreover, the survey data could be used to analyze differences in reported learning 
approaches, classroom experiences and learning outcomes among various student groups. In 
addition to structured questions, students also could write about their experiences and gains in 
the open-ended survey questions. Both the open-ended survey answers and student interview 
data were used to validate, confirm, and fill in the picture of student outcomes obtained from the 
structured survey responses.   

A3.2 Study sample 

The data were gathered on all four campuses in a variety of undergraduate courses. These 
included courses entitled: 

• (Honors) Analysis 1-3, 

• (Honors) Calculus 1-3, 

• Cryptology 

• Discrete mathematics, 
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• Explorations in mathematics, 

• Exploratory calculus, 

• Group theory, 

• Introduction to proofs, 

• Introduction to real analysis, 

• Multivariate calculus 1-2, 

• Number theory, 

• Probability, 

• Real analysis 1. 

They covered the full range of introductory to advanced mathematics courses.  

Mathematics courses specifically developed for elementary and middle school or secondary 
school pre-service teachers represented another type of course in the sample. This kind of survey 
data was obtained from two campuses. Additional smaller data sets came from a geometry 
course designed (but not required) for prospective high school mathematics teachers at one 
campus.  

In all, we collected surveys from 82 college mathematics sections, of which 65 were IBL 
sections and 17 non-IBL sections. Data obtained with our surveys consisted of an attitudinal pre-
survey, a learning gains post-survey, and a combined post-survey including both the attitudinal 
and the learning gains questions. We received pre-surveys from 1245 students, learning gains 
post-surveys from 200 students, and combined post-surveys from1165 students. Combining the 
pre-survey data with the post-survey data produced us information from 800 individually 
matched surveys. These surveys included responses from 412 IBL math track students (i.e., 
students who studied mathematics as their major or minor subject), 156 non-IBL math track 
students, 208 IBL pre-service teachers, and 25 non-IBL pre-service teachers.   

Tables A3.1-A3.4 display features of our sample based on the personal information from the pre-
survey responses.  

A3.2.1 Survey Sample by Gender 

Students reported their gender both in the pre- and post-survey. Even though these were not 
always the same students, the percentages of women and men were rather consistent in the two 
surveys. About 60% of all the students were men. This varied along with student groups. 
Typically, nearly 70% of the math-track students were men, whereas most of the IBL pre-service 
teachers (84% pre; 86% post) were women.   
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Table A3.1: Survey Respondents by Gender and Course Type 

IBL  
math-track 

Non-IBL  
math-track 

IBL  
pre-service 

Non-IBL  
pre-service 

Total 

Gender Count   % Count  % Count   % Count  % Count  % 

 Pre-Survey 

Women 194 33.6 104 30.4 190 83.7 12 48.0 500 42.7 
Men 383 66.4 194 69.6 37 16.3 13 52.0 671 57.3 

TOTAL 577 100% 342 100% 227 100% 25 100% 1171 100% 

Learning Gains Survey 

Women 169 32.3 92 28.5 190 85.6 17 53.1 468 42.5 
Men 354 67.7 231 71.5 32 14.4 15 46.9 632 57.5 

TOTAL 523 100% 323 100% 222 100% 32 100% 1100 100% 

 

A3.2.2 Survey Sample by Academic Major 

We classified students by their reported main major, prioritizing their most mathematically 
oriented major.  Accordingly, all students with a major in mathematics or applied mathematics 
were classified into one category, even if they had a second, non-mathematics major. Science 
majors included students with a major in physics, chemistry or another science, but not in 
mathematics or applied mathematics. Engineering and computer science majors formed another 
category, as did students with a major in economics. All students who reported any a non-science 
major were classified into one group.  

Table A3.2: Survey Respondents by Academic Major 

IBL  
math-track 

Non-IBL 
math-track 

IBL  
pre-service 

Non-IBL  
pre-service 

Total  
Main academic 
major Count   % Count  % Count   % Count  % Count  % 

Math or applied 
math 337 60.3 163 49.4 86 38.7 19 76.0 605 53.3 

Science 82 14.7 53 16.1 18 8.1 1 4.0 154 13.6 
Engineering or 
computer science 63  11.3 57 17.3 4 1.8 2 8.0 126 11.1 

Economics 28  5.0 47 14.2 3 1.4 0 0.0 78 6.9 
Other non-science 49 8.8 10 3.0 111 50.0 3 12.0 173 15.2 

TOTAL 559 100% 330 100% 222 100% 25 100% 1136 100% 

 

More than half the students reported a mathematics or applied mathematics major. Students who 
had a non-science major mostly represented IBL pre-service teachers. Science majors formed the 
next biggest student group. Engineering or computer science majors (11.1%) and economics 
majors were the two other majors represented in the sample. In addition to mathematics or 
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applied mathematics students, students from other STEM fields were also well represented in the 
sample.  

IBL math-track students were pursuing a math major slightly more often (60.3%) than non-IBL 
math-track students (49.4%).  The proportions of science majors was similar, but more of the 
non-IBL math-track students were economics majors or engineers. Fully half of the IBL pre-
service teachers were non-science (e.g., education) majors. These represented mostly elementary 
or middle school pre-service teachers. But the sample also included many secondary pre-service 
teachers with a math major.  

A3.2.3 Ethnicity and Race 

We classified students by race into three different categories. All the students who considered 
themselves white and not a representative of any other race were denoted White. The category 
Asian consists of all the students who considered themselves only Asian, or Asian and some 
other race. If the students did report some other race besides White or Asian, they were classified 
as multiracial students. Ethnicity was a separate item; here students could choose between 
Hispanic or Latino, or Not Hispanic or Latino. The distributions of respondents by ethnicity and 
race are shown in Table A3.3.   

 
Table A3.3: Survey Respondents by Ethnicity and Race 

IBL Math 
Track 

Non-IBL Math 
Track 

IBL  
Pre-Service 

Non-IBL Pre-
Service 

Total  

Count % Count % Count % Count % Count % 

    Ethnicity           

Hispanic or 
Latino 47 8.3 37 11.1 27 12.2 10 41.7 121 10.6 

Not Hispanic 
or Latino 520 91.7 296 88.9 195 87.8 14 58.3 1025 89.4 

 567 100% 333 100% 222 100% 24 100% 1146 100% 

    Race           

Asian  138 25.6 118 37.9 22 11.0 6 31.6 284 26.5 
Multiracial 24 4.4 12 3.9 19 9.5 1 5.3 56 5.2 
White 378 70.0 181 58.2 159 79.5 12 63.2 730 68.2 

TOTAL 540 100% 311 100% 200 100% 19 100% 1070 100% 
 
Less variety appeared in students’ ethnicity and race. Most of the students were white  and not 
Hispanic or Latino. About a quarter of the students were Asian (26.5%), but the sample included 
only a few students from other races (5.2%). The sample represents a distribution that is typical 
for mathematics students in the large research universities that our study targeted.  
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A3.2.4 Academic Status 

The pre-survey provided us with information about students’ academic status at the beginning of 
their mathematics course. Table A3.4 shows the distribution of respondents’ academic 
background by course type. 

 
Table A3.4: Survey Respondents by Academic Status 

 First year Sophomore or 
Junior 

Senior or more Total 

Student Group Count % Count % Count % Count % 

IBL math-track 206 35.8 183 31.8 187 32.5 576 100 

Non-IBL math-track 147 43.2 117 34.4 76 22.4 340 100 

IBL pre-service teachers 3 1.3 99 43.8 124 54.9 226 100 

Non-IBL pre-service teachers 0 0.0 10 40.0 15 60.0 25 100 

TOTAL 356 30.5 409 35.0 402 34.4 1167 100% 

 

Our sample included students across all stages of their college studies. However, nearly one-third 
(30.5%) of all the students were first-year students. This applied especially to IBL (35.8%) and 
even more to non-IBL (43.2%) math-track students. The pre-service teachers in the sample were 
further along in their studies. More than half (54.9%) were seniors or even more advanced 
students but only three of them were first-year students. The same trend applied to the small 
group of non-IBL pre-service teachers.      

A3.3 Survey instruments 

The final survey instruments consisted of an attitudinal pre-survey, a learning gains post-survey, 
and a combined post-survey including both the attitudinal questions and the learning gains 
questions. Both the pre- and post surveys gathered personal information about students’ gender, 
race and ethnicity, class year, academic majors, grade-point average, and plans to pursue 
teaching certification. We asked students to set themselves an identifier at the end of each 
survey. These identifiers were used to match the pre-survey responses with the post-survey 
responses individually. 

In order to check the survey items and the structures, both the attitudinal and the learning gains 
survey were tested with two small samples of college mathematics students. Descriptive statistics 
and principal component analysis were used with these preliminary data sets to check the 
reliability of the questions and theoretical constructs in the surveys. Based on these analysis, we 
left out ill-behaving questions and shortened the attitudinal survey. In order to shorten the 
combined post-survey, we also left out some overlapping questions from the initial learning 
gains survey. The final surveys are presented as Exhibit E3.1 and E3.2. 
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A3.3.1 Attitudinal Survey 

We wanted to study the nature of students’ mathematical beliefs, affect, learning goals, and 
mathematical problem-solving strategies, and changes in these during a college mathematics 
course. We designed a structured survey to measure undergraduate students’ mathematical 
beliefs, affect, learning goals and strategies of problem solving, to be administered at the 
beginning and end of a college mathematics course. The seven sections measured students’ 
interest in and enjoyment of mathematics, preferred goals in studying mathematics, and their 
frequency of use of various problem-solving actions when doing mathematics, and their beliefs 
about learning mathematics, problem solving, and proofs. 

A3.3.1.1 Theoretical basis of the attitudinal survey 

The sub-sections and items were constructed on the basis of theory and previous research on 
mathematical beliefs, affect, learning goals and strategies of learning and problem solving. 
Mathematics education research on beliefs has introduced concepts such as beliefs about the 
nature of mathematics, about learning mathematics, about problem-solving, and beliefs about the 
self as a mathematics learner (Malmivuori, 2001; McLeod, 1992). All these categories of beliefs 
appear to have important implications for how students approach the study of mathematics and 
act in mathematics learning situations at various age and schooling levels. They may either 
significantly hinder or help student learning, performance and problem solving (Leder, 
Pehkonen, & Torner, 2002; Schoenfeld, 1992). Moreover, they influence the development of 
negative or positive attitudes toward mathematics that have longer-term impacts on students’ 
choices of studying mathematics.  

We wanted to check the quality of and changes in these types of important mathematical beliefs. 
In addition, we chose to study certain types of beliefs that were particularly important for 
studying college mathematics and that might display possible differences between students in 
traditional and IBL mathematics courses. For example, mathematical proving represents an 
important area of beliefs in college mathematics. How students see the nature of proofs 
significantly affects their success in college mathematics (Knuth, 2002; Selden & Selden, 2007; 
Sowder & Harel, 2003). Moreover, previous research has identified some differences in these 
beliefs between students who took traditional or student-centered IBL mathematics classes 
students (Ju & Kwon, 2007; Yoo & Smith, 2007).  

Based on these criteria, testing and revisions of the attitudinal survey, we measured students’ 
beliefs about: 

• learning of mathematics (instructor-driven, group work, exchange of ideas) 

• mathematical problem-solving (practice vs. reasoning) 

• mathematical proving (proving as a constructive activity or as confirming truths; Yoo 
& Smith, 2007), 

• beliefs about the self (confidence in their own math ability, in teaching mathematics) 
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Studies on affect have a long tradition in mathematics education research. Attitudes about 
mathematics, confidence, motivation and anxiety are the most-studied factors, found to 
essentially strengthen or diminish students’ willingness and ability to learn mathematics (Frost, 
Hyde, & Fennema, 1994; Goldin, 2000; Malmivuori, 2001, 2007; McLeod, 1992). Interest in and 
enjoyment of mathematics learning represent central features of affect and students’ motivation. 
Interest is suggested to facilitate deep rather than surface-level processing, and the use of more 
efficient learning strategies (Entwistle, 1988; Schiefele, 1991). In turn, students who enjoy 
learning tend to exert more effort and persist longer when they are challenged (Stipek, 2002). 
Both interest and enjoyment indicate students’ strong positive relationship to mathematics and 
willingness to spend time and effort in studying mathematics. This relationship is also 
importantly weakened or strengthened by students’ confidence in their own ability to do and 
learn mathematics. This applies to female students in particular (Fennema, Seegers & Boekaerts, 
1996). But confidence as related to enhanced self-efficacy is found to essentially promote all 
students’ engagement and cognitive performance (Bandura, 1993; Malmivuori, 2001; 
Zimmerman, 2000).    

Recent education psychological literatures suggest that the types of learning goals pursued by 
students also profoundly impact the quality of their learning. They direct students’ level of 
achievement, self-regulation and problem-solving strategies (Pintrich, 2000). Closely related to 
personal interest, we studied students’ learning goals, categorizing them broadly as intrinsic vs. 
external. For example, students who pursue high grades, seek particular degrees, and display 
high competence and self-concept express external or performance goals that are related to 
superficial learning. In contrast, intrinsic or mastery-focused goals such as a focus on one’s own 
effort, pursuit of knowledge, and desire to understand the learned material are seen to result in 
independence, responsibility and deeper learning (Ames & Archer, 1988). In contrast to 
externally motivated students, intrinsically motivated students show higher interest, excitement, 
and confidence that enhance their performance, persistence, and creativity (Ryan & Deci, 2000).  

IBL teaching practices often involve group work and collaboration that both require and develop 
communication skills (Gillies, 2007; Duch, Groh, & Allen, 2001). Indeed, recommendations for 
undergraduate programs in mathematics include development of analytical thinking, critical 
reasoning and problem-solving but also communication skills (Pollatsek et al., 2004). In the 
attitudinal survey, we wanted to study students’ preferences for communicating about 
mathematics and any change in this during their IBL course. Items on students’ goal of 
communicating about mathematics measured this preference.  

In addition to mathematical confidence, our attitudinal survey studied students’ affect and 
motivation in the form of: 

• personal interest in mathematics,  

• willingness to pursue a math major (or minor), 

• plans to study more math in the future,  
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• interest in teaching, 

• intrinsic and extrinsic learning goals, 

• goal for communicating about mathematics, 

• enjoyment of learning mathematics 

Current understanding of mathematical knowledge as a constructive activity (Steffe & 
Thompson, 2000; Tall, 1991) focuses on skillful problem-solving (Schoenfeld, 1992). Competent 
mathematicians use strategies to make sense of new problem contexts or to make progress 
toward the solution of problems when they do not have ready access to solution methods for 
them (Schoenfeld, 2004). The nature of the problem-solving strategies they choose influence 
students’ approaches to and success at challenging mathematical problems. For example, unlike 
novices, expert problem-solvers use high-level planning and qualitative analysis before attacking 
a problem. They also demonstrate facility in choosing appropriate strategies in various situations 
(Kroll & Miller, 1993; Schoenfeld, 1985). This contrasts with a lack of strategies, mechanical 
use of concepts, and rote memorization of previous similar problems.  

IBL approaches provide opportunities for students to engage in knowledge creation and 
argumentation (Rasmussen & Kwon, 2007). Such activities are generally suggested to promote 
problem-solving skills, independent thinking and intellectual growth (Buch & Wolff, 2000; 
Duch, Gron & Allen, 2001). Competent problem solvers can communicate the results of their 
mathematical work effectively, both orally and in writing (Schoenfeld, 2004). Planning and self-
monitoring the solving process also help to ensure skillful problem-solving (Schoenfeld, 1985). 
Moreover, mathematics students must develop persistence in the face of difficulties, tolerance for 
ambiguity, and willingness to try multiple approaches, and they must learn to apply the necessary 
amount of rigorous and judgmental reasoning (Hanna, 1991; Pollatsek et al., 2004). These skills 
require them to develop self-reflective and self-regulatory strategies (Burn, Appleby & Maher, 
1998; De Corte, Verschaffel & Eynde, 2000).  

We wanted to check what kind of learning and problem-solving strategies students report and 
how these change during IBL and traditional math courses. Our attitudinal survey studied 
students’ use of: 

• independent (or individual), 

• collaborative, or  

• self-regulatory strategies. 

Items related to these strategies were intended to explore the extent to which students counted on 
their own thinking and creativity when solving math problems and proofs, shared their thinking 
and strategies with other students, and actively reflected on and regulated (planned or checked) 
their own thinking and actions while solving math problems.  
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A3.3.2 Example items from the pre/post attitudinal survey instrument  

We divided the attitudinal survey into eight subsections, each consisting of 7-15 structured items. 
The answers varied on a 7-point Likert-scale between negative and positive responses. The 
subsections of the survey measured students’ mathematical beliefs, motivation, learning goals, 
enjoyment, confidence, and strategies for leaning and problem-solving. All the attitudinal pre-
survey questions and items are presented in Exhibit E3.1. We studied students’   

• Personal interest in studying mathematics:  How likely is it that you will… 
e.g., “Bring up mathematical ideas in a non-mathematical conversation?” 

• Enjoyment of doing and discovering mathematics:  How much do you enjoy… 
e.g., “Discovering a new mathematical idea?”   

• Goals in studying mathematics:  Below are some goals that students may have in 
studying mathematics. How important is each goal for you? 
e.g., “Memorizing the sets of facts important for doing mathematics.”  (extrinsic goal) 
“Learning to construct convincing mathematical arguments.”  (intrinsic goal) 

• Beliefs about the self: confidence:  How confident are you that you can… 
e.g.,  “Apply a variety of perspectives in solving problems?”  (math ability) 
“Teach mathematics to high school students?”  (teaching mathematics) 

• Beliefs about learning mathematics:  I learn mathematics best when… 
e.g.,  “The instructor lectures.”  (instructor-driven) 
“I work on problems in a small group.”  (group work) 
“I explain ideas to other students.”  (exchange of ideas) 

• Beliefs about problem-solving:  In order to solve a challenging math problem, I need… 
e.g.,  “To have lots of practice in solving similar problems.”  (practice) 
“To use rigorous reasoning.”  (reasoning) 

• Beliefs about proofs:  The following statements reflect some students’ views about 
mathematical proof. How much do you agree or disagree with each statement? 
e.g.,  “Proof is a tool for understanding mathematical ideas.”  (constructive) 
“The main purpose of proof is to confirm the truth of a mathematical result that is already 
known to be true.”  (confirming) 

• Problem-solving strategies:  When you do math, how often do you take each action listed 
below? 
e.g., “Find your own ways of thinking and understanding.”   (independent) 
“Brainstorm with other students.”   (collaborative) 
“Plan a solving strategy before attacking a problem.”  (self-regulatory) 
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A3.3.3 Demographic and background information 

The attitudinal survey also asked for demographic and background information about students’ 
previous achievement, personal information, and expectation for the grade of the target course. 
The questions dealt with: 

• achievement history: the highest level of high school mathematics taken, any AP 
Calculus test taken and scores received, number of college math courses taken, estimated 
overall GPA; 

• academic background:  class year, college major, pursue for a teaching certification; 

• personal background: gender, ethnicity, race; 

• expected grade for the course. 

At the end of both the pre- and post-survey, students were asked to assign themselves an 
identifier. This enabled us to match between pre-survey and post-survey responses by individual 
student (see Exhibit E3.1).   

A3.4 Learning Gains Survey 

The learning gains post-survey was based on the SALG instruments (SALG, 2008) developed to 
enable faculty and program evaluators to gather formative and summative data on classroom 
practices. The questions address students’ self-reported experiences of mathematics class 
practices and their cognitive, social and affective learning gains due to their participation in a 
college mathematics course. Students provide both quantitative ratings and written responses 
about the course focus, learning activities, content and materials. The learning gains instrument 
is grounded in its authors’ (Seymour, Wiese, Hunter & Daffinrud, 2000) findings that:  

•  students can make realistic appraisals of their gains from aspects of class pedagogy and of 
the pedagogical approach employed, and 

•  this feedback allows faculty to identify course elements that support student learning and 
those that need improvement if specific learning needs are to be met.   

The SALG instrument is easily modified to meet the needs of individual faculty in different 
disciplines and it has been found to be a powerful and useful tool for instructors in student 
feedback and course development. When first developed, data about the use of the survey 
showed that eighty-five percent of the instructors reported that the SALG provided qualitatively 
different and more useful student feedback than traditional student course evaluations. 
Instructors also made modifications to course design (60%) and class activities (lecture, 
discussion, hands-on activities) followed by student learning activities (54%) course content 
(43%), and the information given to students (33%) (Recommendations for using the SALG, 
2008). 

We adjusted the SALG items to match college mathematics situations. The final learning gains 
survey, which we call the SALG-M, consisted of four structured sections on course experiences 
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and two sections on learning gains. The first four sections asked about students’ experiences of 
instructional practices:  how much particular practices helped their learning. The practices deal 
with overall instructional approach, classroom activities, tests and other assignments, and 
interactions during the course. Answers follow a five-point scale between “no help” and “ great 
help.” Two other structured sections of the questionnaire ask about students’ gains in 
understanding, confidence, attitude, persistence, and collaboration. These answers vary on a five-
point scale between “no gain” and “great gain.” The final post-survey for the SALG-M is 
presented as Exhibit E3.2.  

In addition to structured items, the learning gains post-survey included four open-ended 
questions. Students were provided space to write about: 

• How the class changed the ways they learn mathematics 

• How their understanding of mathematics changed as a result of the class 

• How the way the class was taught affected their ability to remember key ideas 

• What they will carry with them from the class into other classes or other aspects of 
their life. 

Answers to these questions complemented numerical responses on students’ gains from their 
mathematics courses, helping us to better understand these results.      

The learning gains survey also gathered information on students’ expected grade at the end of the 
course, college major, class year, gender, and whether they were pursuing teaching certification. 
These questions confirmed the match between pre- and post-surveys and enabled us to detect 
changes in students’ ideas or plans. The complete post-survey consists of the structured items in 
the attitudinal pre-survey and all the sections of the learning gains survey.  

A3.5 Data collection 

Survey data were gathered from undergraduate students studying mathematics at all the four 
campuses during two academic years 2008-2010. We started with online survey instruments 
when testing the survey instruments and also gathered pre-surveys at one campus in early fall of 
2008. Due to the low response rate to the online form, we gathered the rest of the survey data as 
a paper-and-pencil test in class, which yielded very high response rates. The paper questionnaire 
was administered at the beginning and end of each course. In the courses that were part of a 
multi-term sequence (e.g., a three-quarter calculus sequence), we administered the full post-
survey only at the end of the final section, but also gave a learning gains survey at the end of 
each previous related section. This provided us with some longitudinal data on the evolution of 
students’ experiences and learning gains over multiple terms of IBL or comparative instruction.     

The surveys were delivered to our project collaborators at the four campuses who also mostly 
administered the surveys in class. In some cases, course instructors or teaching assistants 
administered the survey. Instructors were given instructions on how to administer the surveys 
and return the completed surveys to us. We also reminded them about keeping the confidentiality 
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and anonymity of students in every step. Filling out the surveys took students about 10-20 
minutes; instructors were asked to offer enough class time for completing the surveys. 

A3.6 Data analysis 

A3.6.1 Attitudinal survey variables 

Composite variables were constructed based on the attitudinal survey design and the factors of 
mathematical beliefs, affect, learning goals, and strategies of learning and problem-solving 
presented in Section A3.3.1.1. Exploratory factor analysis, principal component analyses and 
item analyses on the attitudinal survey data were used to create the final composite variables:  
five measures of motivation, affect and confidence; three measures of learning goals; seven 
measures of beliefs about mathematics and learning; and three measures of strategies. For each 
composite variable, averages of student ratings across the items represented the score for each 
student. This enabled us to interpret results on the same scale as that for the original attitudinal 
survey items. The composite variables were then used to report results on students’ attitudes and 
for further analysis on group differences in attitudes.  

Table A3.5 displays the survey questions and items for each composite variable, the titles and 
descriptions of the composite variables, and the reliability scores for the composite variables (for 
the pre-survey data and post-survey data separately).  

Table A3.5:  Composite Variables Measuring Student Beliefs, Affect, Goals and  
Problem-Solving Strategies 

Scale Items 
Reliability 
Cronbach 

alpha Variable Description 

 Count Numbers Pre Post 

Motivation 
Interest Interest in learning and 

discussing mathematics 
7 3 Q1: 5,6,7 0.808  0.828 

Math major Desire to graduate with a 
math major 

7 1 Q1: 2 - - 

Math future Desire to pursue math in 
future work or education 

7 2 Q1: 1,4 0.439  0.615 

Teaching Desire to teach math 7 1 Q1: 8 - - 
Enjoyment Pleasure in doing and 

discovering mathematics 
7 6 Q2: 1-6  0.914  0.928 

Confidence 
Math confidence Confidence in own 

mathematical ability 
7 5 Q9: 1,2,4, 

5,6 
0.820  0.826 

Teaching 
confidence 

Confidence in teaching math 7 2 Q9: 3,8 0.696  0.645 

 



Appendix A3:  Survey Methods  A3-13 

 

Table 3.5, continued… 

Goals for studying math 
Intrinsic Learning new ways to think 

& to apply math 
7 4 Q3: 7-10 0.791 0.828 

Extrinsic Meeting requirements; 
degree, good grades 

7 4 Q3: 1,3,4,6 0.724 0.744 

Communicating Communicating 
mathematical ideas to 
others 

7 2 Q3: 2,5 0.783 0.810 

Beliefs about learning 
Instructor-driven Exams, lectures, instructor 

activities 
7 4 Q5: 1,6,7,8  0.642 0.667 

Group work Whole-class or small group 
work 

7 3 Q5: 2,3,5  0.685 0.719 

Exchange of ideas Active verbal interaction 
with other students 

7 3 Q5: 9,10, 
11 

0.731 0.745 

Beliefs about problem-solving 
Practice Repeated practice, 

remembering 
7 2 Q6: 2,6 0.690 0.758 

Reasoning Rigorous reasoning, 
flexibility in solving 

7 5 Q6: 1,5,7, 
8,9 

0.734 0.712 

Beliefs about proofs (Yoo & Smith, 2007) 
Constructive Process view; revealing 

mathematical ideas 
7 4 Q8: 2,6,7,8 0.637 0.675 

Confirming Product view; recall and 
confirming conjectures 

7 3 Q8: 1,3,5 0.692 0.672 

Strategies 
Independent Finding one’s own way to 

think & solve problems 
7 4 Q4: 5,9,11, 

12 
0.747 0.775 

Collaborative Seeking help, actively 
sharing with others 

7 3 Q4: 2,4,14 0.774 0.813 

Self-regulatory Planning, organizing, 
reviewing one’s own work 

7 6 Q4: 1,3,6, 
7,8,10  

0.747 0.747 

 

A3.6.2 Learning gains survey variables 

Similar to the treatment of attitudinal variables, composite variables were constructed on the 
basis of the questions and structures in the SALG-M survey. Exploratory and principal 
component analyses and item analysis produced five measures of instructional practices and nine 
measures of learning gains (see Table A3.6). The five composite variables related to instructional 
practices were used in reporting results on students’ course experiences. Results on learning 
gains from the nine composite variables represented students’: 
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• Cognitive gains: mathematical concepts, mathematical thinking, application of 
mathematical knowledge,  

• Affective gains: positive attitude, confidence, persistence,  

• Social gains: collaboration, comfort in teaching mathematics, 

• Independence in learning mathematics. 

Table A3.6:  Composite Variables Measuring Student Experiences and Learning Gains 

Items Variable Description Scale 
Count Numbers 

Reliability 
(Cronbach) 

Experience of course practices (what helped me learn) 
Overall Teaching approach, atmosphere, 

pace, workload 
5 7 Q1: 1-7 0.898 

Active participation Personal engagement in discussion 
& group work 

5 5 Q2: 3-7 0.839 

Individual work Studying & problem-solving on 
one’s own 

5 4 Q2: 2,8,9 0.695 

Assignments Nature of tests, homework, other 
assigned tasks 

5 8 Q4: 1-8 0.764 

Personal 
interactions 

Interaction with peers & instructor, 
in/out of class 

5 6 Q5: 1-6 0.696 

Learning gains:  Cognitive gains 
Math concepts Understanding concepts 5 2 Q6: 1,2 0.921 
Math thinking Understanding how 

mathematicians think 
5 2 Q6: 3,4 0.819 

Application Applying ideas elsewhere, 
understanding others’ ideas 

5 3 Q6: 5,6,7 0.629 

Learning gains: Affective gains 
Positive attitude Appreciation of math 5 2 Q8: 3,6 0.821 
Confidence Confidence to do math 5 4 Q8: 1,2,7,8 0.905 
Persistence Persistence, stretching 5 2 Q8: 9,14 0.852 

Learning gains: Social gains 
Collaboration Working with others, seeking help 5 3 Q8: 

10,12,13 
0.841 

Teaching Comfort in teaching math 5 1 Q8: 11 - 
Learning gains:  
Independence 

Work/organize on own 5 2 Q8: 4,5 0.806 
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We also report results on students’ cognitive, affective and social gains as three main areas of 
learning gains. Gain in independence in learning mathematics represented a measure that is 
distinct from the other three main areas. 

Table A3.6 displays the titles and descriptions of the learning-related composite variables, the 
survey items that comprise each variable, and the reliability scores for each composite variable.  

A3.6.3 Analysis methods for structured survey questions 

All survey data was entered by student technicians and analyzed using the SPSS computer 
software package. Statistical analyses included descriptive statistics of each composite variable 
and background variable. Correlation analysis was used to study relationships between 
composite variables and their relation to background information on students’ overall college 
GPA and expected grade at the beginning and end of their course. Parametric (independent and 
pair-wise T-tests, ANOVA) or non-parametric (Chi-square, Mann-Whitney, Kruskas-Wallis) 
tests were used to explore group differences in students’ attitudes, experiences, and learning 
gains, sorted by demographic information on students’ gender, ethnicity, race, academic status, 
and college major. The most important of these analyses focused on differences between IBL 
and non-IBL students, and between math-track students and pre-service teachers. Analysis of 
covariance (ANCOVA) was used to check intermediate effects (GPA, expected grade, gender) 
on students’ learning gains. Stepwise regression analysis was applied to examine the variation in 
students’ learning gains versus changes in their attitudes and self-reported class experiences.   

A3.6.4 Analysis of open-ended survey questions 

The open-ended survey questions asked about students’ gains or changes in their understanding 
of mathematics, remembering key ideas, ways to learn mathematics, and other things they carry 
with themselves from a math course. Most of students’ written comments addressed reports of 
learning gains from a course or possible difficulties or negative experiences from a course. To 
analyze the written responses, we applied the same categories that were constructed for 
analyzing student interview data. The preliminary categories were fleshed out with more detailed 
descriptions and subdivided into several subcategories of learning gains and processes using 
inductive content analysis (Miles & Huberman, 1994; Strauss & Corbin, 1990).  As each 
statement was examined, the detected gains were classified into one of the preliminary categories 
or a new category creating during reading and analysis. Table A3.7 summarizes the final coding 
scheme for learning gains reported in the open-ended answers, and the frequency with which 
each was reported. 
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Table A3.7.  Counts for Reported Learning Gains from Open-Ended Survey Comments 

Main category Subcategory Number of students reporting 
each gain 

 Description once 2-3 times ≥4 times 

Subtotal 455 115 5 
Better recall 82 2 - 
Better knowledge, deeper understanding of 
mathematical concepts and ideas 120 54 - 

Thinking and problem solving skills 119 42 4 
Transferable mathematical knowledge  23 3 - 
Transferable thinking skills  20 1 - 

Cognitive gains 

Did not gain cognitively 91 13 1 

Subtotal 158 24 1 
Positive attitude towards mathematics 16 1 - 
Confidence to do math, solve math 
problems, and be a mathematician   38 8 1 

Less confidence, no gain in confidence 5 - - 
Enjoyment, liking math 28 2 - 
Negative experience, liking less 62 13 - 
Interest and motivation 8 - - 

Affective gains 

Less interested 1 - - 

Subtotal 428 63 4 
Beliefs about learning math, deeper learning, 
problem solving, creativity and discovery, 
finding own style of learning math   

133 33 3 

Independence in mathematical thinking, 
learning or problem solving 93 14 1 

Persistence 17 - - 
Work ethic, learned to study hard 21 - - 
Metacognition, self-reflection 17 1 - 
Appreciation others’ thinking, learning from 
others 66 14 - 

Changes in 
learning  

No change in learning math 81 1 - 
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Table A3.7, continued… 

Subtotal 116 9 - 
Speaking or presenting 14 - - 
Writing mathematics  23 4 - 
Collaboration, group work 29 3 - 
Teaching others, explaining to others 46 2 - 

Gains in 
communication 
skills 

Giving or receiving critique 4 - - 

Subtotal 78 20 - 
How knowledge is built; how research math 
is done 14 - - 

Change in conceptualization of math 59 20 - 

Changes in 
understanding 
the nature of 
mathematics 

No change in concepts of the nature of math 5 - - 

Total  1235 231 10 
 

In all, 544 students wrote in at least one gain in cognition, affect, communication, ways of 
learning mathematics, and/or understanding the nature of mathematics. They reported one to as 
many as nine gains each. In all, 197 students reported 1-6 times each that they did not make 
gains or undergo changes in cognition, affect, communication, ways of learning mathematics, or 
understanding the nature of mathematics.  The rest of survey respondents wrote no comments. 

A3.7 Reliability and validity 

Most of the pre- and post-surveys were administered and gathered in mathematics classes by the 
project coordinators of each campus, or by instructors. The surveys were completed in class, 
which strengthened the response rate. The coordinators were given written instructions for 
administering the surveys that were intended to ensure that students had enough time to answer 
the surveys and that their anonymity was preserved.  Completed surveys were delivered to the 
research team by the campus coordinators, entered by trained project assistants into separate 
SPSS files, and checked and analyzed by the researchers. We will describe features of our survey 
data from the attitudinal survey and the learning gains survey separately.  

A3.7.1 Attitudinal survey data 

After testing the structures and items in the attitudinal survey with a small group of students, we 
revised the instrument accordingly. In the full data collection, we gathered a large number of 
completed pre-and post-surveys, which ensured high statistical power in our results. Missing 
answers both in the structured attitudinal and gain survey items were rare. Even though the post-
survey was rather long, most students responded to all the structured items. The number of 
missing answers on the items varied between 0-49 for the main pre-survey items and 0-37 for the 
main attitudinal post-survey items. These low numbers indicate that students understood the 
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questions and statements in the items. All these features strengthen the reliability and validity of 
our attitudinal survey results. 

Among the combined survey responses, some students did not report specific demographic 
information on their: 

• gender (49), 

• race (148) or ethnicity (74), 

• academic major (79), 

• academic status (46), 

• number of prior college mathematics courses (53)  

• AP test score (430; many students did not take the AP test), 

• prior GPA (291; many first year students had no prior GPA), 

• expected grade at the beginning of a course (86). 

The most common type of missing information was self-reported AP test scores and prior GPA. 
Thus the results reported on group differences by prior GPA largely excluded first-year students. 
We used AP test scores in our study of group differences only in analyzing LMT scores for pre-
service teachers.  

The number of responses about students’ beliefs on mathematical proofs (N=877) and about 
confidence (N=672) were somewhat smaller than those on other topics. Only students with prior 
experience on proofs were asked to answer proof-related survey questions.  A subsection on 
confidence was added to the attitudinal questionnaire after some students had completed it. For 
both sections, the lower number of answers implies slightly lower statistical power in 
comparison to the results on other survey questions.  

Descriptive statistics for the composite attitudinal variables showed variation among students. 
Responses for the items varied between the minimum 1 and maximum 7 for most items. The 
minimum for only one composite variable was above 2 (Reasoning 2.2 on the post-survey). 
However, standard deviations for the pre-survey variables varied between 0.88 and 2.56, and for 
the post-survey variables between 0.86 and 2.63, indicating low or moderate variation among 
students in their attitudes.  

Cronbach’s alphas were used to study the reliabilities of the subsections and composite variables 
for both attitudinal and SALG-M survey instruments. The final reliability scores for attitudinal 
composite variables are presented in Table A3.5, for pre-survey and post-survey data separately.   
Reliability scores for the pre-survey varied between 0.439 and 0.914 and between 0.615 and 
0.928 for the post-survey. Only five composite variables had a low reliability score (below 0.7) 
in the pre-/post-survey data: math future interest, teaching confidence, instructor-driven beliefs, 
and beliefs about proofs. 
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Correlational analysis showed that the composite variables had good construct validity, meaning 
they produced real results on students’ motivation, beliefs and strategies. For example, on the 
post-survey data, both composite variables related to motivation (personal interest, math future) 
correlated highly positively with each other (r= 0.417) but also with the variables on intrinsic 
learning goals (r=0.552, r=0.354) and enjoyment of learning mathematics (r=0.718, r=0.413). 
Confidence in mathematics (r=0.507) and teaching (r=0.309) correlated highly positively with 
enjoyment of mathematics. Math confidence also correlated clearly with the use of independent 
strategies (r=0.445) and beliefs about math problem-solving as reasoning (r=0.531).   

Beliefs that mathematics learning is an instructor-driven activity correlated highly positively 
with extrinsic learning goals (r=0.454), beliefs about problem-solving as practice (r=0.499), and 
beliefs about proving as confirming the truth (r=0.359). In contrast, beliefs about math problem-
solving as reasoning correlated highly positively with enjoyment of mathematics (r=0.512) and 
intrinsic learning goal (r=0.539). Moreover, use of independent strategies correlated highly 
positively with use of self-regulatory strategies (r=0.606), whereas use of collaboration 
correlated positively with communicating goal (r=0.289) and beliefs about mathematics learning 
as group work (r=0.459) or exchange of ideas with other students (r=0.422).  

A3.7.2 Learning gains survey data 

We collected even larger numbers of responses on the SALG-M items (N=1074-1127) than on 
the attitudinal pre-/post-survey measures. This ensured high statistical power for results on 
students’ self-reported class experiences and learning gains. The numbers of analyzed responses 
on the SALG-M items was lower than in the attitudinal data because students could choose the 
response “Not applicable.”  Open-ended survey questions on the SALG-M were optional, and 
students commonly chose not to respond to these. Overall, 13 to 38% of IBL math-track students 
and 12 to 20% of non-IBL math-track students chose to write in a comment about their learning 
gains (depending on the question).  These low percentages are typical for open-ended survey 
questions. 

The whole scale between 1 and 5 was used by students in their answers to questions about both 
course experiences and learning gains. However, descriptive statistics showed a rather strong 
“halo” effect.  The median for all the course experience variables (except Assignments other than 
tests) was above 3.8, and for the learning gains variables above 3.5 (except Application). The 
standard deviations ranged between 0.82 and 0.95 for the course experience variables and 
between 0.93 and 1.16 for the learning gains variables. These scores indicate rather low variation 
in students’ answers to the survey items. 

The reliability scores for the composite variables from the SALG-M instrument are presented in 
Table A3.6. The scores indicated even higher reliability and internal consistency than for the 
attitudinal variables. For the course experience composite variables, the reliability scores varied 
between 0.696 and 0.898. Reliability scores for the composite learning gains variables similarly 
varied between 0.629 and 0.921. Only one composite variable (gains in application) had a 
reliability score less than 0.7.   
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The SALG survey instruments are based on extensive research that support the validity of self-
report in situations where students have the ability to provide accurate information (Wentland & 
Smith, 1993) and where they have few or no obvious reasons (such as adverse consequences or 
social embarrassment) for providing inaccurate information (Aaker, Kumar & Day, 1998). The 
SALG survey instruments meet standards of good validation. The developers of the instrument 
confirmed that most survey items functioned adequately and that item composites formed 
reliable subscales (Weston, Seymour & Thiry, 2006; Weston, Seymour, Lottridge & Thiry, 
2006). Moreover, latent factors underlying items conformed to the hypothesized structures of the 
survey.  

We adjusted the original SALG survey instrument to fit college mathematics learning situations 
and refer to the result as the SALG-M. The constructed composite variables represented the 
underlying structures of the SALG instrument and factors specific for the SALG-M survey. 
These factors were checked for construct validity by correlational analysis. For example, Active 
Participation, a variable denoting participation in class discussions and group work, was most 
strongly (positively) related (r=0.634) to the measure of Personal Interaction (see Table A3.6). In 
turn, Individual Work, measuring students’ studying and problem solving on their own, was the 
most strongly positively related to Assignment (r=0.557), in particular to Assignments other than 
regular tests (r=0.529). Moreover,  the Overall measure of course experience correlated highly 
positively (0.505-0.680) with all the other composite variables on course experiences.  

All students reported rather positive course experiences and high learning gains as result of a 
course. Correlational analysis further showed strong positive linkages between the learning gains 
variables (0.403-0.740) and between course experiences and learning gains (0.314-0.680). These 
results confirm construct validity of the results and the fact that positive class experiences were 
related to higher reported learning gains. On the other hand, students who reported positive 
experience in one area also did so on the other measured class experiences. Moreover, students 
who reported high learning gains in one area also did so on other measures of learning gains. 
This again reflects the halo effect that makes it more difficult to find real differences in students’ 
class experiences and learning gains.  

A3.7.3 Connections between the surveys and other measures of learning gains 

We checked connections between the composite variables based on the structured SALG-M 
survey questions and numerical variables related to the open-ended answers. Correlations 
between the answers to structured and open-ended questions showed that higher self-assessed 
cognitive, affective and social learning gains were all clearly positively related to a higher 
number of gains each student wrote in. This was valid both for the total count of gains reported 
in written comments (r=0.133 to 0.239) and for the separate counts of cognitive gains, affective 
gains and changes in students’ ways of learning math. In particular, higher self-assessed gains in 
math concepts and thinking were clearly positively connected (r=0.209**) to a greater number of 
cognitive gains written in response to the open-ended questions. Moreover, higher self-assessed 
gains in collaboration were clearly positively connected (r=0.209**) to a greater number of gains 



Appendix A3:  Survey Methods  A3-21 

 

in ways of learning mathematics as reflected in written comments. These indicate reliability and 
construct validity of the results on learning gains.       

We also checked how changes in attitudes related to learning gains as measured by the SALG-M 
instrument. The correlations (see Table A3.8) show that students who reported higher cognitive, 
affective, and social learning gains also showed increases in many of the attitudinal variables. 
This applied particularly to enhanced motivation, enjoyment, math confidence, and intrinsic and 
communicating goals during a math course. Pre/post increases both in enjoyment and math 
confidence were clearly positively related to reported affective gains in confidence, positive 
attitude, and persistence. This displays construct validity of these affective measures.   

 

Table A3.8:  Statistically Significant Correlations between Changes in Beliefs, Motivation 
and Strategies and Learning Gains 

Correlation with Learning Gains 

Attitudinal Variable Math 
concepts & 

thinking 

Application Affective Social 

interest 0.186** 0.140** 0.199** 0.143** 
math major 0.149** 0.125** 0.158**  
math future 0.115**  0.107**  

Motivation 

teaching 0.118**  0.105**  
intrinsic 0.170** 0.104** 0.182** 0.156** Goals 
communicating 0.121**  0.132**  

Enjoyment  0.228** 0.204** 0.266** 0.194** 
Confidence math ability 0.249** 0.233** 0.245** 0.166** 

group work 0.142** 0.121** 0.145** 0.195** Beliefs about 
learning exchange of 

ideas 0.154** 0.150** 0.166** 0.144** 

Beliefs about 
problem-solving 

reasoning 0.205** 0.155* 0.186** 0.189** 

 practice 0.205** 0.155** 0.186** 0.189** 
independent 0.134** 0.129** 0.121** 0.164** 
collaborative    0.188** 

Strategies 

self-regulatory 0.204** 0.138** 0.204** 0.183** 
 ** p< 0.01  

 
Similarly, gains in mathematical concepts and thinking were positively related to increases in 
most of the attitudinal variables. The strongest positive relation was to increased belief in 
reasoning in solving math problems, but also to enhanced enjoyment and math confidence and to 
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increased use of self-regulatory strategies. Positive relationships between reported gains in 
application and attitudinal variables showed similar but somewhat weaker correlations. All these 
positive relations display good construct validity for the variables involved.  

Moreover, students with higher reported learning gains developed strengthened beliefs in the 
value of group work and exchange of ideas with other students that generally contribute to 
learning. Increased belief in reasoning as a way to solve math problems again enhances 
mathematics learning and problem solving. Moreover, students’ increased use of independent 
and self-regulatory strategies in learning were clearly positively related to their learning gains. 
The use of these strategies generally enhances learning. In particular, gains in collaboration were 
positively related to increased use of collaborative learning strategies.   

Correlational analysis (Spearman) between the learning gains composite variables and other 
measures of learning outcomes indicated low to moderate connections. Self-reported cognitive, 
affective and social learning gains from a mathematics course did not correlate with self-reported 
GPA level at the beginning of a course. But grades generally measure student performance, 
which is not necessarily related to learning in any given course.   

In addition, our GPA measure excluded first-year students who could not report their prior GPA 
at the beginning of a course but who nonetheless reported higher gains than older students. 
Furthermore, our results on learning gains indicated higher learning gains among students with 
lower prior GPA. These features are also perhaps reflected in the low correlations between 
learning gains and GPA level at the beginning of a course.    

We also checked the correlations (Spearman) between self-reported learning gains and self-
reported AP test score, for the smaller number of students who reported an AP score. However, 
the correlations indicated only a weak positive relation to gains in math concepts and thinking 
(r=0.106*). Again, AP test score is a measure of past mathematics performance, but does not 
determine learning in the present course. 

However, correlations between learning gains and expected grade in the course were somewhat 
stronger, especially to the expected grade reported at the end of the course. These correlations 
varied between 0.10** and 0.307**. In particular, gains in mathematical concepts and thinking 
clearly correlated with expected grade at the end of a course (r=0.238**). The positive 
correlation of expected grade was even stronger to affective learning gains (r=0.307**) but 
weaker to social gains in collaboration (r=0.10**). These correlations display clear but moderate 
connections between students’ self-reported learning gains and their assessment of the quality of 
their learning during a college math course.   
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i t  di  r r E 1:    A t t  Exhibit E3.1: Attitudinal Pre-Survey

Our research team is studying methods of improving teaching and learning in college mathematics courses, including the 
methods used in the course you are taking now. Because you are enrolled in a college math course, we would like to 
know about your own experiences in learning mathematics. This survey asks about your views about mathematics, your 
strategies for learning math, and your personal reasons for studying mathematics.  
 
Your participation is voluntary. You may skip questions you do not wish to answer, or choose not to participate. Your 
answers are anonymous and will not be reported in any way that may identify you individually; they will be aggregated 
with responses by other students from your course and other courses. Your instructor will not know how you answered.  
 
By completing this survey, in part or in whole, you agree that we may use this data to understand and improve the quality 
and effectiveness of mathematics instruction.  
 
Please, mark clearly the best answer to each question. You do NOT need to fill in the bubble completely.  
 
 
Thank you for your candid responses! Please contact us with any questions.  
 
Sandra Laursen, study director 
Marja-Liisa Hassi, research associate 
 
Ethnography & Evaluation Research 
University of Colorado at Boulder 
sandra.laursen@colorado.edu 
hassi@colorado.edu 
 
 
 
 
 
 
 
 
 
 

1. HOW LIKELY is it that you will... 

 
Dear student,

 
Your interest in mathematics

 

Not at 

all 

likely

Extremely 

likely

Take additional math courses after this course?

Graduate with a college math major?

Graduate with a college math minor?

Study hard for a college math course?

Read magazine or newspaper articles related to math?

Bring up mathematical ideas in a non-mathematical conversation?

Participate in a club or organization related to math?

Teach math in the future?

 

Other 
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2. HOW MUCH do you ENJOY... 

3. Below are some goals that students may have in studying mathematics. HOW 

IMPORTANT is each goal for YOU? 

 
 
 
 
 
 
 

 
Your enjoyment of mathematics

 
No 

enjoyment 

Extreme 

enjoyment

Working on a challenging mathematical problem?

Discovering a new mathematical idea?

Seeing mathematics in everyday life?

Perceiving beauty in mathematical ideas?

Using rigorous reasoning in a math problem?

Thinking about abstract concepts?

Teaching mathematics to other people?

 
Your goals in studying mathematics

 
Not at all 

important

Extremely 

important

Learning specific procedures for solving math problems

Improving your ability to communicate mathematical ideas to others

Getting a good grade in college mathematics courses

Memorizing the sets of facts important for doing mathematics

Making mathematics understandable for other people

Meeting the requirements for your degree

Learning to construct convincing mathematical arguments

Using mathematics as a tool to study other fields

Learning new ways of thinking

Applying mathematical thinking outside the university context

 

 

Other goals (please specify) 

55

66
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4. When you DO MATH, how often do you take each action listed below? 

5. Indicate how much you agree or disagree:  

I learn mathematics BEST when... 

 

 
Your strategies for learning mathematics

 
Very 

seldom

Very 

often

Study on your own.

Brainstorm with other students.

Try to organize or summarize your own ideas.

Share problem-solving strategies with other students.

Find your own ways of thinking and understanding.

Review your work for mistakes or misconceptions.

Read the assigned readings.

Plan a solving strategy before attacking a problem.

Try to find your own way to solve a problem.

Check your understanding of what the problem is asking.

Use your intuition about what the answer should be.

Look for an alternate strategy to solve the problem.

Give up when you get stuck.

Ask another student for help.

Ask the instructor or TA for help.

 
Your preferences for learning mathematics

 
Strongly 

disagree

Strongly 

agree

The instructor lectures.

The class critiques other students' solutions.

I work on problems in a small group.

The exams let me prove my mathematical skills.

Groups present their solutions in class.

The instructor explains the solutions to problems.

The homework assignments are similar to the examples considered in class.

I study my class notes.

I can compare my math knowledge with other students.

I explain ideas to other students.

I get frequent feedback on my mathematical thinking.
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6. Indicate how much you agree or disagree:  

In order to solve a challenging math problem, I NEED... 

7. Have you had math classes that included mathematical proofs? 

 

8. The following statements reflect some students' views about mathematical proof. 

How much do you AGREE or DISAGREE with each statement? 

 

 
Not at 

all

Very 

much

To carefully analyze different possible solutions.

To have lots of practice in solving similar problems.

To understand other students' mathematical thinking.

To have natural talent for mathematics.

To try multiple approaches to constructing a solution.

To remember a lot of examples that I might use in constructing a solution.

To use rigorous reasoning.

To have freedom to do the problem in my own way.

To work hard

 

 
Your experience and views about mathematical proof

 

 
Strongly 

disagree

Strongly 

agree

The main purpose of proof is to confirm the truth of a mathematical result that is already 

known to be true.

Proof is a tool for understanding mathematical ideas.

Doing proofs well requires good recall of previous proofs of similar statements.

The main purpose of proof is to explain why a certain statement is true.

In math class, doing proofs means confirming conjectures that have been previously 

proven by an expert.

There are several different ways to prove a mathematical statement.

When evaluating a proof, the most important thing to look at is its logical structure.

A proof is something you have to construct based on your own understanding.

 

yes
 

no (Go directly to question 9)
 



i t  di  r r E 1:    A t t  Exhibit E3.1: Attitudinal Pre-Survey

9. HOW CONFIDENT are you that you can... 

10. What was the highest level of math that you took in HIGH SCHOOL? 

11. Did you take the AP Calculus test? 

12. Which of the AP Calculus tests did your take? 

13. What was your score in the AP Calculus test? 

 
Your confidence in doing math

 
Not at all 

confident

Extremely 

confident

Get a high grade in this course?

Successfully work with complex mathematical ideas?

Teach mathematics to high school students?

Develop new mathematical ideas?

Apply a variety of perspectives in solving problems?

Present your work at the board in a math class?

Work on math problems with other students?

Teach math to children?

 
Your math background

 

Algebra, one year
 

Algebra, two years
 

Geometry with an algebra prerequisite
 

Pre-calculus or trigonometry
 

Calculus
 

Other (please specify)
 

 

Yes
 

No (go directly to question 14)
 

A/B
 

B/C
 

1
 

2
 

3
 

4
 

5
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14. How many COLLEGE math courses have you taken prior to this course? Please 

count the total number of semesters or quarters.  

15. What grade do you expect to receive in this course? 

16. What is your overall UNDERGRADUATE GPA? (estimated) 

17. What is your class year? 

 
 

 
Your academic background

 

 

0
 

1
 

2
 

3
 

4
 

5
 

6
 

7 or more
 

A
 

A-
 

B+
 

B
 

B-
 

C+
 

C
 

C-
 

D
 

F
 

3.8 or higher
 

3.5 - 3.79
 

3.0 - 3.49
 

2.5 - 2.99
 

2.0 - 2.49
 

below 2.0
 

Not applicable
 

First-year
 

Sophomore
 

Junior
 

Senior
 

Graduate student
 

Other (please specify)
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18. What is your college major? (Check ALL that apply) 

19. Are you pursuing a teaching certification? 

Our funding agency requires us to gather data on the gender, race and ethnicity of study participants. Please choose the 
answers that best apply. 

20. What is your gender? 

21. What is your ethnicity? 

22. What is your race? (please check ALL that apply) 

 
Your academic interests

 
Your personal background

 

Math or Applied Math
 

Physics
 

Chemistry
 

Engineering
 

Computer science
 

Other science or technical field
 

Economics
 

Other non-science field
 

no
 

yes, elementary (grades K-6 or K-8)
 

yes, secondary math (grades 6-12, 8-12, or 9-12)
 

yes, secondary in a field other than math
 

Other (please specify) 

male
 

female
 

Hispanic or Latino
 

Not Hispanic or Latino
 

American Indian or Alaskan Native
 

Asian
 

Black or African American
 

Native Hawaiian or other Pacific Islander
 

White
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On this page, we ask for some information that will enable us to match your survey responses with those in other 
surveys. The information will be unique to you but will not identify you individually. 

23. Enter the following data. Please, print neatly. 

Thank you for completing the survey! Your input is important to us, and will help us to help math instructors improve 
teaching and learning in their courses.  
 
If you have any questions, please contact us: 
 
Sandra Laursen, project director 
sandra.laursen@colorado.edu 
Marja-Liisa Hassi, research associate 
hassi@colorado.edu 

 
Assign yourself an identifier

*
FIRST two letters of your FIRST NAME

Two-digit DAY of your BIRTHDAY (01 through 31)

FIRST two letters of your MOTHER'S FIRST NAME

FIRST two letters of the TOWN where you were BORN

 
Course information

24. What is this math course? *
Number of the 

course

Section of the 

course

Name of the 

instructor

 
Survey completed
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Our research team is studying methods of improving teaching and learning in college mathematics courses, including the 
methods used in the course you are taking now. Because you are enrolled in a college math course, we would like to 
know about your own experiences in learning mathematics. This survey asks about your experiences in this course.  
 
Your participation is voluntary. You may skip questions you do not wish to answer, or choose not to participate. Your 
answers are anonymous and will not be reported in any way that may identify you individually; they will be aggregated 
with responses by other students from your course and other courses. Your instructor will not know how you answered.  
 
By completing this survey, in part or in whole, you agree that we may use this data to understand and improve the quality 
and effectiveness of mathematics instruction. We may compare your responses with your gains from the course, 
assessed by your instructor. This will be done anonymously by using the identifiers. We will not know your individual 
grades and your instructor will not know how you answered the questions in this survey.  
 
Please, mark clearly the best answer to each question. You do NOT need to fill in the bubble completely.  
 
Thank you for your candid responses! Please contact us with any questions.  
 
Sandra Laursen, study director 
Marja-Liisa Hassi, research associate 
 
Ethnography & Evaluation Research/University of Colorado at Boulder 
sandra.laursen@colorado.edu 
hassi@colorado.edu 
 
 
 
 

1. HOW MUCH did the following aspects of the class HELP YOUR LEARNING? 

 
Dear student,

 
The course as a whole

  No help A little help
Moderate 

help
Much help Great help

NOT 

APPLICABLE

The overall approach to teaching and learning in the 

course

How class topics, activities, & assignments fit together

The pace of the class

The workload of the class

The general atmosphere of the class

The course material

The mental stretch required of you

The information you were given about the class when it 

began

 

Other (please specify) 

55

66
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2. HOW MUCH did the following CLASS activities HELP YOUR LEARNING? 

3. Please comment on how this class has CHANGED THE WAYS YOU LEARN 

mathematics? 

 

4. HOW MUCH did the assignments and tests HELP YOUR LEARNING? 

 
Class activities

  No help A little help
Moderate 

help
Much help Great help

DID NOT 

HAPPEN

Listening to lectures

Studying on your own

Participating in class discussions

Participating in group work during class

Explaining your work to other students

Hearing other students explain their work

Giving presentations in front of class

Writing solutions to problems

Checking solutions to problems

Working on a computer

Examining children's mathematical work

55

66

 
Assignments and tests

  No help A little help
Moderate 

help
Much help Great help

DID NOT 

HAPPEN

Taking tests

Doing other assignments

Doing homework

The fit between class content and tests

The match between the grading system and what you 

needed to work on

The mental stretch required on tests

Preparing class presentations

The feedback you received on your written work
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5. HOW MUCH did each of the following HELP YOUR LEARNING? 

6. As a result of your work in this class, what GAINS did you make in your 

UNDERSTANDING of each of the following? 

 

Support for you as a learner

  No help A little help
Moderate 

help
Much help Great help

DID NOT 

HAPPEN

Interacting with the instructor DURING class

Interacting with the instructor OUTSIDE class

Interacting with teaching assistants DURING class

Interacting with teaching assistants OUTSIDE class

Working with peers DURING class

Working with peers OUTSIDE class

 
Your understanding of class content

  No gain A little gain
Moderate 

gain
Good gain Great gain

NOT 

APPLICABLE

The main concepts explored in this class

The relationships among the main concepts

Your own ways of mathematical thinking

How mathematicians think and work

How ideas from this class relate to ideas outside 

mathematics

How children solve mathematical problems

How to make mathematics understandable for other 

people

 

Please comment on how YOUR UNDERSTANDING OF MATHEMATICS has changed as a result of this class. 

55

66
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7. Please comment on how THE WAY THIS CLASS WAS TAUGHT affects your ability to 

REMEMBER key ideas. 

 

8. As a result of your work in this class, what GAINS did you make in the following? 

9. What will you CARRY WITH YOU from this class into other classes or other aspects of 

your life? 

 

55

66

 
Confidence, attitudes and abilities

  No gain A little gain
Moderate 

gain
Good gain Great gain

NOT 

APPLICABLE

Confidence that you can do mathematics

Comfort in working with complex mathematical ideas

Development of a positive attitude about learning 

mathematics

Ability to work on your own

Ability to organize your work and time

Appreciation of mathematical thinking

Comfort in communicating about mathematics

Confidence that you will remember what you have 

learned in this class

Persistence in solving problems

Willingness to seek help from others

Comfort in teaching mathematics

Ability to work well with others

Appreciation of different perspectives

Ability to stretch your own mathematical capacity

55

66
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10. What grade do you expect to receive in this course? 

11. What is your college major? (Check ALL that apply) 

12. Are you pursuing a teaching certification? 

13. What is your gender? 

Your expectation

 
Your background

A
 

A-
 

B+
 

B
 

B-
 

C+
 

C
 

C-
 

D
 

F
 

Math or Applied Math
 

Physics
 

Chemistry
 

Engineering
 

Computer science
 

Other science or technical field
 

Economics
 

Other non-science field
 

no
 

yes, elementary (grades K-6 or K-8)
 

yes, secondary math (grades 6-12, 8-12, or 9-12)
 

yes, secondary in a field other than math
 

Other (please specify) 

male
 

female
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14. What is your class year? 

On this page, we ask for some information that will enable us to match your survey responses at the beginning and end 
of your math classes. The information will be unique to you but will not identify you individually. 

15. Enter the following data. Please, print neatly. 

Thank you for completing the survey! Your input is important to us, and will help us to help math instructors improve 
teaching and learning in their courses.  
 
If you have any questions, please contact us: 
 
Sandra Laursen, project director 
sandra.laursen@colorado.edu 
Marja-Liisa Hassi, research associate 
hassi@colorado.edu 

 
Assign yourself an identifier

*
FIRST two letters of your FIRST NAME

Two-digit DAY of your BIRTHDAY (01 through 31)

FIRST two letters of your MOTHER'S FIRST NAME

FIRST two letters of TOWN where you were BORN

 
Course information

16. What is this math course? *
Number of the 

course

Section of the 

course

Name of the 

instructor

 
Survey completed

First-year
 

Sophomore
 

Junior
 

Senior
 

Graduate student
 

Other (please specify)
 

 



Cite as: Assessment & Evaluation Center for Inquiry-Based Learning in Mathematics (2011). (Report to 
the IBL Mathematics Project) Boulder, CO: University of Colorado, Ethnography & Evaluation Research. 

Appendix A4  
Study Methods for Connecting Observation Data and Student Survey Data 

A4.1 Introduction 

Chapter 4 was intended to explore direct connections between the classroom observation data 
and the student survey outcomes, addressing the research question: 

• How do student learning outcomes relate to the nature of the instruction they experience? 

In other chapters, we have used the labels “IBL” and “non-IBL” to gloss the broadly different 
approaches used in particular classes, comparing student groups by these campus-designated 
labels.  However, these labels hide a good bit of variation (see Section 2.3). In Chapter 4 we 
attempted to directly link the data from the classroom observations to student gains reported on 
the SALG-M post-survey.  There we discussed the principles involved in linking the observation 
data to the student self-reported gains from the surveys.  Here, we record the specific procedures 
used in sufficient detail that they could be reproduced in future studies. 

A4.2 Study Sample 

This analysis relies on two types of data—student post-course surveys and classroom 
observations—that must be collected from the same course sections in the same term.  We 
collected observation data for 43 course sections at three campuses. The details of the 
observation study sample are available in Chapter 2 (Section 2.1) and Appendix A2. 
Unfortunately, we did not obtain post-surveys from seven of the sections included in this sample.  
The details of the survey study sample can be found in Chapter 3 (Section 3.1) and Appendix 
A3. Likewise, we could not gather observation data from all sections that returned student post-
surveys. The final data set for the combined observation/survey analysis includes 30 IBL and six 
non-IBL sections, with averages representing 670 students. The Hierarchical Linear Model for 
full survey data set (see Section A4.5.2) includes 1239 student survey responses from 80 course 
sections.  

A4.3 Data Collection 

The data collection methods for the observation study are discussed in detail in Chapter 2 
(Section 2.1) and Appendix A2. The data collection methods for the survey study are detailed in 
Chapter 3 (Section 3.1) and Appendix A3. The observation data and the survey gains data pertain 
to two different units of analysis: the classroom observation data describe course sections, and 
the survey data describe individual students. To address this mismatch, we computed student 
gain averages for each course section. In the next section, we detail how the specific observation 
data composite variables were constructed and labeled. 

A4.4 Construction of Variables 

We constructed several composite variables for the purpose of identifying student-centered 
approaches in classroom activities and practices.  
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A4.4.1 Classroom Time Variables 

These are based on observers’ minute-by-minute records of what activities were conducted 
during class and who led each activity, averaged over several hours of observation of multiple 
class sessions. 

• Total percentage of student-centered time – indicates total percentage of class time spent 
on student-centered activities. This variable combines the percentage of class time spent 
on student presentation, percentage of time spent on discussion, percentage of class time 
spent on group work, and percentage of class time spent on computer-assisted learning. 

• Total percentage of student-led time – indicates total percentage of class time spent with 
an individual student or a group of students in the leadership role. This variable combines 
the percentage of time with an individual student in the leadership role, percentage of 
class time with a group of students leading the class, and the percentage of time with the 
entire class in the leadership position. 

A4.4.2 Observer Survey Ratings Variables 

Observer ratings variables are based on the observer survey ratings of the frequency of specific 
student and instructor behaviors discussed in detail in Chapter 2 (Section 2.2.7) and Appendix 
A2. We constructed four composite variables from the observer survey items based on the four 
clusters of items (factors) that emerged from the Exploratory Factor Analysis. The resulting 
composite variables use mean observer ratings for these items as reported for several separately 
observed class sections; they are discussed in detail below. 

• Student-instructor interaction: composite index that averages the ratings for seven items 
from the observer survey, indicating the frequency with which:  

o students offer ideas during class 

o students receive personal feedback on their work 

o instructors listen to students’ ideas 

o instructors give concrete feedback on students’ work 

o students ask questions 

o instructor offer help to students 

o inverse rating for instructors express their own ideas or solutions to problems. 

For the first six items included in this composite variable, a higher rating indicates a higher 
frequency of various student-instructor interactions. However, the seventh item—instructors 
express their own ideas or solutions to problems—is just the opposite in that a higher rating for 
this item indicates lower interaction with students. Thus, in order to combine it with the other 
items in the student-instructor interaction composite variable, it was necessary to reverse the 
direction of this scale. Therefore, we subtracted the “instructors express their own ideas or 
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solutions to problems” ratings from 5, the highest rating possible, arriving thus at the rating for 
“instructors do not express their own ideas or solutions to problems.” 

• Student-student interactions:  composite index that averages the mean frequency ratings 
for three items all related to students’ interaction with each other: 

o students review or challenge others’ work 

o students work together with others 

o students get help from others 

• Students’ role in  setting course pace and direction:  composite index that averages the 
mean frequency ratings for two items about course pace and direction: 

o student set pace or direction of the class time 

o inverse rating for instructors set pace or direction of the class time 

Similarly to the student-instructor interaction, one item in this index has the opposite direction to 
the orientation of the index. While the first item in this scale points to more student contribution 
in setting the direction of the course, the second item indicates more instructor and thus less 
student contribution in these matters. Thus, we reversed the direction of the second item, by 
subtracting its rating from the highest rating of 5. This provided us with rating for “instructors do 
not set pace or direction of the class time.”  The average of both items points to students’ active 
role in setting the pace and direction of the class. 

• Instructor behaviors:  composite index that averages ratings for two instructor behaviors: 

o instructors establish a positive atmosphere 

o instructors summarize or place class work in a broader context 

A4.5 Data Analysis 

A4.5.1 Correlation Analysis 

To check for a quantifiable relationship between the classroom observation variables and the 
section means for student gains, we used the non-parametric Spearman correlation test. As most 
of our data in this study was not normally distributed, according to the Shapiro-Wilk test of 
normality, using a non-parametric correlation test is the most appropriate choice, since it is 
specifically suited for non-normally distributed data.  We used SPSS (version 18) to compute the 
section means for student gains responses and then performed statistical analyses on the resulting 
course-level data. 

We used scatter plot function in SPSS to obtain visual representations of the relationships 
between various classroom observation variables and section means for different student gains. 
We used the Add Fit Line option in the chart editor to experiment with linear, quadratic, and 
cubic approximations for the data and add them to the scatter plots. We also checked the 
statistical significance of linear, quadratic, and cubic approximations of the data by using the 
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Curve Estimation function in SPSS. Besides performing a statistical test, this function also 
provided the coefficient of determination (R2) for each curve estimation, indicating the 
percentage of variability in the data that is explained by each curve. 

A4.5.2 Hierarchical Linear Model for Full Survey Data Set. 

We used a Hierarchical Linear Model to assess the relative impact of participation in IBL 
courses on self-reported student gains.  Using this type of model assesses the relative influence 
of student characteristics such as gender and class year, and of course characteristics (including 
participation in the IBL program) on self-reported gains in the course.  

The Hierarchical Linear Model follows the standard intercept model with student and course 
level variables. The model appropriate for analysis is described below.  The general form of the 
equation is: 

Y = β01 + β1X1 + β2X2 +…+ β6X5+ εi 

β01 = γ00 + γ01W1 +…+ γ0kWk + µ0i 

β11 = γ11W1i 

Where β01 is the level 1 intercept, βi are level 1 regression weights, Xi are level 1 variable scores, 
γ00 is the level 2 intercept,  γI are level 2 regression weights, and Wk are level 2 variables scores.  
εi and µ0i are error terms. Y is the outcome variable that is being predicted; in this case learning 
gains.  Level 1 refers to student-level variables, and Level 2 to course-level variables. 

We formed factor variables from items loading greater than 0.4 on Varimax rotated factors using 
a Principal Components extraction.  Factors scores were then assessed for independence from 
each other: only relatively independent factors with less than 0.3 correlation between factors 
were used in the analysis. The composite variables with low internal reliability were also 
excluded from the model. 

The outcome variable for the model is a composite variable of weighted factor scores for five 
learning gains items from the SALG-M post-survey, all related to cognitive gains in 
understanding mathematical concepts, thinking, and relationships: the main concepts explored in 
class, the relationships among the main concepts, students’ own ways of mathematical thinking, 
how mathematicians think and work, and how ideas from this class relate to ideas outside 
mathematics.  The composite variable showed high internal reliability at α = 0.88.  The outcome 
variable is defined such that it has a mean of 0 and Standard Deviation of 1.   

Independent variables included student demographics variables of gender and college class level. 
Course level variables included participation in the IBL program and participation in pre-service 
teaching courses. The coding of the variables is detailed in Table A4.1. 
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Table A4.1: Student-Level and Course-Level Variables 

Student Level Coded 
Class standing: 

First Year 
Sophomore 
Junior 
Senior 
Graduate 

No=0 
Yes=1 

Gender Male = 1 
Female = 2 

Ethnicity Hispanic = 1 
Not Hispanic = 2  

Course Level Coded 
IBL course IBL = 1 

Non-IBL = 0 
Pre-service teacher 
course 

Pre-service 
course = 1 
Not a pre-
service course = 
0  

 
The means and standard deviations for the outcome factor variable at different levels of the 
independent variables are presented in Table A4.2. Table A4.2 also includes sample sizes for 
different levels of the independent variables. 

Table A4.2: Student Gains Factor Variable by Levels of Independent Variables 

Outcome Student Gains Factor Variable Independent Variables 
Mean Standard deviation N 

Non-IBL -0.11 0.90 366 
IBL 0.05 1.03 873 

IBL 

(Difference) 0.16   
No 0.10 0.91 953 
Yes -0.35 1.18 286 

Pre-service 
teacher course 

(Difference) 0.45   
Female -0.13 1.05 647 
Male 0.14 0.92 575 

Gender 

(Difference) 0.27   
First-year 0.11 0.89 438 
Sophomore 0.17 0.94 172 
Junior -0.18 1.08 277 
Senior -0.09 1.08 299 

Class year 

Graduate 0.45 0.63 15 
 

A4.6 Hierarchical Linear Model for Combined Observation-Survey Data Set 

We constructed a second Hierarchical Linear Model with the intention to include the classroom 
observation variables. This model examines the effect of three course-level variables on student 
outcomes:  total percentage of student-centered time, plus the previously tested indicators of IBL 
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and pre-service courses.  This model does not use any student-level variables (such as gender and 
class year) as predictors of outcomes.   

For the second model, the means and standard deviations for the outcome factor variable at 
different levels of categorical independent variables are presented in Table A4.3. The table also 
includes the sample sizes for various levels of the independent variables.  

Table A4.3: Student Gains Factor Variable by Levels of Categorical Independent Variables 

Student Gains Outcome Factor Variable Student Level Independent Variables 
Mean Standard Deviation N 

Non-IBL -0.25 0.96 177 
IBL -0.08 1.02 493 

IBL 

(Difference) 0.17   
Not Pre-service -0.03 0.91 428 
Pre-service -0.31 1.13 242 

Pre-service 
teacher course 

(Difference) 0.29   
 
On the other hand, Table A4.4 includes descriptive statistics for the continuous independent 
variable in this model:  total percentage of student-centered time. 

Table A4.4: Descriptive Statistics for Percentage of Student-Centered Time 

Course-Level Independent Variable Mean Standard Deviation N 
Percentage of class time spent on 
student-centered activities 

51.42 28.43 39 

 

A4.7 Conclusions and Limitations 

This type of analysis requires a very large volume of data, collecting which is a very labor-
intensive task.  Even with over 1200 student survey responses and 300 hours of observation, the 
size of the data set is on the very edge of what is needed to extract good correlations or to 
construct a complete, two-level hierarchical model.  The cost and effort required to document 
these linkages are very high and should be seriously considered when undertaking such type of 
analysis. 



Appendix A5: Study Methods for Mathematics Tests 

A5.1 Introduction 

In addition to students’ own reports of their learning gains from a mathematics course (Ch. 3, 
Appendix A3), we gathered information from tests about possible changes in students’ content 
knowledge and mathematical thinking during a college mathematics course. The first test, called 
Learning Mathematics for Teaching (LMT), offered us well-validated instruments for measuring 
pre-service teachers’ cognitive gains from an IBL mathematics course. The other test, nicknamed 
the Proof Test, measured students’ ability to evaluate a mathematical argument and determine its 
validity (see Exhibit E5.1). Using these two tests we gathered two mid-sized data sets on the 
development of students’ mathematical knowledge and thinking. These studies addressed our 
research questions: 

• How do students’ mathematical knowledge and thinking change during an IBL college 
mathematics course?  

• How do the changes differ by student groups, especially between IBL and non-IBL 
students? 

• How do the changes align with results from other measures of students’ learning gains? 

We also used one more method to get comparative data on students’ learning gains during a 
mathematics course. We refer to this as the Instructor Ratings instrument (see Exhibit E5.2). We 
designed a rubric that asked instructors to assess their students’ learning from their course by 
rating the students on both their initial expertise in mathematics (as a check on instructors’ 
perceptions) and overall learning gain in mathematics from the course. Because these data were 
mainly used to check the validity of our other measures of student mathematics learning and 
gains, results from this data set are reported in this Appendix.         

A5.2 Learning Mathematics for Teaching (LMT) Tests  

A5.2.1 LMT Tests 

We used well-validated instruments, called Learning Mathematics for Teaching (LMT) tests, in 
studying pre-service teachers’ gains in mathematical knowledge from an IBL mathematics 
course. The LMT instruments have been developed and validated by a team at the School of 
Education, University of Michigan, for assessing professional development courses for K-12 
mathematics teachers (Hill, Schilling & Ball, 2004). Their project investigates the mathematical 
knowledge needed for teaching, and how such knowledge develops as a result of experience and 
professional learning. The LMT tests reflect both the mathematical content that teachers teach 
and the special knowledge they need to teach that content to students. The LMT measures are not 
designed to make statements about individuals’ mathematical knowledge but rather to compare 
the mathematical knowledge of groups of teachers (such as those participating in particular 
courses) and how their knowledge develops over time.  
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The test items are designed to measure the development of mathematical knowledge needed for 
teaching: solving problems, using definitions, and identifying adequate explanations (Hill, 
Schilling & Ball, 2004). Each item and form has been piloted with over 600 elementary teachers, 
yielding information about scale reliability and item characteristics. Some examples of released 
LMT test items can be found at the project’s website (Learning Mathematics for Teaching, n.d.). 
After participating in a training session provided by the LMT developers, we signed a terms of 
use contract for using the instruments, which helps to protect the utility and validity of the items 
by keeping them confidential except for research and evaluation purposes (for example, the items 
may not be used for teaching).  

For this study, we chose a pre-test and related post-test on elementary Number Concepts and 
Operations in order to study changes in pre-service teachers’ mathematical knowledge during an 
IBL course. The pre-test consisted of 24 and the post-test of 23 items. Standardized IRT (item 
response theory) scores provided by the developers were applied to match the results between 
pre-test and post-test. We use these scores in analyzing our data and reporting results. 

We added a separate section at the end of a pre- and post-test with demographic questions about 
students’: 

• gender, 

• class year, 

• prior teaching experience (if any), in total number of years, 

• grade level of prior mathematics teaching experience (if any), 

• intended grade level for future mathematics teaching. 

Items on teaching experience were included because some graduate students in the study might 
be completing teacher certification programs after some prior teaching experience. 

We verified the course, section and instructor for each student. In addition, we asked students to 
establish an identifier that helped us to match students’ pre- and post-test answers and also their 
survey responses.  

A5.2.2 Study sample for the LMT Test 

Data from the LMT measures were gathered from students taking targeted IBL courses for pre-
service teachers at two campuses. Altogether, we got pre- and post-test data from pre-service 
teachers in several distinct two-course sequences preparing teachers for elementary and middle 
school, elementary, or secondary teaching. In all, six data sets from three course sequences were 
received during the two academic years 2008-2010. No comparative (non-IBL) sections of these 
courses were offered at any of the campuses. The results reported in Chapter 5 are based on data 
from the 109 pre-service teachers who took both the pre-test and post-test at two campuses. The 
sample is described in Table A5.1, showing demographic characteristics of students in the three 
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main groups, divided by the target audience (elementary, elementary/middle, or secondary) of 
the courses in which the students participated.        

 
Table A5.1: LMT Test Sample Teachers by Gender, Ethnicity, and Race  

Indicator Group 1 
Elementary  

Group 2 
Elementary/middle  

Group 3 
Secondary 

Total 

 Count % Count % Count % Count % 
   Gender        
Women 27 100 62 97 9 50 98 90 
Men 0 0 2 3 9 50 11 10 
 27 100 64 100 18 100 109 100 
    Ethnicity 
Hispanic or Latino 6 23 4 7 1 6 11 11 
Not Hispanic or 
Latino 

20 77 57 94 15 94 92 89 

 26 100 61 100 16 100 103 100 
    Race 
Asian  4 20 3 5 1 10 8 9 
Multiracial 2 10 5 8 1 10 8 9 
White 14 70 53 87 8 80 75 82 
 20 100 61 100 10 100 91 100 

 

Table A5.1 indicates that most of the pre-service teachers who took both the pre- and post-test 
are women (90%). We had only 11 men in our sample—a typical distribution of gender among 
teachers. In particular, all the elementary teachers were women and only two in Group 2 
(elementary/middle school) teachers were men. Half of the secondary school teachers were men, 
but their number was still low in our sample overall.  

Table A5.1 also shows that only 11% (11) of the pre-service teachers in our sample overall were 
Hispanic or Latino, although their proportion was a bit larger among elementary teachers (23%). 
Most (82%) of the students were white and the number of students reporting other races was 16 
(18%). Again, this shows the sample had little variation in students’ demographic characteristics.    
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Table A5.2: LMT Test Sample by Academic Status and Major Subject 

Indicator Group 1 Group 2 Group 3 Total 
 Count   % Count  % Count   % Count  % 
 Academic status       
Sophomore 1 4 2 3 2 11 5 5 
Junior 8 30 53 83 3 17 64 59 
Senior 18 67 6 9 13 72 37 34 
Graduate, other 0 0 3 5 0 0 3 3 
 27 100 64 100 18 100 109 100 
  Major subject 
Math or applied 
math 

0 0 14 23 14 88 28 27 

Science, 
engineering, 
computer science 

3 12 8 13 1 6 12 12 

Non-science 23 89 40 65 1 6 64 62 
 26 100 62 100 16 100 104 100 

 

Table A5.2 displays pre-service teachers’ academic status and college majors. Typically, these 
students were well along in their academic careers.  Only five were second-year students and all 
the others were juniors (59%) or seniors (34%). Slight variation appeared between the three 
groups. Most of the elementary and secondary school teachers were seniors (67%), whereas 
nearly all the elementary/middle school teachers (83%) were juniors.   

The distribution of the elementary and middle school teachers’ college majors was typical. Most 
of them had a non-science (education) as their major subject (89%, 65%), whereas nearly all of 
the secondary school teachers (88%) reported a major in Mathematics or Applied Mathematics.  

A5.2.3 Methods for Administering and Analyzing the LMT Test 

Both the pre- and post-test were administered as a paper-and-pencil test in class by the IBL 
project coordinators at two campuses. The coordinators were provided with written instructions 
for administering the tests and preserving students’ confidentiality. The written tests were 
returned to researchers, coded, and the data entered into separate SPSS data files by trained 
student assistants. Finally, the data on students’ responses to the test items were matched with 
their responses on our survey instruments (Ch. 3). A smaller sample set of students’ LMT test 
results was matched with instructor ratings (see Section A5.4).  

The raw scores on the pre- and post-test were converted to standardized IRT scores according to 
a scoring table provided by the developers of the tests. All the analyses were performed by using 
these standardized scores that also enabled matching of students’ pre-test scores to their post-test 
scores. To report results, we also apply the IRT scoring table in illustrating average score gains 
in mathematical knowledge from actual LMT test scores. In addition to descriptive statistics, we 
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applied correlational analysis and parametric tests (independent and pairwise t-tests, ANOVA) to 
analyze the data. Stepwise regression was used to study the extent to which LMT test score gains 
were explained by other measures of mathematical knowledge and learning.  

A5.3 Proof Test 

We used another test, which we refer to as the “Proof Test,” to measure students’ mathematical 
knowledge and thinking. This test studied students’ ability to evaluate a mathematical argument 
and determine its validity. Test data were gathered from interviews and paper-and-pencil tests.      

A5.3.1 Proof Test instrument 

The proof test was based on items on evaluating mathematical arguments that were designed by 
Weber (2009). We reformulated the original test into a paper-and-pencil test. Wording of some 
of the claims was clarified with a few additional words suggested by a mathematics professor. 
We also numbered the lines in the arguments so that students could reference specific lines in 
their comments. In order to obtain equal numbers of answers to each argument, we used two 
tests, forms A and B, which were identical except for the order of the arguments.    

The one-hour test included nine of the ten original arguments from Weber (2009) on algebra, 
number theory and calculus (see Exhibit A5.1). Three of these arguments were valid and six 
arguments had some flaws for students to detect. Each argument was followed by structured 
questions to probe: 

• Did students understand the argument? 

• To what extent were students convinced by the argument? 

• To what extent did students find it to have explanatory power? 

• Did students consider the argument to be a mathematical proof?  

Students answered the first three questions on a scale between 1 (strong disagreement) and 5 
(strong agreement). On the fourth question, students assessed whether an argument was a proof 
(fully rigorous, not fully rigorous, not a proof, don’t understand). At the end of this question, we 
requested students’ explanations for their reasoning behind their decisions (see Exhibit A5.1). 

A cover sheet for the proof test gathered demographic data on students, including ethnicity, race, 
gender, class year, academic major, and whether or not students planned to become a K-12 
teacher. We also verified the course sections in which students were enrolled, the number of their 
college mathematics courses they had taken before and during or after the target course, and their 
expectations for their course grade (see Exhibit A5.1).      

A5.3.2 Study sample for Proof Test 

The first data set was gathered from one-on-one problem-solving interviews. Later, the test was 
revised into a paper-and-pencil form that was administered either in class to all students, or out 
of class to volunteers. In the interviews, students were asked to verbally explain the reasoning 
behind their answer about each argument, and these responses were recorded. On the paper-and-
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pencil test, students wrote down their reasoning about whether or not each argument was a 
mathematical proof. Both the interviews and the paper-and-pencil tests took an hour.  

In all, we obtained tests from 42 IBL students (27 men, 15 women) and 35 non-IBL students (19 
men, 16 women) at the end of a mathematics course. Of these, 24 students (14 IBL, 10 non-IBL) 
took an interview and 53 students (28 IBL, 25 non-IBL) a paper-and-pencil test. Most of the 
students were volunteers (63) who were paid a modest honorarium for participating. Only 14 
students took an in-class post-test. In addition, we got pre/post-test data from one section (20 
pre-, 14 post-tests). Table A5.3 displays demographics of the students, for IBL and non-IBL 
students separately. 

Table A5.3: Proof (Post-) Test Sample by Gender, Ethnicity, Race, and Course Type.  

Indicator IBL students Non-IBL students Total 
 Count % Count % Count % 
   Gender      
Women 15 36 16 46 31 40 
Men 27 64 19 54 46 60 
 42 100 35 100 77 100 
    Ethnicity 
Hispanic or Latino 3 8 2 6 5 7 
Not Hispanic or 
Latino 

37 93 33 94 70 93 

 40 100 35 100 75 100 
    Race 
Asian  14 34 14 44 28 38 
White 25 61 16 50 41 56 
Other race 2 5 2 6 4 6 
 41 100 32 100 73 100 

 

The proportion of men among IBL students exceeded that among non-IBL students. Otherwise, 
the sample looked like our other student samples. Only five students’ ethnicity was Hispanic or 
Latino, and only 4 students reported a race other than white or Asian. However, one third of IBL 
but 44% of non-IBL students were Asian.    
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Table A5.4: Proof (Post-) Test Sample by Course Type and Academic Status.  

Indicator IBL students Non-IBL students Total 
 Count % Count % Count % 
 Academic status     
First-year 0 0 0 0 0 0 
Sophomore 7 18 7 21 14 19 
Junior 13 33 14 41 27 37 
Senior 20 50 13 38 33 45 
Other 0 0 0 0 0 0 
 40 100 34 100 74 100 
  Major subject 
Mathematics 30 83 26 87 56 85 
Natural science  1 3 1 3 2 3 
Math/Natural 
Science 1 3 2 7 3 5 

Non-science 0 0 0 0 0 0 
Math/Non-science 4 11 1 3 5 8 
 36 100 30 100 66 100 

 
According to instructors, our target courses represented an introductory or mid-level proof-based 
course. But, in practice, we found that many students had substantial proving experience in prior 
courses. This is also reflected in Table A5.4: most of the students were seniors or juniors. Nearly 
all were also pursuing a math major.   

A5.3.3 Methods for Proof Test 

We used descriptive statistics and parametric (T-test) or non-parametric (Mann-Whitney) tests to 
examine differences between student groups in responses to the three first structured questions 
(see Exhibit A5.1). Table A5.5 displays averages of students’ ratings on the three structured 
questions, for each argument separately.     
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Table A5.5: Average Student Ratings of Single Arguments 

Course type 

Argument IBL Non-IBL 

 Understanding Conviction Explanation Understanding Conviction Explanation 

Valid arguments  

Arg 1 4.8 4.7 4.3 4.7 4.7 4.5 

Arg 3 4.6 4.4 4.3 4.5 4.3 4.2 

Arg 4 4.4 4.2 4.4 4.2 4.0 4.1 

Invalid arguments 

Arg 2 4.8 4.5 4.4 4.8 4.4 4.3 

Arg 5 4.3 2.1 1.9 4.4 2.2 1.8 

Arg 6 4.6 3.3 3.4 4.7 3.5 3.5 

Arg 7 4.3 2.1 2.1 4.8 2.4 2.4 

Arg 8 4.3 3.3 3.3 4.5 3.5 3.5 

Arg 9 4.4 3.5 3.4 4.1 3.1 2.9 
 
Scales (1-5):  

Understanding: 1=not understand fundamental details to 5=understand completely. 
Conviction: 1=not convinced at all to 5=completely convinced. 
Explanation: 1=does not explain to 5=really illuminates why it is true. 

 
Differences in frequency distributions between student groups in answers to the fourth question 
were compared by using a non-parametric test (Chi2). 

In addition to the four structured questions, we analyzed students’ written reasoning about each 
argument. These data came from 53 students (28 IBL, 25 non-IBL). These qualitative data were 
coded and analyzed qualitatively according to eight main themes related to the nature of 
students’ criteria for assessing the arguments. The categories were derived from preliminary 
analysis of a subset of written comments and finalized using inductive content analysis (Miles & 
Huberman, 1994; Strauss & Corbin, 1990) of the complete set of written comments. Table A5.6 
presents the eight main themes and the 29 sub-categories under the main themes, and the 
frequencies of student comments in each category.  
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Table A5.6: Frequency of Criteria Used in Written Comments about Reasoning 

Subcategory Number of students reporting  Main category 

Description once 2-3 times ≥4 times 

Understanding Some step(s) or the whole argument are/are not 
understandable 19 8 - 

False statement Makes false statement about an argument 18 2 - 

Lacks justification 16 19 1 

Uses empirical/perceptual evidence 8 - - 

Experience: have seen the argument/proof before 4 - - 

Inadequate 
reasoning 

An argument is complete 4 - - 

Steps are acceptable/not acceptable 13 7 - 

All steps are included/not included 15 1 - 

Use of steps as 
criterion 

Proved step by step 5 1 - 

Theorems, formulas included/not included  15 5 1 
Written/not written formally 3 - - 
External structure is correct/incorrect 16 6 1 

Mathematical rules, concepts, terms are 
included/not included 19 3 - 

Formalism 

Doesn’t remember the concepts, terms, 
definitions, proof 1 1 - 

Requests (more) explanation, reasoning 20 16 5 
Level of explanation/reasoning is assessed 8 4 - 
Good explanation/reasoning in the argument 14 7 - 
Visual aid is used/not used 8 1 - 

Quality of 
explanation or 
reasoning 

The steps are clearly stated/explained 5 1 2 

Lack of/rigor of steps found in an argument 25 18 2 
Critical about a claim/presupposition  8 3 - 
Detects the flaw(s) in an argument 18 20 2 
Does not accept a picture/graph/equation as a 
rigorous way to prove 9 2 - 

Does not accept empirical evidence  30 2 - 

Rigor 

Suggests a more rigorous way to prove 10 1 - 
Beauty, appearance, ease of argument as a whole 11 6 - 
Style of (presentation or writing in) an argument 20 13 1 
Logic of argument as a whole 11 7 1 

Assessment of 
an argument 
as a whole 

Subject/mathematical level of an argument 11 2 - 
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A5.4 Instructor Ratings of Student Expertise 

We conducted a small experiment using instructor ratings of students’ mathematical expertise 
and learning, as one more method to get comparative data on IBL students’ learning gains during 
a mathematics course. This is called the Instructor Ratings instrument.  

A5.4.1 Instructor Ratings instrument 

We designed a rubric that asked instructors to assess their students’ learning from their course by 
rating the students on both their initial expertise in mathematics and their overall learning gain 
from the course. Instructors gave their answers in a prepared Excel spreadsheet (Exhibit 5A.2). 

We asked instructors to give two ratings for each student: their overall level of expertise in 
mathematical knowledge and thinking at the start of the course, and overall gain or improvement 
in mathematical knowledge and thinking by the end of the course. That is, we asked instructors 
to distinguish students' incoming ability from their learning in their course. The instructors gave 
their ratings on a scale between from 5 to 1: very high, high, moderate, low, very poor or 
strongly lacking (see Exhibit E5.2).  

A5.4.2 Study sample for Instructor Ratings 

The sample on instructor ratings is based on data from four sections at one campus. We asked the 
campus coordinators to establish an identifier for each student that was later matched with the 
other data sets from these students. Students in two sections were math-track students and the 
two other sections represented courses for elementary/middle school pre-service teachers. 
Instructors rated students’ mathematical expertise at the end of a course. In all, we matched 
instructor ratings from 27 math-track students and 37 pre-service teachers to the other data sets. 

A5.4.3 Methods for Instructor Ratings 

We compared data from the instructor ratings to data on the same students’ learning gains from a 
mathematics course as measured by the SALG-M, using correlational analysis. Descriptive 
statistics and parametric (independent and paired T-test, ANOVA) or non-parametric tests (Chi2) 
were used to study subgroup differences in initial mathematical expertise and gains in 
mathematical expertise.  

A5.4.4 Results from Instructor Ratings 

Table A5.7 displays frequencies for the instructor ratings, for math-track students and pre-service 
teachers separately. The two IBL student groups differed from each other. On average, pre-
service teachers’ (M=3.4) rated initial mathematical expertise exceeded that of math-track 
students (M=2.6, p<0.01). But math-track students’ (M=3.4) rated gains were higher than that of 
pre-service teachers (M=2.3, p<0.001). Also, comparisons between initial expertise and gain in 
expertise showed a difference between these two student groups. While there was a clear 
improvement in math-track students’ rated mathematical expertise (p<0.001), pre-service 
teachers’ gains in mathematical expertise were rated clearly lower (p<0.001) than their initial 
mathematical expertise. While 48% of math-track students had high or very high rated gain in 
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mathematical expertise during an IBL course, only 5% of pre-service teachers’ gain in 
mathematical expertise was rated at this level. 

Table A5.7: Instructor Ratings by Course Type 

Math-track 
students 

Pre-service 
teachers Total 

Instructor rating 
Count % Count % Count % 

Initial expertise  27 100 37 100  100 

very high - - 5 4 5 8 

high 2 7 15 41 17 27 

moderate 11 41 10 27 21 33 

low 14 52 5 14 16 25 

very poor - - 5 5 5 8 

Gain in expertise  27 100 37 100 64 100 

very high 3 11 1 3 4 6 

high 10 37 1 3 11 17 

moderate 11 41 11 30 22 34 

low 2 7 18 49 20 31 

very poor 1 4 6 16 7 11 
 

A5.5 Reliability and Validity of Mathematics Tests  

A5.5.1 LMT Tests 

The Learning Mathematics for Teaching (LMT) instruments are carefully developed and well-
validated instruments (Hill, Schilling & Ball, 2004). The test items are designed to measure the 
development of mathematical knowledge needed for teaching: solving problems, using 
definitions, and identifying adequate explanations (Hill, Schilling & Ball, 2004). Each item and 
form has been piloted with over 600 elementary teachers, yielding information about scale 
reliability and item characteristics. Our sample from two campuses was also large enough to 
detect real gains and differences among students. However, because IBL methods were used in 
all sections of the courses targeted to pre-service teachers that were available for this study, we 
had no opportunity to compare student learning with that in a traditionally taught course.  

At the start of the course, pre-service teachers reported their score (1-5) on the AP Calculus test 
(if they had taken it), their current estimated undergraduate GPA, and their expected grade in the 
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present course. They also reported their expected course grade at the end of the two-term 
sequence. We checked to see how well these other academic measures correlated with students’ 
LMT scores. Table A5.8 summarizes findings on these correlations.  

Table A5.8: Correlations of Students’ LMT Scores with Other Achievement Indicators 

LMT score 
component 

Expected 
course 
grade  

at start 

Expected 
course 
grade  
at end 

AP 
Calculus 

score 
(1-5) 

at start 

Estimated 
GPA 

at start 

Cognitive 
gains 

(SALG-
M) 

Affective 
gains 

(SALG-
M) 

Instructor 
rating: gain 

in math 
expertise 

Pre-test  + ** + ** +  +* + ** + 

Post-test + ** + ** + **   + * + 

Score gain + + +     

* p< 0.05, ** p< 0.01 

Students’ estimated undergraduate GPA did not correlate with the LMT test scores. This is 
understandable since these students’ undergraduate studies were not usually focused on 
mathematics; their GPA represents a broad range of courses and not mathematical ability. 
However, all the three LMT test measures—pre-test, post-test, and test score gain—did correlate 
positively with students’ AP test scores. This result shows that the LMT tests measured 
mathematical knowledge that was somewhat related to that measured by AP Calculus tests, even 
though the LMT test content addressed number and operations, not calculus. However, this 
finding is limited:  we had AP test data from just 36 students, who came mostly from one 
university, and only the correlation between AP test score and LMT post-test score was 
statistically significant (p<0.01). 

Students’ expected grades reported at both the start and end of their course correlated positively 
with both LMT pre- and post-test IRT scores (p<0.01). But the positive correlations between 
expected grades and students’ test score gains were weaker. In general, students who expected a 
higher grade in the course tended to earn higher LMT scores and to make greater LMT test score 
gains, but this latter relation was not statistically significant. In other words, students who 
thought they would get a good grade did get better test scores, but their expected grade was not 
well linked to their LMT test score growth. 

We also examined students’ LMT score gains in comparison with their self-reported cognitive, 
affective, and social gains from the SALG-M survey instrument (Ch. 3). Students’ self-reported 
gains correlated positively with the LMT pre-test scores, while LMT post-test scores were 
positively related only to gains in confidence (p<0.05) and positive attitude (p<0.01). However, 
students’ self-reported gains were not generally related to LMT test score gains. But among 
those students who started with the lowest initial LMT scores, LMT test score gains were 
positively (but not statistically significantly) related to cognitive, affective and social learning 



Appendix A5:  Methods for Mathematics Tests A5-13 

 

gains. That is, students’ LMT score gains were consistently reflected only in the self-reports 
from students with low pre-test scores.  

For a subset of students, we compared LMT test score gains with instructor ratings of students’ 
gain in mathematical expertise during an IBL course. No direct correlation appeared between 
instructor ratings of students’ gain in mathematical expertise and LMT score gains. However, 
instructor ratings of students’ expertise in the beginning of a course were (statistically 
significantly) positively related to both LMT pre- and post-test scores, and slightly to their LMT-
test gain scores. That is, the instructor’s assessment of initial mathematical expertise was 
consistent with LMT pre-test and post-test scores; instructors could identify stronger or weaker 
students overall. But the instructor was a less successful judge of learning as measured by LMT 
score gains. This is a similar result to the relationship between instructors’ assessment of gains in 
mathematical expertise and students’ self-assessed grade, in that students and instructors both 
judge relative performance with some accuracy, but do not accurately predict learning. 

A5.5.2 Proof Test 

The proof test was intended to measure students’ ability to assess mathematical arguments on 
algebra, number theory and calculus. It was based on items on evaluating mathematical 
arguments that were designed and previously tested by Weber (2009). After gathering and 
analyzing proof test data from individual student interviews, we reformulated the original test 
into a paper-and-pencil test that was further reviewed by a mathematics professor. Students were 
provided with an opportunity to offer written feedback or additional comments on the arguments. 
Both the student interviews and written test sheets indicated that students did not have difficulty 
in understanding the questions or goals of the proof test. However, the proof test sample was not 
the same as the samples from our surveys. Thus, we were unable to compare results from proof 
test with other indicators of student learning or gains.  

Our ability to draw strong conclusions is limited by our sample of students. The students who 
volunteered to take the proof test were strong mathematics students, based on their self-reported 
grades and high numbers of prior mathematics courses taken. We surmise that differences in the 
responses and reasoning of IBL vs. non-IBL students are less easily detected among this group 
than among lower-achieving or less experienced mathematics students. Thus, while the test itself 
seems to be sensitive to differences in students’ understanding, our sample is not optimized to 
detect group differences that might result from IBL instruction focused on proof processes. 
Moreover, this particular test is likely to be more sensitive in “introduction to proof” courses 
where enrollment is controlled or sequenced in such a way as to assure that most students have 
relatively little prior proof experience.  In this sample, many students had proof experience 
already, and we cannot rule out that the test measured expertise developed in earlier courses. 

A5.5.3 Instructor ratings 

We used instructor ratings in order to get comparative data on IBL students’ learning gains 
during a mathematics course. We checked to see how well initial expertise and gains in expertise 
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correlated with each other and how these instructor ratings correlated with other indicators of 
mathematical knowledge or academic gains. Because the patterns in instructor ratings for math-
track students and pre-service teachers differed (see section A5.4.4), we studied these relations 
within the two student groups separately. Table A5.9 summarizes findings from the 
nonparametric (Spearman) correlations between mathematical expertise and other indicators of 
student knowledge or learning. 

Table A5.9: Correlation of Mathematical Expertise with Other Performance Indicators, by 
Student Group 

Instructor rating 
(1-5) 

Initial 
expertise 

Expected 
course grade  

at start 

Expected 
course grade  

at end 

AP Calculus 
score  

at start 

Estimated 
GPA 

at start 
Math-track students 

Initial expertise   + + ** + + 
Gain in expertise  + + + - + 

Pre-service teachers 
Initial expertise   + ** + ** + * + * 
Gain in expertise  -*   - + 

* p< 0.05, ** p< 0.01 

Instructor ratings of initial mathematical expertise were somewhat consistent with students’ 
mathematical performance level as indicated by their self-reported AP Calculus test score and 
GPA level at the start of a course. This applied more clearly to the ratings by the pre-service 
teachers’ instructor than to those of the instructor of the math-track students. Moreover, ratings 
of initial mathematical expertise were consistent with both the grade expectations of both student 
groups at the start and end of a course. Students who expected a higher course grade were rated 
higher in mathematical expertise by their instructor, and the opposite was true for students who 
had lower course grade expectations.  

However, in courses for pre-service teachers, the instructor’s ratings of students’ gains in 
mathematical expertise did not correlate with students’ grade expectations at the end of a course . 
Similarly, in math-track courses, the correlation between the instructor-rated gains in expertise 
and students’ own grade expectation at the end of a course was only slightly positive. That is, 
students’ own expectations of their success in an IBL course did not match with their instructors’ 
ratings of their learning gains.  This may be an accurate assessment of the situation, if grades are 
seen by both parties to reflect achievement rather than learning. 

Among pre-service teachers, initial mathematical expertise (as assessed by the instructor) was 
positively related to all other indictors of knowledge or gains. That is, instructor ratings were 
consistent with students’ own expectations and the external performance indicators of AP test 
scores and estimated GPA at start of an IBL course. Moreover, the negative correlation between 
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pre-service teachers’ initial expertise and gain in expertise indicted that instructor ratings of gain 
tended to be higher for students who started with lower mathematical expertise. Further analysis 
by student groups showed that, on average, those pre-service teachers who started with high or 
very high initial expertise got lower ratings in gain in expertise than other pre-service teachers 
(p<0.05).  Instructors saw these students as initially strong, therefore making lower gains.  Also 
pre-service teachers’ AP test score correlated slightly negatively to their instructor-rated gain in 
mathematical expertise. These results are consistent with other findings on pre-service teachers 
(see Section 5.2.3): weaker students at start of an IBL course may gain more than students with 
stronger mathematical background. 

In contrast, among math-track students, instructor ratings of students’ gains in mathematical 
expertise correlated slightly positively with their ratings of initial expertise. That is, students who 
started with stronger mathematical expertise also tended to gain more during an IBL course. But, 
unlike the result for pre-service teachers, the correlation was not statistically significant for math-
track students. Overall, instructors seemed less successful in assessing learning during an IBL 
course than they were in assessing the initial level of students’ mathematical expertise.  

We also examined correlations between instructor-rated mathematical expertise and students’ 
self-reported learning gains (SALG-M, Ch 3). Table A5.10 displays the results of the 
nonparametric (Spearman) correlations. 

Table A5.10: Correlations of Gain in Expertise with Learning Gains (SALG-M). 

* p< 0.05, ** p< 0.01 

IBL students’ self-reported gains were not generally related to their initial mathematical 
expertise, as rated by their instructor. But students’ instructor-rated gains in mathematical 
expertise were modestly related to their self-reported learning gains. Overall, students who had 
higher gains in mathematical expertise, as rated by their instructor, also tended to self-report 
higher gains in understanding concepts and mathematical thinking and problem-solving. They 
also tended to report higher affective learning gains. Students’ gains in collaboration did not 
relate to their gain in mathematical expertise. Rather, higher instructor ratings in gain in 
mathematical expertise were slightly negatively related to students’ self-reported gain in 
application of mathematical knowledge.  

These results indicate that students’ own assessments of learning were somewhat consistent with 
their instructor’s ratings of their gains in mathematical expertise during an IBL course. However, 
the correlations were slight and mostly applied to students with initial poor to moderate 
mathematical expertise.  

Instructor rating 
(1-5) 

Mathematical concepts & 
thinking 

Application Affective 
gains 

Social 
gains 

Initial expertise     
Gain in expertise + - +  
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In sum, instructor ratings of gains in mathematical expertise varied between the student groups 
and courses. Moreover, they were mostly not consistent with other indicators of student learning. 
But students’ self-reported learning gains were moderately in line with their instructor’s ratings. 
Instructors may not be as successful in assessing their students’ learning during as they are in 
assessing the initial level of their students’ mathematical expertise. This applied especially to 
pre-service teachers and students who started with high mathematical expertise. 
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Exhibit E5.1:  Proof Test  E5.1-1 

Instructions:  Assessing Mathematical Arguments 
 

Thank you for participating in our study!   This problem-solving test is part of a research study 
on how students learn to construct and evaluate mathematical proofs. 
 
The problem-solving session will take about 1 hour of your time and will include 9 problems. 
For each problem, you will be asked to examine a mathematical argument and to decide whether 
or not you think it is a valid mathematical proof. You will then answer a few questions about 
each argument and write in some comments to help us understand your reasoning.  Your 
comments do not need to be lengthy, but please show the thinking that led you to your answer.  
For convenience, the lines of each argument are numbered so that you can refer to them in your 
answer if you wish.  Please work steadily, but do not rush.  If you need more work space for any 
answer, please use the space on the last page and note the problem number. 
 
Your participation is voluntary. You may skip questions or tasks that you do not wish to answer, 
or choose not to participate. Your answers are anonymous and will not be reported in any way 
that can identify you individually; they will be reported in groups with answers from other 
students from your course and other schools.  
 
When you have finished the problems or are nearly out of time (whichever comes first), please 
complete question #10.  
 
By taking this test, in part or whole, you agree that we may use this data to understand and 
improve the quality and effectiveness of college mathematics education. Thanks for your help! 
 
 
 
 
 
 
 
Start time:   
 
End time: 
 



Form A  E5.1-2 

Argument 1     
Claim: For all real numbers a and b:    (a + b)2 = a2 + 2ab + b2 
Line: 
1 (a + b)2 = (a + b)(a + b) 
2 (a + b)(a + b) = a(a + b) + b(a + b)     
3 a(a + b) = a2 + ab              
4 b(a + b) = ba + b2 
5 So (a + b)(a + b) = a2 + ab + ba + b2 = a2 + 2ab + b2  
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.    Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.     Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.    Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.     Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-3 

Argument 2 
Claim:  For all real numbers a and b:     (a + b)2 = a2 + 2ab + b2 
 
Consider the diagram at right: 
 

 
         b 
 
 
                    a 
        
 
                                a              b 

Line: 
1 The length and width of the square are each (a+b), so the area of the diagram is  
2 (a+b)(a+b) = (a+b)2. 
3 The area can also be found by adding the areas of the four cells of the square whose  
4 areas are a2, ab, ab, and b2, which is a2 + 2ab + b2. 
5 So (a+b)2 = a2 + 2ab + b2. 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental        I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 

b2 
 
 
 
 
 

 
     a2 

    ab 

     
 
ab 



Form A  E5.1-4 

Argument 3 
Claim: For all natural numbers n > 1,  n3 – n is divisible by 6. 
 
Line:  
1 n3 – n = n(n2 – 1) = n(n+1)(n-1). 
2 Either n is even or n+1 is even. 
3 Since both numbers are factors of n3 – n, n3 – n is even. 
4 Because n-1, n, and n+1 are three consecutive numbers, one of them is divisible by 3. 
5 So n(n+1)(n-1)=n3 – n is divisible by 3. 
6 Since n3 – n is even and divisible by 3, n3 – n is divisible by 6. 
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-5 

Argument 4 
Claim. There is no real number x which solves the equation 4x3 – x4 = 30. 
 
Line: 
1 Consider the function, f(x) = 4x3 – x4. Because f(x) is a polynomial of degree 4  
2 and the coefficient of x4 is negative, f(x) is continuous and will approach -∞ as x  
3 approaches ∞ or -∞. Hence, f(x) must have a global maximum. The global maximum  
4 will be a critical point.  f’(x) = 12x2 – 4x3. If f’(x) = 0, then x = 0 or x = 3. f(0) = 0.  
 f(3) = 27.  
5 Since f(3) is the greatest y-value of f’s critical points, the global maximum of f(x) = 27.  
6 Therefore f(x) ≠ 30 for any real number x. 4x3 – x4 = 30 has no real solutions. 
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-6 

Argument 5 
Claim. Any even integer greater than two can be written as the sum of two prime numbers. 
 
Consider the following table: 

Even  Sum of two primes 
4  2+2 
6  3+3 
8  3+5 
10  3+7,   5+5 
12  5+7 
14  3+11,  7+7 
16  3+13,  5+11 
18  5+13,  7+11 
20  3+17,  7+13 
22  3+19,  5+17,  11+11 
24         5+19,  7+17,  11+13 
26  3+23,  7+19,  13+13 

 
Line: 
1 First, note that each even number between 4 and 26 can be written as the sum of two  
2 primes. Second, note that the number of pairs of primes that work appears to be  
3 increasing. For 4, 6, 8, and 12, there is only one prime pair whose sum is that number.  
4 For 22, 24, and 26, there are three prime pairs whose sum is that number. Every even  
5 number greater than 2 will have at least one prime pair whose sum is that number.  
6 For large even numbers, there will be many prime pairs that satisfy this property. 
 
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
 
(continued, next page)



Form A  E5.1-7 

D.  Would you consider this argument to be a mathematical proof? 
1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 
 
 
 
 
 
 
 
 
 
 
 
Argument 6   

Claim. 

 

1

x
sin xdx

0

"

# > 0  

The graph of 

 

f (x) =
1

x
sin x  is given below. 

 
Line: 

1 

 

1

x
sin xdx

0

"

# > 0  means that 

 

f (x) =
1

x
sin x  has more area above the x-axis than below it. 

2 To show this, note that it is clear from the graph that the first positive region—between 0  
3 and π (about 3.14)—has more area than the first negative region—between π and 2π  
4 (between 3.14 and 6.28). The second positive region has more area than the second  
5 negative region. The third positive region has more area than the third negative region.  
6 Since each positive region has a greater area than the negative region to the right of 

7 it, the overall area of 

 

1

x
sin xdx

0

"

#  will be positive.  

  (continued, next page) 



Form A  E5.1-8 

For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 
 



Form A  E5.1-9 

Argument 7  
Claim:   Let n be a natural number. If n2 is divisible by 3, then n is divisible by 3. 
 
Line: 
1 We need to show that n is divisible by 3. 
2 If n is divisible by 3, then there exists an integer k such that n = 3k. 
3 n2 = (3k)2 = 9k2. 
4 So n2 is divisible by 9. 
5 All numbers divisible by 9 are also divisible by 3. 
6 So if n2 is divisible by 3, then n is divisible by 3. 
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-10 

Argument 8 
Claim: Let f(x) be a real valued function and let a and b be real numbers such that b> a.  

Then 

 

f (x) dx
a

b

" # f (x)dx
a

b

"    

 
Line:      (Proof by cases). 
1 Either f(x) ≥ 0 or f(x) < 0. 
2 Case 1: f(x) ≥ 0. 
3 If f(x) ≥ 0, then |f(x)| = f(x). 

4 Thus, 

 

f (x) dx
a

b

" = f (x)dx
a

b

" . 

5 Case 2: f(x) < 0. 

6 If f(x) < 0, then 

 

f (x)dx
a

b

" # 0. 

7 Since |f(x)| > 0, then 

 

f (x) dx
a

b

" # 0. 

8 So 

 

f (x) dx
a

b

" # 0 # f (x)dx
a

b

" . 

9 Thus, 

 

f (x) dx
a

b

" # f (x)dx
a

b

" . 

 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
 
(continued, next page) 
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D.  Would you consider this argument to be a mathematical proof? 
1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Argument 9 
Claim. Let f(x) = ln x. Then 

 

f (x)"# as x"#. 
 
Line:  
1 Let a and b be positive real numbers with a > b. 
2 Dividing both sides by b gives: 
3 a/b > 1     (since b is positive). 
4 ln(a/b) > 0     (since ln x > 0 when x > 1) 
5 ln(a) – ln(b) > 0     (by the rules of logarithms) 
6 ln(a) > ln(b) 
7 Hence, for positive reals a and b, if a > b, then f(a) > f(b). 
8 Therefore, 

 

f (x)"# as x"#.  
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
(continued, next page) 
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C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-13 

10. Please provide some information about your personal and math background.  These data 
help us check that we are gathering answers from a diverse group of students.  Please check 
the choice that fits you best. 

 
a)  Ethnicity (check one) b)  Race (check one or more)   
_____  Hispanic or Latino/a _____  American Indian or Alaskan Native 
_____  Not Hispanic or Latino/a _____  Asian 
  _____  Black or African American 
c)  Gender (check one) _____  Native Hawaiian or other Pacific Islander 
_____  female  _____  White 
_____  male  _____  Other; please specify:  ________________ 
      
d)  Class year (check one) e)  Academic major (check one or more)  
_____  First-year _____  mathematics 
_____  Sophomore _____  natural science; please specify:  _________ 
_____  Junior  _____  engineering; please specify:  _________ 
_____  Senior  _____  non-science; please specify:  _________ 
_____  Other, please specify: _________ 
 
 
f)  Are you preparing to become a K-12 teacher?  (circle one) 
 
      Yes, elementary Yes, secondary No Maybe 
 
 
g)  What college math courses have you taken before this course ?  List course names or 
numbers. 
 
 
 
 
 
 
h)  What other college math courses are you taking this fall?   List course names or numbers. 
 
 
 
 
 
i)  What grade do you expect to receive in this course? (check one) 

A+ _________ B+ _________ C+  _________ D  _________ 
A   _________      B  _________      C   _________ F  _________ 
A-  _________ B-  _________ C-  _________  

Other (please explain):   
 



Exhibit E5.2:  Instructor Ratings  E5.2-1 

Exhibit 5A2:  Instructor Ratings 
 
 
Dear IBL Instructor,   
We seek your assessment of individual students' learning from your course.  We will 
compare your views with students' self-assessment of their learning from this course, 
in order to understand how well students' self-judgments of their mathematical 
learning correlate with the assessment of experienced mathematicians familiar with 
their work. 

We ask you to give two ratings for each student:  his/her overall level of expertise in 
mathematical knowledge and thinking at the START of the course, and his/her overall 
GAIN or improvement in mathematical knowledge and thinking by the END of the 
term.  We ask you to distinguish, as best you can, students' incoming ability (which 
may depend on their educational background, preparation, and talent) from their 
learning in your course.   Both of these can be factors in students' final performance 
or grade, so we ask you to separate them as best you can based on your observations 
of their work for your course. 

Please focus on students' overall mathematical knowledge and thinking, even though 
you may have observed other kinds of abilities, growth, or learning gains in your 
course.  And feel free to add any comments on this sheet, if you wish. 

Please rate your students in comparison with other students in this course or at this 
level in your program.  Use this scale for both ratings: 

   5 = very high,    4 = high,    3 = moderate,    2 = low,  
   1 = very poor or strongly lacking 

   
First two letters of 
first name 

INITIAL expertise in 
mathematics 

Overall learning GAIN in 
mathematics from your course 

   
   
   
   
   
   

 



Cite as:  Assessment & Evaluation Center for Inquiry-Based Learning in Mathematics (2011). (Report to 
the IBL Mathematics Project) Boulder, CO: University of Colorado, Ethnography & Evaluation Research. 

Appendix A6  
Study Methods: Academic Records Data 

A6.1 Introduction 

The academic records study was designed to analyze effects of IBL instruction on longer-term 
student outcomes, such as academic grades, course-taking patterns, and pursuit of mathematics 
major. We sought to address the following research questions: 

 What are the student outcomes from IBL instruction, as measured by grades, course-
taking patterns, and academic major status? 

 How do these student outcomes differ between IBL and non-IBL students? 

 How do these student outcomes vary among student sub-groups? 

Academic grades are a traditional and standard way of measuring academic achievement. While 
instructor standards may differ in their methods of assessing learning and assigning grades, 
grades are nevertheless widely seen to hold a stable meaning across institutional contexts. 
Moreover, grades may reflect long-term changes in students’ abilities and achievement, when 
improved learning habits and analytical thinking carry over to later courses. Thus, in this study 
we use grades as a longitudinal proxy for academic achievement. We use number of subsequent 
math courses taken and math major status as proxies of student interest and motivation to study 
mathematics, under the assumption that course and major choices reflect students’ academic, 
career, and personal interests.  

In Chapter 6, we discussed the principles involved in developing appropriate and comparable 
samples for academic records.  Here, we record the specific procedures used in sufficient detail 
that they could be reproduced in future studies.  

A6.2 Study samples 

Three campuses participated in the academic records study. Altogether, we obtained 6897 
student academic records, from six courses at three campuses. We chose as our “targets” core 
IBL courses that had a well-established history, sizable enrollments, and available comparison 
groups. We focused on the sections taught far enough back in time that students who took them 
had since had an opportunity to graduate, hence having taken all the subsequent courses they 
wanted or needed to take. Thus, we traced back in time to identify “target” sections and the 
students who took them. This defined the study sample. We requested the academic records for 
those students and for students in comparison non-IBL sections of the same courses. 

The opportunities for academic records study varied substantially from one IBL Center to the 
next.  Here we document in detail our rationale and procedures for defining target courses, 
comparison groups, and preliminary investigations to verify the suitability of these populations 
for further study.  While all these decisions were made using common principles, the specifics of 
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each situation depended strongly on local curriculum and academic policies, as well as on the 
offerings at each IBL Center.  

A6.2.1 Study Populations at University L 

At University L, we selected four IBL courses as our targets: two mid-level courses and two 
upper-level courses. In all cases the comparison groups were composed of students from the non-
IBL sections of these courses taught in the same term and also from sections taught before 
establishment of IBL center. In the analysis in Chapter 6 we discuss outcomes for two of these 
courses, one mid-level and one upper-level course, due to methodological and conceptual 
limitations present in the other two cases.  From preliminary analyses, as well as from 
conversation with instructors, we found that the excluded mid-level course had strong issues of 
student selection, so the student populations in IBL and non-IBL sections were not very 
comparable.  The excluded upper-level course was not analyzed because it is positioned rather 
far in the curriculum.  Hence students do not have much need or many opportunities to take 
further math courses, and thus the data on their later grades is modest as well as un-revealing.  
The mid-level class that was included in the analysis hereafter is referred to as L1, and the upper-
level course as L2. 

L1 is intended as a transition to proof course, helping students shift from the problem-solving 
approach of calculus to the rigorous proof approach of advanced courses. It is a possible required 
course choice for most mathematics majors, some science and engineering students, and for 
students preparing to be high school mathematics teachers.  Both IBL and non-IBL sections of 
L1 are taught in sections of 25-30 students by a mix of permanent and postdoctoral faculty. The 
IBL sections have TAs, supported by the IBL Center’s grant, who assist in class and hold office 
hours.  The non-IBL sections generally do not have a TA, although they may have a grader who 
reviews student work but does not attend class.  IBL sections are not labeled as such in the 
university course schedule, although some students may know by word of mouth which 
instructors will offer an IBL course and select accordingly.  We know from student interviews 
that some students do this, and others have no idea that they are enrolled in an IBL section until 
they arrive in class the first day.  For these reasons, we believe the selection issues to be modest 
but not absent in this case.  

We requested academic records for students who took L1 from Fall 2001 to Spring 2008, 
intending the sections to be far enough back that all the students have an opportunity to graduate. 
Over these semesters, we obtained 1781 student academic records. However, we found that 
students on this campus often repeatedly took the same course, even if they had achieved a 
passing grade.  Campus policies allow them to repeat a course (and presumably, to pay tuition) if 
they are dissatisfied with their grade. Thus, 201 students in this data set had taken L1 more than 
once. Since different attempts at L1 could put the same student in both IBL and non-IBL 
categories, we decided to select for analysis only those students who took L1 for the first time 
and received a grade (as opposed to withdrawing). This final data set for L1 comprised 1341 
distinct academic records:  1130 for students who enrolled in 60 non-IBL sections and 211 for 
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students who enrolled in 12 IBL sections. These students mostly took L1 as sophomores (23%), 
juniors (28%), and the largest portion as seniors (39%). The course population was largely male 
(71%) and white (52%), with sizable portions of Asian (21%) and Hispanic (12%) students. 
About 60% of the students were math majors.  

L2 is a more advanced course, intended to be taken later in University L’s mathematics 
curriculum.  This particular course is not required of all mathematics majors but does meet a 
topical requirement for the mathematics major.  Like L1, both IBL and non-IBL sections are 
taught in sections of 20-30 students by permanent and postdoctoral faculty, and like L1, the IBL 
sections generally have TAs.  Again, IBL sections are not labeled in the university course 
schedule.  For these reasons, we judge student selection issues to be relatively modest in this 
course. 

We obtained academic records for students who took L2 from Fall 2002 to Spring 2008. Overall, 
we collected 1259 academic records. Similarly to L1, many students (176) took L2 repeatedly, 
making it hard to distinguish between IBL and non-IBL outcomes. Thus, we selected for our 
analysis only those students who took L2 for the first time and received a passing or failing 
grade. Thus the final data set for this course consists of 909 academic records: 786 for students 
who enrolled in 42 non-IBL sections and 123 for those who enrolled in 9 IBL sections. These 
students mostly took L2 as juniors (26%) and seniors (52%). The population of this course was 
also predominantly male (65%) and mostly white (51%), with sizable portion of Asian (19%), 
Hispanic (16%), and foreign students (10%). A majority of students (71%) were math majors. 

Since we analyzed the data for all the students who enrolled in L1and L2 in the time frames of 
interest, as opposed to a sample of the students, the results of our analysis carry more statistical 
power. 

A6.2.2 Study Populations at University G 

At University G, we selected the first course of a three-term introductory-level sequence as our 
target. The comparison group was composed of students from non-IBL sections taught in the 
same term. We obtained academic records data for students who took the target course, hereafter 
referred to as G1, from Fall 2004, Fall 2005, and Fall 2006. Over these three semesters, we 
collected 962 academic records for this course: 913 for students who enrolled in 6 non-IBL 
sections and 49 for those who enrolled in 2 IBL sections.  

However, the non-IBL students were not directly comparable to the IBL sample. The IBL 
sections of G1 are honors courses: students are invited to join based on a record of excellent 
academic performance in mathematics, effectively populating these sections with a select group 
of high-achieving and self-motivated students. Non-IBL sections, on the other hand, include 
students of all levels of ability and achievement; they are taught in traditional large lecture 
format to several hundred students at a time, with separate recitation sections of 25-30 students 
taught by TAs. For example, the biggest portion of IBL G1 students (53%) scored in the 701-800 
bracket (on a scale of 200-800) on their college entrance math tests (SAT score or converted 
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ACT score1).  In comparison, the biggest portion of non-IBL students (45%) placed in the next 
bracket down, 601-700 points—a good but not outstanding score. Students admitted to the IBL 
sections also on average had higher high school GPAs than non-IBL students, took G1 earlier 
(often in their first semester of college), and pursued mathematics majors in higher numbers. 
Thus, the IBL and non-IBL populations were not directly comparable. 

A6.2.3 G1 Sampling Procedures 

In order to make a valid comparison between IBL and non-IBL G1 students, we turned to 
sampling. We experimented with selecting a group of high-achieving students from non-IBL 
sections that would closely match the academic backgrounds and demographics of the IBL 
students. For that purpose, we requested additional data from the registrar on students’ high 
school grades and college admissions test scores, and matched students on several criteria. Since 
existing literature points to both high school GPA and college admission scores as equally 
important predictors of college success (Hoffman & Lowitski, 2005; Noble, 1991), we created 
our own pre-college index combining these two quantities, thus allowing us to match the 
students on both without having to prioritize one over the other. The pre-college index was 
calculated for each student using the formula: 

 1075*high school GPA + 4*mathematics college admission score + 4*verbal admission score.  

The new index ranged from 7,500 to 11,000 and was divided into 500-point brackets. One IBL 
student whose record included no college admission test scores was omitted from the study.  

For each remaining IBL student, we selected two non-IBL students who fell into the same index 
bracket, had an academic major or intended major from the same category (math, science, liberal 
arts and sciences, or undeclared), had the same academic status (freshmen, sophomore, junior, 
senior), was of the same gender, and of the same race/ethnicity—in that order of priority. In most 
cases, we were able to select two non-IBL students who matched the IBL student on all the 
criteria, but in some cases it was not possible. When we were unable to find a match on all the 
levels, we relaxed the race and sometimes the gender criteria. In several cases where gender 
seemed especially important to match—there were women among the top achievers in IBL 
sections, but not in the non-IBL—we slightly widened the index brackets to find a match of the 
same gender and comparable (if slightly lower) achievement. Two students did not have high 
school GPA on record, and thus we could not compute our index; here we used math and verbal 
scores in college admission tests as the primary means of matching. Overall, such close, if 
sometimes creative matching, ensured high level of similarity between the IBL and non-IBL 
students in the sample and their definite comparability. 

This sampling process resulted in the final G1 data set of 147 student academic records: 49 for 
students from IBL sections and 98 for students from non-IBL sections who closely matched the 
IBL group. These students mostly took G1 in their freshman (72%) and sophomore (24%) year. 
                                                            
1 The ACT to SAT conversion procedures are discusses in Section A6.4.4 
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They were mostly male (62%) and white (64%), with sizable portions of Asian (18%) and 
Hispanic (10%) students. The majority of sample students were non-math majors (82%).  

A6.2.4 Historical Sampling at University W 

We selected an upper-level course, “W1,” as our target at University W. The course is intended 
to serve as a transition to the rigorous proof approach of advanced math courses for sophomores 
and juniors.  It is taught in small sections of 20 students and meets a requirement for the 
mathematics major, but is offered only in IBL format.  

We obtained academic records data for students who took IBL-only W1 from Fall 2004 to 
Spring 2008. Since a contemporaneous comparison section was not available, we experimented 
instead with a historical comparison group, obtaining data from the same course taught prior to 
the establishment of the IBL Center—from Fall 2001 to Spring 2003. However, we learned that 
this course was in fact an ancestor to the IBL efforts at this campus, and was taught using 
practically the same methods as the current course.  Furthermore, this was a new course in 2001, 
so no early historical data were available.  An initial analysis of student demographics and 
outcomes confirmed the high similarity of the courses designated “IBL” and early versions not 
so designated.  Thus, the historical comparison was not appropriate in this case, and we do not 
further discuss student outcomes from this course.  However, this approach could be suitable in 
other studies of teaching innovation. 

A6.3 Obtaining Raw Data 

Once the target course and comparison group were identified, we requested de-identified student 
data from the university registrar or institutional records office.  We requested data from all four 
campuses; three provided data within one to four months and one did not respond to multiple 
requests.  Two campuses deemed our request as complying with FERPA, the federal laws 
governing student privacy (U.S. Department of Education).  A third requested that we file a 
FERPA research exemption with university counsel, which was granted.  

The de-identified raw data requested from campuses included the following: 

 List of all mathematics courses taken by each student, by academic term and year, with 
grades 

 Section number (or instructor name, if that is how they are designated) for all math 
courses 

 Current class status (junior, senior etc.) if not graduated 

 Graduation year and degree earned, if graduated 

 Current GPA (or final GPA for students who have graduated) 

 Current academic major(s) and minor(s), and record of changes in major/minor  

 Gender 

 Ethnicity, race, citizenship  
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 Overall admissions index score if the campus uses one, or high school GPA and test 
scores (SAT or ACT) if overall index is not used or unavailable.  

In several cases we interacted with university officials to refine course selection or ascertain 
which institutional variables would best meet our needs.  Raw data were received in spreadsheet 
form in formats specific to the institutional records system; they were compiled, cleaned, and 
converted to standardized formats by our research team.  

In Section A6.4, we discuss the construction of analytical variables from these raw data.  
Common principles were used to construct the variables for each test case, but the exact 
procedures for construction differed due to characteristics of the course itself, the departmental 
curriculum, and institutional academic policies.  In interpreting raw data and making these 
decisions, we consulted the mathematics department web sites and university registrar web sites 
for information such as course requirements and sequences, the meaning of grades issued for 
course incompletion and withdrawal, and course repetition policies.  Campus leaders helped to 
identify IBL sections and instructors.  Staff in the campus institutional research, advising or 
registrar’s offices were gracious in answering our questions about notation and anomalies.   

A6.4 Construction of Variables 

Because institutional records varied widely in format, we converted the raw data into 
standardized variables to count course enrollments in particular, later math courses and to 
compute GPAs for these courses. We use enrollment in later courses as a proxy for student 
motivation to take more mathematics, and the GPAs for those courses as a proxy for subsequent 
achievement and learning in mathematics. Adding or dropping the math major is taken as 
another measure of student motivation or persistent interest in mathematics. The number of 
courses taken and GPA obtained prior to the target course are taken to serve as proxies of 
mathematical background and prior academic achievement, respectively. High school GPA and 
college admission test scores are used as other measures of prior achievement.  

We looked separately at student outcomes for several time periods:  the target course itself; the 
“next” term, i.e. the semester or quarter2 immediately following the target course (which may be 
most sensitive to the impact of an IBL experience), and the cumulative record for all courses 
taken after the target course and up to graduation.  Because there may be differences in how 
students select or approach learning in required vs. elective courses, and in IBL or non-IBL 
courses, we constructed variables to examine grades and enrollment in each of these subsets of 
courses.  Thus there were multiple variables to analyze for both grade and course count 
measures.   

We used Boolean logic functions within Microsoft Excel software to categorize and combine the 
raw variables into the analytical variables of interest, followed by extensive hand-checking to 
check that logic was applied correctly, and to handle anomalous cases.  

                                                            
2 For simplicity, we use the term ‘semester’ to label variables for both semester- and quarter-based 
courses. 
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In the sections below, we detail how the analytical variables were constructed and labeled.  

A6.4.1 Course Count Variables 

The variables that count numbers of courses taken focus on the new courses completed, and thus 
exclude the repeat attempts at the same course if the passing grade was initially earned. Repeated 
courses are retained if the initial attempt ended in withdrawal or a failing grade. The course 
counting variables include:  

 Number of prior math courses—count of math courses taken prior to the target course. 

 Number of subsequent math courses—count of overall math courses taken after the target 
course. Sometimes abbreviated as num of subs math courses in Chapter 6 and below. 

 Number of subsequent required courses—count of required courses taken after the target 
course.  Required courses are the core courses necessary for graduation with the math 
degree at the particular campus. Abbreviated as num of subs req courses. 

 Number of subsequent elective courses—count of elective courses taken after the target 
course.  Elective courses are all courses other than the core courses established as 
required for the mathematics major.  At University L there are two required Analysis 
courses to choose from; if both were taken, we counted the first as required and the 
second as elective. Abbreviated as num of subs elect courses. 

 Number of subsequent IBL courses—count of IBL-method courses taken after the target 
course.  IBL courses are designated as such by each campus (see Chapter 1). Abbreviated 
as num of subs IBL courses. 

For all count variables, some mathematics courses were excluded from the counts. For example, 
we omitted the courses prior to Calculus III at University W. This was intended to ensure that 
weaker students who may have taken more introductory courses on their way to W1 do not 
appear to be more experienced or mathematically mature, simply because they have taken a 
larger number of courses, while students who have tested into a higher-level course appear to 
have less background. For all the campuses, we excluded one-credit courses because counting 
them as measure of experience or motivation might be misleading, especially if comparing to full 
mathematics courses. 

We requested the data for course sections far enough back that all the students would have had 
the opportunity to graduate. However, on two campuses—University G and L—a sizable portion 
of the students had not in fact graduated by the time of data collection. Thus, to ensure a fair 
comparison of courses and grades for different students, we decided to level the playing field by 
only analyzing courses completed within a set period of time after the target for all students. For 
each student, we selected enrollment and grade data for the first two years after the target course 
and constructed our count and average grade variables based only on that period of time. For 
W1, where the vast majority of students graduated by the time of data collection, it was 
unnecessary to apply this procedure in order to fairly compare IBL and non-IBL students. 
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The sample sizes for all count variables are the same, because even the students who did not take 
particular types of courses serve as data points for the count variables (with counts of zero). The 
General Linear Model (GLM) procedure (discussed in Section A6.5) that was used to control for 
incoming differences slightly reduced the sample sizes, since it required the data for the pre-
target GPA, which was missing for some students. The resulting sample sizes for the count 
variables are shown in Table A6.1. 

Table A6.1:  Sample Sizes for all Course Count Variables, by Course 

Count Variables by Course IBL sample size Non-IBL sample size 

L1 204 1077 

L2 117 747 

G1 47 98 

 

A6.4.2 Average Grade Variables 

The variables that compute average math grades focus on the courses for which a grade was 
received, whether passing or failing. Thus, these variables exclude courses taken on pass/fail 
bases, courses audited, and courses with any grades other than A, B, C, D, and F. Differently 
from the count variables, since valid grades in all courses, even repeated attempts at the same 
course, should factor into the measure of achievement, we include grades for the repeats in our 
calculation of average grade variables. The average math grade variables include: 

 Average prior grade—average grades for math courses taken prior to the target course. 

 Target course grade—simply the grade received in the target course itself, whether an 
IBL or non-IBL section. 

 Next semester average grade—average of math grades for courses taken the semester 
immediately following the target course. Sometimes abbreviated as next sem avg grade in 
Chapter 6 and below. 

 Average grade in subsequent required courses—average of the grades received in all 
required math courses taken after the target course.  At University L there are two 
required Analysis courses to choose from; if both were taken, we counted the first as 
required and second as elective. Abbreviated as avg grade in subs req courses. 

 Average grade in subsequent elective courses—average of the grades received in all 
elective math courses taken after the target course. Abbreviated as avg grade in subs elect 
courses. 

 Average grade in subsequent IBL courses—average of the grades received in all IBL-
method math courses taken after the target course. Abbreviated as avg grade in subs IBL 
courses. 



Appendix A6.  Study Methods:  Academic Records Data  A6-9 

All the variables discussed so far exclude from the calculation any courses that resulted in 
withdrawal or an ‘incomplete’ grade. It would not be appropriate to include those courses in 
either counting the number of new courses completed or averaging grades for the courses taken. 
It is important to mention that because count variables exclude repeated attempts at the same 
course while average grade variables include them in the calculation, the two types of variables 
are somewhat disconnected. That is, the number of courses that serves as the denominator in 
calculating the grade averages may be different from the corresponding count variable, because 
the former includes the repeated courses and latter does not. 

While this general approach to course repetition was applied across all campuses analyzed, the 
issue of repeated target courses was handled differently on each campus. This issue was 
especially problematic for University L, because students could end up taking both an IBL and a 
non-IBL section in their repeated attempts at L1 and L2, and a surprising number did. Thus, we 
focused only on students’ first attempts at these courses. Outcomes for repeated courses form a 
special subset of the data that we intend to analyze in the future. On the other hand, we focused 
on the last attempt in G1 and W1, where repeats were rare and never crossed the IBL/non-IBL 
line. At these campuses, where course repetition policies were less generous, we interpreted the 
need to repeat as ‘failure’ in previous instances, and thus focused on the successful attempt. 

For the average grade variables, the sample sizes differed from variable to variable, since not all 
students took all types of courses and thus acquired grades in them. There are a lot of missing 
cases, especially for the IBL grades, since most non-IBL students did not take any IBL courses. 
Again, the GLM procedure further reduced the sample sized for the post-target average grade 
variables, since it required data for the pre-target courses taken and average grades obtained in 
order to control for incoming differences. The resulting sample sizes for the average grades in 
subsequent courses are shown in Table A6.2. 

A6.4.3 Math Major Variables 

Besides count variables, two other measures related to student motivation were available: adding 
and dropping the mathematics major.  These variables are categorical:  the ‘Adding math major’ 
variable is set to 1 if the student switched to mathematics from another major or added 
mathematics as a second major. The ‘Dropping math major’ variable is set to 1 if a student 
removed mathematics from their declared majors, whether to switch to another major or just to 
drop mathematics and retain the other. We employed the same logic in constructing these 
variables across all campuses analyzed, but because of differences in the data provided by each 
campus we implemented the logic differently at each campus. Data from University W and 
University L included students’ academic majors recorded for each semester they were in school. 
Data from University G included only students’ initial major and final major, either the degree 
major if the student had graduated, or their current major at the time when the data were 
extracted from the institutional records system. Thus, the level of granularity available for 
tracking the major changes was different in this situation. 
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Table A6.2:  Sample Sizes for all Grade Variables, by Course and Variable 

Average Grades Variables by Course IBL N Non-IBL N 

L1 

Target course grade 204 1077 

Next semester average grade 89 526 

Average grade in subsequent required courses 104 499 

Average grade in subsequent elective courses 130 725 

Average grade in subsequent IBL courses 30 80 

L2 

Target course grade 117 747 

Next semester average grade 41 326 

Average grade in subsequent required courses 22 130 

Average grade in subsequent elective courses 71 446 

Average grade in subsequent IBL courses 7 23 

G1 

Target course grade 47 98 

Next semester average grade 39 68 

Average grade in subsequent required courses 40 70 

Average grade in subsequent elective courses 16 20 

Average grade in subsequent IBL courses 35 3 

 

As discussed, a sizable portion of G1, L1, and L2 students had not graduated by the time of data 
collection. Thus, we could not examine the full evolution of their major choices, and could not 
reasonably compare the majors of students who graduated and those who did not. Thus, similarly 
with the count and average grade variables, we constructed our major variables based on only the 
first two years after the target course.  Within this time, some students, for whom academic 
records indicated a drop of mathematics major, still graduated with the mathematics degree. 
Thus, we adjusted the ‘math major drop’ variable for them to indicate no drop. Some other 
students started new postgraduate programs, majoring in non-mathematics disciplines, which 
appeared as a drop in our algorithm. After ensuring that these students graduated with the 
undergraduate mathematics degree, we adjusted their ‘math major drop’ variables to indicate no 
drop as well.  This student-by-student examination of the data was required to treat all student 
records consistently.  
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In order to establish if the mathematics major was added or dropped, we had to classify the 
academic majors on each campus as math majors or not. For purposes of student sample 
description, we went even further. We categorized the majors into four groups: math, science, 
non-STEM liberal arts and sciences, and undeclared or unknown. 

A6.4.4 Test Score Measures 

Besides average math grade prior to the target course, we have two other measures of students’ 
prior achievement or ‘ability’. For W1 and G1, the academic records include high school GPA. 
This variable did not require any transformation and was used directly or included in 
construction of our index variable.  

The other prior achievement measure included in the data is college admission test scores. This 
measure is available for all three campuses analyzed. However, depending on the campus, either 
SAT, ACT, or both scores were recorded. In order to directly compare the prior achievement of 
students who took different tests, we required a conversion mechanism. After consulting the 
existing literature on the subject and testing out normalized scores and regression solutions, we 
decided on the concordance table conversion. It is indicated as the most precise conversion 
method in the literature (Dorans et al, 1997; Dorans, 2004), and concordance tables are available 
for both mathematics and verbal scores. The concordance table provides a corresponding SAT 
value for each value of ACT. The math concordance table provides a direct correspondence 
between ACT math and SAT math scores (in the table ACT scores range from 11 to 36). The 
conversion is a little more complex for the verbal skills tested, because the tests cover 
overlapping but not identical subjects:  the SAT includes one verbal score while the ACT 
includes an English test and a reading test. Prior research shows that there is a strong correlation 
between SAT verbal scores and the sum of ACT English and ACT reading scores (Dorans et al, 
1997, Dorans, 1999). The concordance table for these scores provides a corresponding SAT 
score for each value of the sum of ACT English and ACT reading (ranges from 18 to 72 in the 
table).  

A6.4.5 Academic Status Variable 

Besides the number of mathematics courses taken prior to the target course, we constructed 
another variable related to students’ mathematical experience before the target, their academic 
class status. Essentially, we wanted to know if students took the target course as first-years, 
sophomores, juniors, or seniors. This information was included in the data set for G1, where 
student class status was recorded for each semester the student was in school. But for 
Universities L and W, such data were not included in the institutional records provided. Thus, we 
had to estimate it. While guided by the same principles, we took different practical steps to 
estimate class status on these two campuses.  

For L1 and L2, we numbered each semester the student was in school. We excluded summer 
semesters from the count to make sure that students who took summer classes do not appear 
older than those who did not; students in this study took few summer mathematics classes. Based 
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on the semester number when the student took the target course, we classified the student as 
first-year, sophomore, junior, or senior. For example, to be categorized as a first-year student, the 
student had to take the target course in their first or second semester in school; i.e., the target 
course semester number would be two or less. If the graduation date indicated that student 
graduated before taking the target course, we assigned him or her to the graduate category. 

For W1, we followed the same logic but had to implement it differently. Among W1 students 
there were many transfer students, who artificially appeared younger in academic status than 
their peers if counting their entrance to University W as the beginning of their college career . 
Thus, to fairly estimate their overall academic status, and thus their prior mathematics 
experience, we had to specifically adjust their starting point. In order to do that we computed the 
average time it took transfer and non-transfer students to graduate. It appeared that on average 
transfer students took about a year less to graduate than non-transfer students (i.e., they 
transferred in one year of academic credit). Hence, we estimated their college entry time as one 
year prior to their enrollment at University W. After applying that procedure to the transfer 
students, we had realistic entry terms for both transfers and non-transfers. For each student, we 
then subtracted the entry term from the term student took W1. This gave us time elapsed between 
college entry and taking the target course, and yielded the academic status in a manner similar to 
that for L1 and L2. 

A6.5 Data analysis 

To compare the means of various variables for IBL and non-IBL students we used both 
parametric (t-test, ANOVA) and non-parametric (Mann-Whitney, Kruskal-Wallis, Chi-square) 
statistical tests. As most of our data in this study was not normally distributed, according to the 
Shapiro-Wilk test of normality, for the final determination we relied on non-parametric statistics.  
This was an appropriate choice, since the non-parametric statistics are specifically suited for the 
non-normally distributed data.  We used Excel for preliminary investigations of sample 
comparability and sample matching, and SPSS (version 18) to perform statistical analyses on the 
final samples.   

We also had to use statistical techniques to control for incoming differences between IBL and 
non-IBL student groups. We used the number of math courses and average math grade prior to 
the target course as two metrics of incoming differences. For L1, IBL students had taken 
statistically significantly fewer prior math courses and earned statistically significantly higher 
average math grades prior to the target course, as compared with non-IBL students. For L2, these 
differences were not statistically significant. For G1, even after our close-match sampling, there 
was still a statistically significant difference in the number of prior math courses between IBL 
and non-IBL students.  

We used the General Linear Model (GLM) procedure in SPSS to control for these incoming 
differences, including as covariates in all analyses the number of prior math courses and average 
math grade prior to target course. For G1, since most students (as first-year college students) did 
not have a pre-target GPA, we used our pre-college index (Section A6.2.3) as a covariate in 
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GLM to control for incoming difference in achievement. All the levels of significance we report 
in Chapter 6 are based on the outcomes of GLM controlling for incoming differences. We also 
computed estimated marginal means, which are intended to offset the effect of intervening 
variables (covariates) and yield mean estimations that reflect that offset. All the variable means 
reported in Chapter 6 are estimated marginal means computed by GLM to control for incoming 
differences. 

A6.5.1 Analysis by Gender 

We performed several analyses of student sub-groups by gender. The sample sizes are the same 
for all count variables on each campus, since even students who did not take particular kinds of 
courses provide data points for these variables.  For instance, student taking zero IBL courses 
still provides us with some information, whereas their grades must be treated as missing data. 
The GLM procedure slightly reduced the sample sizes, since it required the pre-target 
achievement data, which was missing for some students. Thus, the sample size breakdown by 
IBL and gender for the count variables is given in Table A6.3. 

Table A6.3:  Sample Sizes for all Course Count Variables, by Course, Gender, and IBL 

Count Variables by 
Course 

IBL men 
N 

non-IBL men 
N 

IBL women 
N 

non-IBL 
women N 

L1 147 755 57 322 

L2 77 477 40 270 

G1 28 61 19 37 

 
The sample sizes for average grades measures differ from variable to variable, because some 
students did not take certain types of courses and received no grade, creating missing data for 
that particular average grade variable. The GLM procedure slightly further reduces the samples 
sizes. The resulting sample size breakdown by IBL and gender for average grade variables is 
given in Table A6.4. 
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Table A6.4:  Sample Sizes for all Average Grades Variables, by Course, Gender, and IBL 

Average Grades Variables by 
Course 

IBL men non-IBL 
men 

IBL women non-IBL 
women 

L1 

Target course grade 147 755 57 322 

Next sem avg math grade 66 351 23 175 

Avg grade in subs req courses 67 336 37 163 

Avg grade in subs elect courses 89 507 41 218 

Avg grade in subs IBL courses 22 51 8 29 

L2 

Target course grade 77 477 40 270 

Next sem avg math grade 30 204 11 122 

Avg grade in subs req courses 17 92 5 38 

Avg grade in subs elect courses 48 289 23 157 

Avg grade in subs IBL courses 6 15 1 8 

G1 

Target course grade 28 61 19 37 

Next sem avg math grade 24 47 15 21 

Avg grade in subs req courses 24 46 16 24 

Avg grade in subs elect courses 9 17 7 7 

Avg grade in subs IBL courses 21 3 14 0 

 

A6.5.2 Analysis by Prior GPA 

We performed several analyses where students were divided into low-, medium-, and high-
achieving groups based on their average math grade prior to the target course. We focused on the 
relationship between prior achievement and the subsequent outcome measures after noting the 
strong correlation between these variables. The nonparametric correlations (Spearman’s rho) and 
their statistical significances are shown in Table A6.5. 
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Table A6.5:  Correlations between Outcome Variables and Prior math GPA by Course 

Outcome Measures L1 L2 G1 

 Correlation N Correlation N Correlation N 

Number of subs math courses 0.114*** 1281 0.116*** 864 0.189 20 

Number of subs required courses 0.037 1281 0.076* 864 0.230 20 

Number of subs elective courses 0.118*** 1281 0.110** 864 -0.029 20 

Number of subs IBL courses -0.006 1281 0.044 864 0.259 20 

Target course grade 0.555*** 1281 0.586*** 864 0.237 20 

Next sem avg math grade 0.560*** 615 0.543*** 367 -0.031 10 

Avg grade in subs required courses 0.567*** 603 0.341*** 152 0.588 10 

Avg grade in subs elective courses 0.555*** 855 0.573*** 517 0.316 4 

Avg grade in subs IBL courses 0.586*** 110 0.636*** 30  1 

 

For courses L1 and L2, most of the outcome measures correlate strongly with prior math GPA, 
and those correlations are highly statistically significant. This is especially apparent for the 
average grade variables. Thus, the higher student’s prior math GPA have been, the more 
subsequent courses he or she enrolled in and the higher subsequent grades he or she received in 
and after the target. Hence, it is reasonable to divide L1 and L2 students into subgroups based on 
their prior achievement. 

In the course G1, most students were rather high-achieving, and thus there are no statistically 
significant correlations between prior achievement and the outcome measures. The sample sizes 
for these correlations are also rather small, since most of these students did not have prior math 
GPA as they started their college math with G1. Since we see no relationship between prior math 
GPA and outcome variables in this high-achieving group, it is unreasonable to divide these 
students into prior achievement categories. It would also be practically difficult, since most of 
them do not have prior math GPA .  

For courses L1 and L2, we empirically created the prior GPA groups corresponding to low, 
medium, and high prior achievement. We broke up each distribution into tertiles—three subsets, 
each containing one third of the sample. We then tested each subset for differences in prior math 
GPA between IBL and non-IBL students. If such differences remained statistically significant 
within the subset, we adjusted the cut points to ensure no statistically significant difference was 
present. Thus, our low, medium, and high groups by prior math GPA do not contain exactly one 
third of the distributed sampled population, but roughly estimate thirds of the sample. The cutoff 
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points for the subsets are different between L1 and L2, since their underlying distributions were 
different. 

The sub-group sample sizes are the same for all the count variables on each campus, since 
students who did not enroll in particular types of classes still provided data (zero count) for the 
analysis. The GLM procedure slightly further reduced the sample sizes for L1 and L2. The 
sample size breakdown by IBL and prior achievement for the count variables is given in Table 
A6.5. 

Table A6.5:  Sample Sizes for all Count Variables, by Course, prior GPA group, and IBL 

Count Variables by 
Campus 

IBL 
Low 

IBL 
Med 

IBL 
High 

non-IBL 
Low 

non-IBL 
Med 

non-IBL 
High 

L1  49 76 79 360 353 364 

L2  32 38 47 241 261 245 

 

The sub-group samples sizes differ from variable to variable for the average grade measures, as 
students who did not take particular kinds of courses show up as missing grade values in those 
courses. The sample sizes are slightly further reduced by the GLM procedure, which required the 
prior GPA data that was missing for some students. The sample size breakdown by IBL and prior 
achievement for the average grade variable is given in Table A6.6. 

Table A6.6:  Sizes for all Average Grade Variables, by Course, prior GPA group, and IBL 

Average grades in subsequent 
math classes 

IBL 
Low 

IBL 
Med 

IBL 
High 

non-IBL 
Low 

non-IBL 
Med 

non-IBL 
High 

L1 

Target course grade 49 76 79 360 353 364 

Next sem avg math grade 18 36 35 186 184 156 

Avg grade in subs req courses 24 39 41 180 162 157 

Avg grade in subs elect courses 30 45 55 235 253 237 

Avg grade in subs IBL courses 7 8 15 37 21 22 

L2 

Target course grade 32 38 47 241 261 245 

Next sem avg math grade 17 11 13 112 119 95 

Avg grade in subs req courses 14 5 3 76 39 15 

Avg grade in subs elect courses 24 22 25 145 158 143 

Avg grade in subs IBL courses 3 3 1 10 9 4 

 



Appendix A6.  Study Methods:  Academic Records Data  A6-17 

A6.6 Comments on the Strengths and Limitations of the Academic Records Study 

Overall, conducting academic records analysis proved to be a complex and very labor-intensive 
task. This is especially the case because the suitable opportunities for valid comparison are few 
and far in between. Most data sets we obtained for this study had some limitations with respect to 
comparison samples, which we had to address and overcome. For example, we addressed G1 
institutional selection with an intricate sampling scheme, which essentially described academic 
and demographic characteristics of each IBL student and then selected two non-IBL students that 
matched those criteria. This was a very laborious and time-consuming process. 

Another difficulty with this kind of study is the institutional differences between campuses. The 
institutional cultures differ in many ways: linearity of curriculum, enforcement of prerequisites, 
lenience towards retaking courses after earning a passing grade, and many other aspects. The 
granularity of the academic data collected by the institutional records offices also differ from 
campus to campus. Thus, while we adhered to a general, consistent logic in the analysis of 
different data sets, we had to implement it in very specific and circumstantial ways for each 
campus or class data set. This, again, added to the complexity, detail, and effort involved in this 
analysis. 

Institutional collaboration is another difficulty with this kind of analysis. While we requested 
completely anonymous academic data, some campuses had concerns about student privacy. We 
addressed those concerns for most institutions and successfully obtained the academic records 
data. However, one campus did not provide institutional data for either concerns over privacy or 
other undisclosed reasons. This was a lost opportunity, since the data set we requested from that 
campus would have provided an opportunity to examine potentially well-matched honors 
sections of an introductory course, presumably without the need to construct a matched non-IBL 
sub-sample and therefore with better statistical power. 

The data cleaning and construction of variables took a lot of effort, as lots of hand-checking was 
required due to non-linear and unconventional paths many students took through their 
curriculum. These unexpected academic routes often defied our expectations and assumptions. 
More data redundancy and background information would have been helpful in faster making 
sense of these various paths and outcomes. Also, software tools more sophisticated than 
Microsoft Excel may have sped up the data cleaning and variable construction. Thus, if 
embarking on this kind of analysis again, we would request more data with higher level of 
redundancy and would use more agile data analysis tools.  
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Appendix A7  
Study Methods for Student and Instructor Interviews 

A7.1 Introduction 

We conducted semi-structured, in-depth interviews with samples of faculty members, graduate 
students, and undergraduates at all four institutions.  Unlike surveys, academic records analysis, 
or other quantitative research methods, interviews allow participants to offer detailed, 
spontaneous accounts of their experiences, views and attitudes, as well as explanations and 
evidence supporting their observations.   As well, the conversational style of interviews allows 
the researcher to probe participants’ comments more deeply for clarification or to better 
understand their basis.  Participants can raise new issues, or emphasize points important to them.  
Thus, the instructor and student interviews complement the types of data collected in the other 
sub-studies, offering data that can help to explain, confirm, or validate findings from the other 
sub-studies.  

A7.2 Instructor interviews 

The instructor interview study was designed to gather instructors’ perspectives on student 
outcomes, classroom learning and teaching processes, and their own experiences. We sought to 
address the following questions: 

• What student gains (or failures to make gains) do instructors observe as a result of IBL 
instruction? 

• How do instructors describe their classroom practices (including planning, course 
materials, assignments, assessments, teaching methods, etc.), with what rationale(s) 
behind them?  What teaching issues do IBL instructors face, especially issues that are 
different in nature or scale from those in non-IBL classrooms, and how do they resolve 
them?  What advice do they offer to other IBL instructors? 

• What are the costs and benefits to instructors of teaching with IBL methods?  

• What are the personal, professional, departmental and institutional conditions under 
which IBL courses are effective and sustainable, or not?  What professional resources 
are needed to begin using IBL methods, and how (if at all) do instructors obtain them? 

Graduate students played an important role in many of the IBL courses we studied, sometimes as 
teaching assistants and others as lead instructors. Here we use the generic term “instructor” to 
include all those in instructional roles.  We specify “faculty” (including anyone in the lead 
instructor role, regardless of their appointment type) or “TA” when it is important to distinguish 
specific classroom roles.   

A7.2.1 Instructor interview sample 

All four campuses participated in the instructor interview study.  Based on information from the 
campuses, we prepared a list of all active or previous instructors of IBL courses in the past three 
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years, and all graduate student TAs who had participated in an IBL course in the same period. At 
some campuses, this included graduate students or postdocs who had left campus but who were 
teaching elsewhere and could be located. This yielded a list of 10 to 19 individuals per campus. 
We excluded two individuals for logistical reasons (e.g., on sabbatical overseas) and invited all 
the rest, by e-mail, to interview with us in person during a scheduled visit to their campus.  For 
those who had left campus, we invited them to a telephone interview.  Telephone interviews 
were also conducted with a few instructors who were unavailable during our campus visit. 

This approach yielded five to 15 interviews from each campus, for an overall response rate of 
77% (varying from 50% to 88% by campus).  Altogether, 43 interviews were conducted with 44 
individuals (one pair of TAs for the same course was interviewed as a focus group). Three digital 
recordings exhibited severe interference.  After digital editing to reduce noise using Audacity 
software, two were able to be transcribed, but one was unsalvageable and no transcript could be 
prepared.  Thus the final sample for analysis included 42 interviews with 43 individuals. 

Of the 43 instructors interviewed, 31 were men and 12 women. Nearly all were white.  
Approximately 15% were born outside the US.  Most of the instructors taught courses for math 
or STEM majors (labeled as “math-track” courses elsewhere); seven of the 42 primarily taught 
IBL courses for pre-service teachers.  

Those in faculty positions included 23 holding tenurable (pre- or post-tenure) and non-tenure-
track appointments, including both long-term lectureships and short-term postdoctoral positions.  
About half of these were new to IBL methods at the time we spoke, and the remainder had one 
year to decades of prior IBL experience. The faculty sub-sample was predominantly male. 

Twenty interviewees were graduate students at the time of their IBL involvement.  They ranged 
from second- to seventh-year students, and a few had graduated and moved on to postdoctoral or 
tenure-track teaching positions.  Their IBL teaching experience ranged from one term to several 
years.  The graduate student sub-sample was nearly gender-balanced.   

A7.2.2 Instructor interview protocol   

The interview protocol addressed participants’: 

• Career stage, teaching experience, and (for graduate students and postdocs) future 
career plans 

• Role in the IBL course, and how they became involved 

• Teaching philosophy, style, and strategies 

• Observations of student gains, including gains in knowledge, understanding, skills, 
approach to problem-solving or learning, and later impacts (such as later course choices 
or career selection) 

• Observations of any differences in who achieves these gains—by race/ethnicity and 
gender, and by characteristics such as work ethic, temperament, intellect 
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• Costs and benefits to the instructor him/herself of teaching with IBL methods 

• Influences of their IBL teaching experiences on their teaching philosophy, classroom 
style, or beliefs 

• Experiences of learning to teach with IBL methods, including difficulties, professional 
development, and collegial support (or lack of it), and advice they would give to 
students preparing to take an IBL class, and for colleagues preparing to teach one. 

With early-career interviewees, we asked about the impact of IBL teaching on their career 
interests and prospects.  With senior faculty and department chairs, we asked about their 
departmental colleagues’ perspective on IBL and their views of the IBL program’s sustainability 
in their department. 

A7.3 Undergraduate interviews 

Interviews with undergraduates investigated students’ perspectives on their experiences in IBL 
mathematics courses, outcomes of IBL instruction, and classroom learning and teaching 
processes.  Thus, we sought to address the following questions: 

• What do students gains (or not) as a result of IBL instruction? 

• How do students describe their instructor’s classroom practices (including course 
materials, assignments, assessments, teaching methods, etc.)?  How do these differ 
from more traditionally-taught mathematics courses?  How does this affect their 
learning?  What advice do they offer to other students taking an IBL course? 

• What difficulties do students encounter when learning with IBL methods?  What 
resources are needed or available to help them overcome these difficulties? 

• Do some students benefit more than others from IBL methods?  

A7.3.1 Undergraduate interview samples 

At three campuses, undergraduate interview samples were constructed from comprehensive lists 
provided by each department of all students currently enrolled in an IBL mathematics courses.     
Student samples were selected so as to balance the representation of demographic characteristics 
such as gender, race/ethnicity, and major.  Interviews with students were solicited and scheduled 
by e-mail.  This approach yielded about 20 interviews at each campus.  At the fourth campus, 
students currently taking an IBL course were contacted by an academic advisor and invited to 
contact us to volunteer for an interview.  This approach yielded a rather smaller interview sample 
from this campus, which is not necessarily representive. 

The final student interview sample was composed of 68 students who had participated in an IBL 
mathematics course in the current or prior semester at one of the four IBL Centers during the 
2008-10 academic years.   Nineteen students were interviewed individually; the remaining 49 
students participated in one of 22 focus group interviews, with 2-4 students each.   Students who 
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interviewed together in a focus group had taken the same IBL mathematics course and so were 
able to offer comments about the same class.   

Demographic data were reported by students themselves on a standardized data sheet, except for 
course type, which was categorized by the research team.  Table A7.1 provides an overview.    

 
Table A7.1:  Distribution of undergraduate interviewees by institution, gender, 
race/ethnicity, discipline, type of mathematics course, and interest in teaching 

Demographic group Number Percentage 
By gender 68 100% 

Female 38 56% 
Male 29 43% 
Did not respond 1 1% 

By race and ethnicity 68 100% 
White, not of Hispanic origin 48 71% 
White, of Hispanic origin 6 9% 
Black, not of Hispanic origin 1 1% 
Asian 9 13% 
Multiple races 2 3% 
Did not respond 2 3% 

By major 68 100% 
Mathematics 35 51% 
Science 14 21% 
Engineering 2 3% 
Non-science 14 21% 
Did not respond 3 4% 

By type of IBL course 68 100% 
Advanced 35 51% 
First-year 19 28% 
Pre-service teacher 14 21% 

By teaching interest 68 100% 

No interest 41 60% 
Secondary 13 19% 
Elementary 11 16% 
May go into teaching 2 3% 
Did not respond 1 1% 

 
Over half of all students interviewed were female, and nearly three-quarters were white.  Among 
non-white students, most were of Asian or Hispanic heritage; only a few students were African-
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American.  Overall, the race and ethnicity distribution of the student interview sample was 
typical of the departments participating in the study.  

A range of majors was represented in the student sample.  In all, just over half of undergraduate 
participants were mathematics majors, and about one fifth were in a science field.  Another fifth 
of the student sample was in a non-science major.  A few students were pursuing engineering.   

Just over half of the student sample was enrolled in an advanced mathematics class for upper-
class students, while 28% were in a course for first-year students, and 21% were taking an IBL 
course designated for pre-service K-12 teachers.   Separately from their course enrollment, 
students separately reported their interest in teaching.  In general, students pursuing elementary 
teaching were those taking designated pre-service courses, but, as the data show, other students 
pursuing high school teaching were enrolled in advanced mathematics courses. 

In all, a total of 41 interviews were conducted with 68 students.  From the demographic data, we 
may infer a strong interest in mathematics among many students in the sample.  As well, a good 
number were thinking of teaching mathematics as a career.   

A7.3.2 Undergraduate interview protocol 

Interviews with undergraduate students probed their experiences in IBL mathematics courses, as 
well as their attitudes and opinions about learning by the IBL method.  To better understand 
student outcomes arising from IBL methods, particular attention was given to exploring students’ 
reports of how their gains had been made.  Students were asked:  

• About their background and academic goals (major, year in school, plans following 
college (i.e., career, graduate school), what math courses they had/were taking and why 

• To describe how the current/most recent IBL course was taught; how it compared to non-
IBL mathematics courses they had taken 

• How the IBL method affected their learning, and whether they felt they learned well this 
way (why or why not) 

• Whether they felt they were covering the material they needed for future mathematics or 
other coursework 

• The best and worst things about how the course was taught 

• What did they gain, or learn, from the class—or not—and what contributed to or 
detracted from their learning 

• Whether they would take more mathematics courses and if they would choose an IBL 
over a non-IBL course 

• Whether the IBL course had changed ideas about career or graduate school plans 

• To offer advice to other students, their instructors, the department or institution. 
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All interview protocols were submitted for review and approved by the University of Colorado’s 
Institutional Review Board to ensure that this study met high ethical, professional and legal 
standards for research involving human subjects.  Interviewees read and signed an informed 
consent agreement that described the study and their rights as research participants to anonymity, 
confidentiality and other protections of the information they provided. They could decline to 
answer any questions, stop the interview if desired, or decline to be recorded. 

A7.4 Methods of qualitative analysis  

For both the instructor and undergraduate interview data, we followed a method of formal 
content analysis.  Our methods of data collection and analysis are ethnographic, rooted in 
theoretical work and methodological traditions from sociology, anthropology, and social 
psychology (Berger & Luckman, 1967; Blumer, 1969; Garfinkel, 1967; Mead, 1934; Schutz & 
Luckman, 1974).   Qualitative research, such as these interview studies, is particularly useful 
where existing knowledge is limited, because these methods can uncover and explore issues that 
shape informants’ thinking and actions.  Qualitative computer software allows for the multiple, 
overlapping, and nested coding of a large volume of text data to a high degree of complexity, 
thus enabling ethnographers to disentangle patterns in large data sets and to report findings using 
descriptive statistics.  Although conditions for statistical significance are rarely met, the results 
from analysis of text data gathered by careful sampling and consistent coding can be powerful.  

Digitally recorded interviews and focus groups are transcribed verbatim into a word-processing 
program and submitted to NVivo 8.0, a computer software program used for qualitative data 
analysis (QSR International, 2009).  The analyst reads through all of the documents—the text 
data—searching for information relevant to the research questions.  Text segments referencing 
distinct ideas are tagged by code names.  Codes are not preconceived, but empirical: each new 
code marks a discrete idea not previously raised.  All of the code names that are developed are 
collected in a codebook.  When the analyst reads a text passage that relates an idea previously 
encountered, the same code name is reused to mark the relevant passage.  Thus codes and their 
associated text passages are linked, amassing a data set of code names and their frequency of use 
across the data set.  Once all of the text data is coded in this manner, codes similar in nature are 
grouped together to define analytical themes.  For instance, the themes we identified for student 
learning gains from participating in an IBL mathematics course sorted into five categories: 
“cognitive or intellectual gains,” “understanding the nature of mathematics,” “changes in 
learning,” “affective gains,” and “communication gains.”   

The clustered themes or categories describe the nature and range of issues in participants’ 
collective report, and the frequencies with which the themes appear characterize the relative 
weighting of these issues. That is, frequencies show us what participants have commented on 
“the most,” “some,” and “the least.”  The number of observations is generally much larger than 
the number of speakers, and thus is a measure of the depth of commentary on broad topics.  The 
number of speakers raising an issue, however, is often a better measure of the distribution of 
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views on a topic.  We use both types of counts in reporting results of the qualitative analyses of 
the student and instructor interview data.   

In order to discover whether or not there were meaningful variations in what was reported by 
different student groups, we also analyzed the student interview data by gender and by course 
type (first-year, advanced, or for pre-service teachers).  These analyses allowed us to explore 
important questions, such as whether or not women offered more observations than did men 
concerning their learning gains, or whether students who had taken mathematics courses 
designed for pre-service teachers noted unique or particular learning gains compared with 
students who had taken an advanced or first-year mathematics course.  For instructors, subgroup 
analyses compare faculty with graduate students, and experienced with new IBL instructors. 

When the subgroups are different in size, it is easiest to compare code frequencies on a per-
capita basis, considering the average number of observations per person interviewed, rather than 
simply the total number of observations.  This takes into account the fact that a larger number of 
interviewees will generally offer a larger number of observations on any topic.  However, 
because interviews are conducted in a conversational manner that allows for topics to arise in a 
natural order or new topics to be introduced spontaneously, these frequencies are not appropriate 
for statistical analysis.   

A7.4.1 Content of the instructor interview codebook 

The instructor interviews codebook included a total of 2414 coded passages, coded into five 
main themes with 8-14 sub-themes under each.  About 40% of instructor comments addressed 
processes of teaching and another 17% addressed processes of learning.  Instructors' observations 
of student gains (16%), impacts on instructors' own personal and professional lives (16%), and 
comments on their departmental, disciplinary, and institutional context (10%) comprised the 
remainder of the codebook. 

A7.4.2 Content of the undergraduate interview codebook 

The undergraduate interviews codebook included a total of 3390 coded passages, coded into 13 
main themes: four main themes included 1-8 sub-themes, which were sometimes further 
subdivided. Thirty-seven percent of students’ observations discussed how gains from an IBL 
mathematics course had been made; that is, processes that supported their learning. A further 
24% of student observations noted specific learning gains from IBL, while smaller bodies 
addressed gains not made (3%) or “mixed” gains made in partial or qualified degree (1%).   

Nearly 10% of student comments were comparisons between IBL and non-IBL classrooms.   
Another 10% of students’ comments were in the form of advice, either to other students or to 
instructors teaching future IBL mathematics classes.  Smaller numbers of observations were 
offered concerning: the choice to take (or not) another IBL mathematics class (5%), career and 
graduate school plans (3%), the longer-term impacts of taking an IBL mathematics class (3%), 
and whether or not women or students of color benefitted more from IBL methods (2%).  The 
remaining comments were miscellaneous in nature.  
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A7.5 Limitations of the interview studies 

While the interview samples are generally large for qualitative work, and appear to broadly 
represent the student and instructor populations at the IBL Centers, there are some limitations to 
the interview findings.  This particular sub-study did not include a comparison group of students 
who had taken a non-IBL mathematics class.  Data from a comparison group could help to 
highlight areas in which IBL students’ gains were either particularly strong, or unremarkable.   

As in any interview study, participation was voluntary, and our samples of both students and 
instructors may over-represent either those who were especially enthusiastic about the method, 
or those who had an axe to grind.  The sample size was small at one institution where we secured 
only a handful of student interviews.  Because each campus had a distinct style of IBL, 
descriptions of the classroom activities and characteristics experienced by these students may be 
underrepresented in the codebook.  Though every attempt was made to include students of color 
in the interview sample, the low fraction of non-white students enrolled in these courses 
precluded any data analyses that might provide insight into the benefits (or lack of them) of IBL 
methods for students from groups traditionally underrepresented in mathematics.   Likewise, we 
do not have large enough sub-samples for any single course to analyze patterns for specific 
courses or campuses. 

The instructor sample is robust in size and a good match to the apparent demographics of the 
instructor population at these campuses.  We note that the instructor sample is composed of 
people who chose or were invited to teach IBL courses.  While our observations and interviews 
do not indicate that they are unusually talented as teachers, they may well be more interested in 
student-centered teaching methods (and in students themselves) than the average mathematics 
instructor.  We make no claims about the applicability of our findings to all mathematics 
instructors, but (as discussed in Chapter 8) we do believe that their observations indicate 
experiences and issues that instructors in other settings are likely to encounter . 
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Exhibit E7.1:  Interview Questions for IBL Math instructors  
individual or focus groups (pairs) 

 
Review consent form, confidentiality and anonymity. Clarify audio recording procedures.  Tell 
them to keep other names confidential, per HRC: 

Please do not disclose the name of other students, faculty or staff members when being 
interviewed. When participating in a focus group please keep all information that is 
shared in the session confidential. 

Turn on mic! 
A) Background and teaching experience 

Tell me a bit about yourself – what you do here how you are connected to the IBL project here. 
 Teaching experience (years, where and what) 
 Career status 

For grads/postdocs:  future career interests, timing (where now in education/professional 
process, when will they be job hunting) 
 

B) Teaching style and strategies 
Tell me about your course:  who takes it, what are your goals for these students 
What is your overall teaching approach or philosophy? 
What particular strategies are you using to achieve this?  Why those (and not others)? 
How is this working?  (What are you happy or not happy with, in how the course is going?) 
Will you teach this way again?  The same way or differently?  (What will you change?) 
 
C) Role in IBL project (if instructor in IBL course) 

How did you get involved in the IBL project at your campus? Did someone ask you or did you 
volunteer?  (why do you think they picked you?)  
How do you define IBL, for yourself? 

What goes on in this course that you think is different from the way most math courses 
are taught? 
How does IBL fit in with your own beliefs about teaching and learning? 
 

D) Observations about student gains 

What do you think students get out of your courses?   (Open-ended, then probe for specific 
categories:  
 understanding of mathematics content 
 understanding of the nature of mathematics, how mathematicians work 
 communication skills – writing and speaking about math 
 critical thinking skills or habits of mind 
 attitude changes:  confidence, enjoyment, interest in mathematics 

changes in your problem-solving style, ways of learning math (independence, 
persistence, reflection) 

 Any other gains we have not mentioned yet? 
Do you see any impacts on their course-taking afterwards?  Career or grad school plans? 
 Probe particular benefits for the grad-school bound 
 For life in general 
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What do they not get?  (OR what do they miss out on, that they get in other places?) 
For what type of student does your teaching approach work best?  Why do you think so? 

Do you notice any patterns in which students respond well or not – e.g. with respect to 
gender, ethnicity, background?  

For non-IBL instructors: Are you familiar with the IBL project on  your campus?  (to set up next 
questions for them – but ask All  
What kind of students learn best from IBL? 
What makes IBL difficult for students?  

What kinds of students find this particularly difficult or daunting? 
Do you think every student have an IBL experience as part of a college math degree?  Why or 
why not? 
 
E) Personal and professional gains/costs 
What do you, as a teacher, gain from teaching this way? 
What are the costs to you of teaching this way?  
 What do you like/not like about this approach? 
Have your beliefs about teaching and learning in any way?  (why or why not?) 
 (Ask about linkage to IBL course for IBL instructors ) 
 
F) Additional questions for grad students helping or TAing IBL courses 

What do you find yourself doing – what is your role in supporting students in the course? 
What do you think works well about that?   
What is difficult about that? 
What do you get, personally, out of doing this work? 

How do you think your work with this course has influenced your own ideas about teaching and 
learning, so far? 

Do you think you would choose to teach this way if you were in charge of a course 
yourself?  

(Given career goals) How do you think working witih this course will prepare you for that 
career?     

Probe career expectations re teaching, type of teaching, in particular.  
Ask if we can keep in touch to follow up on their career progress; get permanent contact 
info if possible. 

G) Additional questions for instructors also in a leadership role in the project 

Tell me about how this department, as a group, and you as an individual, got involved in IBL.  
How have you recruited or persuaded others to participate?   

Has that been hard or easy? 
 What kind of people seem most interested in teaching this way? 
  What status issues do you observe around participating in IBL? 

What are the barriers or difficulties that people raise who don’t want to teach this way, or 
who are reluctant?  (why do some people not want to do it? ) 

What in your view have been the successes ?  
Why, or what are your criteria? 

What have been the challenges?    
Why?  What makes it hard?  
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Any outright failures?  
Tell me a bit about your interaction (or the project’s) with the other campuses. 

How often do you meet, how well do you know the other people or projects? 
What do you get out of this interaction? 
What is your perception of how IBL is done at this campus as compared with how it is 
done on other campuses?   
 

H) Advice 

Any advice you’d want to give the faculty or department about this course or this approach?   
Any advice you’d want to give another instructor (TA) for this course? 
Anything we should have asked that we didn’t?  Anything you want to add or emphasize? 
 Thanks, follow-up, goodbye. 
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Exhibit E7.2.   Interview Questions for IBL Math students - individual or focus groups 
 

Revised January 28, 2009 
 

Review consent form, confidentiality and anonymity.  Clarify audio recording procedures.  Tell 
them to keep other names confidential, per HRC: 

Please do not disclose the name of other students, faculty or staff members when being 
interviewed. We understand that in some cases the name of an instructor may be 
understood if you are taking a particular class that is being discussed. When participating 
in a focus group please keep all information that is shared in the session confidential. 
 

Turn on mic! 
 
Background and academic goals 
Tell me about yourself —what’s your major, what year are you?   

What do you plan to do after college?  (career, grad school plans) 
What math course are you taking (did you take recently) and why are you taking this 
course?   
 

Learning experiences 
Tell me about how this course is taught, compared to other math courses you’ve taken here. 
 Did you know it would be like that, when you signed up?   
 How does it compare to what you expected?  
How do you think this way of teaching math affects your learning?   
 Do you feel you learn well this way?   Why or why not?  
 Do you enjoy it ?   Why or why not? 
 Why do you think the instructor chooses to teach it this way? 
How do you feel right now about how it’s going ?  (Ask in retrospective form, for past 
students—How did it go?  Did you learn the material, get a good grade?) 

Do you think you’ll learn the material you need to learn to go on in math or in other 
courses in your major? 

 Do you think you’ll get a good grade? 
 Do those things worry you ?   
What’s the best thing about how this course is taught? 
What’s the worst thing about how this course is taught? 
 
Learning gains 
Overall, what do you think you are getting (got) from this course?  (Open-ended first, then 
prompt for “some of the things faculty think students gain from this kind of course”) : 
 understanding of mathematics content 
 understanding of the nature of mathematics, how mathematicians work 
 communication skills – writing and speaking about math 
 critical thinking skills or habits of mind 
 attitude changes:  confidence, enjoyment, interest in mathematics 

changes in your problem-solving style, ways of learning math (independence, 
persistence, reflection) 
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 Any other gains we have not mentioned yet? 
Are you likely to take more math courses ?  (would you have done so anyway?)  
 Any changes in which courses you think you’ll take next? 
Any changes in your ideas about your career or grad school plans, after taking this course? 
 
Advice 
Based on your experience, what kind of student do you think is most likely to succeed with this 
type of course? 
 What kind of student do you think will find it difficult or not to their liking?  
What would you tell a friend who was thinking of taking this course? 
Any advice that you’d like to give the faculty and department about this course or this way of 
teaching?   
Anything else that we should have asked you about?   
Anything else you want to add or emphasize? 
 Thanks, followup, goodbye. 
 

 




