
 

 

 

 

Using Learning Progressions to Design Vertical Scales that Support Coherent Inferences 

about Student Growth 

 

 

Derek C. Briggs 

Frederick A. Peck 

University of Colorado, Boulder  

April 2, 2015 

  



ABSTRACT 

 

The concept of growth is at the foundation of the policy and practice around systems of 

educational accountability.  It is also at the foundation of what teachers concern themselves with 

on a daily basis as they help children learn.  Yet there is a disconnect between the criterion-

referenced intuitions that parents and teachers have for what it means for students to demonstrate 

growth, and the primarily norm-referenced metrics that are used to infer growth.  One way to 

address this disconnect would be to develop vertically linked score scales that could be used to 

support both criterion-referenced and norm-referenced interpretations, but this hinges upon 

having a coherent conceptualization of what it is that is growing from grade to grade.  In this 

paper a learning progression approach to the conceptualization of growth and the subsequent 

design of a vertical score scale is proposed and illustrated in the context of the Common Core 

State Standards for Mathematics.   
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Introduction 

 

More than 10 years have passed since the advent of No Child Left Behind, and if 

anything has changed about the nature of educational accountability it is the increasing emphasis 

on using evidence of growth in student learning to evaluate the efficacy of teachers and schools.  

To a great extent this represents an improved state of affairs, since it implicitly recognizes that it 

is unfair to compare teachers on the basis of what their students have achieved at the end of a 

school year without taking into consideration differences in where the students began at the 

outset.  Yet when researchers build models to quantify the contribution of teachers to growth in 

student learning, growth does not always mean what laypeople naturally think it means. This can 

lead to fundamental misunderstandings. 

 

Figure 1.  Growth, Effectiveness and Two Hypothetical Teachers 
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To appreciate why, consider the graphic shown in Figure 1. The axes of the plot represent 

scores from the same test given at the beginning of a school year (pre-test on the horizontal axis) 

and the end of a school year (post-test on the vertical axis). The ellipses within the plot capture 

different collections of data points corresponding to the students of two different teachers, 

Teacher A and Teacher B.  The dashed line at the 45 degree angle indicates a score on the 

posttest that is identical to a score on the pretest. To keep the scenario simple, assume each 

teacher has the same number of students. On this basis of this data collection design, two 

researchers are asked to compare the teachers and make a judgment as to which one is better.  

Researcher 1 computes the average test score gains for both groups of students and gets identical 

numbers. This researcher concludes that students in each classroom have grown by the same 

amount, hence neither teacher can be inferred to be better than the other.  This can be seen in 

Figure 1 by noticing that each teacher’s class of students has about the same proportion of data 

points above the dashed line (indicating a pre to post gain) as they do below (indicating a pre to 

post loss).  Researcher 2 takes a different approach.  This researcher takes all the available data 

for both classes of students, and proceeds to regress post-test scores on pre-test scores and an 

indicator variable for Teacher B.  The parameter estimate for the Teacher B indicator variable is 

large and statistically significant. This can be seen in Figure 1 by noticing that the regression line 

(solid black line) passing through the data ellipse for teacher B is higher (has a larger y-intercept) 

than the regression line for teacher A.  The second researcher concludes that B is the better 

teacher because given how they scored on the pre-test, the students of teacher B scored higher 

than the students of teacher A.  Who is right? 

Many readers will have immediately recognized the example above as a retelling of 

Lord’s Paradox (Lord, 1967) with the classrooms of Teachers A and B substituted for males and 
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females, and test scores substituted for weight.  Holland and Rubin (1983) reconciled Lord’s 

Paradox by essentially pointing out that the two cases involved analyses pertaining to 

fundamentally different causal inferences.  The same logic can be used for the example above.  

Researcher 1 is inferring the effect of Teacher B relative to Teacher A through a comparison of 

average score gains.  Researcher 2 is inferring the effect of Teacher B relative to Teacher A by 

comparing the average difference in post-test scores for those students with the same pre-test 

scores.  Both researchers could argue that they are making comparisons on the basis of student 

growth. Researcher 1 defines growth as the change in magnitude from pre-test to post-test. 

Researcher 2 defines growth as the increment in achievement we would predict if two students 

with the same pre-test score had Teacher B instead of Teacher A.  Which one has come to the 

right conclusion about the effect of one teacher relative to the other? 

Most of the growth and value-added models that play a central role in teacher evaluation 

follow the approach of Researcher 2 (c.f., Chetty, Friedman & Rockoff, 2014; Kane & Staiger, 

2008; McCaffrey, Lockwood, Koretz & Hamilton, 2003).  A root of considerable confusion in 

the interpretation of estimates from such models is that important stakeholders in K-12 

education—teachers, parents, the general public—assume that inferences about effectiveness 

derive from the sort of approach taken by Researcher 1.  Put differently, judgments about the 

quality of a student’s schooling are not based on direct estimates of the amount that a student has 

learned, but rather, on how well a student has performed relative to peers who are comparable 

with respect to variables such as prior achievement, free and reduced lunch status, race/ethnicity, 

etc. Yet while econometricians and statisticians may notice and appreciate the distinction 

between growth as measured by differences in quantity vs. growth as inferred by normative 

comparison, teachers, parents and the general public do not.  And to some extent, this 
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misconception is encouraged by the way results from these models are presented.  Consider, for 

example, the Policy and Practitioner Brief released by the Measures of Effective Teaching 

Project entitled “Ensuring Fair and Reliable Measures of Effective Teaching.” In the Executive 

Summary, the first key finding is presented as follows: 

Effective teaching can be measured. We collected measures of teaching during 2009–10. 

We adjusted those measures for the backgrounds and prior achievement of the students in 

each class. But, without random assignment, we had no way to know if the adjustments we 

made were sufficient to discern the markers of effective teaching from the unmeasured 

aspects of students’ backgrounds. In fact, we learned that the adjusted measures did 

identify teachers who produced higher (and lower) average student achievement gains 

following random assignment in 2010–11. The data show that we can identify groups of 

teachers who are more effective in helping students learn. Moreover, the magnitude of 

the achievement gains that teachers generated was consistent with expectations. (MET 

Project, 2013, pp. 4-5, emphasis added) 

The Measures of Effective Teaching policy brief was very intentionally written for a general 

audience of policymakers and practitioners in education. Note that in the passage above 

“learning” is equated to “achievement gains.” Since student achievement is typically inferred 

from test performance, most readers of this policy brief would interpret achievement gains as 

implying test score gains.  The larger the magnitude of test score gains, the more that a student 

has learned.  However, this reading of the passage above would be incorrect.  The MET study 

was able to show that differences in prior estimates of teacher value-added was strongly 

predictive of differences in relative student achievement following random assignment.  

Teachers flagged as effective only produced “gains” in the sense that their students scored 
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higher, on average, than they would have had they instead been assigned to a less effective 

teacher.  In this context then, a score “gain” could plausibly mean a true decrease in learning that 

was less than expected.  Notions of growth in such contexts are fundamentally normative; 

effective and ineffective teachers are guaranteed to be found in any population of teachers – 

whether the actual amount of student learning is high, low, or even nonexistent. 

For another example, this time with individual students as the units of analysis, consider 

the way that growth is communicated in Colorado (and many other states) using student growth 

percentiles (SGPs) computed using the Colorado Growth Model (CGM; Betebenner, 2009).  The 

publicly available tutorial about the CGM can be found at 

http://www.cde.state.co.us/schoolview/growthmodeltutorials.  Also see Castellano and Ho 

(2013a, 2013b). In a nutshell, an SGP attempts to show how a student's achievement at the end 

of the year compares with that of other students who started the year at the same level.  SGPs can 

be interpreted as indicating the probability of observing a score as high or higher than a student’s 

current score, given what has been observed on all of the student’s prior scores.  A student with 

an SGP of 75 has a current year test score that is higher than 75% of peers with a comparable test 

score history.  It follows that the probability of observing a score this high or higher for any 

student with a comparable test score history is 25%.  An SGP supports inferences about growth 

in the sense that if two students started at the same achievement level at the beginning of the year 

and one scores higher than the other on a test at the end of the year, it seems reasonable to infer 

that the student with the higher score has demonstrated more growth.  Betebenner and colleagues 

have also made it possible to weave criterion-referenced information into the CGM by 

comparing each student’s SGP to her adequate growth percentile—the growth percentile that 

would be needed to achieve a desired performance level on a test.  This makes it possible to 
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answer the question, is the growth a student has demonstrated good enough relative to the 

standards that have been established and enacted by the state?   

 

Figure 2. Example of a Student Growth Report in Colorado  

Source: http://www.schoolview.org/documents/ISR_explanation.pdf 
 

Yet results from the Colorado Growth Model are also easy to misinterpret.  Many 

teachers and parents are likely to equate a student’s score with “math knowledge.”  Teachers and 

parents with this interpretation would think that a student’s score should be steadily increasing 

across grades.  If presented with a scenario in which a student has a score of 500 across grades 6-

8, it would be natural for a parent to think that the student has not “learned anything” during 

these years. However, if the meaning of a score of 500 changes every year, this would not be a 

correct inference.  

SGPs can easily be misunderstood as “changes in math knowledge”, i.e., “amount of 

learning”. For example, if a student has an SGP of 90, 75 and 60 across grades 6 through 8, it 

would be natural for a parent to interpret this to mean that the student is learning less in the grade 

8 than in grade 7, and less in grade 7 than in grade 6.  But such an inference would be impossible 
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to support on the basis of SGP comparisons alone.  For all its advantages, the CGM cannot be 

used to infer whether the amount a student has learned in the most recent year is significantly 

more or less than the amount a student learned in the past year.   

Nonetheless, there is good reason to suspect that parents and teachers are implicitly 

encouraged to use it in this manner, as illustrated by the plot in Figure 2.  This exemplar plot is 

made available to parents in order to help them interpret their child’s SGP.  The vertical consists 

of scale scores in mathematics, organized into proficiency levels.  The thresholds for these levels  

change from grade to grade because Colorado has standards that become more and more difficult 

to reach as students enter middle school. Grade levels are shown along the x- (horizontal) axis.. 

Below the horizontal axis are scale scores and SGPs. The body of the plot includes small circles 

that indicate the student’s scale score and a gray gradation that indicates proficiency levels, 

shown along the y- (vertical) axis.  The location of the small circle thus indicates a student’s 

scale score in a given grade and where that scale score is located relative to three proficiency 

level thresholds. Note that in addition to the circles there are color-coded arrows that indicate 

whether a student’s SGP in a given grade is “low” (1-34), “typical” (35-65), or “high” (66-99).  

The “next year” spot on the x-axis is meant to reflect the most likely proficiency levels of 

the student if the student were to have a low, typical or high SGP in the following year. Visually, 

the first thing a parent is likely to interpret is the trajectory implied by the collective slopes of the 

individual arrows, and the height of the bar segments in the “next year” prediction. The visual 

interpretation suggests that the student represented in this plot showed flat or slightly negative 

growth from grade 6 to 7, positive growth from 7 to 8, and negative growth from 8 to 9.  If the 

student has positive growth from grade 9 to 10, she will fall within the proficient performance 

level; if the student has flat or negative growth the student will fall within the partially proficient 
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performance level.  Across grades 6 through 9, the overall growth trajectory appears relatively 

flat. Since the likely interpretation of this trajectory is “change in knowledge”, it appears that the 

student has learned nothing between grades 6-8. This inference is supported by the direction and 

color of the arrows that constitute the trajectory: the downward pointing red arrows support the 

inference that the student endured two years of negative growth, which was compensated by one 

year of positive growth indicated by the green, upward pointing arrow.  The overall picture is 

that the student’s knowledge has not really changed.  

 In education and in life there is a constant tension between norm and criterion-referenced 

interpretations.  Neither can be sustained in perpetuity without eventually encountering the need 

to invoke the other.  In this article we argue that normative interpretations about student growth 

and teacher effectiveness need to be complemented by criterion-referenced interpretations about 

how much and of what?  How much has my child grown this year? How much more has she 

grown relative to last year? What did my child learn and how can the effectiveness of my child’s 

teacher be quantified relative to the amount that was learned?  In theory, the best way to answer 

such questions would be through the development of tests that could be expressed on vertically 

linked scales. In the next section we explain why, to date, vertical scaling appears to have been 

unsuccessful at meeting such ambitions.  In the section that follows, we propose a new approach 

to the design of vertical scales that is premised upon a priori hypotheses about growth in the 

form of a learning progression hypothesis.  In a nutshell, our argument is that meaningful 

criterion-referenced interpretations of growth magnitudes can only be supported when they 

follow from a coherent conceptualization of what it is that is growing over time.  To speak of a 

student’s growth in “mathematics” is incoherent, because mathematics is just a generic label for 

the content domain of interest, and not an attribute for which it makes sense to speak of a student 
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having more or less.  A benefit of designing a vertical scale according to a learning progression 

is that it becomes possible to speak about growth in terms of specific knowledge and skills that 

are hypothesized to build upon one another over time.  We illustrate this using a learning 

progression that shows how students develop the knowledge and skills necessary to be able to 

analyze and reason about proportional relationships. 

 

Some Background on Conventional Vertical Scaling Methodology 

 

The conventional method for creating a vertical scale is documented in books1 such as  

Educational Measurement (4th Edition), Test Equating, Linking and Scaling, and The Handbook 

of Test Development.  Although there are a number of different ways to create a vertical score 

scale, the approach generally consists of two interdependent stages: a data collection stage and a 

data calibration stage. In the data collection stage, the key design principle is to select a set of 

common test items (also known as “linking” items) that will be administered to students across 

two or more adjacent grade levels (e.g. grades 3 through 4, grades 3 though 8, etc.).  This is in 

contrast to a unique test item, which would only be administered to students at any single grade.  

In some designs, the common items consist of an external test given to students across multiple 

grades; in others they consist of an external test given only across adjacent grades; and in others 

they consist of items embedded within operational test forms.  Once item responses have been 

gathered for representative students at each grade level, the next task is to analyze differences in 

performance on the common items.  These differences become the basis for the data calibration 

stage.  In order to calibrate the responses from students at different grade levels onto a single 

scale, either the ability of the students, or the characteristics of the items (e.g., difficulty) needs 
                                                

1 Kolen, 2006, pp. 171-180; Kolen & Brennan, 2004, pp. 372-414; Young, 2006; pp. 469-485. 
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to be held constant across grades.  Since growth in student ability across successive grades is the 

underlying basis for the vertical scale, the only the only reasonable option is to hold the item 

characteristics constant.  There are two known approaches for accomplishing this, Thurstone 

Scaling (Thurstone, 1925; 1927) and Item Response Theory scaling (IRT; Rasch, 1960; Lord & 

Novick, 1968).  IRT-based methods are by far the predominant approach and have been since the 

mid 1980s. The selling point of IRT is the property of parameter invariance, which will hold so 

long as the assumption of local independence has been satisfied, and the data can be shown to fit 

the item response function that has been specified.  Parameter invariance is the critical property 

of IRT models that makes it possible to establish values for the characteristics of common items 

that do not depend on the particular group of students responding to them.  When parameter 

invariance holds, the same difficulty parameter will be estimated for an item whether it is 

administered to a 3rd grade student or an 8th grade student.  An even stronger invariance property, 

that of invariance of comparisons (i.e., specific objectivity) must hold when specifying the Rasch 

Model, and this can have implications for claims that a scale has equal intervals (Briggs, 2013). 

Much of the research literature on vertical scales has focused on choices that must be 

made in the calibration of the scale (c.f., Skaggs & Lissitz, 1986).  Two choices in particular 

have received considerable attention: the functional form of the IRT model, and the manner in 

which tests scores across grades are concatenated.  The first choice is typically a contrast 

between the use of the three parameter logistic model (3PLM; Birnbaum, 1968) or the Rasch 

Model (Rasch, 1960).  The second choice is a contrast between a separate or concurrent 

calibration approach.  In the separate approach item parameters are estimated separately for each 

grade-specific test.  Then a base grade for the scale is established and then other grades are 

linked to the base grade after estimating linking constants for each grade-pair using the Stocking-
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Lord approach (Stocking & Lord, 1983).  In the concurrent approach, all item parameters are 

estimated simultaneously.  Although there is very little in the way of consensus in the research 

literature about the best way to calibrate a vertical scale, when different permutations of 

approaches have been applied to create distinct scales from the same data, this has been shown to 

have an impact on the magnitudes of grade to grade growth (Briggs & Weeks, 2009).  One 

message that has been communicated by this research base is that there is no “right answer” 

when it comes to creating a vertical scale.  If this message is taken to its extreme, it implies that 

nonlinear transformations can be employed to the scale following the calibration stage to 

produce whatever depiction of growth is most desirable to stakeholders, since no one depiction 

can be said to be more accurate than the other.   

In a review of the vertical scaling practices among states as of 2009, Dadey and Briggs 

(2012) found that 21 out of 50 states had vertically scaled criterion-referenced assessments 

spanning grades 3 through 8. Notably, Dadey and Briggs found no evidence that those states 

with vertical scales used their scales to make inferences about criterion-referenced growth at the 

student, school or state levels.  In many cases, it appears that states did not actually trust the 

aggregate inferences about student growth implied by their vertical scales.  For one of the more 

ironic examples, Colorado, the originators of the norm-referenced Colorado Growth Model, also 

expressed its criterion-referenced tests in math and reading along a vertical scale.  This fact 

would come as a surprise to most Colorado educators2, because grade to grade scale score gains 

are never emphasized in conjunction with the reporting of SGPs.  In another instance, as part of 

the process of designing their vertical scale, contractors for the state of Arizona applied a 

                                                
2 Indeed, the second author of this paper, who taught high school mathematics in Colorado as recently as 2012-13, 
was completely unaware that math scale scores in Colorado had been linked vertically until informed of this by the 
first author. This even extends to personnel at the Colorado Department of Education who work in the educational 
accountability group, who on one occasion in correspondence with the first author insisted that Colorado’s tests 
were not vertically scaled.  
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nonlinear transformation to ensure that grade to grade reading score scale means would increase 

monotonically, even though the empirical evidence prior to applying the transformation indicated 

that students in some upper grades had performed slightly worse on items that were common to 

the lower grade.   

 One possible explanation for the reluctance of states to use their vertical scales to report 

growth in terms of grade-to-grade changes in magnitudes is that there is a disconnect between 

the information about growth that such scales imply, and the intuitive expectations about growth 

common among teachers, parents and the public—the primary audience for the communication 

of growth.  Namely, the intuitive expectation is that as students learn they build a larger and 

larger repertoire of knowledge and skills that they can use to navigate the world around them.  

As such, irrespective of the subject in which this repertoire of knowledge and skills is to be 

measured, from year to year one would expect to see significant evidence of growth.  In contrast 

to this intuition, many vertical scales show evidence of a large deceleration of growth, 

particularly as students transition from the elementary school grades to the middle school grades 

(Tong & Kolen, 2007, Dadey & Briggs, 2012). In addition, because the concept of growth 

borrows so heavily from the analogy of measuring height, it is intuitive to believe that the 

interpretation of gains from one to grade to another along a vertical scale do not depend upon a 

student’s initial location on the scale.  Indeed, Briggs (2013) argues that the premise of equal-

interval interpretations has been central to the way that some testing companies have marketed 

the advantages to creating a vertical scale.  

 One response to this disconnect between intuition and practice is to say that both of the 

intuitions described above are wrong or at least in some sense misguided (Yen, 1986).  For 

example, it could be argued that if students were tested repeatedly across grades to make 
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inferences about their ability to decode and extract meaning from selected vocabulary words in a 

reading passage, that larger gains would be observed in the early grades of a child’s schooling 

when decoding is a focus of instruction, and that these gains would be smaller in the later grades 

when the instructional focus shifts from “learning to read” to “reading to learn.”  Similarly, it 

could be argued that there is nothing inherent to the process of creating a vertical scale that 

would guarantee the scale has equal-interval properties.  Because of this, statements along the 

lines of student X has grown twice as much as student Y are meaningless unless both students 

started at the same baseline—which brings us back normative growth inferences.   

The problem with the approach of discrediting “faulty” intuitions in this manner is that it 

defeats the purpose of creating a vertical scale in the first place.  In the first example we have an 

a clear instance of construct underrepresentation if a test claims to measure “reading” or “English 

Language Arts” yet really only measures the decoding of words.  This would explain why 

growth decelerates, but would certainly not validate the inferences about growth that were 

purported.  In the second example, if a vertical scale can only support inferences about ordinal 

differences among students, why create the vertical scale at all?  As Briggs (2013) argues, the 

purpose of vertical scales is to facilitate inferences about changes in magnitude with respect to a 

common unit of measurement. The warrant behind this use is the assumption that changes along 

any point of the scale have an equal-interval interpretation. Therefore, to validate that a given 

vertical scale can be used for its intended purpose, evidence must be presented to support the 

equal-interval assumption.   

 We take the position that the best way to move the science behind vertical scaling 

forward is to place a greater emphasis on design issues.  In making this case we are essentially 

sounding the same drum that was first pounded in the National Research Council’s 2001 report 



 

14 

Knowing What Students Know (Pellegrino, Chudowsky & Glaser, 2001), a report which 

emphasized that principled assessment design always involves an implicit model of cognition 

and learning.  Yet while this message has resulted in some important improvements in 

assessment design over the past decade (e.g., the application of “Evidence Centered Design” 

principles; Mislevy, Steinberg & Almond, 2002), it is less clear that the message has had much 

influence on the design of vertical scales.  In the next section we use the subject area of 

mathematics to illustrate an approach to vertical scale design that is premised on what we call a 

learning progression conceptualization of growth.  

 

Using Learning Progression Hypotheses to Design Vertical Scales 

 

Domain-Sampling vs. Learning Progression Conceptualizations of Growth 

 

Fundamental to the development of large-scale assessments for use in systems of 

educational accountability is a collection of content-specific targets for what students are 

expected to know and be able to do within and across grades.  At present, through their 

participation in one of the two large-scale assessment consortia (the Partnership for Assessment 

of Readiness for College and Careers [PARCC] and the Smarter Balanced Assessment 

Consortium [SBAC]), many American states are using the Common Core of State Standards for 

Mathematics and English Language Arts (CCSS-M & CCSS-ELA) as the basis for these targets.  

A good case can be made that the Common Core of State Standards are especially amenable to 

the creation of vertical scales to support inferences about growth because these standards were 

written with any eye toward how students’ knowledge and skills in mathematics and English 
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Language Arts would be expected to become more sophisticated over time.  However, there are 

still two different ways that the concept of growth could be conceptualized before choosing a 

data collection design that could result in the calibration of a vertical scale.  These different 

conceptualizations are illustrated in Figure 3 in the context of mathematics. 

The left side of Figure 3 contains planes that are intended to encompass what it means to 

be “proficient” or “on track for college and career readiness in mathematics” at a given grade 

level (e.g., grade 3). Within each plane are light-colored shapes, and within each shape is a series 

of dots. The shapes are meant to represent different “content domains” (e.g., Numerical 

Operations, Measurement & Data, Geometry); the dots represent domain-specific performance 

standards that delineate grade-level expectations for students (e.g., within the domain of 

Measurement & Data: “Generate measurement data by measuring lengths using rulers marked 

with halves and fourths of an inch.”). This sort of taxonomy has traditionally been used in the 

design of large-scale assessments to deconstruct the often amorphous notion of “mathematical 

ability” into the discrete bits of knowledge, skills, and abilities that should, in principle, be 

teachable within a grade-level curriculum. Such an approach facilitates the design of grade-

specific assessments because test items can be written to correspond to specific statements about 

what students should know and be able to do.  The growth target in such designs is not a 

cognitive attribute of the test-taker, but a composite of many, possibly discrete pieces of 

knowledge, skills, and abilities. We refer to the assessment design implied by the left side of 

Figure 3 as the domain-sampling approach. 
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Figure 3.  Different Construct Conceptualizations and Implications for Growth 

  

 

Under the domain-sampling approach, the intent is for growth to be interpreted as the 

extent to which a student has demonstrated increased mastery of the different domains that 

comprise mathematical ability. This is represented by the single arrow indicating movement 

from the plane for a lower grade to the plane for a higher grade. Note that if both the domains 

and the content specifications within each plane change considerably from grade to grade, then it 

becomes possible for students to appear to “grow” even if entirely different content is tested 

across years.  This is represented in Figure 3 by the fact that two domains (circles and triangle 

shapes) are shown in each grade while one domain (hexagon shape) is only present in grades x 

and x + 1 and another (pentagon shape) is only present in grades x + 1 and x + 2.  In the best case 

scenario for growth inferences, considerable thought has been put into the vertical articulation of 

the changes among content domains and standards from grade to grade.  For example, according 

to the CCSS-M, a composite “construct” of mathematical ability could be defined from grade to 
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grade as a function of 5 content domains and 6 skill domains (i.e., mathematical practices).  Yet 

this leaves ample room for growth in terms of the composite to have an equivocal interpretation 

depending upon the implicit or explicit weighting of the domains in the assessment design and 

scoring of test items.  Furthermore, the number of items required to make inferences about all 

CCSS domains at one point in time in addition to change over time is likely to be prohibitive.  

The problem of changing domains over time has been described as the problem of “construct 

shift” in context of research conducted by Joseph Martineau (Martineau, 2004; 2005; 2006).  The 

basic argument is that most achievement tests are only unidimensional to a degree.  At one point 

in time for specific grade level, ignoring minor secondary dimensions is unlikely to cause large 

distortions in inferences about student achievement.  However, when the nature of the primary 

and second dimensions and their relative importance are themselves itself changing over time, 

the calibration of a single undimensional vertical has much greater potential to lead to distortions 

about student growth. 

A different basis for a growth conceptualization comes from what we refer to as the 

learning progression approach. Learning progressions have been defined as empirically 

grounded and testable hypotheses about how students’ understanding of core concepts within a 

subject domain grows and become more sophisticated over time with appropriate instruction 

(Corcoran, Mosher, & Rogat, 2009). Learning progressions provide “likely paths” (Confrey, 

2012, p. 157) for learning, along with the instructional activities that support this path. The key 

feature of learning progressions is that they are developed by coupling learning theories with 

empirical studies of student reasoning over time. This is in contrast to some curricula that are 

developed based on disciplinary logic, or “reductionist techniques to break a goal competence 

into subskills, based on an adult’s perspective” (Clements & Sarama, 2004, p. 83).  Therefore, 
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while there are many ways that understanding can develop over time, learning progressions 

capture particularly robust pathways that are supported by both learning theory and empirical 

studies of learning in situ (Daro, Mosher, & Corcoran, 2011; Sarama & Clements, 2009). As 

Daro et al. (2011, p. 45) explain,  

Evidence establishes that learning trajectories are real for some students, a possibility for 

any student and probably modal trajectories for the distribution of students. 

At the same time, learning progressions are always somewhat hypothetical, and should be 

refined over time (Shea & Duncan, 2013). 

This key idea is shown in the right panel of Figure 3, which depicts a hypothesis about 

the nature of growth: the way that students’ understanding of some core concept or concepts 

within the same domain is expected to become qualitatively more sophisticated from grade to 

grade. The notion that this constitutes a hypothesis about growth to be tested empirically is 

represented by the question marks placed next to the arrows that link one grade to the next.  In 

contrast to inferences about growth based on domain-sampling, changes in a student’s depth of 

knowledge and skills within a single well-defined domain over time are fundamental to a 

learning progression conceptualization.  

 In mathematics, the distinction between across and within domain inferences about what 

students know and can do is evident in the fact that the CCSS-M makes it possible to view 

standards by grade (across domain emphasis, single point in time) or by domain (within domain 

emphasis, multiple points of time)3.  Importantly, when math standards from the CCSS are 

viewed by domain and by grades 3 through 8, as in Table 1, it becomes evident that there is in 

fact good reason to be concerned about the potential for construct shift in how “mathematics” is 

                                                
3 http://www.corestandards.org/Math 
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being defined from grade 3-5 (elementary school) to grades 6-8 (middle school).  Notice that the 

only content domain that remains present across the all six grades is geometry. This is why, well 

before worrying about technical issues in calibrating a vertical scale, it is important to first ask 

whether the vertical scale would allow for inferences about growth over time that are 

conceptually coherent.  If all the content domains shown in Table 1 were to be the basis for a 

domain-sampling approach to the creation of a single vertical scale, what would it mean if a 

student grew twice as much from grade 4 to 5 as from grade 5 to 6?  At least on the basis of the 

CCSS-M content domains, this would seem to be an apples to oranges comparison. 

 

Table 1. Math Content Domains Associated with Grades 3 to 8 in the CCSS 

Content Standards by Domain Grade in Which CCSS Include Domain  
3 4 5 6 7 8 

Operations & Algebraic Thinking X X X    
Number & Operations in Base 10 X X X    
Number & Operations—Fractions  X X X    
Measurement & Data X X X    
Geometry X X X X X X 
Ratios & Proportional Relationships   X X   
The Number System    X X X 
Expressions & Equations    X X X 
Functions      X 
Statistics & Probability    X X X 
 

When taking a learning progression approach, one would eschew the notion of representing 

growth with a single composite scale for mathematics across grades 3 through 8 and instead 

choose a cluster of standards within a given domain and across a subset of grades as candidates 

for quantifying growth.  So for example, a single learning progression might be hypothesized 

with respect to how students in grades 3 through 5 become increasingly sophisticated in the way 

that they reason and model numbers and operations that involve fractions.  After designing and 
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calibrating a vertical scale associated with this learning progression, two different pieces of 

information could be provided to a fourth grade student.  A number summarizing the student’s 

composite achievement across all math content domains tested in grade 4, and a measure 

pertinent to the student’s growth along the vertical scale for numbers and operations that involve 

fractions.  To be clear, these two numbers would derive from two different scales for two 

different purposes: one scale to characterize achievement status across domains, another scale to 

measure growth within a single, well-defined domain.   

 

Example: A Learning Progression for Proportional Reasoning 

 

 The content domains in the CCSS-M, and the ways they are expected to change across 

grades as a function of their standards, provide a starting point for math education researchers 

and psychometricians—working together—to flesh out learning progression hypotheses.  As 

stated in the online introduction to the CCSS-M4.   

 

What students can learn at any particular grade level depends upon what they have 

learned before. Ideally then, each standard in this document might have been phrased in 

the form, “Students who already know A should next come to learn B.” But at present 

this approach is unrealistic—not least because existing education research cannot specify 

all such learning pathways. Of necessity therefore, grade placements for specific topics 

have been made on the basis of state and international comparisons and the collective 

experience and collective professional judgment of educators, researchers and 

                                                
4 http://www.corestandards.org/Math/Content/introduction/how-to-read-the-grade-level-standards 
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mathematicians. One promise of common state standards is that over time they will allow 

research on learning progressions to inform and improve the design of standards to a 

much greater extent than is possible today. 

 

The last sentence of this paragraph is important because it makes clear that within-domain 

content standards (“clusters” of standards) in the CCSS-M are unlikely to serve as an adequate 

basis for a learning progression without further elaboration, and also that the domain 

conceptualizations in the Common Core are by no means sacrosanct as models for student 

learning.  Finally, this sentence explicitly calls for more research on learning progressions.  An 

encouraging development along these lines are the recent efforts by Jere Confrey and colleagues 

at North Carolina State University to “unpack” the CCSS-M in terms of multiple learning 

progressions—18 in all (Confrey, Nguyen, Lee, Panorkou, Corley & Maloney, 2012; Confrey, 

Nguyen, & Maloney, 2011).  Building on Confrey’s work, we provide an example of a learning 

progression5 for proportional reasoning that could be used to conceptualize growth along a 

vertical scale. 

Proportional reasoning involves reasoning about two quantities, ! and !, that are 

multiplicatively related. This relationship can be expressed formally as a linear equation in the 

form ! = !", or, two value pairs can be expressed as equivalent ratios in the form !!!! =
!!
!!

. For 

example, the following questions involves proportional reasoning: (A) if 3 pizzas can feed 18 

people, how many pizzas would you need to feed 30 people? (B) At one table, there are 3 pizzas 

for eight people. At another table, there are 7 pizzas for 12 people. At each table, the people 

                                                
5 What we show here is a snapshot view of the full learning progression which is too large to fit on a single page, 
but is much easier to convey on a website.  A link to the full learning progression will be included once this 
manuscript is no longer under peer review. 
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share the pizza equally. Which table would you rather sit at, if you want to get the most pizza? 

Question (A) involves finding a missing value in a proportional situation, and question (B) 

involves comparing two ratios.  

The first five levels of this progression6 are based upon a detailed learning progression 

for equipartitioning developed by Confrey and colleagues (Confrey, Maloney, Nguyen, Mojica, 

& Myers, 2009; Confrey 2012), while levels 6 and 7 come from a progression developed by Peck 

and Matassa to extend the equipartitioning progression into Algebra I (Matassa & Peck 2012; 

Migozuchi, Peck, & Matassa, 2013). This progression, like all learning progressions, is grounded 

in studies of student learning. To develop the equipartitioning progression, Confrey et al. first 

engaged in a comprehensive synthesis of the literature related to student learning of rational 

numbers. From this, they developed a number of “researcher conjectured” learning progressions 

for different aspects of rational number and multiplicative reasoning. One of these aspects was 

equipartitioning, which Confrey et al. (2009, p. 347) describe as “behaviors to create equal-sized 

groups” in sharing situations. For example, students use equipartitioning to find the fair share 

when 7 pizzas are shared by 12 people. 

To refine the progression for equipartitioning, they conducted 52 clinical interviews with 

students in grades K-6. Peck and Matassa’s work to extend this progression into middle and 

high-school followed a similar path of creating a researcher-conjectured progression based on the 

research literature and testing and refining it through work with students (Peck and Matassa 

conducted classroom design studies rather than clinical interviews for this step). Because the 

progression is grounded in studies of student learning, it is not simply an abstract construction 

developed by researchers, but rather an empirically supported description of learning over time. 
                                                

6 In the mathematics education literature, the term learning trajectory is typically used in place of learning 
progression, and the work of Confrey and colleagues also invokes the trajectory terminology.  However, for the sake 
of consistency, we use the term progression throughout. 
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The concepts that are developed in this learning progression are foundational for school 

mathematics. The progression begins with equipartitioning, which Confrey and colleagues 

(Confrey & Smith, 1995; Confrey et al., 2009) have argued ought to be considered a “primitive” 

(along with counting) for the development of fractions, multiplicative reasoning, and 

proportional reasoning. Thus, the levels in the equipartitioning portion of the learning 

progression (Levels 1-5) set the stage for many of the standards that students are expected to 

learn in elementary school (e.g., fair sharing as a basis for division and fractions, and reversing 

the process—i.e., re-assembling shares into a whole—as a basis for multiplication). Moreover, 

mastery of equipartitioning sets the stage for proportional reasoning. This is important because 

just as equipartitioning provides a fertile environment for so much subsequent mathematics, so 

too does proportional reasoning (Post, Behr, & Lesh, 1988). In fact, the National Council of 

Teachers of Mathematics identifies proportional reasoning as one of five “foundational ideas” 

(NCTM, 2000, p. 11) in mathematics (rate of change—which is also developed in the 

progression—is another foundational idea). Thus the progression represents what is arguably the 

most important thread in elementary and middle school mathematics. 

 

Insert Figures 4 and 5 about here 

 

 Figures 4 and 5 present an overview of the seven distinct levels of the proportional 

reasoning learning progression.  The figures are two sides of the same coin in that Figure 4 

describes, for each level, the attributes students are mastering in order to demonstrate increasing 

sophistication in their proportional reasoning, while Figure 5 describes the essence of the 

instructional and assessment activities that can be used both to develop, and gather evidence of, 
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mastery.  The lowest level of the learning progression is premised on a student that has just 

begun to receive formal instruction in mathematics (perhaps in Kindergarten, perhaps in first 

grade) and is being asked to complete activities that require the first building blocks in the 

development of proportional reasoning—sharing collections of objects with a fixed number of 

people.  The highest level of the learning progression represents the targeted knowledge and 

skills in mathematics that would be expected of a student at the end of grade 8.  At this level 

when faced with problems that involve making predictions from linear relationships, students are 

able to apply modified proportional reasoning to solve for unknowns, calculate unit rates (the 

rate at which one quantity changes with respect to a unit change in a different quantity, e.g., 

“miles per hour”), and interpret the algebraic construct of “slope” flexibly as both a rate of 

change and steepness.  The levels in-between represent intermediate landmarks for students and 

teachers to aim for as they move along from the elementary school grades to the middle school 

grades.   

Note that in this learning progression, at least as it has been initially hypothesized, there 

is not a one-to-one relationship between the number of distinct levels of the progression and the 

number of grades through which a student will advance over time.  It may be the case that as we 

gather empirical evidence about student learning along this progression that we discover 

additional levels, or collapse existing ones. Rather than assigning a single grade with a single 

level, we might instead associate grade bands with each level, recognizing that grade 

designations are largely arbitrary, and that a student’s sophistication in proportional reasoning is 

likely to depend upon the quality of focused instruction they have received on this concept rather 

than the age they happen to be.  Notice also that the levels of the learning progression are not 

always defined by standards pulled from a single grade of the CCSS-M. In fact, standards from 
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grade 4 of the CCSS-M do not fit within this particular progression at all because the grade 4 

standards for fractions and rational number are focused on fraction-as-number. This sub-

construct is the focus of a separate (but related) learning progression, based on the synthesis 

discussed above (Confrey, 2012).   

It is the key activities that have been linked to each level of the progression in Figure 5 

that ground proportional reasoning within the curriculum and teaching that are expected to take 

place behind classroom doors.  These activities also serve as a basis for the design of assessment 

tasks or items that could be used in support of both formative and summative purposes.  This is 

facilitated by the construction of item design templates for each level of the progression.  These 

item design templates are similar in nature to the design pattern templates associated with 

Evidence-Centered Design.  However, one feature of the templates we develop that makes them 

unique for the context of designing a vertical scale is the specification of item design factors that 

could be purposefully manipulated to make any given item harder or easier to solve.  To 

illustrate this, and more generally the way that an item design template is linked to the learning 

progression, we describe the attributes of level 5 in more depth, using the exemplar task given in 

at the bottom of Figure 6 to ground the discussion.  

 

Insert Figure 6 about here 

 

For attribute 1, students can name a fair share in multiple ways and can explain why the 

different names represent equivalent quantities. In general, this means that students can use 

different referent units when naming a share and can coordinate the numerical value with the 

referent unit. In the exemplar task, this would result in share names of “1/10 of the four pounds”, 
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“4/10 of one pound”, or “4/10 pounds per chicken”. For attribute 2, students use and justify 

multiple strategies when sharing multiple wholes to multiple sharers. In the exemplar task, 

students might use a “partition-all” strategy or an “equivalent ratio” strategy (Lamon, 2012). In 

the partition all strategy, students would partition each pound into tenths, and then distribute one-

tenth from each pound to each chicken. In the equivalent ratio strategy, students would reason 

that ten chickens sharing four pounds of food results in the same shares as if five chickens shared 

two pounds of food, and then share the food according to this reduced ratio. For attribute 3, 

students assert, use, and justify the general principle that whenever p items are shared by n 

sharers, the fair shares will have size of p/n items per sharer (or equivalent names as discussed 

above). In the exemplar task, students would write a correct name for the fair share and would 

justify this share by using a strategy as described above.  

The task family implicit in Figure 6 is designed to help students master these attributes, 

and also to help test developers and teachers assess student mastery of these attributes. The task 

can be varied by changing the number and type of items to be shared as well as the number and 

type of sharer. By varying these task features, test developers and teachers can (a) create novel 

learning and assessment experiences, (b) vary the difficulty of the task, and (c) create conditions 

that are conducive to particular teaching strategies. Perhaps most obviously, for the level 5 task 

family the number of objects (p) to be shared and the number of people with whom the objects 

are to be shared (n) can be changed (e.g., chocolate bars and people, or chicken food and 

chickens). This does more than change the surface appearance of the task, it can also adjust the 

“distance” between the real-world activity and the mathematical activity. For example, in the 

chocolate bars and people situation, the real-world activity of breaking chocolate bars and 

passing out pieces is closely related to the mathematical activity of partitioning and distributing. 
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This is probably less true for the chicken food and chickens situation. In this way the task can 

become more or less abstract as the items and sharers are varied. The difficulty of the task can 

also be varied by changing p and n according to the schedule given in row three of Figure 6 (this 

progression of difficulty comes from Confrey, 2012). In classroom settings, teachers could 

modify p and n to create conditions that are conducive to particular strategies. For example, 

situations where p and n have a common divisor are more conducive to the equivalent ratio 

strategy than are situations where p and n are relatively prime.  

 A fully elaborated item design template would also include scoring rules for constructed 

response items and examples of student responses that would earn different scores.  As evidence 

is gathered about the ways that students tend to respond to such items, the template could be 

extended to include rules or guidelines for writing selected response items.  From the standpoint 

of extracting diagnostic information from such items, a particularly compelling feature of such 

items might be to give students partial credit for responses that demonstrate mastery of some, but 

not all, of the attributes associated with the level to which an item has been written.  

 

Common Item Linking Designs 

 

 A challenge in designing a vertical scale is collecting data on how students at one grade 

level would fare when presented with items written for students at a higher or lower grade level.  

There is understandably some concern about overwhelming younger students with items that are 

much too hard, or boring older students with items that are much too easy.  Adopting a learning 

progression as the basis for a common item linking design has the potential to lessen this concern 

for three reasons.  First, because explicit connections are being made between the mathematical 
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content and practices to which students are exposed from the lower (e.g. elementary school) to 

upper (e.g., middle school) anchors of the learning progression, it would no longer be the case 

that, for example, the activities at upper levels of a learning progression would be completely 

foreign to students at the lower levels. For example, activities at level 6 of the proportional 

reasoning learning progression (see Figure 5) could still involve asking students to devise fair 

shares using equipartitioning strategies, a common feature of activities from levels 1 through 5.  

Second, because the items designed for each level of the progression could be manipulated to be 

easier or harder, one would naturally expect to see a great deal of overlap in the ability of 

students to solve these different item families correctly across grade bands.  For example, a very 

hard level 5 item might be just as challenging as a very easy level 6 item.  This blurring of 

artificial grade level boundaries makes it possible to envision field test designs in which students 

in adjacent grades could be given items that span three or more hypothesized learning 

progression levels, because a level would not necessarily be equivalent to a grade.  For example, 

while it would surely be unreasonable to ask first grade students to answer level 6 or 7 items, it 

might be entirely reasonable to pose some of these items to students in 3rd or 4th grade, just as it 

might be reasonable to pose level 3-5 items to students 7th or 8th grade. Third, as noted 

previously, there is no requirement that a vertical scale associated with any given learning 

progression design would need to span any set number of grades.  For example, instead of 

building a vertical scale to represent growth in proportional reasoning across grades 3 through 8, 

a decision could be made to create a vertical scale that only spans grades 6 through 8.  Indeed, an 

entirely different learning progression hypothesis might be the basis for a another vertical scale 

that spans grades 3 to 5, or 4 to 6, etc.   
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Discussion 

 

To recap, the concept of growth is at the foundation of the policy and practice around 

systems of educational accountability.  It is also at the foundation of what teachers concern 

themselves with on a daily basis as they help their students learn.  Yet there is a disconnect 

between the criterion-referenced intuitions that parents and teachers have for what it means for 

students to demonstrate growth, and the primarily norm-referenced metrics that are used to 

communicate inferences about growth.  One way to address this disconnect would be to develop 

vertically linked score scales that could be used to support both criterion-referenced and norm-

referenced interpretations, but this hinges upon having a coherent conceptualization of what it is 

that is growing from grade to grade.  In this paper we have proposed a learning progression 

approach to the conceptualization of growth and the subsequent design of a vertical score scale.  

We have used the context of the CCSS-M and the “big idea” of proportional reasoning to give a 

concrete illustration for what such a design approach would entail.  

 In their book Test Equating, Scaling & Linking, Kolen & Brennan (2004) also distinguish 

between two different ways that growth could be conceptualized when designing a vertical scale.  

They introduce what they call the “domain” and “grade to grade” definitions of growth.  In what 

they refer to as a “domain definition” of growth, the term domain is used much more broadly 

than we have used it here to encompass the entire range of test content covered by the test battery 

across grades.  In other words, the domain of a sequence of grade-specific tests of mathematics 

as envisioned by Kolen & Brennan would include all the shapes we defined as unique content 

domains in Figure 3.  In contrast, Kolen & Brennan define grade to grade growth with respect to 

content that is specific to one grade level but which has also been administered to students at an 
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adjacent grade level (i.e., all the shapes in Figure 3 that overlap grades).  The learning 

progression definition of growth we have illustrated has some similarity to Kolen & Brennan’s 

domain definition in the sense that a learning progression design focuses upon growth with 

respect to a common definition of focal content across grades.  However, the learning 

progression approach departs from Kolen & Brennan’s domain definition in the emphasis on (a) 

one concept (or collection of related concepts) at a time, and (b) how students become more 

sophisticated in their understanding and application of this concept as they are exposed to 

instruction.   

 A learning progression approach to design has the potential to address two of the 

concerns that can threaten the validity of growth inferences on existing vertical scales.  The first 

concern is the empirical finding that growth decelerates as students enter middle school grades to 

the point that it appears that some students have not learned anything from one grade to the next 

(Dadey & Briggs, 2012; Briggs & Dadey, 2015).  Although such a finding could still persist even 

when a vertical scale has been designed on the basis of a learning progression hypothesis, it 

would be easier to rule out construct shift as a plausible cause of score deceleration. If it were to 

be found, for example, that students grew twice as fast in their proportional reasoning from 

grades 5 to 6 relative to grades 6 to 7, this could be raise important questions about the coherence 

of curriculum and instruction in grade 7 relative to grade 6.  The second concern is that gains 

along a vertical scale cannot be shown to have interval properties.  Although there is nothing 

about taking a learning progression approach that guarantees a resulting scale with interval 

properties, there are in fact novel empirical methods that could be used to evaluate this 

proposition (Briggs, 2013; Domingue, 2013; Karabatsos, 2001; Kyngdon, 2011). One of the key 

design features that could make test data more likely to approximate the canonical example of an 
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attribute with ratio scale properties (length) or interval scale properties (temperature), is the 

presence of external factors that can be used to predict the empirical difficulty of any given item, 

or the probability of any given person answering an item correctly.  Because such factors are 

made explicit in the development of a learning progression hypothesis, this represents a step in 

the right direction.  At a minimum, tests designed according to a learning progression would 

seem more likely to fit the Rasch family of IRT models, and thereby inherit some of the desirable 

invariance properties of such models (Andrich, 1988; Wright, 1997).  

 Another key advantage of the learning progression approach is that it can serve as a 

bridge between summative and formative uses of assessments.  Although there is a great deal of 

rhetoric around the need for teachers to make “data-driven” instructional decisions, there is little 

reason to believe that teachers are able to extract diagnostic information from the student scores 

reported on a large-scale assessment, even when score are disaggregated into content-specific 

subscores.  With respect to inferences about growth in particular, finding out that in a normative 

sense one’s students are not growing fast enough relative to comparable peers tells a teacher 

nothing about what they need to be changing about their instruction.  In contrast, if a normative 

SGP attached to each student could be accompanied by information about the change and current 

location of the students along a vertical scale for proportional reasoning, this would greatly 

expand the diagnostic utility of the results.  Not only would parents and teachers have a sense for 

how much a student has grown, but by referencing the canonical items and tasks associated with 

a student’s current location, they would have actionable insights about what could be done next.  

Further, by making item design templates associated with the learning progression publicly 

available, it becomes possible for teachers to create and score their own tasks to assess and 

monitor student progress at multiple junctures over the course of a school year.   
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 Our focus here on the potential benefits of thoughtfully designed vertical scales is not 

intended as a rebuke of the normative inferences fundamental to value-added models or the 

Colorado Growth Model.  Instead, it is a recognition that neither purely normative nor purely 

criterion-referenced growth interpretation are sufficient to answer all the questions parents, 

teachers and students have about learning in educational settings.  Economists and applied 

statisticians have made great innovations in the  development and research into models that can 

flag teachers and schools that appear to be excelling or struggling on the basis of normative 

comparisons.  Similar innovations in the development and research on vertical scaling have 

lagged in the psychometric community.  If fundamental questions about how student growth 

should be conceptualized and measured are not being taken up among psychometricians, they are 

likely to remain unanswered altogether.    

 Taking a learning progression approach to design one or more vertical scales within a 

subject area (i.e., math, English Language Arts) is not incompatible with the need to also assess 

the breadth of student understanding along the full range of the CCSS.  Just as the salient 

distinction between status and growth has become clear since the advent of NCLB in 2002, so to 

is it possible to distinguish between the use of a large-scale assessment to produce different scale 

scores for different purposes.  If the sole purpose is to take a grade-specific inventory of the 

different knowledge and skills that students are able to demonstrate from the different domains 

that define math and ELA, then domain sampling is an entirely appropriate method for building a 

test blueprint.  However, if an additional purpose is to support coherent and actionable inferences 

of growth, this can be accomplished at the same time by adopting a stratified domain sampling 

approach, where one or more strata might consist of the domain within which a learning 

progression has been specified. Naturally it would be convenient to have a single scale that could 
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fulfill both purposes, and this has been the impetus for conventional approaches to vertical scale 

design.  But what does it really mean to say that a student has grown X points in math or Y 

points in ELA?  This merely begs the next question: growth in what aspect of math or ELA?  In 

our view the latter is a question that has a much greater chance of being answered coherently 

when a vertical scale is based on a learning progression hypothesis. 

 

Challenges and Opportunities 

 

 The use of the learning progression approach within the context of large-scale assessment 

design and analysis comes with significant psychometric challenges.  To begin with, the initial 

development of a learning progression hypothesis can be time-consuming process, not always 

amenable to the tight deadlines facing large-scale assessment programs.  Fortunately, there is a 

considerable literature on learning progression in math education, so much of this initial work 

has already been started.  A thornier issue is coming up with items that are rich enough to elicit 

information about the sophistication of student understanding without always requiring lengthy 

performance tasks with open-ended scoring.  The problem with such tasks is that while they may 

be ideal as a means of eliciting the information needed to place a student at a specific location 

along the vertical scale, the context of the task may contribute so much measurement error that it 

is very hard to feel much confidence in a student’s location.  And if a student’s location at one 

point in time cannot be established reliably, the reliability of gain scores across two points, or 

score trajectories across more than two points in time are likely to suffer even more.  A possible 

solution to this is to attempt to break larger performance tasks into smaller set of selected 

response and constructed response items.  This is essentially the compromise approach presently 
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being taken for the math assessments that have been designed by PARCC and SBAC.  The item 

template we illustrated for level 5 of our proportional reasoning learning progression also hints at 

this strategy, since the target item prompts could be expressed as short constructed response 

items, selected response items, or some combination of the two.  Where this challenge is likely to 

be hardest to overcome would be for a learning progression that focused on increasing 

sophistication of a written argument. 

 Another significant challenge to the learning progression approach comes in 

heterogeneity of curricular sequences to which students are exposed across states, within the 

same state and even within the same school district.  For example, given one state that repeatedly 

emphasizes the concepts underlying proportional reasoning in its K-8 curriculum relative to 

another state that does not, one might expect to find differential item functioning on linking 

items as a function of each state’s enacted curriculum.  Of course, this is a potential problem for 

the assessments being developed by PARCC and SBAC even without taking a learning 

progression approach.   

 At the same time, there is a risk that a learning progression approach to assessment will 

narrow and homogenize learning opportunities, and can lead to simplistic interpretations of 

complex processes (Sikorski, Hammer & Park, 2010). At worst, this might limit opportunities for 

students to bring their own heterogeneous backgrounds and ways of knowing to bear on their 

learning, thus “re-inscrib[ing] normative expectations in learning that have homogenizing 

effects” (Anderson et al., 2012, p. 15). In part, this risk derives from a tension in the research on 

learning progressions that we alluded to earlier, namely, that learning is a complicated process 

with multiple pathways, even as some pathways are more likely than others. While our focus on 

this paper is on learning progressions, we note in passing that some researchers, for example 
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those in the Dynamic Learning Maps consortium, are exploring how psychometric techniques 

can be incorporated into progressions with multiple pathways7. The risk of homogenization is 

compounded to the extent that researchers who develop learning progressions do not attend to 

heterogeneity in students’ ways of knowing, or simply account for this diversity in the “lower 

anchor” of a progression (Anderson et al., 2012). One response, then, is that it is the 

responsibility of the researchers who create the learning progressions to attend to heterogeneity, 

and to create progressions at large enough grain sizes so as to allow for diverse learning 

opportunities.  From this perspective, learning progressions are simply the a priori background 

which inform assessments and vertical scales. However, we reject this unidirectional model, and 

instead suggest that assessments and learning progressions can—and should—be mutually 

informing.  

 A learning progression constitutes a hypothesis about growth, and as longitudinal 

evidence is collected over time, the hypotheses can be proven wrong, and at a minimum it is 

likely to evolve.  This fact represents a challenge to conventional psychometric practices, but 

also an opportunity.  It is an opportunity for psychometricians to partner with content specialists, 

cognitive and learning scientists and teachers to gain insights about not just what students know 

and can do, but what and how much they can learn. For more than a decade now every state has 

been testing its students across multiple grades in math and reading, but all this testing has 

generated very little insight about student learning and how it can best be facilitated.  Vertical 

scales could provide these kinds of insights if a case can be made the growth indicated by test 

scores is a measure of learning.  Making this case coherently could be the next frontier in 

educational assessment. 

                                                
7 We thank an anonymous reviewer for bringing this to our attention 

 



 

36 

 

References 

 

Anderson, C. W., Cobb, P., Barton, A. C., Confrey, J., Penuel, W. R., & Schauble, L. (2012). 

Learning progressions footprint conference: Final report. East Lansing, MI: Michigan 

State University 

Andrich, D. (1988).  Rasch models for measurement.  Beverly Hills, CA: SAGE Publications. 

Betebenner, D. (2009). Norm- and criterion-referenced student growth. Educational 

Measurement: Issues and Practice, 28(4), 42-51. 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In 

F. M. Lord & M. R. Novick (Eds.), Statistical Theories of Mental Test Scores (pp. 397-

479). Reading, MA: Addison-Wesley. 

Briggs, D. C. (2013). Measuring growth with vertical scales. Journal of Educational 

Measurement, 50(2), 204-226. 

Briggs, D. C. & Dadey, N. (2015).  Making sense of common test items that do not get easier 

over time: Implications for vertical scale designs. Educational Assessment, 20(1), 1-22. 

Briggs, D. C. & Weeks, J. P. (2009) The impact of vertical scaling decisions on growth 

interpretations.  Educational Measurement: Issues & Practice, 28(4), 3-14. 

Castellano, K. E., & Ho, A. D. (2013a). A Practitioner's Guide to Growth Models. Washington, 

DC: Council of Chief State School Officers.   

Castellano, K. E., & Ho, A. D. (2013b). Contrasting OLS and quantile regression approaches to 

Student "Growth" Percentiles. Journal of Educational and Behavioral Statistics, 38(2), 

190-214. 



 

37 

Chetty, R., Friedman, J. N., & Rockoff, J. E. (2014). Measuring the impacts of teachers I: 

Evaluating bias in teacher value-added estimates.  American Economic Review, 104(9): 

2593-2632. 

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. 

Mathematical Thinking and Learning, 6(2), 81–89. doi:10.1207/s15327833mtl0602 

Confrey, J. (2012). Better measurement of higher cognitive processes through learning 

trajectories and diagnostic assessments in mathematics: The challenge in adolescence. In V. 

F. Reyna, S. B. Chapman, M. R. Dougherty, & J. Confrey (Eds.), The adolescent brain: 

Learning, reasoning, and decision making (pp. 155–182). Washington DC: American 

Psychological Association. 

Confrey, J., Nguyen, K. H., Lee, K., Panorkou, N., Corley, A. K., and Maloney, A. P. (2012). 

Turn-On Common Core Math: Learning Trajectories for the Common Core State Standards 

for Mathematics. Retrieved from: www.turnonccmath.net.  

Confrey, J., Nguyen, K. H., and Maloney, A. P. (2011). Hexagon map of Learning Trajectories 

for the K-8 Common Core Mathematics Standards. Retrieved from: 

http://www.turnonccmath.net/p=map.  

Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of 

exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86. 

Confrey, J., Maloney, A., Nguyen, K. H., Mojica, G., & Myers, M. (2009). 

Equipartitioning/splitting as a foundation of rational number reasoning using learning 

trajectories. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 

33rd Conference of the International Group for the Psychology of Mathematics Education 

(Vol. 1). Thessaloniki, Greece: PME. 



 

38 

Corcoran, T., Mosher, F.A., & Rogat, A. (2009). Learning progressions in science: An evidence 

based approach to reform. NY: Center on Continuous Instructional Improvement, 

Teachers College—Columbia University. 

Dadey, N. & Briggs, D. C. (2012). A meta-analysis of growth trends from vertically scaled 

assessments. Practical Assessment, Research & Evaluation, 17(14). Available online: 

http://pareonline.net/getvn.asp?v=17&n=14 

Daro, P., Mosher, F. A., & Corcoran, T. (2011). Learning trajectories in mathematics: A 

foundation for standards, curriculum, assessment, and instruction. CPRE Research 

Report #RR-68. Philadelphia: Consortium for Policy Research in Education. DOI: 

10.12698/cpre.2011.rr68  

Domingue, D. (2013). Evaluating the equal-interval hypothesis with test score scales.  

Psychometrika 79(1), 1-19.  

Holland, P. W. & Rubin, D. B. (1983). On Lord’s Paradox. Principals of modern psychological 

measurement. H. Wainer, & S. Messick, Eds., Hillsdale, NJ: Lawrence Erlbaum 

Associates. 

Kane, T. J., & Staiger, D. O. (2008). Estimating teacher impacts on student achievement: An 

experimental evaluation (No. w14607). National Bureau of Economic Research. doi: 

10.3386/w14607 

Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of 

probabilistic measurement theory. Journal of Applied Measurement, 2(4), 389-423. 

Kolen, M. J. (2006). Scaling and norming.  In R. Brennan, (ed.) Educational Measurement (4th 

ed, pp. 155-186). Westport, CT: American Council on Education/Praeger 



 

39 

Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: Methods and 

practices. New York, NY: Springer Verlag.   

Kyngdon, A. (2011). Plausible measurement analogies to some psychometric models of test 

performance. British Journal of Mathematical and Statistical Psychology, 64(3), 478-497. 

Lamon, S. J. (2012). Teaching fractions and ratios for understanding: Essential content 

knowledge and instructional strategies for teachers (3rd ed.). Mahwah, NJ: Lawrence 

Erlbaum. 

Lord,  F. M. (1967) A paradox in the interpretation of group comparisons. Psychological 

Bulletin, 68, 304–5.  

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Some latent trait 

models and their use in inferring an examinee’s ability. Addison-Wesley, Reading, MA. 

Martineau, J. A. (2004). The effects of construct shift on growth and accountability models. 

Unpublished Dissertation. Michigan State University. 

Martineau, J. A. (2005). Un-distorting measures of growth: Alternatives to traditional vertical 

scales. Paper presented at the Annual Conference of the Council of Chief State School 

Officers. 

Martineau, J. A. (2006). Distorting value added: The use of longitudinal, vertically scaled student 

achievement data for growth-based, value-added accountability. Journal of Educational and 

Behavioral Statistics, 31(1), 35-62. 

Matassa, M. & Peck, F. (2012). Rise over run or rate of change? Exploring and expanding 

student understanding of slope in Algebra I. Proceedings of the 12th International Congress 

on Mathematics Education. Seoul, Korea. 7440-7445. Retrieved from: 

http://www.icme12.org/upload/UpFile2/WSG/0719.pdf 



 

40 

McCaffrey, D. F., Lockwood, J. R., Koretz, D. M., & Hamilton, L. S. (2003). Evaluating Value-

Added Models for Teacher Accountability. RAND Education. (Vol. 158). Research Report 

prepared for the Carnegie Corporation. Santa Monica, CA: RAND Corporation 

MET Project. (2013). Ensuring fair and reliable measures of effective teaching. Policy and 

Practitioner Brief. Downloaded January 30, 2013 from 

http://www.metproject.org/downloads/MET_Ensuring_Fair_and_Reliable_Measures_Practi

tioner_Brief.pdf. 

Migozuchi, T., Peck, F., & Matassa, M. (2013). Developing robust understandings of slope. 

Elementary mathematics teaching today (Journal published in Japan), 2013 no. 511. 31-32. 

Mislevy, R.J., Steinberg, L.S., & Almond, R.G. (2002). On the structure of educational 

assessments. Measurement: Interdisciplinary Research and Perspectives, 1, 3-67.  

Pellegrino, J., Chudowsky, N., & Glaser, R. (Eds.). (2001). Knowing what students know: The 

science and design of educational assessment. Washington, DC: National Academy Press. 

NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM. 

Post, T. R., Behr, M. J., & Lesh, R. (1988). Proportionality and the development of pre-algebra 

understanding. In J. Hiebert & M. J. Behr (Eds.), Number Concepts and Operations in the 

Middle Grades (pp. 93–118). Reston, VA: National Council of Teachers of Mathematics. 

Rasch, G. (1960) Probabilistic models for some intelligence and attainment tests. Copenhagen: 

Danish Institute for Educational Research. 

Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: 

Learning trajectories for young children. New York: Routledge. 

Shea, N. A., & Duncan, R. G. (2013). From theory to data: The process of refining learning 

progressions. Journal of the Learning Sciences, 22(1), 7–32. 



 

41 

Sikorski, T., Hammer, D., & Park, C. (2010). A critique of how learning progressions research 

conceptualizes sophistication and progress. In Proceedings of the 9th International 

Conference of the Learning Sciences Vol 1 (pp. 1032–1039). Chicago, IL: International 

Society of the Learning Sciences. 

Skaggs, G., & Lissitz, R. W. (1986). IRT test equating: Relevant issues and a review of recent 

research. Review of Educational Research, 56(4), 495-529. 

Stocking, M. L. and Lord, F. M. (1983) Developing a common metric in item response theory.  

Applied Psychological Measurement, 7(2), 201-210. 

Thurstone, L. L. (1925). A method of scaling psychological and educational tests. Journal of 

Educational Psychology, 16(7), 433-451. 

Thurstone, L. L. (1927). The unit of measurement in educational scales. The Journal of 

Educational Psychology, 18, 505-524. 

Tong, Y., & Kolen, M. J. (2007). Comparisons of methodologies and results in vertical scaling 

for educational achievement tests. Applied Measurement in Education, 20(2), 227-253. 

Wright, B. D. (1997). A history of social science measurement. Educational Measurement: 

Issues and Practice, Winter 199, 33–45. 

Yen, W. M. (1986). The choice of scale for educational measurement: An IRT perspective. 

Journal of Educational Measurement, 23(4), 299–325. 

Young, M. J. (2006).  Vertical Scales.  In S. Downing & T. Haladyna (eds). Handbook of Test 

Development, 469-485. Mahwah, NJ: Lawrence Erlbaum Associates. 

 

  



 

42 

Figure 4.  Learning Progression for Proportional Reasoning: Student Attributes 
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Figure 5.  Learning Progression for Proportional Reasoning: Key Activities 
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Activities(that(involve(finding(the(size(of(one(

share(when(a(collection(of(objects(is(shared(by(a(

number(of(people,(such(that(the(collection(can(be(

shared(equally. For(example,(finding(one(

person’s(share(when(12(cookies(are(shared(by(4(

people.

Activities(that(involve(finding(the(size(of(one(

share(when(a(single(whole(is(shared(by(a(number(

of(people.(This(requires(partitioning(the(whole(

such(that(it(can(be(shared.(For(example,(finding(

one(person’s(share(when(one(pizza(is(shared(by(4(

people.

Activities(in(which(a(single(share(is(given,(and(

students(are(asked(to(reconstruct(the(whole.(For(

example,(finding(the(size(of(a(whole(rectangular(

cake(that(was(shared(by(10(people(if(you(are(

given(the(size(of(one(person’s(share.

Activities(that(involve(sharing(a(collection(or(

whole,(and(then(determining(the(effect(of(

changing(the(number(of(sharers.(For(example,(

exploring(the(effect(of(adding(a(new(person(to(

the(group,(or(of(two(people(combining(their(

shares.

Activities(that(involve(finding(the(size(of(one(

share(when(multiple(wholes(are(shared(by(a(

number(of(people,(such(that(the(wholes(cannot(

be(shared(equally(without(partitioning((i.e.,(the(

number(of(wholes(is(not(a(multiple(of(the(

number(of(sharers).(

Activities(in(this(category(might(include(fairH

sharing(via(equipartioning,(but(would(also(

include(other(types(of(proportional(reasoning(

problems,(including(comparing(two(ratios(or(

finding(a(missing(value(given(equivalent(ratios.

Activities(in(which(two(quantities(change(

together,(such(that(a(change(in(one(quantity(is(

associated(with(a(proportional(change(in(the(

second.(Activities(in(this(level(are(distinguished(

from(those(in(Level(6(by(the(presence(of(an(

additive(constant(or(“starting(amount.”

Key(Activities((Items)
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Figure 6.  Item Design Template for Level 5 of Proportional Reasoning Progression 
 
Title Multiple people sharing multiple wholes 
Overview This family of activities involves finding equal shares when 

there are multiple items to be shared among multiple “sharers” 
(e.g., people), and the number of sharers is not a multiple of the 
number of items (i.e., some or all of the individual items will 
have to be partitioned) 

Factors that change  
the difficulty of the 
task  

Sharing multiple wholes [p = items; n = sharers] 
• ! = ! + 1; ! = ! − 1 
• ! is odd & ! = 2! 
• ! >> ! or ! is close to ! 
• all !; all ! 

Task in general form <!> <sharers> share <!> <items> equally.   
 

Either 
    Representation given 

The <items> are shown below. Mark the <items> to show 
how the <sharers> could share the <items> and shade in one 
<sharer>’s equal share. Explain your reasoning. 

or 
    Representation not given: 

Find one <sharer>’s equal share. Explain your reasoning. 
 

How many different ways can you use to describe each 
<sharer>’s share numerically? Write as many ways as you can 
think of. 

Task in Exemplar 
Form 

Ten chickens share four pounds of food. 
 

(a) Find one chicken’s equal share. Explain your reasoning. 
 

(b) How many different ways names can you use to describe 
each chicken’s share numerically? Write as many ways as you 
can think of. 

 
 
 


