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The inadequacy of ANOVA for detecting bias in test items should already
be well understood, yet it persists as a popular method. Here, previous
arguments are extended to explain why ANOVA may obscure test bias when
it exists, as well as create false impressions of bias. In fact, it is demonstrated
in this paper that ANOVA will fail to detect even absurdly large amounts of

- bias. More specifically, it is shown that bias contributes relatively more to
the group main effect than to the group-by-item interaction.

Analysis of variance (ANOVA) is one of the most widely used pro-
cedures for assessing group bias in the internal structure of a test. Accord-
ing to this method, bias is defined as a significant group-by-item interaction
indicating that some test items are relatively more difficult for one group
than another. ANOVA was used in early studies of item bias (Cleary &
Hilton, 1968) and continues to be recommended as a bias detection tech-
nique (Plake, 1981; Plake & Hoover, 1979).

Jensen (1980) reviewed existing studies and concluded that there was no
evidence of internal bias in standardized tests of mental ability. The lion’s
share of these internal studies relied on ANOVA or highly similar methods
based on item difficulty differences. Looking over the same body of work,
Gordon and Rudert (1979) likewise concluded that 1Q tests are not cul-
turally biased. They further asserted that the race-by-item interaction
method is a “powerful one,” quite capable of detecting questionable items
when they are-present (p. 179). Gordon and Rudert went on to say that
‘absence of race-by-item interactions in all of these studies places a severe
constraint on the differential experience hypothesis espoused by most test
critics. Both Jensen (1984) and Gordon (in press) contend that the only
kind of bias that could exist but remain undetected by the interaction term
would be some implausible kind of constant bias that would affect all items
in precisely the same way.
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The inadequacy of ANOVA for detecting internal test bias should be well
known. Hunter (1975) and Lord (1977) demonstrated the fallacy in using
differential item difficulties ( p -values) as indices of bias. ANOVA provides
nothing more than an omnibus test of item p-value differences. However,
when there are real differences in performance between two groups, the
magnitude of item p-value differences will vary as a function of item dis-
crimination. Thus, highly discrimindting items will appear to be biased
simply because they better distinguish between groups, that is, show a
larger difference in percentage correct. The varying p-value differences
give rise to an apparent race-by-item interaction. The deficiencies of classi-
cal p-value methods will be recapitulated in the first section of the paper.

Unfortunately, the arguments against ANOVA and other p-value meth-
ods have enjoyed a popular one-sided interpretation: namely, the appre-
ciation that p-value methods could create false instances of bias. There is
no evidence of an equal concern that these methods might obscure or miss
real incidents of bias. For example, Jensen (1984) added the following’
discussion of artifactual effects to his interpretation of group-by-item inter-
actions:

The observed group X item interaction, in virtually all cases that we
have examined, turns out to be an artifact of the method of scaling item
difficulty. Essentially, it is a result of the nonlinearity of the item-
characteristic curve. As I failed to explain this artifact adequately in my
treatment of the group X item method in Bias in Mental Testing, 1 will
attempt to do so here. (p. 536). ... ’

The practical implication of this demonstration for’all data that now
exist regarding group X item interaction is that the small but significant
observed group X item interactions would virtually be reduced to non-
significance if the artifact due to ICC nonlinearity were taken into account.
It is likely that the correct conclusion is that in most widely used standard
tests administered to any American-born English-speaking populations,
regardless of race or ethnic background, group X item interaction is either
trivially small or a nonexistent phenomenon. (pp. 537-538)

The purpose of the present paper is to explain more[ clearly-the inade-
quacy of the ANOVA method for detecting internal test bias. Especially,
it is important to understand how p-value methqds will fafl to detect real
occurrences of bias. In fact, given plausible group differenqes and amounts
of bias, the differential difficulty (bias) contributes more o the between-
groups effect than to the interaction. We first offer a heuritic demonstra-
tion, then an algebraic demonstration, and finally a simulajon study.

1 Conceptual Argument

Hunter (1975) used item characteristic curves to examine{ bias methods
_ proposed by Green and Draper (1972), Angoff (1972), and Jensen (1974).
Item characteristic curves (ICCs) are mathematical functions that relate the
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- probab#lity of a correct response on an item to the underlying continuum
of achievement. Hunter adopted examples where test items were all up-
biased, that is, the ICCs for two groups were the same. Equivalence of ICCs .
defines unbiasedness since it implies that the probability of answering an
item correctly is the same regardless of group membership. '

Three items varying in difficulty are shown in Figure 1' (adapted from
Hunter, 1975). The mean differences on each of these items are designated
J

10¢

Probability |
of a

Correct

Response I

A = easy item

B = medium item
C = hard item

Achievement

FIGURE 1. Unbiased situation; the item means for an easy, medium, and hard item
for each of two groups 71 different average achievement levels (from Hunter, 1975)

'In Figures 1 and 2, note that the p-values f?r each group do not fall precisely at
the intersection of the group mean and the ICC. Except when the ICC is centered
over the group mean (i.e., 8 = b), the actual p-value will be slightly closer to .5 than
is P(9). Cfassical p-values were obtained by the approximation >2.f.P(8:), where
f; is the proportion of area in the ith interval according to the logistic density
function. , :
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- for two groups that differ in average achievement. Item A is an easy item
and has a high probability of being answered correctly in both groups.
Thus, the group difference is small for Item A. Similarly, Item C is very
difficult and yields a small difference. Item B is centered between the two
group means and produces a much larger p-value difference. Because of
the greater p-value difference, Item B would appear to be biased by the
Angoff delta plot method. Likewise, the non-uniform p -value differences
would result in a significant group-by-item interaction. Thus, Hunter dem-
onstrated that artifactual bias may arise merely as a function of the mean
group difference in a situation where the ICCs were in fact identical for
both groups. '

Now let us consider a situation where bias is present. We will examine
easy, medium, and difficult items in separate graphs. In Figure 2a, 2b, and
2c, the dotted curves show the biased response functions for the lower
- scoring group. These curves are shifted to the rightindicating that the item
difficulty is relatively greater, or the probability of answering correctly
lower, for a given location on the achievement dimension. Corresponding
p-value differences are shown between the Group 2 means on the solid
curve and the Group 1 means on the dotted curve.

In the Figure 2 example, Items A and B have large p-value differences.
The amount of bias chosen for illustration corrcsponds to the ICC differ-
ences observed in a real-data study (Shepard, Camilli! & Williams, 1984).
The resulting p-value difference for Items A and B is about the same
magnitude as the artifactual “bias” in Figure 1. In this example, Item C has
a much smaller p -value difference, although the actpal bias is the same. The
amount of bias measured by differential difficulty i more a function of item
location than of real shifts in the ICCs. If a test were comprised mostly of
items like A and B in Figure 2, items like C would appear to be biased
against the high scoring group (although the reverse is true) simply because'
the p-value difference is less than average.

If we had a three-item test comprised of the three items in Figure 2, a
significant group-by-item interaction would be obtained because Item C is
markedly different from Items A and B. The example contrived in Figure
2 does not depend, however, on having created cgnstant bias in the three
items. If only Item A or only Item B were biased, %n interaction would be
detected of the same magnitude as when all three items were biased. These
interactions would also be of approximately the same size as the artifactual
interaction in Figure 1. If only Item C were biased, the interaction would
be virtually the same as when no item was biased.

Although these examples do not constitute exhaustive proof that
ANOVA is inadequate for bias detection, it should be disquieting that real
bias will sometimes be ignored by the interaction term. Furthermore, when
bias does produce larger p-value diffgrences, they may be of the same
magmtude ‘as artifactual differences createdi by item discrimination.

) l
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FIGURE 2. Biased situation; item means for (a) easy, (b) medium, and (c) hard
biased items for two groups with different average achievement levels ‘
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Whether a “significant” mteraction will occur depends on the item diffi-
culties in relation to the group means.

Algebraic Demonstration

Item response curves are inherently nonlinear; thus questions concerning
the applicability of ANOVA techniques naturally arise. But it is not only
this nonlinearity that is the basic weakness of the ANOVA method for
- detecting test bias. To see this, consider a test that is adequately repre-
“sented by a one-parameter (Rasch) test model:

P(0) = 1/[1 + exp{—1.7(6 — b;)}]

where F, is the probability of correctly responding to item } 0 is the ability
level of an examinee, and b; is the difficulty of item j. '

The problems with nonlinearity in theory can be eliminated mathe-
matically by making the substitution X = log[P(6)/Q (0)] for the observed
item response, that is, wrong (zero) or right (one). The expected logit
score, p, is a simple linear function of 6 and item difficulty, namely,

P‘ij=6i-'bja

where i denotes group and j denotes item. :

We note that X is an idealized or true item response score that is never
observed. This allows the following examination of the ANOVA bias tech-
nique based on a highly simplified example and performed with logit
scores. Thus we arrive at the question, ‘“How good is ANOVA at detecting
bias in the ideal case where there is no confounding effect due to non-
linearity?”

r

For this hypothetical analysis, suppose there are three items, one of
which is biased. Suppose also that there is a true mean difference between
two groups (say Groups 1 and 2) of « logits. The expected difference in
mean performance of the two groups on the two unbiased items is then also
a logits because

o= by =(0:—b) = (81— b,)=6,-8 =«
On the third item that is biased suppose that
pn—pi3=0— 0, +B=a+p.

These data would permit a subject-within-group-by-item repeated mea-
sures ANOVA. We dre interested in examining two sources of variation
from this design and the relative effect of the magnitude of bias, f3; for
simplicity we assume “‘items” is a fixed factor. The first source is the
variance component for groups that is given by

o = g — ) = 12(i0. = pa. )P
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The second source of variation is the variance component for the group-
by-item interaction that is given by

2 3
Ohiem = 12 2 20 (i = ie = o+ por)?
i=1j=1
where j is the subscript for items.
To derive numerical estimates from these formulae we note that the
group differences for each item can be expressed as

item difference
-1 K21 — T a
2 K22 — 2= .
3 - ) paa—pn=atf - ' .
Total mean Bma2. — pa.=a + B/3.

So the o can be rewritten

0’%; = 1/2(“:2. - |.L1.)2
= 1/2(a + B/3)?
= 1/2(a® + 23af + 1/982).

The variance component for the 2 X 3 group-by-item interaction can be
found by deriving each of the six p; — p;. — p.; + .. terms. For example, for
i=1andj=1 we have

L
B = Mios— Mej + e = oy — (R + 2+ 13 )3 = (R + 12 )2
‘ +(unt pntptpatpn +ps)6

= 16[—2(pa — ) + (h2 — p2) + (B3 — 3}
= 1/6[—2a + a + (a + B)]

= 1/6B.

Repeating these calculations for each cell gives

¥

Cell Wij = Mie = Poj T e
11 +1/68
12 . +1/68
13 . —-2/68
21 -1/68
22 -1/68
23 +2/6B.

Squaring and summing across cells gives
0%.uem = 12(12/36)B% = 1/6B%.

To understand the relative capability of the interaction term to reflect the
bias effect, B, we compare the interaction variance component to the
between-groups variance component. The increase in the group variance
component (+0% ) because of B equals
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© (12)(a + B3 - (172)a? = (16)(2x + B/3)B.

The increase in the groupoby-ltem variance component (+0%.em ) because
of B is given by

(1/6)B’- .

'I’he conditions under which g will contribute more to % than to 0%,
can ‘be determmed by solving the following inequality

+0% 1+ 0% iem > 1

or

( 1/6)2a + B/3)B _2a+B/3 _
- (U6)p? B

Thus, when a > 1/3B, the bias effect will contribute more to the between-
groups effect than to the group-by-item interaction. From previous studies
we know that the group mean difference, a, far exceeds the typical amount
of bias, B (Shepard, Camilli, & Williams, 1984). Therefore, plausible
amounts of bias will contribute more to the group effect rather than be
detected by ANOVA as bias.

> 1.

Simulation Study

Data Generation

Two population groups were specified with normally distributed 6 abili-
ties. The higher scoring group, corresponding to the majority group in *
typical black-white comparisons, was set to have a mean of 0.0 and a
standard deviation of 1.0. The lower scoring group was set to have a mean
of —1.0 and standard deviation of .75. When these data were combined for
two groups of equal size, the pooled standard deviation would be expected -
to be .884; the between-group effect (i.e., the difference between means
divided by the pooled standard deviation) would be 1.13 in these units.

Four different unbiased tests were created by varying the location of-item
difficulties. In each case, 40 items were roughly normally distributed within
a specified range. For a very easy test, item b’s ranged from —3 to 0 on the
6 scale. One test, “centered” in the region of the two group means, covered
the range from —2 to 1; another “narrow centered” test covered the range
from only —1 to 0. Finally, a very hard test was created with item b’s
ranging from —1to 2.

Different levels of bias against the low scoring group were then simulated
by decreasing the difficulty of items for tl.e high-scoring group for 1/4 or 1/2
of the items. In addition, the amount of difficulty shift (Ab) was'set at five
different levels: .35, .50, .75, 1.00, and 1.50. Two proportions of biased
items crossed with five different amounts of bias produced 10 bias condi-
tions in addition to the original unbiased test.
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Followmg the above design specnfncatnons item responses were generated
using a one-parameter Rasch model: '

P(0) = 1/[1 + exp{—1.7(6 — b)}].

To simulate the 0 or 1 item responses of examinees from the two groups,
-P(0) was computed for each examinee on each item. Then a uniform
random deviate, U, was drawn from the interval [0,1]. If U < P(9), a
correct response, 1, was recorded. If U > P(8), an incorrect response, 0,
was recorded. Thus, a binary item score that included some error was used
rather than a logit. For each test and bias condition, data were generated
for 1,000 examinees, 500 in each group.

ANOVA Results

Forty-four separate data sets were subjected to analysis of variance using
a subject-within-group-by-item repeated measures design. Both items and
persons were treated as random effects while groups was fixed in contrast
to the algebraic example. Variance components (as percentage of total
variance) and the obtained group effect are reported in Table 1 for each
condition.

The first row for each test is the unbiased condition. The ability of the
tests to recover the true difference in groups, 8 = 1.13, is shown by the
estimated group effect (8 ). As one would expect, the centered-wide test
is the most accurate in this respect with 8c=1.16. The group-by-item
interaction accounts for 1% of the variance in the very easy and the very
hard unbiased tests. Artifactual bias occurs in the extreme tests since in
each case substantial numbers of items are split between the non-
discriminating 6 range and the highly discriminating 6 range (which spans
the two means). As expected, the variance accounted for by the between-
groups effect is least on the easy test and greatest on the highly discrimi-
nating narrow-centered test.

The bias conditions allow us to observe the size of the interaction vari-
ance components when bias is modest or severe. It is also possible to
compare the relative contribution of the bias effect to between-groups
variance versus the interaction. Both the between-groups and the interac-
- tion variances increase directly in response to the built-in bias. However,
the increase in the group variance is substantially more than the increase in
- the interaction components. For all four tests the variance due to items |
remains nearly constant across the bias conditions. As bias goes from zero
to very extreme, there is naturally a slight relative decline in both the
person-within-group and person-by-item-within-group variances.

On the centered-wide test the interaction accounts for only 5% of the
variance even when an absurdly large amount of bias has been built into the
test, that is, half of the items have been made easier for the high-scoring
group by an extra 1.5 0 units beyond the usual group difference. At the
same time, the variance due to groups has increased from 13% to 27% of

.
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- TABLE 1

ANOVA variance componems and between-groups effect for four simulated tests
with 11 conditions of bias

Simulated bias

Item conditions
difficulty Bias in % biased
range b items 6% Glem 02y GhiemOipcy Oc
Very easy 0.00 00% 08 .16 .15 01 60 -1.06
0.35 25% 09 .16 .14 02 .60 -1.15
0.35 50% Jd1 15 14 .02 © 58 -1.25
0.50 25% Jd0 16 .14 02 58 -1.19
0.50 50% Jd2 15 13 .03 .57 -1.33
0.75 25% d0 16 .14 02 58 -1.23
-0.75 50% A3 .15 13 .03 .56 -—-1.43
1.00 25% A1 .16 .14 03 57 -1.27
1.00 50% 14 15 12 .04 55 -1.52
1.50 25% A1 .16 .13 .03 . .57 -1.33
1.50 0% .16 .15 11 .05 .53 —1.66
Centered-Wide 0.00 00% A3 .11 19 00 .58 -—1.16
0.35 25% A5 .11 18 .01 .56 —1.27
0.35 50% A7 10 17 01 55 -—1.38
: : 0.50 25% Jd5 11 .18 01 55 -—1.33
' 0.50 50% A8 10 .17 .01 .54 -—1.49
0.75 25% A7 11 17 .02 54 -—-1.41
0.75 50% 21 10 .16 .02 .52 . -1.64
1.00 25% .18 .11 .16 .02 .53 -—-148
1.00 50% 23 10 .15 .03 .50 -1.79
1.50 25% 19 (11 A5 04 51 —-1.63 -
1.50 50% 27 09 .12 05 46 -—-2.11
Centered-Narrow 0.00 00% de6 02 22 00 61 —-1.21
0.35 25% A8 02 21 .00 .59 -1.32
035 ~ 50% 21 02 20 .00 .57 -144
0.50 25% A9 02 21 00 58 -—-1.36
0.50 50% 23 .02 19 .01 56 -1.53
0.75 25% 20 .02 20 .01 .57 -—-1.44
0.75 - 50% 25 .02 .18 .02 .54 -1.70
1.00 25% 22 02 19 .02 .56 -1.52
1.00 50% 28 .02 .16 .02 .51 -—1.87
1.50 25% .23 .03 .17 .03 54 -1.66

. 1.50 50% 32 .03 .14 .04 48 -2.16
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TABLE 1 (continued)

Simulated bias

Item conditions
difficulty Bias in % biased
range - b items 6% Ohem 06y OouemOlpcy Oc
-Very hard ©0.00 00% Jd2 .10 .17 .01 .61 -1.18
' 0.35 25% A3 .09 17 .02 .59 -1.27
0.35 50% A5 .09 .16 .02 .57 -1.38
0.50 25% Jd4 10 16 .02 58 —1.32
- 0.50 50% 17 .09 16 .02 .56 -1.47
'0.75 25% 6 .10 16 .03 56 -—1.41
- 0.75 50% 20 .09 15 03 52 -1.65
1.00 25% 17 .07 15 04 54 -1.50
1.00 50% 23 09 14 05 49 -1.84
1.50 25% 19 10 14 06 .51 -—-1.69
1.50 50% 29 .09 12 07 43 -2.25

the total variance. The bias has caused the group mean difference to nearly
double, increasing from 1.16 to 2.11 standard deviations.

- Yet this false group difference would be interpreted as largely a real
difference since the group variance is more than five times as large as the
interaction variance. For much smaller and more plausible amounts of bias,
for example, a .35 shift in 1/4 or 1/2 of the items, the group-by-item inter-
action contributes only 1% to the total variance. Meanwhile, the increment
in the between-groups variance is two or four times as great, increasing
from 13% to 15% and 17% for tests with 1/4 and 1/2 of the items biased,
respectively. The small amount of bias in 1/4 of the items was enough to
increase the difference between groups from 1.16 to 1.27 standard devi-
.ations. This change is a 9% increase but would be dismissed as trivial
because the interaction variance is only 1%. Interestingly, a change in the
amount of group difference on the same order was found on a real math test
by Shepard, Camilli, and Williams (1984). In that study items were identi-
fied as biased using cross-validated item response theory methods. When
seven items biased against blacks were removed from the 32-item test, the
mean difference between blacks and whites was reduced from .91¢ to .810. -
The bias amount in these items had been small, that is, by — bg.from —.20
to —.35. For all of the simulated examples built-in bias adds more to the
between-groups variance than to the interaction variance. Furthermore, in.
an absolute sense the magnitude of the bias has to be of egregious size
~ before it acconnts for 5%. or more-of the variance.
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Conclusion

When there is a true difference in group achievement levels, the ANOVA
interaction term, is incapable of detecting bias that adds or subtracts from
this true differ'e‘lce. In this study, the simplistic algebraic demonstration is
borne out by the simulation examples. In the presence of group differences,
bias against the low-scoring group adds to the between-groups variance
rather than creating a group-by-item interaction of practical importance.
Both the graphic examples and the different simulation tests illustrate that
the-location of the items relative to the group means influences both the size
of the interaction and the observed mean difference. We do not offer these
arguments as proofs that analysis of variance will be inaccurate for bias
detection when group means are the same. Our three-item algebraic exam-
ple should be extended to include multiple biased items, but apparently the
mean difference does not have to be very large relative to bias to preclude
detection of the bias. Even if two groups are similar, as is the case in some
sex comparisons, it is wrong to have to assume what is essentially the object
of inquiry, that is, whether the observed difference is real or the result of
bias.

The limitations of ANOVA for bias detection should be obvious from the
general arguments against classical test theory offered by Lord (1980) and
Wright (1977). But apparently these arguments have not been understood,
or existing studies that find interactions of only 1% or 2% would not be
used to argue with certainty that tests are unbiased. In our most extreme
example, the centered-narrow test, bias could account for up to 35% of the
mean difference and still explain only 2% of the variance. The specific
arguments of Hunter (1975) against several classical bias procedures have
been acknowledged but only to the extent that they create artifactual bias.
That these methods will also obscure bias has not been appreciated.

Of course, our conceptual and simulated analyses do not prove that bias
exists in current standardized tests of ability, only that ANOVA cannot be
used to address this issue. Existing bias studies based on ANOVA should
be disregarded. And, ANOVA should no longer be recommended as a bias
procedure, even for. preliminary screening of items.
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