
Appendix A5: Study Methods for Mathematics Tests 

A5.1 Introduction 

In addition to students’ own reports of their learning gains from a mathematics course (Ch. 3, 
Appendix A3), we gathered information from tests about possible changes in students’ content 
knowledge and mathematical thinking during a college mathematics course. The first test, called 
Learning Mathematics for Teaching (LMT), offered us well-validated instruments for measuring 
pre-service teachers’ cognitive gains from an IBL mathematics course. The other test, nicknamed 
the Proof Test, measured students’ ability to evaluate a mathematical argument and determine its 
validity (see Exhibit E5.1). Using these two tests we gathered two mid-sized data sets on the 
development of students’ mathematical knowledge and thinking. These studies addressed our 
research questions: 

• How do students’ mathematical knowledge and thinking change during an IBL college 
mathematics course?  

• How do the changes differ by student groups, especially between IBL and non-IBL 
students? 

• How do the changes align with results from other measures of students’ learning gains? 

We also used one more method to get comparative data on students’ learning gains during a 
mathematics course. We refer to this as the Instructor Ratings instrument (see Exhibit E5.2). We 
designed a rubric that asked instructors to assess their students’ learning from their course by 
rating the students on both their initial expertise in mathematics (as a check on instructors’ 
perceptions) and overall learning gain in mathematics from the course. Because these data were 
mainly used to check the validity of our other measures of student mathematics learning and 
gains, results from this data set are reported in this Appendix.         

A5.2 Learning Mathematics for Teaching (LMT) Tests  

A5.2.1 LMT Tests 

We used well-validated instruments, called Learning Mathematics for Teaching (LMT) tests, in 
studying pre-service teachers’ gains in mathematical knowledge from an IBL mathematics 
course. The LMT instruments have been developed and validated by a team at the School of 
Education, University of Michigan, for assessing professional development courses for K-12 
mathematics teachers (Hill, Schilling & Ball, 2004). Their project investigates the mathematical 
knowledge needed for teaching, and how such knowledge develops as a result of experience and 
professional learning. The LMT tests reflect both the mathematical content that teachers teach 
and the special knowledge they need to teach that content to students. The LMT measures are not 
designed to make statements about individuals’ mathematical knowledge but rather to compare 
the mathematical knowledge of groups of teachers (such as those participating in particular 
courses) and how their knowledge develops over time.  
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The test items are designed to measure the development of mathematical knowledge needed for 
teaching: solving problems, using definitions, and identifying adequate explanations (Hill, 
Schilling & Ball, 2004). Each item and form has been piloted with over 600 elementary teachers, 
yielding information about scale reliability and item characteristics. Some examples of released 
LMT test items can be found at the project’s website (Learning Mathematics for Teaching, n.d.). 
After participating in a training session provided by the LMT developers, we signed a terms of 
use contract for using the instruments, which helps to protect the utility and validity of the items 
by keeping them confidential except for research and evaluation purposes (for example, the items 
may not be used for teaching).  

For this study, we chose a pre-test and related post-test on elementary Number Concepts and 
Operations in order to study changes in pre-service teachers’ mathematical knowledge during an 
IBL course. The pre-test consisted of 24 and the post-test of 23 items. Standardized IRT (item 
response theory) scores provided by the developers were applied to match the results between 
pre-test and post-test. We use these scores in analyzing our data and reporting results. 

We added a separate section at the end of a pre- and post-test with demographic questions about 
students’: 

• gender, 

• class year, 

• prior teaching experience (if any), in total number of years, 

• grade level of prior mathematics teaching experience (if any), 

• intended grade level for future mathematics teaching. 

Items on teaching experience were included because some graduate students in the study might 
be completing teacher certification programs after some prior teaching experience. 

We verified the course, section and instructor for each student. In addition, we asked students to 
establish an identifier that helped us to match students’ pre- and post-test answers and also their 
survey responses.  

A5.2.2 Study sample for the LMT Test 

Data from the LMT measures were gathered from students taking targeted IBL courses for pre-
service teachers at two campuses. Altogether, we got pre- and post-test data from pre-service 
teachers in several distinct two-course sequences preparing teachers for elementary and middle 
school, elementary, or secondary teaching. In all, six data sets from three course sequences were 
received during the two academic years 2008-2010. No comparative (non-IBL) sections of these 
courses were offered at any of the campuses. The results reported in Chapter 5 are based on data 
from the 109 pre-service teachers who took both the pre-test and post-test at two campuses. The 
sample is described in Table A5.1, showing demographic characteristics of students in the three 
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main groups, divided by the target audience (elementary, elementary/middle, or secondary) of 
the courses in which the students participated.        

 
Table A5.1: LMT Test Sample Teachers by Gender, Ethnicity, and Race  

Indicator Group 1 
Elementary  

Group 2 
Elementary/middle  

Group 3 
Secondary 

Total 

 Count % Count % Count % Count % 
   Gender        
Women 27 100 62 97 9 50 98 90 
Men 0 0 2 3 9 50 11 10 
 27 100 64 100 18 100 109 100 
    Ethnicity 
Hispanic or Latino 6 23 4 7 1 6 11 11 
Not Hispanic or 
Latino 

20 77 57 94 15 94 92 89 

 26 100 61 100 16 100 103 100 
    Race 
Asian  4 20 3 5 1 10 8 9 
Multiracial 2 10 5 8 1 10 8 9 
White 14 70 53 87 8 80 75 82 
 20 100 61 100 10 100 91 100 

 

Table A5.1 indicates that most of the pre-service teachers who took both the pre- and post-test 
are women (90%). We had only 11 men in our sample—a typical distribution of gender among 
teachers. In particular, all the elementary teachers were women and only two in Group 2 
(elementary/middle school) teachers were men. Half of the secondary school teachers were men, 
but their number was still low in our sample overall.  

Table A5.1 also shows that only 11% (11) of the pre-service teachers in our sample overall were 
Hispanic or Latino, although their proportion was a bit larger among elementary teachers (23%). 
Most (82%) of the students were white and the number of students reporting other races was 16 
(18%). Again, this shows the sample had little variation in students’ demographic characteristics.    
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Table A5.2: LMT Test Sample by Academic Status and Major Subject 

Indicator Group 1 Group 2 Group 3 Total 
 Count   % Count  % Count   % Count  % 
 Academic status       
Sophomore 1 4 2 3 2 11 5 5 
Junior 8 30 53 83 3 17 64 59 
Senior 18 67 6 9 13 72 37 34 
Graduate, other 0 0 3 5 0 0 3 3 
 27 100 64 100 18 100 109 100 
  Major subject 
Math or applied 
math 

0 0 14 23 14 88 28 27 

Science, 
engineering, 
computer science 

3 12 8 13 1 6 12 12 

Non-science 23 89 40 65 1 6 64 62 
 26 100 62 100 16 100 104 100 

 

Table A5.2 displays pre-service teachers’ academic status and college majors. Typically, these 
students were well along in their academic careers.  Only five were second-year students and all 
the others were juniors (59%) or seniors (34%). Slight variation appeared between the three 
groups. Most of the elementary and secondary school teachers were seniors (67%), whereas 
nearly all the elementary/middle school teachers (83%) were juniors.   

The distribution of the elementary and middle school teachers’ college majors was typical. Most 
of them had a non-science (education) as their major subject (89%, 65%), whereas nearly all of 
the secondary school teachers (88%) reported a major in Mathematics or Applied Mathematics.  

A5.2.3 Methods for Administering and Analyzing the LMT Test 

Both the pre- and post-test were administered as a paper-and-pencil test in class by the IBL 
project coordinators at two campuses. The coordinators were provided with written instructions 
for administering the tests and preserving students’ confidentiality. The written tests were 
returned to researchers, coded, and the data entered into separate SPSS data files by trained 
student assistants. Finally, the data on students’ responses to the test items were matched with 
their responses on our survey instruments (Ch. 3). A smaller sample set of students’ LMT test 
results was matched with instructor ratings (see Section A5.4).  

The raw scores on the pre- and post-test were converted to standardized IRT scores according to 
a scoring table provided by the developers of the tests. All the analyses were performed by using 
these standardized scores that also enabled matching of students’ pre-test scores to their post-test 
scores. To report results, we also apply the IRT scoring table in illustrating average score gains 
in mathematical knowledge from actual LMT test scores. In addition to descriptive statistics, we 
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applied correlational analysis and parametric tests (independent and pairwise t-tests, ANOVA) to 
analyze the data. Stepwise regression was used to study the extent to which LMT test score gains 
were explained by other measures of mathematical knowledge and learning.  

A5.3 Proof Test 

We used another test, which we refer to as the “Proof Test,” to measure students’ mathematical 
knowledge and thinking. This test studied students’ ability to evaluate a mathematical argument 
and determine its validity. Test data were gathered from interviews and paper-and-pencil tests.      

A5.3.1 Proof Test instrument 

The proof test was based on items on evaluating mathematical arguments that were designed by 
Weber (2009). We reformulated the original test into a paper-and-pencil test. Wording of some 
of the claims was clarified with a few additional words suggested by a mathematics professor. 
We also numbered the lines in the arguments so that students could reference specific lines in 
their comments. In order to obtain equal numbers of answers to each argument, we used two 
tests, forms A and B, which were identical except for the order of the arguments.    

The one-hour test included nine of the ten original arguments from Weber (2009) on algebra, 
number theory and calculus (see Exhibit A5.1). Three of these arguments were valid and six 
arguments had some flaws for students to detect. Each argument was followed by structured 
questions to probe: 

• Did students understand the argument? 

• To what extent were students convinced by the argument? 

• To what extent did students find it to have explanatory power? 

• Did students consider the argument to be a mathematical proof?  

Students answered the first three questions on a scale between 1 (strong disagreement) and 5 
(strong agreement). On the fourth question, students assessed whether an argument was a proof 
(fully rigorous, not fully rigorous, not a proof, don’t understand). At the end of this question, we 
requested students’ explanations for their reasoning behind their decisions (see Exhibit A5.1). 

A cover sheet for the proof test gathered demographic data on students, including ethnicity, race, 
gender, class year, academic major, and whether or not students planned to become a K-12 
teacher. We also verified the course sections in which students were enrolled, the number of their 
college mathematics courses they had taken before and during or after the target course, and their 
expectations for their course grade (see Exhibit A5.1).      

A5.3.2 Study sample for Proof Test 

The first data set was gathered from one-on-one problem-solving interviews. Later, the test was 
revised into a paper-and-pencil form that was administered either in class to all students, or out 
of class to volunteers. In the interviews, students were asked to verbally explain the reasoning 
behind their answer about each argument, and these responses were recorded. On the paper-and-
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pencil test, students wrote down their reasoning about whether or not each argument was a 
mathematical proof. Both the interviews and the paper-and-pencil tests took an hour.  

In all, we obtained tests from 42 IBL students (27 men, 15 women) and 35 non-IBL students (19 
men, 16 women) at the end of a mathematics course. Of these, 24 students (14 IBL, 10 non-IBL) 
took an interview and 53 students (28 IBL, 25 non-IBL) a paper-and-pencil test. Most of the 
students were volunteers (63) who were paid a modest honorarium for participating. Only 14 
students took an in-class post-test. In addition, we got pre/post-test data from one section (20 
pre-, 14 post-tests). Table A5.3 displays demographics of the students, for IBL and non-IBL 
students separately. 

Table A5.3: Proof (Post-) Test Sample by Gender, Ethnicity, Race, and Course Type.  

Indicator IBL students Non-IBL students Total 
 Count % Count % Count % 
   Gender      
Women 15 36 16 46 31 40 
Men 27 64 19 54 46 60 
 42 100 35 100 77 100 
    Ethnicity 
Hispanic or Latino 3 8 2 6 5 7 
Not Hispanic or 
Latino 

37 93 33 94 70 93 

 40 100 35 100 75 100 
    Race 
Asian  14 34 14 44 28 38 
White 25 61 16 50 41 56 
Other race 2 5 2 6 4 6 
 41 100 32 100 73 100 

 

The proportion of men among IBL students exceeded that among non-IBL students. Otherwise, 
the sample looked like our other student samples. Only five students’ ethnicity was Hispanic or 
Latino, and only 4 students reported a race other than white or Asian. However, one third of IBL 
but 44% of non-IBL students were Asian.    
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Table A5.4: Proof (Post-) Test Sample by Course Type and Academic Status.  

Indicator IBL students Non-IBL students Total 
 Count % Count % Count % 
 Academic status     
First-year 0 0 0 0 0 0 
Sophomore 7 18 7 21 14 19 
Junior 13 33 14 41 27 37 
Senior 20 50 13 38 33 45 
Other 0 0 0 0 0 0 
 40 100 34 100 74 100 
  Major subject 
Mathematics 30 83 26 87 56 85 
Natural science  1 3 1 3 2 3 
Math/Natural 
Science 1 3 2 7 3 5 

Non-science 0 0 0 0 0 0 
Math/Non-science 4 11 1 3 5 8 
 36 100 30 100 66 100 

 
According to instructors, our target courses represented an introductory or mid-level proof-based 
course. But, in practice, we found that many students had substantial proving experience in prior 
courses. This is also reflected in Table A5.4: most of the students were seniors or juniors. Nearly 
all were also pursuing a math major.   

A5.3.3 Methods for Proof Test 

We used descriptive statistics and parametric (T-test) or non-parametric (Mann-Whitney) tests to 
examine differences between student groups in responses to the three first structured questions 
(see Exhibit A5.1). Table A5.5 displays averages of students’ ratings on the three structured 
questions, for each argument separately.     
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Table A5.5: Average Student Ratings of Single Arguments 

Course type 

Argument IBL Non-IBL 

 Understanding Conviction Explanation Understanding Conviction Explanation 

Valid arguments  

Arg 1 4.8 4.7 4.3 4.7 4.7 4.5 

Arg 3 4.6 4.4 4.3 4.5 4.3 4.2 

Arg 4 4.4 4.2 4.4 4.2 4.0 4.1 

Invalid arguments 

Arg 2 4.8 4.5 4.4 4.8 4.4 4.3 

Arg 5 4.3 2.1 1.9 4.4 2.2 1.8 

Arg 6 4.6 3.3 3.4 4.7 3.5 3.5 

Arg 7 4.3 2.1 2.1 4.8 2.4 2.4 

Arg 8 4.3 3.3 3.3 4.5 3.5 3.5 

Arg 9 4.4 3.5 3.4 4.1 3.1 2.9 
 
Scales (1-5):  

Understanding: 1=not understand fundamental details to 5=understand completely. 
Conviction: 1=not convinced at all to 5=completely convinced. 
Explanation: 1=does not explain to 5=really illuminates why it is true. 

 
Differences in frequency distributions between student groups in answers to the fourth question 
were compared by using a non-parametric test (Chi2). 

In addition to the four structured questions, we analyzed students’ written reasoning about each 
argument. These data came from 53 students (28 IBL, 25 non-IBL). These qualitative data were 
coded and analyzed qualitatively according to eight main themes related to the nature of 
students’ criteria for assessing the arguments. The categories were derived from preliminary 
analysis of a subset of written comments and finalized using inductive content analysis (Miles & 
Huberman, 1994; Strauss & Corbin, 1990) of the complete set of written comments. Table A5.6 
presents the eight main themes and the 29 sub-categories under the main themes, and the 
frequencies of student comments in each category.  
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Table A5.6: Frequency of Criteria Used in Written Comments about Reasoning 

Subcategory Number of students reporting  Main category 

Description once 2-3 times ≥4 times 

Understanding Some step(s) or the whole argument are/are not 
understandable 19 8 - 

False statement Makes false statement about an argument 18 2 - 

Lacks justification 16 19 1 

Uses empirical/perceptual evidence 8 - - 

Experience: have seen the argument/proof before 4 - - 

Inadequate 
reasoning 

An argument is complete 4 - - 

Steps are acceptable/not acceptable 13 7 - 

All steps are included/not included 15 1 - 

Use of steps as 
criterion 

Proved step by step 5 1 - 

Theorems, formulas included/not included  15 5 1 
Written/not written formally 3 - - 
External structure is correct/incorrect 16 6 1 

Mathematical rules, concepts, terms are 
included/not included 19 3 - 

Formalism 

Doesn’t remember the concepts, terms, 
definitions, proof 1 1 - 

Requests (more) explanation, reasoning 20 16 5 
Level of explanation/reasoning is assessed 8 4 - 
Good explanation/reasoning in the argument 14 7 - 
Visual aid is used/not used 8 1 - 

Quality of 
explanation or 
reasoning 

The steps are clearly stated/explained 5 1 2 

Lack of/rigor of steps found in an argument 25 18 2 
Critical about a claim/presupposition  8 3 - 
Detects the flaw(s) in an argument 18 20 2 
Does not accept a picture/graph/equation as a 
rigorous way to prove 9 2 - 

Does not accept empirical evidence  30 2 - 

Rigor 

Suggests a more rigorous way to prove 10 1 - 
Beauty, appearance, ease of argument as a whole 11 6 - 
Style of (presentation or writing in) an argument 20 13 1 
Logic of argument as a whole 11 7 1 

Assessment of 
an argument 
as a whole 

Subject/mathematical level of an argument 11 2 - 
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A5.4 Instructor Ratings of Student Expertise 

We conducted a small experiment using instructor ratings of students’ mathematical expertise 
and learning, as one more method to get comparative data on IBL students’ learning gains during 
a mathematics course. This is called the Instructor Ratings instrument.  

A5.4.1 Instructor Ratings instrument 

We designed a rubric that asked instructors to assess their students’ learning from their course by 
rating the students on both their initial expertise in mathematics and their overall learning gain 
from the course. Instructors gave their answers in a prepared Excel spreadsheet (Exhibit 5A.2). 

We asked instructors to give two ratings for each student: their overall level of expertise in 
mathematical knowledge and thinking at the start of the course, and overall gain or improvement 
in mathematical knowledge and thinking by the end of the course. That is, we asked instructors 
to distinguish students' incoming ability from their learning in their course. The instructors gave 
their ratings on a scale between from 5 to 1: very high, high, moderate, low, very poor or 
strongly lacking (see Exhibit E5.2).  

A5.4.2 Study sample for Instructor Ratings 

The sample on instructor ratings is based on data from four sections at one campus. We asked the 
campus coordinators to establish an identifier for each student that was later matched with the 
other data sets from these students. Students in two sections were math-track students and the 
two other sections represented courses for elementary/middle school pre-service teachers. 
Instructors rated students’ mathematical expertise at the end of a course. In all, we matched 
instructor ratings from 27 math-track students and 37 pre-service teachers to the other data sets. 

A5.4.3 Methods for Instructor Ratings 

We compared data from the instructor ratings to data on the same students’ learning gains from a 
mathematics course as measured by the SALG-M, using correlational analysis. Descriptive 
statistics and parametric (independent and paired T-test, ANOVA) or non-parametric tests (Chi2) 
were used to study subgroup differences in initial mathematical expertise and gains in 
mathematical expertise.  

A5.4.4 Results from Instructor Ratings 

Table A5.7 displays frequencies for the instructor ratings, for math-track students and pre-service 
teachers separately. The two IBL student groups differed from each other. On average, pre-
service teachers’ (M=3.4) rated initial mathematical expertise exceeded that of math-track 
students (M=2.6, p<0.01). But math-track students’ (M=3.4) rated gains were higher than that of 
pre-service teachers (M=2.3, p<0.001). Also, comparisons between initial expertise and gain in 
expertise showed a difference between these two student groups. While there was a clear 
improvement in math-track students’ rated mathematical expertise (p<0.001), pre-service 
teachers’ gains in mathematical expertise were rated clearly lower (p<0.001) than their initial 
mathematical expertise. While 48% of math-track students had high or very high rated gain in 
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mathematical expertise during an IBL course, only 5% of pre-service teachers’ gain in 
mathematical expertise was rated at this level. 

Table A5.7: Instructor Ratings by Course Type 

Math-track 
students 

Pre-service 
teachers Total 

Instructor rating 
Count % Count % Count % 

Initial expertise  27 100 37 100  100 

very high - - 5 4 5 8 

high 2 7 15 41 17 27 

moderate 11 41 10 27 21 33 

low 14 52 5 14 16 25 

very poor - - 5 5 5 8 

Gain in expertise  27 100 37 100 64 100 

very high 3 11 1 3 4 6 

high 10 37 1 3 11 17 

moderate 11 41 11 30 22 34 

low 2 7 18 49 20 31 

very poor 1 4 6 16 7 11 
 

A5.5 Reliability and Validity of Mathematics Tests  

A5.5.1 LMT Tests 

The Learning Mathematics for Teaching (LMT) instruments are carefully developed and well-
validated instruments (Hill, Schilling & Ball, 2004). The test items are designed to measure the 
development of mathematical knowledge needed for teaching: solving problems, using 
definitions, and identifying adequate explanations (Hill, Schilling & Ball, 2004). Each item and 
form has been piloted with over 600 elementary teachers, yielding information about scale 
reliability and item characteristics. Our sample from two campuses was also large enough to 
detect real gains and differences among students. However, because IBL methods were used in 
all sections of the courses targeted to pre-service teachers that were available for this study, we 
had no opportunity to compare student learning with that in a traditionally taught course.  

At the start of the course, pre-service teachers reported their score (1-5) on the AP Calculus test 
(if they had taken it), their current estimated undergraduate GPA, and their expected grade in the 
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present course. They also reported their expected course grade at the end of the two-term 
sequence. We checked to see how well these other academic measures correlated with students’ 
LMT scores. Table A5.8 summarizes findings on these correlations.  

Table A5.8: Correlations of Students’ LMT Scores with Other Achievement Indicators 

LMT score 
component 

Expected 
course 
grade  

at start 

Expected 
course 
grade  
at end 

AP 
Calculus 

score 
(1-5) 

at start 

Estimated 
GPA 

at start 

Cognitive 
gains 

(SALG-
M) 

Affective 
gains 

(SALG-
M) 

Instructor 
rating: gain 

in math 
expertise 

Pre-test  + ** + ** +  +* + ** + 

Post-test + ** + ** + **   + * + 

Score gain + + +     

* p< 0.05, ** p< 0.01 

Students’ estimated undergraduate GPA did not correlate with the LMT test scores. This is 
understandable since these students’ undergraduate studies were not usually focused on 
mathematics; their GPA represents a broad range of courses and not mathematical ability. 
However, all the three LMT test measures—pre-test, post-test, and test score gain—did correlate 
positively with students’ AP test scores. This result shows that the LMT tests measured 
mathematical knowledge that was somewhat related to that measured by AP Calculus tests, even 
though the LMT test content addressed number and operations, not calculus. However, this 
finding is limited:  we had AP test data from just 36 students, who came mostly from one 
university, and only the correlation between AP test score and LMT post-test score was 
statistically significant (p<0.01). 

Students’ expected grades reported at both the start and end of their course correlated positively 
with both LMT pre- and post-test IRT scores (p<0.01). But the positive correlations between 
expected grades and students’ test score gains were weaker. In general, students who expected a 
higher grade in the course tended to earn higher LMT scores and to make greater LMT test score 
gains, but this latter relation was not statistically significant. In other words, students who 
thought they would get a good grade did get better test scores, but their expected grade was not 
well linked to their LMT test score growth. 

We also examined students’ LMT score gains in comparison with their self-reported cognitive, 
affective, and social gains from the SALG-M survey instrument (Ch. 3). Students’ self-reported 
gains correlated positively with the LMT pre-test scores, while LMT post-test scores were 
positively related only to gains in confidence (p<0.05) and positive attitude (p<0.01). However, 
students’ self-reported gains were not generally related to LMT test score gains. But among 
those students who started with the lowest initial LMT scores, LMT test score gains were 
positively (but not statistically significantly) related to cognitive, affective and social learning 
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gains. That is, students’ LMT score gains were consistently reflected only in the self-reports 
from students with low pre-test scores.  

For a subset of students, we compared LMT test score gains with instructor ratings of students’ 
gain in mathematical expertise during an IBL course. No direct correlation appeared between 
instructor ratings of students’ gain in mathematical expertise and LMT score gains. However, 
instructor ratings of students’ expertise in the beginning of a course were (statistically 
significantly) positively related to both LMT pre- and post-test scores, and slightly to their LMT-
test gain scores. That is, the instructor’s assessment of initial mathematical expertise was 
consistent with LMT pre-test and post-test scores; instructors could identify stronger or weaker 
students overall. But the instructor was a less successful judge of learning as measured by LMT 
score gains. This is a similar result to the relationship between instructors’ assessment of gains in 
mathematical expertise and students’ self-assessed grade, in that students and instructors both 
judge relative performance with some accuracy, but do not accurately predict learning. 

A5.5.2 Proof Test 

The proof test was intended to measure students’ ability to assess mathematical arguments on 
algebra, number theory and calculus. It was based on items on evaluating mathematical 
arguments that were designed and previously tested by Weber (2009). After gathering and 
analyzing proof test data from individual student interviews, we reformulated the original test 
into a paper-and-pencil test that was further reviewed by a mathematics professor. Students were 
provided with an opportunity to offer written feedback or additional comments on the arguments. 
Both the student interviews and written test sheets indicated that students did not have difficulty 
in understanding the questions or goals of the proof test. However, the proof test sample was not 
the same as the samples from our surveys. Thus, we were unable to compare results from proof 
test with other indicators of student learning or gains.  

Our ability to draw strong conclusions is limited by our sample of students. The students who 
volunteered to take the proof test were strong mathematics students, based on their self-reported 
grades and high numbers of prior mathematics courses taken. We surmise that differences in the 
responses and reasoning of IBL vs. non-IBL students are less easily detected among this group 
than among lower-achieving or less experienced mathematics students. Thus, while the test itself 
seems to be sensitive to differences in students’ understanding, our sample is not optimized to 
detect group differences that might result from IBL instruction focused on proof processes. 
Moreover, this particular test is likely to be more sensitive in “introduction to proof” courses 
where enrollment is controlled or sequenced in such a way as to assure that most students have 
relatively little prior proof experience.  In this sample, many students had proof experience 
already, and we cannot rule out that the test measured expertise developed in earlier courses. 

A5.5.3 Instructor ratings 

We used instructor ratings in order to get comparative data on IBL students’ learning gains 
during a mathematics course. We checked to see how well initial expertise and gains in expertise 
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correlated with each other and how these instructor ratings correlated with other indicators of 
mathematical knowledge or academic gains. Because the patterns in instructor ratings for math-
track students and pre-service teachers differed (see section A5.4.4), we studied these relations 
within the two student groups separately. Table A5.9 summarizes findings from the 
nonparametric (Spearman) correlations between mathematical expertise and other indicators of 
student knowledge or learning. 

Table A5.9: Correlation of Mathematical Expertise with Other Performance Indicators, by 
Student Group 

Instructor rating 
(1-5) 

Initial 
expertise 

Expected 
course grade  

at start 

Expected 
course grade  

at end 

AP Calculus 
score  

at start 

Estimated 
GPA 

at start 
Math-track students 

Initial expertise   + + ** + + 
Gain in expertise  + + + - + 

Pre-service teachers 
Initial expertise   + ** + ** + * + * 
Gain in expertise  -*   - + 

* p< 0.05, ** p< 0.01 

Instructor ratings of initial mathematical expertise were somewhat consistent with students’ 
mathematical performance level as indicated by their self-reported AP Calculus test score and 
GPA level at the start of a course. This applied more clearly to the ratings by the pre-service 
teachers’ instructor than to those of the instructor of the math-track students. Moreover, ratings 
of initial mathematical expertise were consistent with both the grade expectations of both student 
groups at the start and end of a course. Students who expected a higher course grade were rated 
higher in mathematical expertise by their instructor, and the opposite was true for students who 
had lower course grade expectations.  

However, in courses for pre-service teachers, the instructor’s ratings of students’ gains in 
mathematical expertise did not correlate with students’ grade expectations at the end of a course . 
Similarly, in math-track courses, the correlation between the instructor-rated gains in expertise 
and students’ own grade expectation at the end of a course was only slightly positive. That is, 
students’ own expectations of their success in an IBL course did not match with their instructors’ 
ratings of their learning gains.  This may be an accurate assessment of the situation, if grades are 
seen by both parties to reflect achievement rather than learning. 

Among pre-service teachers, initial mathematical expertise (as assessed by the instructor) was 
positively related to all other indictors of knowledge or gains. That is, instructor ratings were 
consistent with students’ own expectations and the external performance indicators of AP test 
scores and estimated GPA at start of an IBL course. Moreover, the negative correlation between 
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pre-service teachers’ initial expertise and gain in expertise indicted that instructor ratings of gain 
tended to be higher for students who started with lower mathematical expertise. Further analysis 
by student groups showed that, on average, those pre-service teachers who started with high or 
very high initial expertise got lower ratings in gain in expertise than other pre-service teachers 
(p<0.05).  Instructors saw these students as initially strong, therefore making lower gains.  Also 
pre-service teachers’ AP test score correlated slightly negatively to their instructor-rated gain in 
mathematical expertise. These results are consistent with other findings on pre-service teachers 
(see Section 5.2.3): weaker students at start of an IBL course may gain more than students with 
stronger mathematical background. 

In contrast, among math-track students, instructor ratings of students’ gains in mathematical 
expertise correlated slightly positively with their ratings of initial expertise. That is, students who 
started with stronger mathematical expertise also tended to gain more during an IBL course. But, 
unlike the result for pre-service teachers, the correlation was not statistically significant for math-
track students. Overall, instructors seemed less successful in assessing learning during an IBL 
course than they were in assessing the initial level of students’ mathematical expertise.  

We also examined correlations between instructor-rated mathematical expertise and students’ 
self-reported learning gains (SALG-M, Ch 3). Table A5.10 displays the results of the 
nonparametric (Spearman) correlations. 

Table A5.10: Correlations of Gain in Expertise with Learning Gains (SALG-M). 

* p< 0.05, ** p< 0.01 

IBL students’ self-reported gains were not generally related to their initial mathematical 
expertise, as rated by their instructor. But students’ instructor-rated gains in mathematical 
expertise were modestly related to their self-reported learning gains. Overall, students who had 
higher gains in mathematical expertise, as rated by their instructor, also tended to self-report 
higher gains in understanding concepts and mathematical thinking and problem-solving. They 
also tended to report higher affective learning gains. Students’ gains in collaboration did not 
relate to their gain in mathematical expertise. Rather, higher instructor ratings in gain in 
mathematical expertise were slightly negatively related to students’ self-reported gain in 
application of mathematical knowledge.  

These results indicate that students’ own assessments of learning were somewhat consistent with 
their instructor’s ratings of their gains in mathematical expertise during an IBL course. However, 
the correlations were slight and mostly applied to students with initial poor to moderate 
mathematical expertise.  

Instructor rating 
(1-5) 

Mathematical concepts & 
thinking 

Application Affective 
gains 

Social 
gains 

Initial expertise     
Gain in expertise + - +  
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In sum, instructor ratings of gains in mathematical expertise varied between the student groups 
and courses. Moreover, they were mostly not consistent with other indicators of student learning. 
But students’ self-reported learning gains were moderately in line with their instructor’s ratings. 
Instructors may not be as successful in assessing their students’ learning during as they are in 
assessing the initial level of their students’ mathematical expertise. This applied especially to 
pre-service teachers and students who started with high mathematical expertise. 
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Exhibit E5.1:  Proof Test  E5.1-1 

Instructions:  Assessing Mathematical Arguments 
 

Thank you for participating in our study!   This problem-solving test is part of a research study 
on how students learn to construct and evaluate mathematical proofs. 
 
The problem-solving session will take about 1 hour of your time and will include 9 problems. 
For each problem, you will be asked to examine a mathematical argument and to decide whether 
or not you think it is a valid mathematical proof. You will then answer a few questions about 
each argument and write in some comments to help us understand your reasoning.  Your 
comments do not need to be lengthy, but please show the thinking that led you to your answer.  
For convenience, the lines of each argument are numbered so that you can refer to them in your 
answer if you wish.  Please work steadily, but do not rush.  If you need more work space for any 
answer, please use the space on the last page and note the problem number. 
 
Your participation is voluntary. You may skip questions or tasks that you do not wish to answer, 
or choose not to participate. Your answers are anonymous and will not be reported in any way 
that can identify you individually; they will be reported in groups with answers from other 
students from your course and other schools.  
 
When you have finished the problems or are nearly out of time (whichever comes first), please 
complete question #10.  
 
By taking this test, in part or whole, you agree that we may use this data to understand and 
improve the quality and effectiveness of college mathematics education. Thanks for your help! 
 
 
 
 
 
 
 
Start time:   
 
End time: 
 



Form A  E5.1-2 

Argument 1     
Claim: For all real numbers a and b:    (a + b)2 = a2 + 2ab + b2 
Line: 
1 (a + b)2 = (a + b)(a + b) 
2 (a + b)(a + b) = a(a + b) + b(a + b)     
3 a(a + b) = a2 + ab              
4 b(a + b) = ba + b2 
5 So (a + b)(a + b) = a2 + ab + ba + b2 = a2 + 2ab + b2  
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.    Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.     Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.    Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.     Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-3 

Argument 2 
Claim:  For all real numbers a and b:     (a + b)2 = a2 + 2ab + b2 
 
Consider the diagram at right: 
 

 
         b 
 
 
                    a 
        
 
                                a              b 

Line: 
1 The length and width of the square are each (a+b), so the area of the diagram is  
2 (a+b)(a+b) = (a+b)2. 
3 The area can also be found by adding the areas of the four cells of the square whose  
4 areas are a2, ab, ab, and b2, which is a2 + 2ab + b2. 
5 So (a+b)2 = a2 + 2ab + b2. 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental        I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 

b2 
 
 
 
 
 

 
     a2 

    ab 

     
 
ab 



Form A  E5.1-4 

Argument 3 
Claim: For all natural numbers n > 1,  n3 – n is divisible by 6. 
 
Line:  
1 n3 – n = n(n2 – 1) = n(n+1)(n-1). 
2 Either n is even or n+1 is even. 
3 Since both numbers are factors of n3 – n, n3 – n is even. 
4 Because n-1, n, and n+1 are three consecutive numbers, one of them is divisible by 3. 
5 So n(n+1)(n-1)=n3 – n is divisible by 3. 
6 Since n3 – n is even and divisible by 3, n3 – n is divisible by 6. 
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-5 

Argument 4 
Claim. There is no real number x which solves the equation 4x3 – x4 = 30. 
 
Line: 
1 Consider the function, f(x) = 4x3 – x4. Because f(x) is a polynomial of degree 4  
2 and the coefficient of x4 is negative, f(x) is continuous and will approach -∞ as x  
3 approaches ∞ or -∞. Hence, f(x) must have a global maximum. The global maximum  
4 will be a critical point.  f’(x) = 12x2 – 4x3. If f’(x) = 0, then x = 0 or x = 3. f(0) = 0.  
 f(3) = 27.  
5 Since f(3) is the greatest y-value of f’s critical points, the global maximum of f(x) = 27.  
6 Therefore f(x) ≠ 30 for any real number x. 4x3 – x4 = 30 has no real solutions. 
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-6 

Argument 5 
Claim. Any even integer greater than two can be written as the sum of two prime numbers. 
 
Consider the following table: 

Even  Sum of two primes 
4  2+2 
6  3+3 
8  3+5 
10  3+7,   5+5 
12  5+7 
14  3+11,  7+7 
16  3+13,  5+11 
18  5+13,  7+11 
20  3+17,  7+13 
22  3+19,  5+17,  11+11 
24         5+19,  7+17,  11+13 
26  3+23,  7+19,  13+13 

 
Line: 
1 First, note that each even number between 4 and 26 can be written as the sum of two  
2 primes. Second, note that the number of pairs of primes that work appears to be  
3 increasing. For 4, 6, 8, and 12, there is only one prime pair whose sum is that number.  
4 For 22, 24, and 26, there are three prime pairs whose sum is that number. Every even  
5 number greater than 2 will have at least one prime pair whose sum is that number.  
6 For large even numbers, there will be many prime pairs that satisfy this property. 
 
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
 
(continued, next page)
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D.  Would you consider this argument to be a mathematical proof? 
1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 
 
 
 
 
 
 
 
 
 
 
 
Argument 6   

Claim. 

! 

1

x
sin xdx

0

"

# > 0  

The graph of 

! 

f (x) =
1

x
sin x  is given below. 

 
Line: 

1 

! 

1

x
sin xdx

0

"

# > 0  means that 

! 

f (x) =
1

x
sin x  has more area above the x-axis than below it. 

2 To show this, note that it is clear from the graph that the first positive region—between 0  
3 and π (about 3.14)—has more area than the first negative region—between π and 2π  
4 (between 3.14 and 6.28). The second positive region has more area than the second  
5 negative region. The third positive region has more area than the third negative region.  
6 Since each positive region has a greater area than the negative region to the right of 

7 it, the overall area of 

! 

1

x
sin xdx

0

"

#  will be positive.  

  (continued, next page) 
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For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 
 



Form A  E5.1-9 

Argument 7  
Claim:   Let n be a natural number. If n2 is divisible by 3, then n is divisible by 3. 
 
Line: 
1 We need to show that n is divisible by 3. 
2 If n is divisible by 3, then there exists an integer k such that n = 3k. 
3 n2 = (3k)2 = 9k2. 
4 So n2 is divisible by 9. 
5 All numbers divisible by 9 are also divisible by 3. 
6 So if n2 is divisible by 3, then n is divisible by 3. 
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-10 

Argument 8 
Claim: Let f(x) be a real valued function and let a and b be real numbers such that b> a.  

Then 

! 

f (x) dx
a

b

" # f (x)dx
a

b

"    

 
Line:      (Proof by cases). 
1 Either f(x) ≥ 0 or f(x) < 0. 
2 Case 1: f(x) ≥ 0. 
3 If f(x) ≥ 0, then |f(x)| = f(x). 

4 Thus, 

! 

f (x) dx
a

b

" = f (x)dx
a

b

" . 

5 Case 2: f(x) < 0. 

6 If f(x) < 0, then 

! 

f (x)dx
a

b

" # 0. 

7 Since |f(x)| > 0, then 

! 

f (x) dx
a

b

" # 0. 

8 So 

! 

f (x) dx
a

b

" # 0 # f (x)dx
a

b

" . 

9 Thus, 

! 

f (x) dx
a

b

" # f (x)dx
a

b

" . 

 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
 
C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
 
(continued, next page) 



Form A  E5.1-11 

D.  Would you consider this argument to be a mathematical proof? 
1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Argument 9 
Claim. Let f(x) = ln x. Then 

! 

f (x)"# as x"#. 
 
Line:  
1 Let a and b be positive real numbers with a > b. 
2 Dividing both sides by b gives: 
3 a/b > 1     (since b is positive). 
4 ln(a/b) > 0     (since ln x > 0 when x > 1) 
5 ln(a) – ln(b) > 0     (by the rules of logarithms) 
6 ln(a) > ln(b) 
7 Hence, for positive reals a and b, if a > b, then f(a) > f(b). 
8 Therefore, 

! 

f (x)"# as x"#.  
 
 
For each question, circle the answer (1 to 5) that best fits your thinking about the argument. 
 
A.  Do you feel that you understood the argument that was presented? 
1   2      3   4   5 
There are fundamental       I understand the 
details of the argument       argument completely 
that I don’t understand 
 
 
B.  Are you convinced by this argument? 
1   2      3   4   5 
Not convinced         Completely 
at all          convinced 
 
(continued, next page) 
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C.  Does this argument explain why the assertion is true? 
1   2      3   4   5 
No, the argument        Yes, it really 
does not explain        illuminates why the 
why the assertion is true       assertion is true 
 
 
D.  Would you consider this argument to be a mathematical proof? 

1.              Yes, I consider this argument to be a fully rigorous mathematical proof. 
2.              Yes, I consider this argument to be a proof, although not fully rigorous. 
3.              No, I think this argument does not meet the standards of a proof. 
4.              Not sure, because I don’t fully understand the argument. 

 
Please explain your reasoning about why you think this is or is not a mathematical proof.  
 



Form A  E5.1-13 

10. Please provide some information about your personal and math background.  These data 
help us check that we are gathering answers from a diverse group of students.  Please check 
the choice that fits you best. 

 
a)  Ethnicity (check one) b)  Race (check one or more)   
_____  Hispanic or Latino/a _____  American Indian or Alaskan Native 
_____  Not Hispanic or Latino/a _____  Asian 
  _____  Black or African American 
c)  Gender (check one) _____  Native Hawaiian or other Pacific Islander 
_____  female  _____  White 
_____  male  _____  Other; please specify:  ________________ 
      
d)  Class year (check one) e)  Academic major (check one or more)  
_____  First-year _____  mathematics 
_____  Sophomore _____  natural science; please specify:  _________ 
_____  Junior  _____  engineering; please specify:  _________ 
_____  Senior  _____  non-science; please specify:  _________ 
_____  Other, please specify: _________ 
 
 
f)  Are you preparing to become a K-12 teacher?  (circle one) 
 
      Yes, elementary Yes, secondary No Maybe 
 
 
g)  What college math courses have you taken before this course ?  List course names or 
numbers. 
 
 
 
 
 
 
h)  What other college math courses are you taking this fall?   List course names or numbers. 
 
 
 
 
 
i)  What grade do you expect to receive in this course? (check one) 

A+ _________ B+ _________ C+  _________ D  _________ 
A   _________      B  _________      C   _________ F  _________ 
A-  _________ B-  _________ C-  _________  

Other (please explain):   
 



Exhibit E5.2:  Instructor Ratings  E5.2-1 

Exhibit 5A2:  Instructor Ratings 
 
 
Dear IBL Instructor,   
We seek your assessment of individual students' learning from your course.  We will 
compare your views with students' self-assessment of their learning from this course, 
in order to understand how well students' self-judgments of their mathematical 
learning correlate with the assessment of experienced mathematicians familiar with 
their work. 

We ask you to give two ratings for each student:  his/her overall level of expertise in 
mathematical knowledge and thinking at the START of the course, and his/her overall 
GAIN or improvement in mathematical knowledge and thinking by the END of the 
term.  We ask you to distinguish, as best you can, students' incoming ability (which 
may depend on their educational background, preparation, and talent) from their 
learning in your course.   Both of these can be factors in students' final performance 
or grade, so we ask you to separate them as best you can based on your observations 
of their work for your course. 

Please focus on students' overall mathematical knowledge and thinking, even though 
you may have observed other kinds of abilities, growth, or learning gains in your 
course.  And feel free to add any comments on this sheet, if you wish. 

Please rate your students in comparison with other students in this course or at this 
level in your program.  Use this scale for both ratings: 

   5 = very high,    4 = high,    3 = moderate,    2 = low,  
   1 = very poor or strongly lacking 

   
First two letters of 
first name 

INITIAL expertise in 
mathematics 

Overall learning GAIN in 
mathematics from your course 
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