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ABSTRACT  

This paper illustrates the use of an explanatory item response modeling (EIRM) approach 

in the context of measuring group differences in science achievement.  The distinction 

between item response models and EIRMs, recently elaborated by De Boeck & Wilson 

(2004), is presented within the statistical framework of generalized linear mixed models.  

It is shown that the EIRM approach provides a powerful framework for both a 

psychometric and statistical analysis of group differences.  This is contrasted with the 

more typical two-step approach, in which psychometric analysis (i.e., measurement) and 

statistical analysis (i.e., explanation) occur independently.  The two approaches are each 

used to describe and explain racial/ethnic gaps on a standardized science test.  It is shown 

that the EIRM approach results in estimated racial/ethnic achievement gaps that are larger 

than those found in the two-step approach.  In addition, when science achievement is 

examined by subdomains, the magnitude of racial/ethnic gap estimates under the EIRM 

approach are more variable and sensitive to the inclusion of contextual variables. These 

differences stem from the fact that the EIRM approach allows for disattenuated estimates 

of group level parameters, while the two-step approach depends upon estimates of 

science achievement that are shrunken as a function of measurement error.  
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INTRODUCTION  

Item response theory (IRT) models are primarily viewed as tools for 

measurement. In this capacity they have been, and continue to be, applied with much 

success.  In recent years it has become increasingly apparent that IRT models exist as 

special cases of a broader statistical framework (c.f., Verhelst & Verstralen, 2001; 

Kamata, 2001; Rijmen, Tuerlinckx, De Boeck & Kuppens, 2003; De Boeck & Wilson, 

2004; Skrondal & Rabe-Hesketh, 2004).  It has been shown that when IRT models are 

cast within the framework of generalized linear mixed models or nonlinear mixed 

models, it becomes possible to specify with great flexibility targeted research 

questions about both within-person differences in item response probabilities, and 

between-person differences in the latent construct(s) being measured.  Traditionally, 

these latter sorts of questions are addressed after student-level measures have already 

been estimated.  For example, when a sample of students are administered a standardized 

test in science, we might be interested both in (a) the extent to which student performance 

differs as a function of race/ethnicity, and (b) the extent to which these differences vary 

as a function of different subdomains of science achievement.  One way to approach this 

would be to separately scale each subdomain with an IRT model, and in a subsequent 

step use student scale scores from each subdomain as outcome variables to be regressed 

on racial/ethnic dummy variables.  With this approach, the underlying IRT model is only 

of interest as a way to generate the outcome variable.  The actual answers we arrive at for 

(a) and (b) are based upon a linear regression that is essentially independent of the chosen 

item response model.  However, when the interest of our research question is not 
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restricted to measuring students, but includes an interest in explaining group differences 

among students, this two-step approach will often not be the best one to take, for reasons 

I will establish and illustrate in this paper.  

PURPOSE  

De Boeck and Wilson (2004) coined the term explanatory item response models 

to characterize the use of IRT as a tool for both measurement and explanation.  In their 

edited textbook, examples are given of many different instances in which explanatory 

item response models are applied to empirical data. Unfortunately, there are relatively 

few examples using data from large-scale standardized achievement tests.  The purpose 

of this paper is to (1) further introduce the concept of explanatory item response models 

in the context of addressing the sorts of substantive research questions typical of the field 

of education, and (2) highlight some of the potential advantages to taking an explanatory 

item response modeling approach in the context of comparing group differences.   

There are four principal sections that follow.  In the first section I present the 

broader statistical framework within which IRT models can be viewed as a special case.  

In the second section, I describe a dataset gathered from a sample of students who have 

been administered the standardized science assessment known as the Partnership for the 

Assessment of Standards-based Science (PASS) test .  Over the next two sections of the 

paper this dataset is used to illustrate the distinction between using IRT models strictly 

for the purpose of measuring individuals, and using IRT models in the context of both 

measuring individuals, and explaining group differences among those individuals.  In the 
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third section, I show how research questions about group differences are typically 

addressed using the two-step approach of measurement followed by explanation.  In the 

fourth section, I contrast the two-step approach to an explanatory item response modeling 

approach, and point out where the two approaches can lead to different conclusions about 

the same research questions. The paper concludes with a summary of some of the major 

strengths and limitation of the explanatory item response modeling approach.  

BACKGROUND: EXPLANATORY ITEM RESPONSE MODELS  

The presentation in this section draws upon a more extensive explication provided 

by Rijmen, Tuerlinckx, De Boeck & Kuppens (2003).  Imagine we have some test 

instrument comprised of multiple-choice items that are to be scored dichotomously.  Let 

the random variable niY  represent the item response from person n to item i. When the 

correct response is selected, niY  = 1, otherwise, niY  = 0.  The probability of a correct 

response can be expressed as a function of fixed effects, , and random effects, n , such 

that 

exp( )
( 1| , , , ) ,

1 exp( )
ni ni n

ni ni ni n
ni ni n

P Y
x z

x z
x z

    

(1) 

where nix

 

is an observed P-dimensional covariate vector for P fixed effects; niz

 

is an 

observed Q-dimensional covariate vector for Q random effects; is the P-dimensional 

parameter vector of fixed effects, and n  is the Q-dimensional parameter vector of 

random effects associated with respondent n.  In (1), all observations are assumed to be 

independent realizations from an exponential family distribution, conditional on the 
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specified random effects, covariates, and fixed effects.  The generalized linear form of the 

model is most readily apparent when the mean responses of niY  are mapped to the linear 

predictors with what is known as a link function.  In this case, with niY  taking on a 

Bernoulli distribution, ( 1| , , , ) ( 1| , , , )ni ni ni n ni ni ni n niE Y P Yx z x z , so the link 

function is the logit function, ( ) ln
1

ni
ni

ni

L .  Given the logit link, (1) can be 

rewritten as 

( ) .ni ni ni nL x z

        

(2) 

The expression above is an example of a generalized linear mixed model (Breslow & 

Clayton, 1993; McCulloch & Searle, 2001).  The random effects n  are typically 

assumed to have a multivariate normal distribution with a mean vector of 0 and 

covariance matrix .  The fixed and random effect covariate vectors merit further 

discussion in the context of the data typically considered in IRT.  Let the matrices X and 

Z correspond to the respective fixed and random effect covariate vectors stacked over 

items and persons.  Rijmen et. al. (2003; 187) define three categories of distinct 

covariates: 

1. Item covariates: A covariate is an item covariate if and only if the elements of the 

corresponding column of X (and/or Z) vary across items but are constant across persons. 

2. Person covariates: A covariate is a person covariate if and only if the elements of the 

corresponding column of X (and/or Z) vary across persons but are constant across items. 

3. Person-by-item covariates: A covariate is a person-by-item covariate if and only if the 

elements of the corresponding column of X (and/or Z) vary across both persons and 

items. 
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( )ni n iL .        (3) 

This is recognizable as a Rasch Model, where the variable n  is assumed to represent the 

value of some latent construct of interest for person n, and i  represents item easiness.  

The distribution of the latent variable n

 

is typically assumed to be normal1 and the mean 

is constrained to equal 0 (or alternatively the mean of i  is constrained to equal 0) for 

purposes of model identification.  The distribution of n  is often referred to as the 

population distribution.  From the perspective of the GLMM framework, the Rasch 

Model is a model in which the clustering of item responses within respondents is a 

function of item-specific fixed effects and one person-specific random effect.  The Rasch 

Model is solely a measurement model because no attempt is made to explain the 

differences in the characteristics of persons or items by introducing other covariates into 

the X and Z matrices.   

Now I show how the GLMM framework can be used to move from the Rasch 

Model to a relatively complex EIRM.  Say we are interested in specifying a 

multidimensional model for group differences in achievement.  To account for 

multidimensionality, we can include more than one random effect such that 

( )ni ni n iL z .        (4) 

If our interest is in explaining group differences associated with the random effect vector 

n , then we can introduce person covariates into the model such that 

* ,n nX

         

(5) 

where *X  is a matrix of person covariates associated with each of Q random effects,  is 

a matrix of fixed effect parameters for each random effect/covariate combination, and n
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represents a vector containing Q random error terms.  The expression above constitutes a 

population model at the person level, and has been previously described as a latent 

regression (Adams, Wilson & Wu, 1997). In this case, we would be specifying a 

multidimensional latent regression.  Once a multidimensional latent regression has been 

specified, the fixed effect covariate vector, nix , from (2) now includes both item and 

person covariates, and the vector n  becomes a multidimensional random effect.  More 

importantly, with the addition of person covariates, the model has changed in nature from 

providing a measurement of the random effects n , to describing or depending upon 

the nature of the variables included in *X explaining group differences in n .  The 

EIRM that results from the pairing of (4) with (5) is a multilevel model, having both a 

within-person level and a between-person level, with the multidimensional Rasch Model 

characterizing the former, and a population model (i.e., latent regression) characterizing 

the latter. 

I have made two simplifying assumptions for didactic reasons.  Only models for 

dichotomous items have been presented, and the range of item response theory models 

has been limited to the Rasch family of models.  The extension to polytomous items 

involves an additional level of nesting, with item categories j = 1, , J nested within 

items. So the GLMM expression of (2) for polytomous items becomes 

( ) .nij nij nij nL x z

        

(6) 

The measurement framework can be extended outside the Rasch family of IRT models 

with the inclusion of item covariates with unknown values (i.e., discrimination 

parameters).  By doing this we move outside the GLMM framework to a nonlinear mixed 

modeling framework (NLMM; Davidian & Gilitinan, 1995).  A presentation of the 
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extension to the NLMM takes us somewhat outside the scope of the illustration in this 

paper, so I do not include it here.  The interested reader is directed to Rijmen et. al, 

(2003) and Molenberghs & Verbeke, (2004).   

The relevant parameters for item response models and EIRMs specified within the 

GLMM or NLMM statistical frameworks can be estimated in a number of different ways.  

Most typically this will involve the use of marginal maximum likelihood (MML) 

estimation in conjunction with the EM algorithm (Bock & Aitken, 1981).  The general 

idea is to specify a marginal likelihood function, formed by taking the product of the data 

likelihood and the population distributions for the random effects, and then take the 

integral over persons.  Denote this marginal likelihood as L .  Because there is no closed 

form solution to L , it must be approximated numerically using either Gaussian 

quadrature, adaptive Gaussian quadrature, or Monte Carlo integration, all within the 

context of the EM algorithm.  A different approach to the estimation of both GLMM and 

NLMM models involves the use of Bayesian estimation methods (Gelman, Carlin, Stern 

& Rubin, 2004); in particular Markov Chain Monte Carlo estimation.  There are many 

available programs that can be used for the purposes of parameter estimation.  Some of 

these program exist as procedures within broader statistical software environments.  For 

example, the procedures NLMIXED and GLLAMM in the SAS and STATA software 

environments provide for MML estimation of models within the GLMM and NLMM 

frameworks.  The program WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2004) has 

been used for the purpose of Bayesian estimation.  Of course, when more traditional IRT 

models are specified, more specialized programs such as BILOG (Zimowski, Muraki, 

Mislevy & Bock, 1995) and MULTILOG (Thissen, Chen & Bock, 2002) could also be 
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used, and are typically faster and more convenient.  The software ConQuest (Wu, Adams 

& Wilson, 1998) is an interesting case in that it is specialized for IRT applications, but 

can be used to specify all the models within the GLMM framework.  For a thorough 

review of estimation and software issues, see Tuerlinkx et. al. (2004).    

METHOD  

Data Source  

The context I will use to illustrate the EIRM approach comes from a sample of 

schools that chose to administer a large-scale standardized science assessment to their 

students.  The assessment, known as the Partnership for the Assessment of Standards-

based Science (PASS) test, was developed to support K-12 schools that were in the 

process of transforming their science education curricula such that it placed a greater 

emphasis upon scientific inquiry and hands-on activities.  Among school districts 

involved in this kind of curricular reform, an explicit expectation was that this 

transformation would help students to build a deeper conceptual understandings of 

scientific concepts, and that this deeper conceptual understanding would translate into 

higher achievement on standardized tests designed to measure proficiency in science.  

The PASS tests were designed to assess the extent to which this is occurring.  The test is 

available in English and Spanish at grades 5, 8 and 10, and was developed to be in 

alignment with both the National Science Education Standards (National Research 
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Council, 1996) and the Benchmarks for Scientific Literacy (American Association for the 

Advancement of Science, 1993).   

The PASS test includes three sections that differ by item format: multiple-choice 

(MC) items, constructed-response items, and performance task items.  In the first section 

of the test, students are given one of six parallel forms of 29 MC items.  The parallel 

forms of this section of the test were designed to facilitate the horizontal and vertical 

equating of PASS test across grades and years.  This is done through the use of a 

common item design, in which a subset of linking items are embedded within a given MC 

test form.  This design is similar in nature to the matrix sampling approach taken in large-

scale assessments such as the National Assessment for Educational Progress (NAEP).  

While no single student will answer more than 29 MC items in a single administration of 

the PASS test, an entire sample of test-takers will have responded to as many as 100 

unique MC items.  Each MC item is developed to explicitly align with one of five 

subdomains (i.e., content or process areas in science) as designated by the National 

Science Education Standards: physical science, earth science, life science, scientific 

inquiry, and science and technology. 

The second and third sections of the PASS test consist of performance tasks and 

constructed response investigations.  For a performance task, students are provided with 

hands-on equipment and asked to perform short experiments, communicate scientific 

information, make scientific observations, generate and record data, and analyze results 

based on their data.  A constructed response investigation is similar in nature to a 

performance task, but does not involve the use of hands-on equipment and places a 

greater emphasis on secondary analysis and hypothesis testing.  Unlike the MC section of 
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the PASS tests, all students are administered the same performance task and constructed 

response investigation within a given grade and a given year. (For more information 

about the PASS tests, and to see some sample items across the different formats, see 

WestEd, 2006.) 

Historically, the PASS tests have been calibrated and scaled using IRT, more 

specifically the Partial Credit Model (Masters, 1982).  Scores and corresponding 

confidence intervals are reported for each grade tested at the student, school, and district 

levels, and also in terms of the full population of test-takers.  The scores are reported in 

terms of both linearly transformed scale scores and the percentage of total points for each 

section and subdomain of the test.  

Sample Characteristics  

In the analyses that follows, I restrict my attention to a sample of 433 10th grade 

students who completed form 4 of the MC section on the PASS test in 1999.  There are 

two reasons for this restriction.  First, it limits the illustration of the EIRM approach 

within the context of (a) explaining group differences, and (b) doing so as a function of 

science subdomains.  If the full PASS test and test-taking population were used, the 

EIRM approach would also need to account for a horizontal equating step across test 

forms, the use of different raters in the open-ended sections, and violations of the IRT 

local independence assumption in the clustering of the open-ended items around common 

prompts.  All of these adjustments can be accommodated within the GLMM framework, 

but they make the illustration overly complex.  Second, this restriction is intended to keep 
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readers from making unwarranted inferences and generalizations about the PASS test.  

The aim here is not to evaluate the characteristics of the PASS test and test-takers, but to 

illustrate an application of the EIRM approach with empirical data.  Form 4 was chosen 

because it happened to have the largest sample of test-takers. 

Table 1 presents the available demographic characteristics of the PASS student 

sample.  The students are a random sample from 66 participating schools in four districts 

from the states of Arizona, California and New Jersey.  Participation in PASS is at the 

discretion of individual school districts, hence the students taking form 4 of the test were 

drawn from a population which itself constitutes a self-selected convenience sample.  

Among the students who reported information about their race/ethnicity and primary 

language spoken at home, roughly 46% are nonwhite, and 20% speak a language other 

than English at home.  Students were also asked questions about their attitudes, effort, 

and academic performance as they related to science.  The responses to these questions 

are summarized for all 10th grade test-takers in the second column of Table 2.  

Insert Tables 1 and 2 about here  

Research Questions  

There are many interesting questions that could be posed on the basis of the 

variables shown in Tables 1 and 2, and the performance of students on the PASS test.  

One topic of clear importance among educational researchers in the United States is the 

achievement gap between white students and racial/ethnic minorities (c.f., Jencks & 
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Philips, 1998; Camara & Schmidt, 1999, Lee, 2002).  With this in mind, we may wish to 

address the following questions with data from the PASS test: 

1. To what extent are there group differences in science achievement as a function of 

racial/ethnic self-identification? 

2. Do these group differences change after controlling for self-reported contextual 

variables? 

3. Do the patterns that emerge from addressing questions 1 and 2 change when the 

outcome of interest, science achievement, is examined by subdomains? 

In the next two sections I address these questions using two different approaches: one in 

which the GLMM framework is used solely to specify a measurement model, and another 

whether the GLMM framework is used to specify an EIRM.  I refer to the former as the 

two-step approach, and the latter as the EIRM approach.   

RESULTS  

Measurement Followed by Explanation: The Two-Step Approach  

One way to compare group differences in achievement on the PASS test would be 

to take the two-step approach.  In the first step, a unidimensional or multidimensional 

Rasch Model can be used as the basis for generating science achievement estimates for 

the 433 students in our sample.  The estimates typically used in the context of a large-

scale standardized test are the means of each student s posterior distribution, known as 

the expected a posteriori, or EAP2.  In the second step, the EAP for each student on one 
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or more dimensions can be used as an outcome variable to be regressed upon a set of 

racial/ethnic dummy variables3.  

Step 1: Measuring Science Achievement  

Reporting Test Results Unidimensionally  

The Rasch Model could be applied to the PASS data using any number of 

software routines.  In this case I have used the software ConQuest, but the same analysis 

could also have been conducted using, for example, NLMIXED in SAS. When taking a 

two-step approach, the emphasis in the first step is on producing estimates of student 

achievement.  Yet there is also a great deal of psychometric information about the 

underlying test being produced in the form of item parameter estimates, standard errors 

and fit statistics.  Another important piece of information that is generated in the 

measurement stage is known as the deviance statistic.  This statistic equals 2 loge L , 

where in this context L represents the marginal likelihood L

 

previously described.  The 

deviance statistic measures the deviation between a saturated IRT model and the fitted 

IRT model that has been specified.  The smaller the number, the better the fit of the 

model.  Nested IRT models that is, where one model can be written to equal the other 

by imposing one or more parameter constraints can be statistically evaluated by 

comparing the difference in their deviance statistics, which will have an approximately 

Chi-Square sampling distribution with degrees of freedom equal to the difference in each 

models free parameters. 
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One piece of psychometric information from step 1 of a two-step approach that is 

almost always reported before proceeding to stage 2 is test score reliability. While the 

concept of reliability is fundamentally one of classical test theory, a reliability index can 

also be estimated for an IRT analysis as 

2

1
var( )

p
pR ,        (7) 

where the pR

 

represents marginal reliability (Green et. al., 1984; Mislevy et. al., 1992; 

Adams, 2006).  In Equation 7 the term 2
p  represents the mean variance taken over each 

student s estimated posterior distribution of science achievement, while the term var( )

 

represents the population variance in the distribution of science achievement.  The ratio 

of 2
p  to var( )

 

quantifies the extent to which the uncertainty in a student s estimated 

achievement can be reduced by administering the set of MC items found on the PASS 

test form.  The values of the marginal reliability index pR

 

will, like Cronbach s alpha, 

range between 0 and 1, and provide for a similar interpretation.  After applying the 

unidimensional Rasch Model to the 29 MC items on the PASS test form, 2 .137p  and 

var( ) .653 , so .79pR .  

Reporting Test Results By Subdomain  

There are two reasons why it might be sensible to report the results from the 

PASS test by subdomains.  The first reason is that if the test is actually multidimensional 

as a function of these subdomains, but modeled as if it were unidimensional, then the IRT 
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assumption of local independence will be violated.  This will have an impact both on 

estimates of student achievement and the uncertainty surrounding these estimates.  In the 

context of using the Rasch Model, apparent problems such as misfitting items and 

differential item functioning can sometimes be attributed to the presence of 

multidimensionality in a test assumed to be unidimensional.  All this constitutes what I 

would classify as a purely psychometric reason for using a multidimensional item 

response model.  A second reason for reporting PASS test scores by subdomains is to 

facilitate diagnostic interpretations of the results.  For example, as Monfils, Dawber, Han 

& Henderson-Montrero (2006) point out, since the passage of the No Child Left Behind 

Act of 2001 states are required to report diagnostic score results for each content sub-

domain/strand provided the subscores are based on sufficient information.  Under this 

second rationale for reporting test results by subdomain, even if the underlying test 

construct appears to be unidimensional, there is still a psychometric reason the need for 

sufficient information to model subdomains multidimensionally. However, for the 

second rationale, the psychometric basis is secondary to other substantive concerns that 

may well be codified into policy (i.e., the desire to provide teachers and students with 

disaggregated information about test performance).  In other words, there will be times 

when test results must be reported multidimensionally by subdomains even when there is 

little to no psychometric justification for the practice. 

It has been previously established that subdomain scores deriving from a 

multidimensional item response model will be more reliable than subdomain scores 

deriving from a unidimensional model (c.f., Adams, Wilson & Wu, 1997; Briggs & 

Wilson, 2002).  The concept at work here has been described as subscore augmentation 
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by Wainer et. al. (2001), and has received considerable attention of late4. The concept can 

be illustrated within the present context because the results of the MC section of the 

PASS test are, in fact, disaggregated and reported to students, schools and districts in 

terms of the five subdomains of earth science, life science, physical science, scientific 

inquiry, and science & technology.  On each of the six MC forms of the PASS tests, 

students respond to items that are intended to correspond directly to each of these 

different subdomains.  Across all six forms, the average numbers of items per subdomain 

are 8, 6, 6, 4 and 4.  On form 4 of the test considered here, the respective numbers are 7, 

6, 7, 6 and 3.  One way to report student-level scores for the PASS subdomains would be 

to produce five separate unidimensional estimates of student achievement for each 

subdomain.  When the Rasch Model is used, this is analogous to reporting the percentage 

of MC items answered correctly by subdomain.  The problem with this approach is that it 

would result in very unreliable estimates of subdomain scores.  The marginal reliabilities 

when the five subdomains are each modeled unidimensionally are shown in Table 3, and 

range from a low of .241 (life science) to a high of .545 (earth science).  The upshot is 

that with reliabilities so low it would be very difficult to rule out measurement error as a 

principal explanation for individual differences in student scale scores across 

subdomains.  

Insert Table 3 about here  

An attractive alternative is to augment the reliability of these subdomain scores by 

modeling them as part of a multidimensional Rasch Model.  Because each MC item is 
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intended to map onto only one of the five subdomains, I proceed by taking a confirmatory 

approach in which each subdomain is treated as a distinct dimension of science 

achievement5.  This adjustment to the measurement model is made quite easily within the 

GLMM framework.  Instead of a single random effect as in Equation 3, we specify the 

vector n  in Equation 4 to include five random effects, with the covariate vector niz

 

specified to consist for any given item, of a single 1 and four 0s.  The random effects n

 

(i.e., dimensions) are assumed to have a multivariate normal distribution with a mean 

vector  and a variance-covariance matrix .  Analogous to the unidimensional Rasch 

Model, for identification purposes either  is constrained to 0, or the mean of the item 

difficulties associated with each of the five dimensions is constrained to equal 0.  For the 

PASS data I apply the latter identification approach, and again use the software ConQuest 

to estimate the relevant item and person parameters. 

In Table 3 the marginal reliabilities of student subdomain scores for the 

multidimensional Rasch model can be compared to the reliabilities from the five separate 

unidimensional models of the subdomains.  The augmentation of marginal reliabilities 

through use of the multidimensional model is evident: reliability estimates now range 

from a low of .645 (science & technology) to a high of .749 (physical science).  The 

reliability of each subdomain is augmented within the multidimensional model because 

individual student achievement for each science subdomain is estimated as a weighted 

average between a student s observed performance on items associated with the 

subdomain, and the population means for all subdomains.  The values of the weights in 

the weighted average are a function of the original reliability of each subdomain, and the 

correlation between the subdomains.  The subdomain reliabilities are augmented because 
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one subset of items effectively borrows strength  from the present information available 

in remaining items, and prior information available from the underlying population 

distributions.  The optimal way to augment the reliability for any given subdomain 

through the use of the multidimensional approach is to borrow strength from other 

subdomains that are 1) themselves more reliable than the target subdomain, and 2) 

strongly correlated with the target subdomain.  This is why in the context here the 

reliability augmentation is strongest for the life science subdomain: it is strongly 

correlated (r > .85) with three more reliable subdomains (earth science, physical science 

and scientific inquiry).  By contrast, the augmentation effect is weaker (though still quite 

substantial) for the earth science and scientific inquiry subdomains because these 

subdomains tend to be more reliable than the other subdomains from which they are 

borrowing strength.  

Step 2: Describing and Explaining Group Differences in Science Achievement  

Linear Regressions with Unidimensional EAP Estimates  

After applying the Rasch Model, we are left with 433 EAP estimates as measures 

of science achievement.  To explore the extent to which there are group differences in 

these measures as a function of race/ethnicity, the EAP values are regressed on the 

dummy variables BLACK, HISPANIC, ASIAN and OTHER (with the dummy variable 

WHITE as the reference group).  There were 13 students who provided no information 

about their race/ethnicity, so they have been excluded from the model, decreasing the 
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sample size from 433 to 420. Two sets of estimated coefficients from this linear 

regression are shown in the columns under Model 1 in Table 4.  In the first set (Model 

1a), the coefficients are provided in logit units; in the second set (Model 1b), the 

coefficients are provided in effect size units, after dividing the coefficients in the first set 

by the observed standard deviation (SD) of the student EAPs that were estimated in step 

1.  From this it is clear that there are sizeable and statistically significant gaps in the mean 

performance of black and Hispanic students relative to the white student reference group: 

black and Hispanic students score .87 and .75 SDs lower on the PASS MC section, 

respectively.  On the other hand, the gap between Asian and white students is negligible 

and not statistically significant.  

Insert Table 3 about here  

To put the magnitude of these gaps in a broader perspective, the achievement gaps 

found for black and Hispanic 17 year olds who took the long-term NAEP science test in 

1999 relative to their white counterparts were 1.19 and .68 SD units (Campbell, Hombo 

& Mazeo, 2000).  The next question is whether some portion of these gaps can be 

explained by differences in the contextual variables gathered from students taking the 

PASS test. 

For the PASS subsample, there are small positive correlations between estimated 

student achievement on the MC section of the test and 1) the amount of time students 

spend on their science homework (r = .193), and 2) whether students report higher grades 

in their science courses relative to other courses (r = .214).  There are small negative 
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correlations between estimated science achievement and whether a student reports that 

English is not the primary language spoken at home (r = .174 ).  To the extent that the 

values for these contextual variables differ among students in different racial/ethnic 

groups, they may serve to explain some portion of the observed gaps.  In fact, when the 

variables in Table 2 are crosstabulated by racial/ethnic group (not shown here), we find 

that relative to white test-takers, 

 

black test-takers were just as likely to report doing one or more hours of 

homework per week, and were equally likely to report that they got better 

grades in science than in other courses. 

 

Hispanic test-takers were less likely to report doing one or more hours of 

homework per week, but equally likely to report that they got better grades in 

science than in other courses.  Hispanic students were much more likely to 

report that English was not the primary language spoken at home this was 

true of almost half of the Hispanic test-takers in the sample. 

 

Asian test-takers were more likely to report doing one or more hours of 

homework per week, more likely to report that they got better grades in science 

than in other courses, and more likely to report that English was not the 

primary language spoken at home.  As with Hispanic students, the latter was 

true of roughly half of all Asian test-takers in the sample. 

From this information we can hypothesize that the addition of these contextual 

variables to the linear regression model should affect the size of the gaps for Hispanic 

and Asian students, but not for black students.  Model 2 in Table 4 presents the results 

from adding contextual variables to the linear regression model.  The variables added to 
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the model are academic performance (GRADES), time spent on science homework 

(HOMEWORK), the interaction of speaking a language other than English at home with 

being either Hispanic or Asian (HISP_ESL, ASIAN_ESL), and a newly created variable, 

interest in science (INTEREST).  The definitions of the variables GRADES, HW, 

HISP_ESL, and ASIAN_ESL can be discerned from their descriptions in Table 2.  For 

GRADES, the lowest value ( grades in science are lower compared to other subjects ) 

takes a values of 0, while the highest value( grades in science are lower compared to 

other subjects ) takes a value of 2.  For HOMEWORK, the lowest value ( no 

homework ) takes a values of 0, while the highest value( more than 2 hours of 

homework per week ) takes a value of 3.  The variable INTEREST was created by taking 

the sum of the variables CONCEPTS, FUTURE, and PARENTS as defined in Table 2.  

For each of the latter variables the lowest category ( no ) takes a value of 0 and the 

highest category ( yes ) takes a value of 2.  Hence the variable INTEREST has a range 

from 0 to 6 with a mean of 2.9 and an SD of 1.5.  The variable is a crude measure of a 

student s interest in science: higher scores would typically represent students who 

responded with a yes or sometimes when asked if they found science useful outside 

of school, thought science would be useful to them in the future, and talked to their 

parents about what they did in science class.  Using Cronbach s alpha, the estimated 

reliability of this three item measure is about .66.  External variables reflecting student 

and family socioeconomic status along with academic transcripts of student grades would 

be other ideal variables to include in the regression model, but these were not collected as 

part of the PASS test administration. 
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As predicted, the inclusion of these contextual variables has almost no effect on 

the size of the black-white gap (which actually increases slightly), reduces the size of the 

Hispanic-white gap by about .11 SD units, and reverses the sign on the Asian-white gap 

(though it is still not statistically significant).  The latter effect is largely attributable to 

the inclusion of the interaction variable ASIAN_ESL.  For Asian test-takers who do not 

speak English at home, the size of the achievement gap is predicted to increase on 

average by .87 SD units.  Interestingly, the inclusion of the variable HISP_ESL does not 

appear to have the same sort of impact on the Hispanic achievement gap.  The newly 

included variables GRADES and HOMEWORK each have a positive partial association 

with performance on the PASS test.  Those students who report that their grades in 

science are higher than their grades in other classes are predicted to score about .70 SDs 

higher on the test relative to those students who report that their grades in science are 

lower than their grades in other classes.  Likewise, the model predicts a .63 SD advantage 

for students who report that they do more than 2 hours of homework a week relative to 

students who report doing no homework per week.  The proxy variable for student 

interest in science, INTEREST, has no significant partial association with performance 

on the PASS test. 

So far it would seem there are at least two conclusions that can be drawn from the 

measurement of PASS test performance and subsequent linear regressions.   

1. There are sizable gaps in the performance of black and Hispanic students 

relative to their white counterparts.   
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2. The size of the gap for Asian and Hispanic students is reduced when 

contextual variables are added to the linear regression model, but stays about 

the same for blacks students.   

Next we turn to our third research question, and examine whether the pattern of results 

that were found above remains the same when the PASS test results are reported by 

subdomain.  

Linear Regressions with Multidimensional EAP Estimates  

In parallel with the unidimensional two-step approach, student level EAPs for 

each of the five science subdomains can be used as outcome variables in subsequent 

linear regressions to both describe and explain the size of racial/ethnic differences in 

estimated science achievement.  The results from these regressions are provided under 

the columns in Table 5.  There are two distinct columns for each subdomain; one column 

reflects a regression model in which student subdomain EAP scores are racial/ethnic 

dummy variables (e.g., ES 1), and another column that adds contextual variables to 

potentially explain the differences in racial/ethnic achievement (e.g., ES 2).   

Insert Table 5 about here  

Relative to the regressions in which science achievement was measured 

unidimensionally, the results in Table 5 tell the same story with regard to the magnitude 

of racial/ethnic gaps and the extent to which they change when contextual variables are 



25 

included in the model.  So it would appear that while examining PASS results by 

subdomain does produce the expected augmentation effect on the marginal reliability of 

each PASS subdomain, it provides for no new information about group differences.  This 

would seem to raise the question of whether, using a two-step approach, it was 

worthwhile to model the PASS test by subdomain at the individual student level in the 

first step. 

The multidimensional and unidimensional Rasch Models are nested models, and 

can be evaluated statistically by parameterizing the multidimensional model such that if 

the variances associated with additional random effects are 0, it reduces to the 

unidimensional model (c.f., Rijmen & Briggs, 2004, 252).  The relative fit of the two 

models can be compared using a likelihood ratio (LR) test-statistic, computed as the 

difference in deviance between the two models, which in this case is 

14245.3 14182.5 = 62.86 . It has been shown by Verbeke & Molenberghs (1997) that 

the asymptotic null distribution of this LR test-statistic will be an equally weighted 

mixture of two Chi-Square distributions, in this case with df = 1 and df = 5.  We find that 

p < .001, which supports the conclusion that the multidimensional Rash Model has a 

better goodness of fit than the unidimensional Rasch Model.   

There is, however, another established method for evaluating test dimensionality.  

That method is the nonparametric procedure known as DIMTEST (Stout, 1987; 

Nandakumar & Stout, 1993; Stout , Froelich & Gao, 2001).  When the procedure 

DIMTEST was applied to MC form 4 the PASS test, only weak evidence could be found 

to reject the null hypothesis of essential unidimensionality.  Using a variety of 

confirmatory mappings of items to the PASS subdomains, in no case was p < .20.  The 
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latter finding presents us with something of a paradox.  The aim in reporting individual 

student scores by subdomain is to provide more diagnostic information reliably.  To 

provide scores that are reliable through subscore augmentation, the more strongly 

correlated the dimensions, the better.  But if the dimensions are too strongly correlated, 

then for all intents and purposes at the student level they are essentially unidimensional.  

Hence the reporting of separate scores for students according to each subdomain will be 

largely redundant, even when such reporting is required by law, as is the case with 

NCLB.  One way to avoid this paradox is to report subdomain scores multidimensionally 

only at the group level using an EIRM approach, as I describe next.   

Explanatory Measurement: The EIRM Approach  

Note that in the two-step approach the measurement model only plays a role in the 

first step of the analysis, in which an outcome variable has been generated for use in the 

second stage.  By the second step, we are formally addressing each of our three research 

questions using a linear regression, with the usual assumptions implied by such a model.  

If the latter is our principal aim, then it might be easy to sweep much of what has 

occurred during the first step under the rug.  By making the two-steps concurrent within 

the GLMM framework, the analyst has the opportunity to tie what is learned about group 

differences directly back to the underlying measurement model. All of the three research 

questions addressed above using the two-step approach can also be addressed in a single 

stage by taking an EIRM approach.  The key advantage of this approach is that it 

provides a framework for both the psychometric and statistical analyses that may be of 
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interest.  In the context of answering research questions about group differences, the 

fundamental distinction between specifying an EIRM relative to the traditional item 

response model used in the first step of the two-step approach is the incorporation of 

person covariates directly into the measurement model.  Because differences in 

achievement are parameterized directly at the group (i.e., population) level, we are able to 

get disattenuated measures of group differences that will differ from the ones found under 

the two-step approach. To answer questions 1 and 2, a unidimensional Rasch Model with 

two different sets of person level covariates is specified.  To answer question 3, a 

multidimensional Rasch Model with two different sets of person level covariates is 

specified.  In what follows I contrast the results from answering research questions 1-3 

using the two-step approach with the results from using an EIRM approach.  

Insert Tables 6 and 7 about here  

The results presented in Tables 6 and 7 parallel those presented in Tables 4 and 5.  

A key distinction is that the outcome variables reflected in Tables 6 and 7 are not 

estimated EAPs, but individual item responses.  The contextual variables used in the 

regressions remain the same, and the coefficients are expressed as before both in logit 

units, and in SD units.  To accomplish the latter, the unadjusted coefficients are divided 

by the population SD from an unconditional form of the item response model.  So for 

example, when a unidimensional Rasch Model is specified with no person covariates 

(i.e., the unconditional item response model), the population SD, var( ) , = .81.  It 

follows that when expressed as an effect size, the regression coefficient for the variable 
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BLACK for Model 1 in Table 6 will be .77 / .81 .95 .  The same sort of approach is 

taken to compute effect sizes for the regression coefficient corresponding to the 

multidimensional Rasch Model.   

How do the results from the EIRM approach, presented in Table 6 and 7, compare 

to those from the two-step approach?   

1. The raw regression coefficients from the EIRM latent regressions tend to be larger 

in absolute value than those from linear regressions.  The reason for this is that in 

the two-step approach, the regression coefficients represent conditional EAPs for 

subgroups of students, while in the EIRM approach the coefficients represent the 

conditional means of the supgroup populations.  In the two-step approach, before 

they are regressed on racial/ethnic dummy variables, the EAPs have already been 

shrunken toward the overall population mean.  The larger the measurement error 

associated with student MC responses, the more that individual EAP estimates of 

science achievement shrink to the overall population mean.  Hence, when a two-

step approach is taken to represent and analyze racial/ethnic group differences, the 

regression coefficients are effectively attenuated by measurement error. 

2. Because the use of EAPs shrinks student scale scores towards the population 

mean, it follows that the SD of these EAPs will be smaller than the SD of the 

population as a whole.  This can be seen when comparing model results across 

Tables 4 and 6: the SD of unidimensional EAPs is .70 logits (Table 4), while the 

population SD is .81 logits (Table 6).  When these SDs are used to compare the 

regression coefficients in effect size units, the magnitude of racial/ethnic gaps for 
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black and Hispanic students in the EIRM approach is a about 1/10 of an SD 

higher. 

3. The inclusion of contextual variables in the regressions in either approach has the 

same relative impact on racial/ethnic gaps estimates when science achievement is 

modeled unidimensionally.  The size of the gap stays the same for black students, 

decreases by about .11 to .12 SDs for Hispanic students, and reverses for Asian 

students.  This is good news, because it means that in a relative sense, if we were 

interested in the effect of some planned intervention intended to reduce 

racial/ethnic gaps, both the two-step and the EIRM approach would be expected 

to yield the same answer. 

4. There are important substantive differences between the regression coefficients 

expressed in SD units for the two-step and EIRM approach when science 

achievement is modeled multidimensionally.  Under the two-step approach the 

patterns in estimated racial/ethnic gaps showed no change across the five 

subdomains of science proficiency.  Under the EIRM approach with no contextual 

variables, the respective size of the gaps for black and Hispanic students varies by 

subdomain relative to the unidimensional composite, from a high of 1.29 SDs 

(black students on the physical science subdomain) to a low of .44 SDs (Hispanic 

students on the science and technology subdomain). 

5. There are also differences in the extent to which gaps are reduced when 

contextual variables are included in the two approaches.  Under the EIRM 

approach, the Hispanic gap decreases by .28 SDs for the earth science subdomain, 

and .20 for scientific inquiry subdomain, stays about the same for the physical 
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science and science and technology subdomains, and actually increases by .14 

SDs for the life science subdomain.  This is in contrast to the results from the 

linear regression approach, where the inclusion of contextual variables 

consistently decreased the Hispanic gap by about .12 to .14 SDs for each 

subdomain. 

The difference in answers about group differences under the two approaches is a function 

of the precision with which student achievement is being measured.  When test scores are 

highly reliable, there will be little difference between the two-step and EIRM approaches, 

as the effect of attenuation due to measurement error is negligible.  However, when test 

scores have low to moderate reliability and this is likely to be the case when scores are 

reported in terms of subdomains defined with a small number of items the effect of 

attenuation may lead to substantive differences in interpretation.  In such scenarios taking 

the EIRM approach is clearly preferable when an evaluation of group differences is of 

interest. 

Another useful aspect of the EIRM approach as implemented here is that it not 

only produces information about salient group differences in science achievement, but 

can also place these differences in a criterion-referenced context.  That is, when a Rasch-

family model has been specified, the EIRM approach allows for the creation of a variable 

map that relates group differences to test items together along a unidimensional 

continuum (or multidimensional continua) of measurement.  This is illustrated by the 

variable map in Figure 2, for the scenario in Table 6 when the PASS test is modeled 

unidimensionally and includes a latent regression with racial/ethnic dummy variables 

(Model 1). In this map, the difficulty of items and achievement of respondents are both 
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expressed in terms of logits, and horizontal lines are used to demarcate the location of 

racial/ethnic population averages. Differences in achievement can be now be interpreted 

not just in terms of the logit scale, but in also in terms of the probability of responding 

correctly to specific subsets of items on the test.  In this case, we can see that white and 

Asian students have at least a 50% probability of responding correctly to items 4, 7, 10, 

12 and 20, while Hispanic and Black students have a significantly lower probability of 

answering these items correctly.  On the other hand, items at the low end of the map (i.e., 

1-3, 5, 9, 15, 23-24) are ones that are likely to be answered correctly by white, Asian, 

black and Hispanic students alike. This sort of item-specific information might prove 

quite useful diagnostically, depending upon how well the content of these items can be 

aligned with the science curricula from which students learn.  

Insert Figure 2 about here  

To recap, the general story in this analysis has been that black and Hispanic 

students do not do as well on the PASS test items as their white and Asian counterparts.  

This general story is captured equally well under both the two-step and EIRM 

approaches.  However, the devil is often in the details, and in this, the EIRM approach 

has some clear advantages.  Like the two-step approach, the EIRM approach posits a 

measurement model to account for within-student differences it item responses.  But 

unlike the two-step approach, in the EIRM approach the key research questions of 

interest all at the group level can be appropriately parameterized in terms of between-

student (i.e., group) differences within the same model.  This allows for more nuance in 
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our specific conclusions about racial/ethnic achievement gaps.  One of these nuances was 

illustrated through the use of a variable map in Figure 2. As another example, the results 

under the EIRM approach shown in Table 7 indicate that gaps for Hispanic students are 

smallest in the process-oriented subdomains of scientific inquiry and science and 

technology.  This might constitute some encouraging news at schools where the science 

curriculum has been transformed towards a greater emphasis in these areas.    

DISCUSSION  

In this paper I have presented and illustrated the concept of an explanatory item 

response model.  Both item response models and explanatory item response models have 

been shown to be special cases within the broader statistical frameworks of generalized 

linear mixed models and nonlinear mixed models.  These frameworks help clarify the 

inherent multilevel structure of item response models, and offer considerable flexibility in 

specifying research questions at the appropriate level of interest.  Using data from a 

sample of 10th grade students taking a standardized science test, I have shown that when 

research questions are posed in terms of group differences, the answers from taking an 

EIRM approach will differ from those that result from taking a two-step approach, 

because the latter will be attenuated by measurement error. 

What has been illustrated is just one example of an EIRM.  Depending upon our 

research questions and the variables that had been collected, other types of EIRMs could 

have been specified: 
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Item covariates could be included to explain differences in item difficulty.  For 

example, perhaps items with charts and graphs are more difficult for students 

to answer than items with just text.  This would be an example of a linear 

logistic test model (c.f., Janssen, Schepers & Peres, 2004). 

 

Person-by-item covariates could be included to determine if item difficulty 

changes as a function of group differences.  This would be an example of a 

model used to analyze Differential Item Functioning (DIF; c.f., Meulders & 

Xie, 2004).  In addition, person or item covariates could be added in a 

subsequent attempt to explain DIF.  This would constitute the item side analog 

to the illustration provided in this paper. 

 

A third level, school, could be added to the model, along with school-level 

covariates.  This would be an example of a three level model with latent 

regression (c.f.,  Van den Noortgate & Paek, 2004). 

These are not new models, but they are all examples of models that could be specified 

within the general GLMM framework captured by the expression (1) or (2), and 

estimated within a single statistical environment (i.e., SAS or Stata).   

There are some limitations to the EIRM approach.  First, it can be quite 

challenging to properly specify and estimate item response models, even without adding 

an explanatory component.  One could only reasonably expect researchers with suitable 

training in psychometrics to specify, estimate and interpret an EIRM.  Second, in many 

cases the data is simply not available at the item level.  In most cases where something 

like the two-step approach is used to answer research questions about group differences 

with a large-scale standardized test, the researcher has not been given access to student 
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item responses.  Finally, the EIRM approach stops short of introducing latent variables as 

person, item, or person-by-item covariates.  This is a key distinguishing feature between 

EIRMs and structural equation models. 

In educational research it is seldom the case that our questions hinge solely upon 

the quantification of student (or item) level measures for some latent construct.  Rather, 

we inevitably wish to examine and explain group level differences among these 

measures.  When this is the case, taking the EIRM approach illustrated here and 

described in greater detail in De Boeck and Wilson (2004) may be advantageous.  When 

this is the case and the EIRM approach is not taken, it is important for researchers to be 

aware of how the results of their investigations might be affected.  
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Obs n i 
niY

 
(1)nix

 
(2)nix

 
(3)nix

 
(4)nix

 
(5)nix

 
(1)niz

 
1 1 1 1 1 0 0 0 0 1 

2 1 2 1 0 1 0 0 0 1 

3 1 3 0 0 0 1 0 0 1 

4 1 4 1 0 0 0 1 0 1 

5 1 5 0 0 0 0 0 1 1 

6 2 1 1 1 0 0 0 0 1 

7 2 2 0 0 1 0 0 0 1 

8 2 3 0 0 0 1 0 0 1 

9 2 4 1 0 0 0 1 0 1 

10 2 5 1 0 0 0 0 1 1  

Figure 1.  Data Structure for Rasch Model Specification using GLMM Framework  
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logits                    students       items              
--------------------------------------------------------------------------------------| 
3  |                                 |                                                | 
   |                                 |                                                | 
   |                                 |                                                | 
   |                                 |                                                | 
   |                                X|                                                | 
   |                                 |                                                | 
   |                                 |                                                | 
   |                               XX|                                                | 
   |                                 |                                                | 
   |                            XXXXX|                                                | 
2  |                                 |                                                | 
   |                        XXXXXXXXX|                                                | 
   |                                 |                                                | 
   |                       XXXXXXXXXX|                                                | 
   |                                 |                                                | 
   |                    XXXXXXXXXXXXX|i11                                             | 
   |                    XXXXXXXXXXXXX|i28                                             | 
   |                                 |                                                | 
   |                     XXXXXXXXXXXX|                                                | 
   |                                 |i26                                             | 
1  |                    XXXXXXXXXXXXX|i6                                              | 
   |                   XXXXXXXXXXXXXX|i13                                             | 
   |                   XXXXXXXXXXXXXX|i20                                             | 
   |                                X|i4 i7 i12                                       | 
   |                XXXXXXXXXXXXXXXXX|i10                                             | 
   |                  XXXXXXXXXXXXXXX|                                                | 
   |                                X|i21 i29                                         | 
   |                    XXXXXXXXXXXXX|i18                                             | 
   |                        XXXXXXXXX|i14                                             | 
   |                 XXXXXXXXXXXXXXXX|i16                                             | 
0  |                                X|i25                                             | 
   |                   XXXXXXXXXXXXXX|                                                | 
   |                     XXXXXXXXXXXX|i19                                             | 
   |                            XXXXX|i8                                              | 
   |                                 |                                                | 
   |                          XXXXXXX|i17                                             | 
   |                               XX|                                                | 
   |                               XX|i27                                             | 
   |                                X|i22                                             | 
   |                                X|                                                | 
-1 |                                 |i2 i5 i15 i24                                   | 
   |                                 |i3 i9                                           | 
   |                                 |i1 i23                                          | 
   |                                 |                                                | 
   |                                 |                                                | 
   |                                 |                                                | 
   |                                 |                                                | 
   |                                 |                                                | 
   |                                 |                                                | 
   |                                 |                                                | 
-2 |                                 |                                                | 
======================================================================================| 
           Each X represents 2 students, each row is .10 logits             

Figure 2.  Variable Map of PASS Multiple Choice Section, Form 4.  

White 

 

Asian

 

Hispanic  

Black  
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Demographic Characteristics Percent 

Gender  
     Male 43.4

 
     Female 53.3

 
     Missing 3.2

 

Race/Ethnicity 

 

     African American 9.7

 

     Asian American 9.9

 

     Hispanic 20.3

 

     White 53.8

 

     Other  2.5

 

     Missing 3.7

 

English is primary language spoken at home 

 

     Yes 78.5

 

     No 19.9

 

     Missing 1.6

 

Sample Size 433

  

Table 1.  Demographic Characteristics of 10th Grade PASS Sample   
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Contextual Variables from PASS Data Percent 

  
Compared to other subjects my grades in science are  (GRADES)  
     Lower 14.8

 
     The same 60.7

 

     Higher 21.5

 

     MISSING 3.0

 

Compared to other subjects, I like science (SCI_ATT) 

 

     Less 25.6

 

     The same 44.1

 

     More 27.9

 

     MISSING 2.3

 

How much time do you usually spend outside of school doing 
science homework each week? (HOMEWORK) 

 

     None 17.3

 

     Less than 1 hour 42.7

 

     Between 1 and 2 hours 28.4

 

     More than 2 hours 9.5

 

     MISSING 2.1

 

Are there things that you learn in science that are useful to you 
when you re not in school? (USEFUL) 

 

     Yes 20.8

 

     Sometimes 61.9

 

     Never 14.3

 

     MISSING 3.0

 

Do you think that knowing and understanding science will be useful 
when you grow up? (FUTURE) 

 

     Yes 46.0

 

     Sometimes 42.5

 

     Never 9.0

 

     MISSING 2.5

 

Do you talk to your parent(s) or guardian about what you do in 
science class? (PARENTS) 

 

     Yes 13.2

 

     Sometimes 43.4

 

     Never 40.0

 

     MISSING 3.5

 

Sample Size 433

  

Table 2.  Contextual Variables 10th Grade PASS Sample   
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Dimension ES LS PS SI
LS 0.848
PS 0.926 0.918
SI 0.827 0.908 0.931
ST 0.892 0.684 0.859 0.743

Marginal Reliability ES LS PS SI ST
Unidimensional 0.545 0.241 0.434 0.517 0.319

Multidimensional 0.723 0.673 0.749 0.708 0.645

Note: ES = Earth Science, LS = Life Science, PS = Physical Science
         SI =Scientific Inquiry, ST = Science & Technology

  

Table 3.  Dimensional Correlations and Marginal Reliabilities of Science Subdomains   

logit    
units

SD      
units

logit    
units

SD      
units

Intercept 0.90** 1.29 0.41** 0.58
Black -0.61** -0.87 -0.60** -0.86
Hispanic -0.52** -0.75 -0.44** -0.64
Asian -0.10 -0.14 0.12 0.17
Other -0.30 -0.43 -0.38 -0.54
ESL_Hisp -0.02 -0.04
ESL_Asian -0.61** -0.87
Grades 0.24** 0.35
Homework 0.15** 0.21
Interest 0.01 0.02

SD of Outcome Variable 0.70 0.70
Sample Size 420 411
Variance Explained 0.12 0.19
Note: ** =  p  < .01

Model 1 Model 2

  

Table 4.  Linear Regressions from Two-step Approach: Unidimensional   
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Logit Units ES 1 ES 2 LS 1 LS 2 PS 1 PS 2 SI 1 SI 2 ST 1 ST 2
Intercept 1.29** 0.56** 0.43** 0.12 0.91** 0.43** 1.29** 0.65** 0.53** -0.14**
Black -0.77** -0.76** -0.42** -0.42** -0.58** -0.57** -0.84** -0.84** -0.63** -0.62**
Hispanic -0.67** -0.53** -0.36** -0.30** -0.48** -0.39** -0.66** -0.53** -0.53** -0.42**
Asian -0.09 0.20 -0.07 0.09 -0.08 0.14 -0.14 0.20 -0.05 0.19
Other -0.42 -0.53 -0.22 -0.27 -0.31 -0.38 -0.45 -0.56 -0.34 -0.43
ESL_Hisp -0.10 -0.04 -0.05 -0.09 -0.05
ESL_Asian -0.81** -0.46** -0.62** -0.95** -0.63**
Grades 0.35** 0.16** 0.23** 0.31** 0.31**
Homework 0.21** 0.10* 0.15** 0.21** 0.17**
Interest 0.03 0.00 0.01 0.01 0.04
Variance Explained 0.110 0.193 0.120 0.197 0.113 0.197 0.109 0.191 0.096 0.175
SD of Outcome Variable

SD Units ES 1 ES 2 LS 1 LS 2 PS 1 PS 2 SI 1 SI 2 ST 1 ST 2
Intercept 1.39 0.60 0.89 0.24 1.38 0.64 1.36 0.69 0.67 -0.17
Black -0.83 -0.82 -0.87 -0.87 -0.87 -0.86 -0.88 -0.88 -0.80 -0.78
Hispanic -0.72 -0.57 -0.75 -0.62 -0.72 -0.59 -0.70 -0.56 -0.66 -0.52
Asian -0.10 0.22 -0.15 0.19 -0.12 0.21 -0.15 0.21 -0.06 0.23
Other -0.46 -0.57 -0.45 -0.56 -0.46 -0.58 -0.47 -0.59 -0.43 -0.54
ESL_Hisp -0.10 -0.08 -0.07 -0.09 -0.07
ESL_Asian -0.87 -0.97 -0.93 -1.00 -0.80
Grades 0.37 0.32 0.35 0.33 0.39
Homework 0.22 0.22 0.23 0.22 0.22
Interest 0.03 0.01 0.02 0.01 0.05
Note:* =  p < .05,  ** =  p < .01   Subdomains of  PASS Test are ES = Earth Science, LS = Life Science, 
 PS = Physical Science, SI =Scientific Inquiry, ST = Science & Technology

0.7930.926 0.481 0.661 0.953

  

Table 5.  Linear Regressions from Two-step Approach: Multidimensional 
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logit    
units

SD      
units

logit    
units

SD      
units

Intercept 0.96** 1.19 0.35** 0.44
Black -0.77** -0.95 -0.77** -0.95
Hispanic -0.67** -0.83 -0.58** -0.71
Asian -0.115 -0.14 0.176 0.22
Other -0.373 -0.46 -0.48** -0.59
ESL_Hisp -0.025 -0.03
ESL_Asian -0.82** -1.02
Grades 0.30** 0.37
Homework 0.20** 0.25
Interest 0.01 0.01
Population SD (Unconditional) 0.81 0.81
Sample Size 433 433
Number of Parameters 34 39
Deviance 13756.28 13577.40
Note: ** =  p  < .01

Model 1 Model 2

  

Table 6. Latent Regressions from EIRM Approach: Unidimensional 



49 

Logit units ES 1 ES 2 LS 1 LS 2 PS 1 PS 2 SI 1 SI 2 ST 1 ST 2
Intercept 1.37** 0.26 0.50** 0.53** 1.01** 0.26* 1.33** 0.71** 0.49** -0.66**
Black -0.93** -0.88** -0.38** -0.37** -0.97** -0.10* -1.04** -1.10** -0.56** -0.53**
Hispanic -0.93** -0.62** -0.61** -0.70** -0.71** -0.68** -0.67** -0.45** -0.43** -0.39**
Asian -0.08 0.40 -0.25 -0.07 -0.04 0.13 -0.30 0.41 0.08 0.31
Other -0.67 -0.85 0.02 -0.01 -0.50 -0.63 -0.66 -0.82 -0.08 -0.18
ESL_Hisp -0.33 0.14 0.20 -0.29 0.20
ESL_Asian -1.12** -0.38* -0.74** -1.65** -0.42**
Grades 0.50** 0.05 0.32** 0.33** 0.50**
Homework 0.30** 0.04 0.29** 0.27** 0.15*
Interest 0.06 -0.04 0.01 -0.03 0.15**

Population SD 
(unconditional) 1.07 1.07 0.58 0.58 0.75 0.75 1.12 1.12 0.98 0.98

SD units ES 1 ES 2 LS 1 LS 2 PS 1 PS 2 SI 1 SI 2 ST 1 ST 2
Intercept 1.28 0.24 0.86 0.91 1.34 0.34 1.18 0.64 0.50 -0.68
Black -0.86 -0.82 -0.66 -0.65 -1.29 -1.32 -0.93 -0.98 -0.57 -0.55
Hispanic -0.86 -0.58 -1.06 -1.20 -0.94 -0.90 -0.60 -0.40 -0.44 -0.40
Asian -0.08 0.37 -0.44 -0.13 -0.06 0.17 -0.27 0.37 0.08 0.32
Other -0.63 -0.79 0.04 -0.01 -0.66 -0.83 -0.59 -0.73 -0.08 -0.19
ESL_Hisp -0.31 0.24 0.26 -0.26 0.21
ESL_Asian -1.04 -0.66 -0.98 -1.47 -0.42
Grades 0.46 0.09 0.43 0.29 0.51
Homework 0.28 0.06 0.39 0.24 0.15
Interest 0.05 -0.07 0.01 -0.03 0.15
Note:* =  p < .05,  ** =  p < .01   Subdomains of  PASS Test are ES = Earth Science, LS = Life Science, 
 PS = Physical Science, SI =Scientific Inquiry, ST = Science & Technology

 

Table 7.  Latent Regressions from EIRM Approach: Multidimensional 
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1 Other distributions could also be chosen.  For example, Adams, Wilson & Wang (1997) 

provide an example where a step distribution is specified.   

2 It would also be possible to generate maximum likelihood (ML) or maximum a 

posteriori (MAP) estimates of ability. While all three estimates are usually very strongly 

correlated, ML estimates will typically differ from EAP and MAP estimates at extreme 

values because EAP and MAP estimates are shrunken toward the mean of the population 

distribution.  As a consequence of this, the disadvantage of EAP estimates is that they are 

biased.  On the other hand, the advantage of the EAP estimate relative to ML estimates it 

minimizes mean square error.  There are primarily computational reasons for preferring 

an EAP estimate to a MAP estimate.  For more on this issue, see Embretson & Reise, 

2000, pp. 159-179 and Thissen & Olrlando, 2001, pp. 98-114. 

3 There are five dummy variables representing the self-reported racial/ethnic categories 

Asian-American (Asian), African-American (black), Hispanic, white and other (where 

other = American Indian/Alaskan, Pacific Islander and Filipino).  These categorizations 

are in no way scientific, but are used by convention.  It is clearly debatable whether 

students are appropriately classified into these groups, particularly for students who are 

from mixed racial/ethnic backgrounds.  Further, there is potentially great variation within 

groups.  For example, a student labeled Hispanic may be of Spanish, Brazilian, Mexican 

or Puerto Rican descent.  These types of issues are outside the scope of this paper, but 

raise clear caveats about how racial/ethnic achievement gaps should be interpreted, 

regardless of how they are measured or explained. 
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4 For example, two symposia were devoted to the topic at the 2006 annual meeting of the 

National Council on Measurement in Education in San Francisco, CA. 

5 This constitutes an example of what Wang, Wilson & Adams (1997) have termed 

between-item multidimensionality, and what Ackerman, Gierl & Walker (2003) have 

termed simple structure.  For details on multidimensional item response models, c.f., 

Rijmen & Briggs, 2004; Ackerman, Gierl & Walker, 2003; Ackerman, 1994; Reckase & 

McKinley, 1991. 
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