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Abstract 
 
The Equality of Educational Opportunity Study (1966)—the Coleman Report—lodged an key 

takeaway in the minds of educators, researchers, and parents: Schools do not strongly shape students’ 
achievement outcomes. This finding has been influential to the field, however Coleman himself 
suggested that—had longitudinal data been available to him—decomposing the variance in students’ 
learning rates, rather than their levels, of achievement would have provided a clearer insight into 
school effects. Inspired by an intriguing finding from an earlier study conducted in 1988 by Bryk and 
Raudenbush, we take up Coleman’s suggestion using data provided by the Northwest Evaluation 
Association, which has administered over 200 million vertically-scaled assessments across all 50 
states since 2008. We replicate Bryk and Raudenbush’s surprising finding that most of the variation 
in student learning rates lies between, rather than within, schools. For students moving from grades 1 
through 5, we find 74% (math) to 81% (ELA) of the variance in math learning rates is at the school 
level. These results are intriguing since they call into question one of the dominant narratives about 
the extent to which schools shape students’ achievement, however more research is needed. Our goal 
in this policy brief is to invite other scholars to conduct similar analyses in other data contexts. We 
delineate four key dimensions along which results need to be further probed, first and foremost with 
an eye toward the role of test score scaling practices, which may be of central importance. 
 
 
Updated citation:  
Atteberry, A., & McEachin, A. (in press, June 2020). Not Where You Start, But How Much You 
Grow: An Addendum to the Coleman Report. Educational Researcher. 
 
 
ALLISON ATTEBERRY, PhD, is an assistant professor of research and evaluation methodology at the 
University of Colorado-Boulder School of Education. Her work addresses persistent patterns of inequality in 
key educational pivot points, including early childhood education, access to effective teaching, and summer 
learning loss.  
 
ANDREW McEACHIN, PhD, is a policy researcher in the Economics, Statistics, and Sociology Department 
at the RAND Corporation and a professor at the Pardee RAND Graduate School. His research focuses on the 
determinants of persistent achievement gaps, as well as evaluating the effect of popular responses by 
policymakers and educators to reduce these gaps. 

 
The project was supported in part by the Kingsbury Data Award funded by the Kingsbury Center at the NWEA, 
as well as the Smith Richardson Foundation. All errors are solely attributable to the authors.  

 
*=Corresponding author  

mailto:allison.atteberry@colorado.edu
mailto:mceachin@rand.org


2 
 

The Equality of Educational Opportunity Study (1966)—the Coleman Report—still 

undergirds the long-held understanding that schools play a limited role in shaping students’ outcomes. 

Because Coleman found that only 10-20% of the variation in student achievement scores lies among 

schools, he concluded that schools were simply not a powerful lever to affect students’ achievement 

relative to non-school factors. This “schools don’t matter” narrative has long been taken up in a 

number of influential ways from both conservative and liberal perspectives (for a synthesis, see Hutt, 

2017; Jencks, 1969).1 Though critiques have been written2 of the Coleman Report, this particular 

finding—the low proportion of variance in student achievement between (versus within) schools—

has been found many times over (see Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 

2007 for a compendium of intraclass correlations). 

The Coleman Report has led to a lasting pessimism about investing in school features, because 

the results suggest that, by the time students first arrive to school, their achievement is largely set. 

Ravitch (1981) captures this sentiment well when reflecting on the Report 15 years after its release: 

It is impossible to assess the damage done to the self-esteem of the education profession 
and the consequent demoralization of the very teachers dedicated enough to inform 
themselves about educational research. Whether students did well or poorly in schools 
seemed determined…little, if at all, by anything that teachers and schools did. (pg.719) 

 
Given subsequent research that highlighted how the Coleman Report misses pathways through which 

schools affect students’ achievement, this pessimism was perhaps not entirely warranted.3 

Nonetheless, the Coleman Report’s findings continue to influence the field: A quick Google Scholar 

search returns over 1,600 articles that mention the “Coleman Report” since 2017 alone.  

This raises perplexing questions: If it is really true that schools matter very little, how do we 

continue to justify research and investment on school-level programs, policies, and practices? How 

do we reconcile the seeming contradiction that school settings are deeply unequal and yet 

achievement is only weakly shaped by those inequalities? Why has this takeaway from the Coleman 

Report remained so pervasive, even in the face of important critiques and developments? While, in 
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fact, the concept of school-level value added measures (Reardon & Raudenbush, 2009) offers a way 

to reconcile this seeming contradiction, that connection is indirect and has not been explicitly stated. 

A Different Approach to Estimating School Effects 

Coleman himself suggested that a better approach to capturing school effects would be to 

partition variation in learning rates—rather than levels—within and between schools.4 He writes:  

“Had a number of years been available for this survey, a quite different way of assessing 
effects of school characteristics would have been possible; that is, examination of the 
educational growth over a period of time of children in schools…This is an alternative and 
in some ways preferable method…Thus, the present analysis should be complemented by 
others that explore changes in achievement over a large span of time” (p. 292). 

 
Students and their entering levels of achievement are allocated to schools in ways that are outside 

schools’ control. It makes sense, then, to not think of schools as influencing how students perform in 

a given grade, but rather on how quickly they grow5 over time. In 1988, Bryk and Raudenbush used 

Sustaining Effects Study data to implement Coleman’s recommendation. They adopted a 3-level 

multilevel model6 of vertically-scaled test scores and partitioned variance within and between schools 

for both achievement status (akin to Coleman) and achievement rates from grades 1 to 3.  

With regard to status, they first replicated Coleman’s finding; only 14% of the variance in math 

achievement lies between schools (31% in ELA). However, their decomposition of the variance in 

learning rates showed a very different pattern. They write,  

“…the results for learning rates, particularly in mathematics, are startling indeed. Over 
80% of the variance in mathematics learning is between schools! These results constitute 
powerful evidence of school effects that have gone undetected in past research” (pg. 96). 

  
Using Coleman’s own analytic recommendation, Bryk and Raudenbush’s results contradicted one of 

the key takeaways from the Coleman Report that schools must not have much impact on achievement. 

These findings are striking. However, they should also be revisited, given that they were based on a 

small number of schools (86) with an average of only 7 students sampled per school, or also could 

have been idiosyncratic to that particular test score scaling.  



4 
 

Current Analysis 

We replicate and expand upon the Bryk and Raudenbush (1988) analysis, using a dataset7 

provided by the Northwest Evaluation Association (NWEA) which has administered over 200 million 

assessments to nearly 18 million students in 7,500 districts across all 50 states in a very recent time 

period (2008 through 2016), wherein the average number of students per school is 118. Importantly, 

NWEA’s MAP test is designed so that its scores can be expressed on a vertical scale (which NWEA 

calls the RIT8 scale), and with the intent that it can be used to support equal-interval interpretations.    

Before proceeding, we take a brief detour on achievement test score scaling. In theory, a 

vertical scale enables comparisons of student learning across grades, while the equal-interval property 

of the scale ensures that a unit increase in a student’s score represents the same learning gain across 

the entire score distribution. Since we will be attempting to trace learning growth across grades, 

vertical scaling would be desirable, and interval scaling is essential for any test score comparison. 

However, there are many different ways of designing and calibrating a vertical scale, and there is 

little consensus with regard to the best methods for evaluating these properties (Briggs, 2013; Briggs 

& Dadey, 2015; Briggs & Domingue, 2013; Briggs & Weeks, 2009). While some scaling practices 

are clearly not well-suited for certain purposes, there will never be a way to identify the single, correct 

scale. Because we do not have access to NWEA item-level responses, subsequent research is needed 

to probe sensitivity of our results to scale development practices. 

We estimate a nested model with 3 levels: (up to) 10 test scores per student from grades 1 to 

5 in fall and spring (level one), students within schools (level two), and across schools (level three). 

Just as for Bryk and Raudenbush, this model allows us to calculate the percent of variance that lies 

across schools (intraclass correlations, or ICCs), both for achievement levels (like Coleman) and 

achievement growth (like Bryk and Raudenbush). In our primary specifications,9 we use NWEA’s 

RIT scores at the outcome of interest. We will see, however, that results differ when we standardize 
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within subject-grade-year. We also present results using a linear growth trajectory (M1) and a 

quadratic growth trajectory (M2). To consider the choice of functional form for growth, see Figure 1 

to examine the observed RIT reading scores for 50 randomly sampled students, and see Appendix A 

for a full discussion of functional forms considered and robustness of results to these choices.10 

Results 

We report our ICCs alongside the relevant results from both the Coleman Report and the Bryk 

and Raudenbush (1988) study in Table 1 (see Appendix C for complete model results, including 

estimated fixed effects, variance components, 95% plausible value ranges, estimated total gains 

throughout the grade panel, and reliabilities). Our results replicate both the original Coleman Report 

ICCs, as well as those from Bryk and Raudenbush’s study. In the left column of Table 1 (variation in 

achievement levels), our results are largely consistent with the Coleman Report: Only 23.7% of the 

variance in math achievement levels lies between schools (21.4% in ELA). When it comes to linear 

growth rates (middle panel of Table 1), our results are quite similar to the surprising findings from 

Bryk and Raudenbush: The majority—73.5%—of the variance in math learning rates lies between 

schools (80.7% in ELA). This is similar to Bryk and Raudenbush’s estimate for math of 82.6% 

(though for ELA they find a somewhat smaller, but still sizeable, 42.5%).  

We also extend this analysis to grades 6 – 8, shown in row (1b) of Table 1. Again, we find 

that the majority of the variation in achievement levels is within schools, but the majority of the 

variation in learning rates is between schools (64.9% in math, 79.5% in ELA). When using a quadratic 

growth model (M2) instead of a linear function, we again find that most of the variation in both 

instantaneous learning rates at the midpoint and acceleration of learning lies at the school level (row 

(2a) and (2b) of Table 1).11 Moreover, we find this pattern holds when we consider other model 

specifications or analytic samples (see robustness checks12 in Appendix C). 
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To visually illustrate this finding, Figure 2 presents boxplots of estimated13 achievement 

levels for the students nested within 20 randomly sampled schools (left), alongside a boxplot of 

schools’ mean achievement levels across all schools in the sample (right). Here one sees the classic 

Coleman pattern: Any given school seems to have a wide vertical distribution of achievement scores 

among its students, while the mean achievement levels (red dots) across schools are not very different 

from one another. In the lower panel of Figure 2, we make the same visualization for achievement 

rates and see the opposite pattern: Students in a given school exhibit similar learning rates to one 

another, and average learning rates vary considerably14 from school to school.  

Finally, we simulate a more common policy context in which only spring test scores are 

available, and scores are not vertically-scaled. When we remove fall scores and standardize RIT 

scores within subject-grade-year, the findings change. In these models, less than half of the variation 

in learning rates lies between schools (37% and 44%, see row (D) of Appendix Table C3). Of course, 

grade-standardized test scores are not designed to capture growth over time, so this is perhaps not 

entirely surprising. These results, which are consistent with results from at least one other study,15 

suggest that the practice of standardizing within subject-grade-year would likely mask our overall 

finding, which could explain why this result is not commonly reported. It also underscores the 

centrality of achievement scaling practices when examining variation in student learning trajectories.   

Replication Efforts 

We think the current results are intriguing since they call into question one of the dominant 

narratives about whether schools shape students’ achievement, however more research is needed to 

understand them. Our results do not definitively establish that schools strongly shape growth rates, 

but rather they raise the possibility that our conventional wisdom needs to be revisited. Our goal in 

this policy brief is to invite other scholars to conduct similar analyses in other data contexts, 

particularly where item-level data is available. Given that the current multilevel model is not 
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particularly complex or novel, we anticipate that others either can or already have conducted analyses 

that would yield between-school ICCs in student growth rates. For instance, we are aware of at least 

three studies16 that have implemented a similar multilevel model, and—while the published studies 

do not report the unconditional variances needed to calculate the relevant ICCs—the authors might 

be able to examine them retrospectively.  

It is possible that our results are simply an artifact of NWEA’s scaling practices. To partially 

address this concern, we run a similar analysis using the Early Childhood Longitudinal Study 

Kindergarten Cohort 1998-99 (ECLS-K:99) public use dataset. Using a range of approaches to define 

the analytic sample and different growth functions,17 preliminary results are consistent with NWEA 

patterns: The average ICC for achievement levels was 29%, while the average ICC for linear growth 

rates was 59%, and the average ICC for rates of acceleration was 71% across specifications.  

Researchers should probe our results along four key dimensions: First and foremost, for those 

who have access to item-level response data, sensitivity to scaling practices may be of paramount 

importance. Briggs and Domingue (2013) indeed find that their estimates of within-district (and 

residual) variance in student growth rates is nearly three times larger when using a z-score scale than 

when using a vertical scale, which means the vertical scale would produce larger ICCs. The degree 

of sensitivity to score scaling properties, they show, is a function of differential scale expansion or 

compression across grades. On this point, von Hippel, Workman, and Downey (2018) show that, in 

ECLS-K data, inferences about whether achievement disparities grow as students move through 

school depends on whether one uses theta scores (in which variance is constant across grades K to 2) 

or IRT-based scale scores (in which variance notably increases across grades). Together, this research 

suggests that measurement properties of achievement scores will be central to this story.   

Second, we hypothesize that estimated ICCs in growth rates could be sensitive to a dataset’s 

within- and across-school sampling frame. Most nationally-representative datasets constructed by 
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NCES (e.g., ECLS-K) sample a small number of students per school, which may hinder estimating 

reliable within-school variance parameters. Third, it will be important to continue to explore whether 

results are sensitive to the growth function specified and/or inclusion criteria for students in the 

analytic sample. Fourth, findings may in turn differ depending on the length of the longitudinal panel 

at hand, as well as the grade range of study.  

Takeaways 

The narrative that schools play a relatively small part in shaping students’ achievement, which 

has roots in the Coleman Report, remains a powerful demotivator in research about the U.S. public 

education system. That finding has also managed to transcend the divide between research and public 

discourse, affecting how parents, the media, and policy-makers think about the value of public 

schooling. Yet if our results were to hold, it suggests a need to update this conventional wisdom. 

While it is true that students enter kindergarten with a wide range of school readiness, students’ school 

age outcomes might not be as fixed as is widely believed. Our estimates suggest that students appear 

to vary more from school-to-school in terms of how fast they grow. While schools may not have much 

control over who enrolls, they may have an impact on how fast students’ achievement improves.  

The Coleman Report is often required reading for new graduate students in schools of 

education; as it should be, given its undeniable impact on the history of U.S. public education. 

However, when students learn about Coleman et al.’s finding that only 10 to 20% of the variation in 

student achievement exists at the school level, we should also point to subsequent research about the 

many school factors that do affect students’ outcomes. Graduate students often walk away from the 

Coleman Report with a forever-damaged perception of schools as a limited lever for change. The 

simple analyses presented here provide one way to understand how this Coleman Report ICC statistic 

(and all those that followed) could be correct, but at the same time may only partially capture the role 

of schools in shaping students’ outcomes.  



9 
 

Finally, while conducting these analyses, schools across the world have been shut down by 

the COVID-19 pandemic. If our results hold, it suggests that schools will likely play a crucial role in 

students’ recovery from widespread school closures and other related social, economic, and health 

care crisis from the pandemic. Given the uncertainties of what school will look like in the upcoming 

school years, we will need revisit these questions using data from the post-COVID period. 
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Tables and Figures  

 
Table 1. ICCs across Studies: Proportion of Variance Between Schools for Achievement 
Levels, Linear Growth, and Growth Curve/Acceleration 

 
FN: Percentages can be interpreted as the percent of total variance in achievement levels, rates, or acceleration 
that lies between schools (whereas the remainder lies within schools). Results for Coleman Report come from Table 
3.21.5, for Mathematics Achievement and Reading Comprehension. Results for Bryk & Raudenbush (1988) come 
from Table 6 on page 95. The results shown in Table 1 from the current study use NWEA’s achievement scores 
expressed in the RIT scale units, which is intended to achieve vertical and interval scaling properties (as discussed, 
these properties are difficult to achieve and hard to verify).  
 

Math ELA Math ELA Math ELA

Coleman Report
Grade 3 20.9% 20.7% n/a n/a
Grade 6 15.7% 16.3% n/a n/a
Grade 9 9.0% 9.0% n/a n/a

Bryk & Raudenbush
Grades 1 - 3 14.4% 31.4% 82.6% 42.5%

Current Study, NWEA's RIT Scale
(1a) Grades 1 - 5 23.2%  21.1%  75.4%  80.3%   

(N schools) (5,545)  (5,436)  (5,545)  (5,436)   

(1b) Grades 6 - 8 23.5%  23.2%  64.2%  78.3%   
(N schools) (3,808)  (3,790)  (3,808)  (3,790)   

(2a) Grades 1 - 5 23.9%  20.3%  73.0%  68.7%  65.8%  48.1%
(N schools) (5,545)  (5,436)  (5,545)  (5,436)  (5,545)  (5,436)

(2b) Grades 6 - 8 23.8%  23.6%  68.5%  73.1%  75.0%  83.7%
(N schools) (3,808)  (3,790)  (3,808)  (3,790)  (3,808)  (3,790)

Achievement Level: 
% Between Sch's

Learning Rate:
% Between Sch's

Acceleration:
% Between Sch's
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Figure 1. Reading Scores for 50 Randomly Sampled Students 
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Figure 2. Boxplots of Empirical Bayes Estimates, both among Students within a Random 
Sample of 20 Schools (left), and across All Schools (right). Achievement Levels (upper) vs. 
Achievement Rates (lower) 

 

 
FN: Estimates are reported in NWEA’s original RIT score metric. For context, we provide a select number of mean 
achievement status and growth norms produced by NWEA (for all norms, see Thum & Hauser, 2015): For reading status 
norms, the mean is 178 in 1st grade (student SD=14.5) and 220 in 8th grade (SD=15.7). For math status, the mean is 
181 in 1st grade (SD=13.6) and 231 in 8th grade (SD=19.1). For reading annual growth norms (last spring to current 
spring), the mean is 18.8 in 1st grade and 3.1 in 8th grade. For math annual growth norms, the mean is 21.2 in 1st grade 
and 4.0 in 8th grade.  
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Online Appendix A: Decomposing Variance in Learning Rates Within and Between 

Schools: Current Study & Prior Research 

 
Current Paper Primary Specification 

The model presented below is quite similar to the unconditional model implemented by 

Bryk and Raudenbush (1988) in their study entitled, “Toward a More Appropriate 

Conceptualization of Research on School Effects: A Three-Level Hierarchical Linear Model”. As 

the title suggests, they use a three-level random effects framework to model (up to) five vertically-

scaled test scores administered to students (N= 618) between grade 1 and 3 as a linear function of 

time, nested within students at level two, who are in turn nested in schools at level three.  

The primary model specification used in the current paper does not differ in structure, 

however we run these subject-specific models separately for students with RIT scores in grades 1 

through 5 and grades 6 through 8. For the sake of explication, we present a model below for 

projected RIT math scores between first through fifth grade. These ten repeated observations (level 

one) are nested within students (level two), and schools (level three): 

 
Level One: Repeated observations across grade-semesters (t), nested in Students (i)  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡  =  𝜋𝜋0𝑖𝑖𝑖𝑖  +  𝜋𝜋1𝑖𝑖𝑖𝑖(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑀𝑀)  +  𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 , where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡~𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎) 
  

Level Two: Students (i), nested within Schools (j)  
𝜋𝜋0𝑖𝑖𝑖𝑖 =  𝛽𝛽00𝑗𝑗  +  𝑟𝑟0𝑖𝑖𝑖𝑖        , where 𝑟𝑟0𝑖𝑖𝑖𝑖~𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(0, 𝜏𝜏0,0

𝜋𝜋 ) 
𝜋𝜋1𝑖𝑖𝑖𝑖 =  𝛽𝛽10𝑗𝑗  +  𝑟𝑟1𝑖𝑖𝑖𝑖      , where 𝑟𝑟1𝑖𝑖𝑖𝑖~𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(0, 𝜏𝜏1,1

𝜋𝜋 ) 
 

Level Three: Schools (j) across the U.S.  
 𝛽𝛽00𝑗𝑗 =  𝛾𝛾000 + 𝑢𝑢00𝑗𝑗      , where 𝑢𝑢00𝑗𝑗~𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(0, 𝜏𝜏0,0

𝛽𝛽 ) 

 𝛽𝛽10𝑗𝑗 =  𝛾𝛾100 + 𝑢𝑢10𝑗𝑗       , where 𝑢𝑢10𝑗𝑗~𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(0, 𝜏𝜏1,1
𝛽𝛽 ) 
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The outcome of interest, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡, is a projected math RIT score in semester t (for example, 

fall of first grade) for student i in school j. The level one predictor variable, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑀𝑀, is 

a linear time variable centered in at a midpoint in the grade range, spring of grade 3 (i.e., -1 = fall 

of 3rd, 0 = spring of 3rd, 1 = fall of 4th, 2 = spring of 5th, etc.). As a result of this coding scheme, the 

level one parameter 𝜋𝜋0𝑖𝑖𝑖𝑖 captures student i's in school j’s math RIT score in spring of grade 3, and 

𝜋𝜋1𝑖𝑖𝑖𝑖 would capture the linear change in RIT scores for every passing period for student i in school 

j. We analyze elementary grades 1 through 5 separately from grades 6 through 8, and we nest each 

student within their modal school during the grade period. These parameters are allowed to vary 

at levels two (across students within the same school) and three (across schools). Note that 

students’ initial status and slope parameters cannot vary at level one, because each student only 

has one estimate for each of these phenomena. The level two and three variance parameters here 

are of greatest interest. For instance, 𝜏𝜏0,0
𝜋𝜋  is the estimated variance among students within the same 

school in grade 1 achievement, and 𝜏𝜏0,0
𝛽𝛽  is the estimated variance across schools in terms of mean 

grade 1 achievement. Likewise, 𝜏𝜏1,1
𝜋𝜋  is the estimated variance among students within the same 

school in their linear learning rates between grades 1 and 5, and 𝜏𝜏1,1
𝛽𝛽 is the estimated variance across 

schools in schools’ mean learning rates.  

To replicate the findings of both Coleman and Bryk and Raudenbush, we calculate the 

proportion of variance in achievement that lies between schools as  𝜏𝜏0,0
𝛽𝛽  divided by the sum of 𝜏𝜏0,0

𝜋𝜋  

and 𝜏𝜏0,0
𝛽𝛽 . Like Bryk and Raudenbush, we also partition the variance in students’ learning rates to 

calculate the proportion of variance between schools as 𝜏𝜏1,1
𝛽𝛽  divided by the sum of 𝜏𝜏1,1

𝜋𝜋  and 𝜏𝜏1,1
𝛽𝛽 .   
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Choice of Functional Form 

In general, we follow growth modeling practices like those described by Raudenbush and 

Bryk (2002) for applications in the study of individual change. A visual inspection of Figure 1 

suggests that a quadratic growth model could be a good fit for the data. We therefore also fit a 

model with a quadratic—rather than a linear—growth function at level one:  

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑖𝑖𝑖𝑖 + 𝜋𝜋1𝑖𝑖𝑖𝑖�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑀𝑀� + 𝜋𝜋2𝑖𝑖𝑖𝑖�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑀𝑀�2 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  ,        𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡~𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎) 

 
 
Because of the centering at the midpoint, the level one parameter 𝜋𝜋1𝑖𝑖𝑖𝑖 now captures the 

instantaneous learning rate in RIT scores in spring of grade 3 for student i in school j. The level 

one coefficient on the squared grade term, 𝜋𝜋2𝑖𝑖𝑖𝑖 captures a given student’s acceleration/deceleration 

in their learning rate during the panel. Because some theories of learning suggest that learning may 

indeed slow as students move through school-age years, a quadratic growth curve may be 

appropriate. Moreover, other researchers who have analyzed repeated fall and spring achievement 

data across grades, nested within students have also adopted quadratic growth models: For 

instance, Alexander, Entwisle, and Olson (2001) present results from a quadratic model with 

seasonal achievement outcomes from grades 1–5 and find a statistically significant, negative 

average acceleration parameter, as do we.  

As one additional investigation into sensitivity to the choice of growth function, we took a 

10% random sample of the data and ran a log-linear function, which can be useful for processes 

that exhibit diminishing returns. The beta-coefficient on the grade-semester variable, is still a 

measure of change-in-scores (a one-semester increase in time is associated with a 100×beta% 

change in RIT scale score points). We find a pattern consistent with our primary results: For 

instance, in middle school reading scores, the percent of variance between schools (the ICC) is 
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18% for the intercept but 66% for the coefficient on grade-semester. Across both elementary and 

middle grades and math and reading, the ICC for intercepts was less than 20%, while the ICC for 

the coefficient on grade-semester was above 60%.  

Other Studies that Use Similar Models 

We have found one other paper by Rumberger and Palardy (2005) that also uses a three-

level linear growth model and documents the proportion of variation in learning rates between 

schools (see their Appendix Table 3). Rumberger and Palardy (2005) use data from the National 

Education Longitudinal Study of 1988 (NELS) but find the between-school variance in growth 

rates is closer to 20-30% (21% for math, 20% for reading, 34% for science, and a more unusual 

60% for history). However, the authors report using a t-scale achievement score with a “mean of 

50, SD of 10" (pg. 2037). Vertical scaling may be essential to an analysis of growth; when we 

standardize RIT scores, we also no longer find large between-school variances in learning rates. 

Their study differs from the current study in a number of important ways: NELS largely focuses 

on changes in scores in high school, whereas the current study focuses on grades 1 through 8. 

Given that growth curves appear to decelerate across grades, it is possible that findings would 

genuinely be different in high school. It is also worth noting that students in NELS have at most 3 

scores (spring of 8th, 10th, 12th) from which to estimate a growth trajectory. In the current study, 

students have between 6 and 10 test score observations, which better supports growth modeling. 

Finally, most of the NCES datasets have relatively small within-school samples (e.g., on average 

about 16 students per school). We suspect this could hinder the ability to estimate within-school 

variances reliably. 

In addition to the paper described above, we are aware of at least three other studies that 

have implemented a similar multilevel model, and—while the published studies do not include the 
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unconditional variances needed to calculate the relevant ICCs—the authors might be able to 

examine them retrospectively (Briggs & Domingue, 2013; Carbonaro & Gamoran, 2002; Lee et 

al., 1997; Rumberger & Palardy, 2005). For instance, Lee et al. (1997) analyze vertically-scaled 

achievement data from NELS using a 3-level piecewise growth model (3 test scores across grades 

8, 10 12, nested in students, nested in schools), however their focus is not on the random effects 

estimated by their models and they therefore do not report estimated variances within and between 

schools in growth rates. Carbonaro and Gamoran (2002) conduct a similar analysis with NELS 

data, instead using a simpler, linear growth model. However, because they do not report results 

from a totally unconditional model, they only report residual variances in growth rates (see their 

Table 3).  

Briggs and Domingue (2013) conduct a particularly relevant analysis of achievement data 

in a medium sized state, in which up to 5 test scores observations between grades 5 and 9 are 

nested within students who are in turn nested in districts (rather than schools). Their study is 

focused on highlighting the potential impact of scaling decisions on estimating both school value-

added measures (VAMs) and student growth trajectories, and they report estimated standard 

deviations in growth rates both among students in the same district (L2) and across districts (L3). 

Importantly, they compare models that use three different scalings of the achievement outcome 

data: (a) a z-score in which a summed score of number of items answered correctly is standardized 

within grade to have mean 0 and SD 1, (b) a theta score estimate of ability generated from applying 

an item response theory (IRT) approach with a three-parameter logistic model (3PLM) with 

maximum likelihood estimation, and (c) a vertical scale in which the ability estimates are linked 

together across grades using common items. Given their focus, they also do not report estimated 

variances from a totally unconditional model, and we therefore cannot partition growth within and 
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between districts. However, they do report estimates of residual variance in growth rates (within 

and between districts) for the three different approaches to scaling the outcome data. Their results 

suggest that scaling would have a large impact on estimated ICCs: The (residual) variance in 

growth rates at level two (within districts) is nearly three times smaller when using a vertical scale 

than when using a z-score scale. As in the current analysis, the across-cluster (here, district) ICC 

therefore would be much larger when using vertical scaling.     
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Appendix B: Full Data Description 

NWEA Data 

The data for this study is from the Northwest Evaluation Education Association’s (NWEA) 

MAP assessment. The dataset contains math and reading scores based on a computer adaptive test 

designed to serve as part of a formative, benchmarking data system, purchased by about 7500 

districts across all 50 states in the U.S. The MAP assessment is used as a supplementary tool to 

aid schools’ in improving their instruction and meeting students’ needs, not as the high-stakes test 

of record. Because the MAP assessment is intended to monitor students’ progress throughout the 

school year, it is administered in both the fall and the spring. It is also administered in the winter 

by some districts, however the winter data is not included in the current dataset.  

The MAP test is scored using a vertical and interval scale, which the NWEA calls the RIT 

scale. In theory, the vertical scale allows comparisons of student learning across grades and over 

time, while the interval scale ensures that a unit increase in a student’s score represents the same 

learning gain across the entire distribution. The vertically-scaled nature of this outcome data is 

essential to our ability to examine differences in achievement disparities as students move through 

grade levels. However, it is worth noting that vertical scaling is difficult to achieve and hard to 

verify (Briggs, 2013; Briggs & Weeks, 2009). The most recent technical manual from NWEA 

indicates that the RIT scale is produced using a one-parameter logistic item response theory model 

(NWEA, 2011). The authors of that report describe a multi-stage process for generating these 

scales: (1) Identify the content boundaries for the measurement scale (2) Develop items that sample 

the content with a wide range of difficulty. (3) Identify samples of students appropriate for the 

items to be tested. (4) Administer the field test. (5) Estimate item difficulties. (6) Test items for 

model fit. (7) Test for dimensionality. (7) Apply Logit-to-RIT transformation. For more 
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information, refer to the technical manual. Because we do not have access to the item-level data 

required to explore different approaches to scaling, we cannot explore alternative approaches to 

producing achievement scores. Our findings regarding changes across grades rely on assuming 

that NWEA’s vertical scale is valid.  

The data for the current study comes from U.S school districts that administered the MAP 

assessment during the nine years between 2008 and 2016. Different districts opt to administer the 

MAP in different grades, however the full NWEA data includes 203,234,153 test scores for 

17,955,222 million students who took a test between grades kindergarten and eleventh grade. The 

students in this dataset represent a large set of students, relative to the U.S. public school system. 

For instance, in 2012, this NWEA population a full ninth of the size of the K-12 public school 

student population. NWEA data is available in nearly 37 percent of all U.S. schools and in over 

half of all districts. The dataset includes student race and gender, their math and reading MAP 

scores, number of items attempted and correctly answered, duration of the test, grade of 

enrollment, and the date of test administration.  The file does not include indicators for whether 

the student is an English Language Learner, belongs to the federal Free- and Reduced-Price Lunch 

program, or receives special education services. Since students do not take MAP tests exactly on 

the first and last day of school, we also create and use versions of the RIT scores that have been 

linearly projected to the first and last day of each school year. For a full description if this 

procedure, see (Authors, 2019). It is worth noting that the NWEA dataset is not a public-use 

dataset. However, the company currently has a number of research partnerships with universities 

(https://www.nwea.org/partnering-consulting/), and graduate students may apply to work with the 

data ( https://www.nwea.org/the-kingsbury-research-award/). 

  

https://www.richland2.org/RichlandDistrict/media/Richland-District/AdvancED/Standard%205/5.1/5-1-NWEA-Technical-Manual-for-MAP-and-MPG.pdf
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Analytic Sample 

For the current analysis, we first restrict the NWEA sample to the 89 percent of students 

who neither repeat or skip grades. In our preferred models, we also restrict the sample to the set of 

students who possess test scores for the full grade range included in the model. For instance, if we 

examine test score patterns between first through fifth grade in a given model, only students who 

have both fall and spring test scores in every grade between first and fifth grade (that is, a full 

vector of all ten reading test scores) will be included in the sample. While this is a restrictive 

sample limitation (e.g., 3% of students observed in grades 1 – 5 in the dataset meet this 

requirement), it ensures that our findings cannot be conflated with compositional changes from 

one time point to the next. In Online Appendix C, we replicate our primary findings on much less 

restrictive samples by only requiring that students have 75% or 50% of the 10 possible test scores 

between grades 1 - 5. In these larger samples, 13% of students observed in grades 1 – 5 in the 

dataset have at least 7 of those 10 scores, and 31% have at least 5 of the 10 scores. These samples 

have different advantages in terms of internal and external validity, however results are relatively 

consistent (see Appendix C).   
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Appendix C: Full Results, and ICCs across Specifications 
 

Appendix Table C1 presents the complete model results for the linear growth model 

specification, including estimated fixed effects, random effects, 95% plausible value ranges at the 

within- and between-school levels, and reliabilities at both levels. Appendix Table C2 presents the 

same results for the quadratic growth model specification. 

We can use results reported in Appendix Table C1 and C2 to further characterize the degree 

of across-school variability we would expect to observe in achievement growth: For math, the 

mean 1 through 5 growth rate is 6.2 RIT score points per period (recall we have fall and spring 

data, so there are two periods per year). Based on the magnitude of the between school variance, 

we can expect to see that 95% of schools will have a mean growth rate between 5.0 and 7.4 RIT 

points per period. At first this might not sound large, but recall there are 10 periods in grades 1 

through 5 and so the differences add up: We would expect a typical student from a school at the 

low end of this range to gain 55 RIT points between grade 1 to 5, while a typical student in a school 

at the high end of the range would gain 70 RIT points. Results are similar for reading (45 versus 

63 RIT points). The annual growth norms reported by NWEA vary significantly from grade to 

grade, making it somewhat difficult to think about the size of these differences (e.g., the mean 

growth is 21.2 in 1st grade, 8.6 in 5th grade, and 4.0 in 8th grade). Regardless of which grade level 

growth norm one uses, these benchmarks generally suggest that the magnitude of these differences 

in gains across schools is meaningfully large. 
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Table C1. Full Results from Model 1, Linear Growth Model 

  

Achievement Levels @ Midpoint
Achievement Rates Across Period
Rate of Deceleration Across Period
Total Gain Start to End of Period

Achievement Levels @ Midpoint
SD Among Students Within Schools
SD Across Schools
% of Variance Across Schools (ICC)

Achievement Rates Across Period
SD Among Students Within Schools
SD Across Schools
% of Variance Across Schools (ICC)

Rate of Deceleration Across Period
SD Among Students Within Schools
SD Across Schools
% of Variance Across Schools (ICC)

Achievement Levels @ Midpoint
95% PVR of Means Within Schools
95% PVR of Means Across Schools

Achievement Rates Across Period
95% PVR of Slopes Within Schools
95% PVR of Slopes Across Schools

Rate of Deceleration Across Period
95% PVR of Decel. Within Schools
95% PVR of Decel. Across Schools

Total Gain Start to End of Period
95% PVR Within Schools
95% PVR Across Schools

Achievement Levels @ Midpoint
Reliability of Intercepts for Students
Reliability of Intercepts for Schools

Achievement Rates Across Period
Reliability of Grade Slopes for Students
Reliability of Grade Slopes for Schools

Rate of Deceleration Across Period
Reliability of Deceleration for Students
Reliability of Deceleration for Schools

Repeated Observations
Students
Schools 2,305 2,277 3,798 3,780

63,275 63,894 413,351 442,178

N/A N/A N/A N/A

0.712 0.771 0.671

0.783 0.763 0.856 0.854

Reliability Estimates

0.909 0.910 0.954 0.930

N/A

0.3030.2700.3080.240
0.793

N/AN/AN/A

Sample Sizes
2,653,0682,480,106

N/A
N/A

N/A
N/A
N/A

11.4
6.3

23.4%

0.22
0.43

79.5%

N/A

13.4
7.5

23.5%

0.46
0.62

64.9%

10.4
5.5

21.4%

0.23
0.48

80.7%

N/A
N/A
N/A

(55 , 70) (50 , 59) (23 , 41) (19 , 27)

(N/A , N/A) (N/A , N/A) (N/A , N/A) (N/A , N/A)
(N/A , N/A) (N/A , N/A) (N/A , N/A) (N/A , N/A)

(5 , 7.4) (4.5 , 6.3) (2 , 4.4) (1.5 , 3.1)
(5.5 , 7) (5 , 5.9) (2.3 , 4.1) (1.9 , 2.7)

(202 , 254)
(213 , 243)

(196 , 241)
(206 , 231)

N/A
N/A
N/A

(181 , 221)
(190 , 212)

(176 , 217)
(186 , 208)

10.0
5.6

23.7%

0.37
0.61

73.5%

54.2

227.9

N/A
19.3

2.30
N/A
13.8

95% Plausible Value Ranges around Fixed Effect Parameters, based on Variance Parameters

Variance Components

Fixed Effects
200.9

N/A
62.4

196.8
5.42
N/A

Reading
Grades 1 Through 5 Grades 6 Through 8

Math Reading

3.22

638,940632,750

(50 , 74) (45 , 63) (20 , 44) (15 , 31)

6.24
218.4

Math

MODEL 1 - LINEAR GROWTH
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Table C2. Full Results from Model 2, Quadratic Growth Model 

 

Achievement Levels @ Midpoint
Achievement Rates Across Period
Rate of Deceleration Across Period
Total Gain Start to End of Period

Achievement Levels @ Midpoint
SD Among Students Within Schools
SD Across Schools
% of Variance Across Schools (ICC)

Achievement Rates Across Period
SD Among Students Within Schools
SD Across Schools
% of Variance Across Schools (ICC)

Rate of Deceleration Across Period
SD Among Students Within Schools
SD Across Schools
% of Variance Across Schools (ICC)

Achievement Levels @ Midpoint
95% PVR of Means Within Schools
95% PVR of Means Across Schools

Achievement Rates Across Period
95% PVR of Slopes Within Schools
95% PVR of Slopes Across Schools

Rate of Deceleration Across Period
95% PVR of Decel. Within Schools
95% PVR of Decel. Across Schools

Total Gain Start to End of Period
95% PVR Within Schools
95% PVR Across Schools

Achievement Levels @ Midpoint
Reliability of Intercepts for Students
Reliability of Intercepts for Schools

Achievement Rates Across Period
Reliability of Grade Slopes for Students
Reliability of Grade Slopes for Schools

Rate of Deceleration Across Period
Reliability of Deceleration for Students
Reliability of Deceleration for Schools

Repeated Observations
Students
Schools

413,351 442,178
2,305 2,277 3,798 3,780
63,275 63,894

0.625

0.238 0.251 0.203 0.203

0.775 0.672 0.735

0.868
0.770 0.749 0.854 0.850

Reliability Estimates

0.815 0.860 0.911

0.3060.3440.3850.408

0.5580.4440.544

Sample Sizes
2,653,0682,480,106638,940632,750

0.16
84.0%

0.11
0.20

75.3%

11.4
6.4

23.7%

0.27
0.44

73.4%

0.07

13.5
7.6

23.9%

0.43
0.64

68.8%

64.9%

11.2
5.7

20.7%

0.34
0.44

62.0%

0.10
0.09

45.3%

9.5
5.3

23.9%

0.39
0.62

71.1%

0.08
0.11

(-42 , 63)

(-0.4 , 0.2)

(2 , 57) (-17 , 37) (-18 , 49) (-3 , 37)

(-0.4 , 0.1)
(-0.5 , -0.1) (-0.6 , -0.3) (-0.6 , 0.2)
(-0.5 , -0.1) (-0.6 , -0.2)

(2.2 , 3.9) (1.7 , 2.7)
(4.7 , 7.1) (4.1 , 5.8) (1.8 , 4.3) (1.3 , 3.1)
(5.2 , 6.7) (4.3 , 5.7)

(178 , 222)
(189 , 212)

(202 , 255)
(214 , 243)

(196 , 241)
(206 , 231)

(185 , 222)
(193 , 214)

228.3
3.05
-0.17
12.3

218.6
2.21
-0.08
10.2

203.3
5.93
-0.31
28.7

200.3
4.98
-0.44
6.3

MODEL 2 - QUADRATIC GROWTH

95% Plausible Value Ranges around Fixed Effect Parameters, based on Variance Parameters

Variance Components

Fixed Effects
Math Reading Math Reading

Grades 1 Through 5 Grades 6 Through 8

0.476

(-27 , 51)(-3 , 61) (-19 , 28)

(-0.2 , 0.1)
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Table C3. Proportion of Variance Between Schools for Achievement Levels, Linear Growth, and Growth Curve/Acceleration, 
Across Different Permutations of the Model and Analytic Sample 

 
FN: %'s reported ICC's-- % of variation in the scores, linear rates, or acceleration between schools (relative to within schools). N = (# of schools). (A) Examines 
results with a less stringent requirement for minimum number of scores required per student to be included in the analytic sample (grades 1 - 5). (B) Examines 
results when using a 2% vs. 10% sample of the full analytic sample for a linear growth model (grades 1 - 5, 6 - 8). (C) Is that same as (B) but for a non-linear 
(quadratic) growth model. (D) "Policy model" examines results when only spring scores are included, and those scores are standardized within subject-grade-year. 

(A) At Least 75% Linear Growth Grades 1 - 5 50% sample 23.2%  75.4%   
At Least 75% Linear Growth Grades 1 - 5 50% sample (5,545)  (5,545)   

(B) Has All Scores Linear Growth Grades 1 - 5 2% sample 23.4%  21.6%  77.1%  84.3%   
Has All Scores Linear Growth Grades 1 - 5 2% sample (1,250)  (1,244)  (1,250)  (1,244)   

Has All Scores Linear Growth Grades 1 - 5 10% sample 21.0%  18.6%  75.2%  84.0%   
Has All Scores Linear Growth Grades 1 - 5 10% sample (2,017)  (1,985)  (2,017)  (1,985)   

Has All Scores Linear Growth Grades 6 - 8 2% sample 19.2%  17.4%  53.7%  70.3%   
Has All Scores Linear Growth Grades 6 - 8 2% sample (2,717)  (2,748)  (2,717)  (2,748)   

Has All Scores Linear Growth Grades 6 - 8 10% sample 18.5%  17.6%  59.3%  82.4%   
Has All Scores Linear Growth Grades 6 - 8 10% sample (3,470)  (3,472)  (3,470)  (3,472)   

(C) Has All Scores Non-Linear Growth Grades 1 - 5 2% sample 24.1%  20.9%  67.6%  71.0%  24.1%  33.4%
Has All Scores Non-Linear Growth Grades 1 - 5 2% sample (1,250)  (1,244)  (1,250)  (1,244)  (1,250)  (1,244)

Has All Scores Non-Linear Growth Grades 1 - 5 10% sample 21.2%  18.1%  68.4%  68.1%  37.0%  38.0%
Has All Scores Non-Linear Growth Grades 1 - 5 10% sample (2,017)  (1,985)  (2,017)  (1,985)  (2,017)  (1,985)

Has All Scores Non-Linear Growth Grades 6 - 8 2% sample 19.4%  17.8%  58.7%  63.3%  53.3%  38.3%
Has All Scores Non-Linear Growth Grades 6 - 8 2% sample (2,717)  (2,748)  (2,717)  (2,748)  (2,717)  (2,748)

Has All Scores Non-Linear Growth Grades 6 - 8 10% sample 18.8%  18.1%  63.0%  81.0%  70.1%  74.4%
Has All Scores Non-Linear Growth Grades 6 - 8 10% sample (3,470)  (3,472)  (3,470)  (3,472)  (3,470)  (3,472)

(D) Has All Scores Policy Model Grades 1 - 5 50% sample 24.2%  22.4%  43.5%  38.9%   
Has All Scores Policy Model Grades 1 - 5 50% sample (2,306)  (2,280)  (2,306)  (2,280)   

Has All Scores Policy Model Grades 6 - 8 50% sample 23.4%  23.4%  45.3%  36.8%   
Has All Scores Policy Model Grades 6 - 8 50% sample (3,800)  (3,783)  (3,800)  (3,783)   

Achievement Level:
% Between Sch's

Learning Rate:
% Between Sch's

Acceleration:
% Between Sch's

Math ELA Math ELA Math ELA
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Endnotes 

1 This includes, for example, debates about whether the U.S. over-invests funding in schools (Hanushek, 1989; 
Hedges, Laine, & Greenwald, 1994), as a reason to support school choice (Towers, 1992), or arguments for greater 
focus on out-of-school learning (Whitehurst & Croft, 2010). 
2 (Alexander & Entwisle, 1996; Barr, Dreeben, & Wiratchai, 1983; Borman & Dowling, 2010; Cain & Watts, 1970; 
Carver, 1975; Domingue, Thomas, Circi, & Camilli, 2011; Hanushek & Kain, 1972; Heckman & Neal, 1996). 
3 For instance, Coleman could not consider the role of teachers, which have been shown to influence within-school 
achievement (see e.g., Aaronson, Barrow, & Sander, 2007; Chetty, Friedman, & Rockoff, 2011). Summer learning 
loss researchers often point out that the average U.S. high school graduate spends less than 15% of their waking hours 
in school (Downey, von Hippel, & Broh, 2004; Walberg, 1984), which implies that the Coleman Report conflates 
school effects with a great deal of out-of-school time (Downey & Condron, 2016). 
4 However, data for the Report was collected within one year to meet the timeline established by the Civil Rights Act.  
5 We use the term “growth” to refer to the annual rate of change of achievement test scores over time.  
6 Bryk and Raudenbush (1988) use a three-level hierarchical framework to model (up to) five vertically-scaled test 
scores administered between grades 1 and 3 as a linear function of time, nested within students at level two (N= 618), 
who are in turn nested in schools at level three (N=86). This model is discussed in greater depth in Appendix A, along 
with an overview of several other studies that have implemented similar models but did not report ICCs in growth 
rates.  
7 For a full description of this dataset and the analytic sample, see Appendix B.  
8 NWEA technical manuals indicate that the RIT scale is produced using a one-parameter logistic item response theory 
model. For more information on the scale development, see Appendix B or NWEA (2011).  
9 We make the following analytic choices for our primary specification: (1) We use RIT scale scores that have been 
projected to the first day of school in the fall semester and the last day of school in the spring semester. These projected 
scores are correlated at 0.996 with the RIT scores observed on the actual test date from the same semester (see Authors, 
2020). (2) We run separate models for grades 1-5 and 6-8. (3) Only students with a full vector of fall and spring test 
scores across those grades are included in the model, to eliminate concerns about sample compositional changes over 
time.   
10 For instance, results are similar when we use a diminishing returns, log-linear function. 
11 Because we possess a longer panel of test scores (e.g., up to 10 scores from grade 1 to 5), a quadratic growth model 
(M2) allows us to also consider the extent to which students’ learning rates accelerate/decelerate while in school. This 
too seems like a phenomenon that is more under the direct purview of schools than achievement levels. 
12 We rerun these models with a variety of different analytic choices. For example, we estimate models using observed 
RIT scores instead of projected scores; using a linear, quadratic, or log-linear time function; placing a less stringent 
requirement on the number of RIT scores a student must have to be included, centering time at level one in the earliest 
grade of the panel, rather than a midpoint, or limiting the analysis to large schools. The basic results hold. In none of 
these permutations is the between-school variance in achievement growth rates close to the conventional 15% - 20% 
mark that we have come to think of as the amount of variation in achievement across schools.  
13 These student- and school-specific estimates of linear learning rates are the empirical Bayes residual estimates of 
the model intercept and coefficient on grade/time.  
14 The model-based estimates presented in Appendix Table C1 suggest that 95% of schools would exhibit a mean 
grade 1-to-5 score gain between 55 and 70 RIT score points (math). That is, we would expect a typical student from 
a school at the low end of this range to gain 55 RIT points between grade 1 to 5, while a typical student in a school at 
the high end of the range would gain 70 RIT points during the same time frame. For context, the annual growth norm 
reported by NWEA is 8.6 points in grade 5. See Appendix C for additional discussion of the magnitude of across-
school growth rates. 
15 Rumberger and Palardy (2005) also uses a three-level linear growth model and documents the proportion of 
variation in learning rates between schools (see their Appendix Table 3). As in the current study, the between-school 
variance in growth rates is closer to 20-30% when using standardized scores. See a detailed description of this study 
in Appendix A. 
16 See Appendix A for a thorough description of the following relevant studies: Briggs and Domingue (2013); 
Carbonaro and Gamoran (2002); Lee, Smith, and Croninger (1997); Rumberger and Palardy (2005). 
17 We examined students’ IRT-based theta scores from the end of K, 1, 3, 5, and 8 as our outcomes first as a linear 
and then as a quadratic function of grade. We opted to use the theta scores ECLS-K:99 provides (rather than scale 
scores or standardized T-scores) because, like NWEA’s RIT scores, theta scores are IRT-based and ECLS-K:99 
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documentation states that “theta scores are ideally suited for measuring growth from kindergarten through eighth 
grade” (Tourangeau et al., 2009, p. 3—9). We emphasize that these results are preliminary, because the sampling 
procedures used to construct the ECLS-K:99 dataset means that there is an average of only about 15 students per 
school. Estimating within-school variances may be more difficult in this setting. In addition, we did not apply relevant 
sampling weights. We ran models using three different sets of inclusion criteria: (1) a least restrictive approach, in 
which we included any students with any number of scores nested in any schools (33,447 students in 6590 schools); 
(2) a most restrictive approach, in which we only included students who had at least 4 of 5 possible theta scores and 
who never move schools and only in schools with at least 10 of these students (1,011 students in 74 schools); and (3) 
an approach that maximizes the amount of within-school data, in which we included any students in schools with at 
least 20 students (5,398 students in 248 schools).  
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