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Abstract

While economists often treat heteroskedasticity as a statistical technicality,
heteroskedastic outcomes in certain market settings can arise out of heterogeneous
uncertainty. Procurement auction, in particular, poses two sources of uncertainty
because it exhibits both private-value and common-value characteristics. When firms
cannot observe the number of bidders, a third dimension of uncertainty is added,
and the effect of asymmetric information readily emerges in such highly uncertain
environments. By exploiting the heteroskedasticity of normalized bids with respect
to firm size in highway procurement auctions, I estimate the structural parameters of
both uncertainty and its heterogeneity within a semiparametric generalized method of
moments framework. The estimation results allow further analyses of firm behavior
and auction design through calibration and counterfactuals. In addition, the paper
shows that structural parameters can be extracted from heteroskedasticity under fairly
simple assumptions, and the method may be extended to the study of other market
settings with heteroskedastic outcomes.
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1 Introduction

Heteroskedasticity is a well-studied problem in statistics and econometrics. It is often seen

as a nuisance in statistical inference, as it can lead to inefficient and biased standard error

estimates for parameters and must be accounted for in robust analyses. Estimation models

usually assume that the heteroskedasticity exists in the error term, which is a reasonable

abstraction as heteroskedasticity is commonly found in variables of differing scales, where

groups of outcomes greater in average magnitude also experience greater variation in realized

values. There is a large body of literature and many widely adopted methods regarding

heteroskedasticity such that it is almost second nature for researchers to apply some type

of treatment in its presence. However, few studies consider the underlying mechanism that

gives rise to heteroskedasticity, and understanding the origin of heteroskedasticity in a given

market setting may shed light on certain structures and dynamics of the associated economic

activities.

Instead of treating heteroskedasticity as an issue to be dealt with, this study

investigates how heteroskedastic outcomes can yield useful information about agent

heterogeneity, specifically heterogeneous uncertainty. Recent macroeconomic literature has

been fruitful in studying uncertainty induced by economic shocks by examining second

moment constructions1 of empirical data, but little recent work has been done in applied

microeconomics, even though uncertainty is incorporated in many microeconomic models.

Uncertainty in microeconomic theory is a necessary result of incomplete information about

market participants, but it can also stem from other sources, such as the degree of adherence

to rational expectations, responsiveness to macroeconomic changes, and ability to decipher

noisy signals, etc.. Given the differing levels of resources available to heterogeneous agents

to extract information rent and the general presence of information asymmetry, it reasons

that the degree of uncertainty among agents is heterogeneous as well.

Extending the practice in the macroeconomic literature to measure uncertainty,

heteroskedastic outcome in certain market settings provide convenient data variation in

the second moment for the understanding of heterogeneous uncertainty. In highly uncertain

market settings such as procurement auctions, where uncertainty exists in both private value

and common value, the effect of asymmetric information can be particularly pronounced,

and if the number of bidders cannot be observed by firms ex ante, there is an added layer

of uncertainty that can further augment the manifestation of said heterogeneity. Using over

10 years of procurement auctions records from the Colorado Department of Transportation

1Jurado et al. (2015) summarizes the existing body of literature on shock-induced uncertainty in addition
to proposing a method of directly measuring time-varying uncertainty through business cycles.
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(CDOT) with relatively rich details, I estimate the structural parameters of both uncertainty

and its heterogeneity with respect to firm size, which enable further analyses of both firm

behavior and auction design through calibration and counterfactuals.

Clearly, not all heteroskedasticity indicates heterogeneous uncertainty, such as in the

case of the magnitude of the outcome variable, and it is important to distinguish between

heterogeneous uncertainty and other types of heterogeneity in terms of agents’ preferences,

costs, and constraints. In the CDOT data, heteroskedastitcity of bidding behavior persists

after project value has been normalized and magnitude is no longer a source of conditional

variance. However, heteroskedasticity of bidder behavior exhibits no apparent change in the

mean with respect to firm size, contrary to the conventional wisdom of increasing returns to

scale at firm level. Since heteroskedasticity is a data variation specific in the second moment,

incorporating differing beliefs about the variance of private value into a standard first-price

auction model lends a plausible explanation for these observations.

I estimate a structural model within a general method of moments (GMM, Hansen, 1982)

framework, which affords the ability to specify important assumptions in the second moment

to aid identification. To reduce computational complexity, I adopt a two-stage process where

bidders’ private values are first estimated semiparametrically, and the main parameters of

interest are then estimated with nonlinear GMM. As a proxy for firm size, I use the total

number of bids by unique firms in the sample period, which is also a good measure of

incumbency, another source of asymmetric information. Because firms cannot observe the

number of bidders ex ante, a problem with both endogeneity and simultaneity arises, which

I address with instrumental variables of project value and type that satisfy the exclusion

restriction with normalized bids. To account for market factors and potential issues with

temporal autocorrelation outside of a panel or time-series framework, I control for additional

variations using contemporaneous and lagged construction permit data in Colorado.

I find that small firms face significantly greater uncertainty in private value and, to a

lesser extent, in common value as well. Calibration analysis show that that firms generally

anticipate the number of bidders well from public signals despite not observing it directly,

although smaller firms more often overestimate the amount of competition. Through

counterfactuals, I also find that reduced heterogeneity in uncertainty may result in both

better cost savings to the government and improved allocation of projects to smaller firms.

The paper is informed by the literature on the econometrics of industrial organization

and auction theory2. Earlier papers often rely on simulated methods3 to deal with

2Laffont (1997), Athey and Haile (2006), Hendricks and Porter (2006) survey various empirical strategies
in auction theory. Schmalensee et al. (1989), Cameron and Trivedi (2005), and Paarsch et al. (2006) provide
useful instructional text on implementation.

3Summarized in Pakes and Pollard (1989); McFadden (1989) and notably applied to auctions in Laffont
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either analytical or computational intractibility, often due to probabilistically constructed

treatment for unobserved variables, such as losing bids. More recent literature makes

heavy use of nonparametric methods for identification of private value distribution under

various types of auction setting and data restrictions, following the seminal work of Guerre

et al. (2000)4. Within such literature, public project procurement, in particular highway

construction procurement with higher value projects and more regulated bidding procedures,

has proven fertile ground for auction analysis and provides useful precedent for this paper.

As a matter of public records, procurement auction data tend to be more accessible, if not

more complete, which partly facilitates the study of bidder heterogeneity both in terms of

private value5 and bidding behavior6.

Understanding heterogeneous uncertainty can be important to various microeconomic

applications. In auctions, specifically, one can no longer rely on revenue equivalence to expect

similar revenue or expenditure outcome when information is asymmetric and uncertainty is

heterogeneous and therefore bidding outcome varies based on design. Government agencies

spend a significant portion of their resources on private contractors to provide a myriad of

goods and services. While the methods of procurement vary, open market contract bidding

is often a preferred mechanism that has several advantages, such as transparency, avoidance

of favoritism and nepotism, competitive pricing, and a selection of quality7. The government

also supports tax payer, citizen, and community interests such as minimizing expenditure

and expanding access to disadvantaged businesses8. Having a structural understanding of

the dispersion of uncertainty among different business partners can inform the assesment of

performance in achieving these goals. Given the breakdown of revenue equivalence, having

a measure of heterogeneous uncertainty can also aid in optimizing procurement design to

better achieve both expenditure and affirmative objectives9.

et al. (1995), etc..
4Notable additional works and extensions of nonparametric identification include Elyakime et al. (1994);

Athey and Haile (2002); Fevrier (2008); Henderson et al. (2012); Armstrong (2013); etc..
5Krasnokutskaya (2011) and Armstrong (2013) both investigate the identification of private value under

unobserved heterogeneity with Michigan highway procurement data..
6De Silva et al. (2003) finds that incumbent tend to bid more aggressively (lower) in Oklahoma highway

procurement auctions.
7Bajari et al. (2008) provide some empirical comparison between auction and negotiation in procurement

and suggest some drawbacks of procurement auction despite its popularity.
8Nakabayashi (2013) investigates the effect and efficacy of small business set aside in public construction

projects in Japan and found that while many business would not participate without the set aside, it also
increases government cost due to reduced competition. CDOT does not have a specific small business carve
out; instead, it takes affirmative action toward disadvantaged businesses through its Disadvantaged Business
Enterprise Program (Colorado Department of Transportation).

9In procurement auction analysis by civil engineers and financial planners, bid spread is often of
particularly interest, though it is often done in a descriptive manner (Skitmore et al., 2001). Identifying
private value and heterogeneous uncertainty provides a robust economic basis for variations in bid spread.
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The study makes several contributions to distinct areas of economic literature. First and

most broadly, it puts forward a structural use of heteroskedasticity to extrapolate underlying

economic parameters. Second, it accomplishes the direct estimation of both uncertainty in

procurement auctions and its heterogeneity parameters with a standard model under fairly

simple assumptions, a method that may be extended to other areas of microeconomic studies

in different market settings where heteroskedastic agent response is observed. Third and more

narrowly, it provides a new means of revisiting auction deisgn based on empirical data.

The remainder of this paper is organized as follows. Section 2 motivates the study

approach with a discussion about the background and descriptive characteristics of the data.

Section 3 develops a theoretical model of sealed-bid auction that incorporates heterogeneous

uncertainty with in the private-value and common-value dimensions and investigates its

properties. Section 4 describes a structural GMM estimation framework based on the

theoretical results. Section 5 presents the estimation results and a few calibration and

counterfactual analyses. Section 6 concludes the study with some thoughts about its

implications and limitations.

2 Data

The bids data is obtained from the Colorado Department of Transportation (CDOT) on

various types of highway projects that required open market contract bidding10. The data

spans an 11.5-year period from January 2015 to June 2016. The market index data is

obtained from the US Census Bureau and contains the monthly valuation of newly created

private residence construction permit in Colorado for the same period. The private residence

construction value data is chosen as the market indicator variable because it is assumed to

correlate both with macroeconomic variables and with supply and demand specifically in the

construction industry, either of which can exert an influence on firm’s entry decisions and

bidding behavior.

2.1 CDOT contract bidding

The Colorado Department of Transportation (CDOT) procures some of the construction

and maintenance activities of its physical assets, as well as consulting and professional

services, through open market contract bidding. The bidding process has the following

general properties and procedures:

10See Colorado Department of Transportation (2014) for complete bidding rules, which include bidder
prequalification, bidding procedure, selection criteria, and anti-collusion enforcement.
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• Potential contractors submit sealed bids with itemized cost information. The bidders

are unable to observe the identities, the number, or the bid amounts of other bidders

before the winner is announced.

• The bids are compared to an engineer’s estimate produced internally with engineering

and market assumptions. The engineer’s estimate is also sealed at the time of the

bid letting. The lowest bidder usually wins, provided that the submission is deemed

feasible, adequate, and does not unreasonably deviate from the engineer’s estimate in

either direction11.

• Once a winner is announced, the engineer’s estimate and all bids, including each

bidder’s itemized cost, are announced publicly.

A few straightforward observations can be made about this bidding procedure. First, the

format is a variation of the first-price sealed-bid auction, but with a common value component

in the form of engineer’s estimate that is opaque to bidders. Second, bidders are shielded

from the number and the identity of other bidders, which adds additional uncertainty.

Conversely, past bidding and cost statistics are published in great detail as a matter of

transparency and public accountability, which means that firms may use this information to

reduce uncertainties in this highly uncertain bidding format.

In addition, CDOT takes affirmative action toward small businesses and disadvantaged

businesses (those owned by minorities, women, and other socially and economically

disadvantaged individuals) through various programs and services, and the agency has an

interest in ensuring that these business have access to its projects and are represented.

2.2 Summary statistics and descriptive analysis

Projects range from tens of thousands to tens of millions of dollars and it presents several

statistical problems, such as difficulty of comparison, very large heteroskedasticity, and

uncertain latent private value estimation. Normalizing bids by the engineers’ estimate could

solve the problem if bidding behavior in ratio terms is not influenced by project size, and

descriptive analysis shows that it appears not. In fact, the bid-to-estimate ratio over the

years exhibit a very consistent and well-behaved log-normal distribution (Figure 1):

The log-normal distribution of bid-to-estimate ratio (relative bid) further suggests that

the bid generating process for individual bidders follows a Cobb-Douglas form, as log-normal

11The bids are rated on several factors and the “best value” is selected. In this sense, CDOT procurement
differs from a standard first-price reverse auction. I assume that bidders do not behave differently from a
first-price auction in this paper.
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Figure 1: Kernel density estimate of bid distributions by size cohort.

distribution describes the product of random variables of certain attributes. In addition,

the engineer’s estimates can also follow a similar distribution and preserve the overall

log-normality, as the quotient of two log-normal random variables is also log-normally

distributed. This conjecture may meet some limitation as engineer’s estimate varies between

projects, but not within. However, because the bidders cannot observe the engineer’s

estimates, there are additional stochastic processes at play to the relative bid distribution.

The data shows that on average, firms bid around 10% above the engineer’s estimate.

This is consistent with the predictions of standard auction theory. However, if we examine

the spread of the relative bids broken down by firm sized (Figure 2), proxied by the number

of bids submitted over the entire sample, we can see a tightening of spread as firm size grows.

The heteroskedasticity of bidding behavior over firm size is on clear display, and it raises the

question of whether it results from heterogeneous uncertainty related to firm size.

Curiously, though, the figure does not show any discernible change in average relative

bid, and the fitted line has only a negligible negative slope, i.e. large firms do not appear to

be more or less likely to cut low on average, conditional on firm size alone. There are two

important implications of this observation. First, the marginal distribution of the private

values of larger firms may be tighter around the mean. Second, firm’s bidding behavior with

respect to size may not be monotonic. These observations provide an unique incision point

to answering the research question, and it informs the suitable construction of theoretical

and empirical models.

The relative bid is surprisingly unresponsive to a variety of factors, such as project

7



Figure 2: Relative bid spread by annual bidding size cohort. Red line denotes fitted value
to size. Color spectrum denotes distribution of logged relative bid.

Figure 3: Quarterly average of 1st, 2nd, and 3rd relative bid and number of bidders.
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Table 2: Descriptive OLS coefficients of determination (R2).

Variable Firm Size Number of bidders Relative bid

Firm size - 0.0000 0.0005

Project type 0.0389 0.1494 0.0226

Project value 0.0080 0.0036 0.0067

Number of bidders 0.0000 - 0.0065

value and project type (Table 2). In addition, there appears to be little linear relationship

among firm size, project type, project value, relative bid, and number of bidders, suggesting

that entry by firms of different sizes is not particularly predicated on project type and

project value. Echoing Figure 2, firm size is a particularly poor linear predictor for bid

outcome. However, the inertness of relative bids to seemingly influential factors suggests

that the underlying data generating process is stable and well-behaved and the relative bid

construction may be a good normalization technique to study bidding behavior between

projects of differing scale.

One confounding result is that the relative bids exhibit classical auction theory behavior

with regard to number of bidders, despite that the bidders are not able to observe it. The

co-movement of quarterly average 1st, 2nd, and 3rd bids (Figure 3) sheds light on this question.

If bidding behavior exhibit temporal synchronicity, it suggests that it is influenced by market

forces, which affect both entry and private value. If outside market offers good opportunities,

a resource-constrained firm faces a higher opportunity cost of entering the highway bidding

market, which would raise the firm’s private value and inhibit entry.

Indeed, the relative bid proves highly sensitive to market conditions, as shown in figure 4,

where the an ARIMA model anticipates shocks well with construction market indicators12

(lagged monthly values), and the selected market variables prove to be a good predictor of

bidding behavior. This offers an important insight to the effect of how exogenous shocks and

unknown number of bidders should be treated in the empirical analysis.

12The model is descriptive and is not cross-validated to ensure best fit or minimized autocorrelation,
though it can be shown to yield good predictive power based within a certain future time frame based on
the training set and lagged explanatory variables used.
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Figure 4: Observed and predicted monthly average bid using construction market data.

3 Behavioral Framework

The theoretical model borrows from the standard sealed-bid first-price auction model

adjusted for procurement auctions. The standard model assumes symmetric information,

which goes against the central premise of heterogeneous uncertainty assumed in the paper.

However, the use of the standard model is justified because firms are assumed to formulate

their bidding function as if it were the symmetric equilibrium strategy based on their

heterogeneous beliefs, and Bayesian-Nash equilibrium is not assumed to have been attained

in the bidding outcome13. In addition, the standard model provides a convenient framework

in which to implement the estimation of the parameters of uncertainty in both private and

common value.

3.1 Assumptions

Motivated by the empirical distribution of relative bids discussed in Section 2 and above, I

assume that firm i’s private value, or opportunity cost, for project j, vi,j, is determined by

a Cobb-Douglass process:

vi,j =
∏
k

Xαk
i,j,k (1)

where Xi,j,k is the kth factor of firm i’s cost input and is independently and identically

13Lebrun (1996) shows that asymmetric equilibrium does not exist in first-price auctions, while Hendricks
and Porter (1988) shows that firms’ bidding strategies are still consistent with Bayesian-Nash equilibrium
with asymmetric information.
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distributed among is and js while independently distributed among ks. Assume also that

the benchmark value of the project, v̄j is generated by a similar process,

v̄j =
∏
k

X̄αk
j,k (2)

where X̄j,k is similarly distributed as Xi,j,k. The Cobb-Douglas function itself is irrelevant

to subsequent modeling. However, it has two important implications. First, since X·,ks are

independently distributed, vi,jis log-normally distributed. This is a result of the Central

Limit Theorem such that the product of independent random variables has a log-normal

distribution. Second, because v̄k is similarly distributed as vi,j, the relative private value

ri,j =
vi,j
v̄j

(3)

is also log-normally distributed, here we assume with E[ln(ri,j)] = µj (mean log relative

value) and V ar[ln(ri,j)] = σ, where uj and σ are parameters of the normal distribution that

results from logrithmizing ri,j.

In addition to the descriptive findings of this study, the log normality assumption of

auction value distribution is well-supported by empirical auction literature 14 as well as recent

civil engineering literature on highway project contract bidding data15. The relative value, as

well as the subsequent relative bid, construction is attractive because it normalizes the bids on

projects of differing monetary sizes, preserves the log normality of the original distributions,

and combines both the private value and common value aspects of these auctions with

observed and unobserved value components16. In addition, it provides for a convenient

alternative to the affiliated private value model (Li et al., 2002) and simplifies the estimation

strategy.

An important assumption is that µj is project-specific but σ is not17. This stems from the

reasoning that some benchmark value is close to E[vi,j], but fleeting market forces outside of

the benchmark value result in time-specific deviations in valuation that affect all firms the

same way, while the spread of vi,j is unaffected.

The firms do not observe mean log relative value µj, but they have a derived belief µi,j
18

14Haile and Tamer (2003); Henderson et al. (2012); Guerre et al. (2000); Laffont et al. (1995); Hendricks
and Porter (2006); etc..

15Skitmore et al. (2001); Ballesteros-Pérez and Skitmore (2017).
16De Silva et al. (2003) uses a similar construction for procurement auctions with both private and common

value components.
17See Conclusion for a brief discussion about this assumption.
18The belief µi,j is “derived” because it is the log ratio between bidders’ belief about µj and the benchmark

value v̄j unobservable to bidders, the latter of which may not factor into firm behavior.
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without necessarily specifying any distributional parameters. They also have a firm-specific

approximation of, or confidence in, the variance, λiσ, where λi > 0. Note that because µj is

the normal counterpart of the mean of log-normal random variable ri,j, and

E[ri,j] = eµj+
σ2

2 6= eµj (4)

As such, λi can considered the parameter of heterogeneous private value uncertainty, and

µi,j a measure of common value uncertainty.

Proposition 1. If the firm overestimates σ by λi > 1, the firm also underestimates µi,j if

it correctly observes E[ri,j].
19

This is due to the increasing right-skewedness of log-normal distributions as variance

increase. More precisely, the belief can be expressed analytically as

µi,j = µj +
1

2
(1− λ2

i )σ
2 (5)

which is strictly decreasing in λi given that λi > 0. This is a casual prediction assuming that

σ were the only source of mean private value, but it shows that common value uncertainty can

arise out of private value uncertainty alone, in addition to other factors that may influence

a firm’s belief in µj and further confound firms’ bidder behavior.

3.2 Bidder’s problem

Based on its observations and beliefs, the firm then solves the following expected profit

maximization problem, given the log-normal distribution of private values:

max
bi,j

E[π(bi,j)] = (bi,j − ri,j)
[
1− Φ

(
ln ri,j − µi,j

λiσ

)]
nj−1 (6)

where Φ(·) is the standard normal cumulative distribution function, bi,j is the relative

bid compared to the engineer’s estimate, and nj is the number of bidders in project j20. The

19See Proof of Proposition 1.
20Harstad et al. (1990) and Levin and Ozdenoren (2004) provide some theoretical treatment of auctions

with uncertain number of bidders, which is the case of CDOT procurement auctions. However, considering
the principle question of heterogeneous uncertainty, unknown number of bidders is abstracted from the
theoretical model, but it will be treated in the empirical strategy.
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Figure 5: Numerical results of B(ri,j) response to various changes in parameters.

standard first-price auction model then yields the optimal bidding function21 22

B(ri,j) = ri,j +

∫∞
ln ri,j

[1− Φ(
lnx−µi,j
γiσ

)]nj−1dx

[1− Φ(
ln ri,j−µi,j

γiσ
)]nj−1

(7)

Figure 5 shows the the responses of B(ri,j) to various changes in parameters. Note

that µi,j and λiσ are parameters of the normal distribution from log relative values and are

lower in magnitude compared to ri,j. It is a necessary result that ∂B(·)
∂ri,j

> 0 as increasing

monotonicity of B(·) in ri,j is a requirement for the solution, and unsurprisingly bids decrease

with increasing number of bidders. Neither standard results are changed by the additions to

the model, ceteris paribus.

Of particular interests are the bidding behavior in response to λiσ and µi,j. Bids generally

increase in response to increases in the uncertainty spread, λiσ. This can be explained by

21See section A.2 Solution of the bidder’s problem.
22The equilibrium strategy would be different if there is a binding reservation price. While CDOT has

certain policies pertaining to reservation price expressed as a percentage above the engineer’s estimate, the
reservation price is not always binding and, more importantly, unknown to bidders, who do not observe
either the engineer’s estimate or the percentage threshold. As a result, reservation price is abstracted from
the theoretical and empirical models.
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Figure 6: Simulated results of bid spread kernel density estimates with differing uncertainty
from the same distribution of private values.

when holding belief in mean relative value constant, a higher spread flattens the distribution

with a longer right tail and improves the probabilistic standing the firm, hence the firm bids

more confidently. As a result, for any given µ and σ, higher λi leads to greater bid spread

(Figure 623).

Similarly, bids increase in response to increases in the belief about the mean relative

value, µi,j. This can be explained by that a higher belief in the mean relative value shifts

the distribution to the right and increases the probabilistic standing of the firm, hence the

firm bids more confidently as well. Because the model predicts that firms with higher belief

in λiσ also have lower belief in µj, the behavior of the firm can become confounded as the

effect of uncertainty goes both ways.

One curious result is when λiσ interacts with µi,j for a given realization of private value

(Figure 5 top right panel), lower uncertainty can lead to higher bids. Note that for the

particular outcome, the parameters are set ri,j = 1, which is equivalent to ln(ri,j) = 0, and

this result occurs only when µi,j > ln ri,j. Intuitively, if a firm’s private value is below the

perceived the µi,j, a smaller λiσ shortens the spread around µi,j and increases the probabilistic

standing of the firm, thereby increasing the firm’s bid.

This result provides an interesting dynamic as to how private and common value

uncertainties interact with firms’ bidding behavior. The model suggests that uncertainly

may both increase and decrease a firm’s strategic bid through several channels, which can

easily confound the empirical investigation of firm’s bidding behavior. The model results

23The results are simulated since an analytical solution to the inverse bid function vi = B−1(bi) does not
exist.
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demonstrate a need to identify, separate, and parameterize these two opposing effects of

uncertainty in the estimation strategy through a structural approach.

4 Estimation Strategy

There are several challenges to the identification of the structural model. First, given the

highly nonlinear, algebraicly intractable form of the behavioral solution, the estimation

equation must be structured in a manner that ensures identification. Second, as discussed

in the Data section, there exists a high degree of endogeneity and simultaneity between

the relative bids and the number of bidders, which is not observable to the firms ex ante.

Finally, the same nonlinearity and intractability, along with the number of observations and

estimation parameters, imposes a large numerical complexity, and care must be taken to

reduce the computational expense. To address these issues, I adopt a generalized method

of moments (GMM) framework that incorporates instrumental variables and nonparametric

techniques.

4.1 The structural model

4.1.1 Estimation equation

The relative private value ri,j,t is unobserved, but it can be modeled as a latent variable

dependent on manifest variables. Following Lafront et al. (1995), I assume that the firm’s

reservation valuation is determined by the function 24

ri,j,t = eβi+M′
tBM (8)

Where βi is the firm fixed effect and Mt is the vector of market factors. Differing from

Lafront et al., however, is that the structure does not include any firm characteristics, such

as firm size, as explanatory variables of private value. Given the focus of identifying the

role of firm size on uncertainty, the determinants of heterogeneity in private value is not

of interest, and if present, firm-level scale and other idiosyncratic effects on private value

should be absorbed by the firm fixed effect. The logged private value is therefore simply the

logged private value variations with market factors plus firm fixed effect.

The private value is generously defined and may encompass any opportunity cost

associated with submitting a bid, such as bid preparation cost, capacity constraint, and

24Period t is positively identified by project ID j and time subscript is omitted for all variables except the
dependent variables and the market indicator.
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outside opportunities. In this sense, the estimated fixed effect may not necessarily reflect

the firm-specific cost of construction alone. This simplifies the estimation procedure such

that unobserved heterogeneity in bidding decision need not be addressed. The private values

are estimated apart from the main estimation equation semiparametrically and the method

is described in section 4.3 Implementation.

The structural model derives directly from the behavioral framework. Given the

construction of the optimal response function, generalized method of moments is used to

estimate the structural model below:

yi,j,t = ri,j,t +

∫∞
ln ri,j,t

{
1− Φ

[
x−sβµi µj,t

σrs
βσ
i

]}nj−1

dx{
1− Φ

[
ln ri,j,t−s

βµ
i µj,t

σrs
βσ
i

]}nj−1

︸ ︷︷ ︸
bi,j,t

+εi,j (9)

where σr = [(I − 1)−1
∑

i βi]
1
2 is the standard deviation, and µr = I−1

∑
i βi the mean,

of private values calculated from the fixed effect estimates. The structural equation also

presents the two other main parameters of interest: private value heterogeneous uncertainty

parameter βσ and common value heterogeneous uncertainty parameter βµ with regard to

firm size. Contrasting the optimal bidding function,σrs
βσ
i substitutes for λiσ and s

βµ
i µj,t

substitutes for µi,j. A negative βσ would support the hypothesis that smaller firms have

greater private value uncertainty, and a non-zero βµ would indicate heterogeneous common

value uncertainty.

The structural model as presented cannot be directly identified with the conventional first

moment conditions alone. There are special considerations for nj, discussed in the following

subsection, and for σr , discussed in section 4.2.1 Moment conditions.

4.1.2 Number of bidders

The data used in this study comes from a bidding process where bidders are blind to the

number of other bidders and this issue is not addressed in the behavioral framework. While

the number of bidders is known to the investigator, the fact that firms at the time of bidding

cannot observe anything about their competitors poses an estimation challenge for two

reasons. First, even though entry is perhaps always endogenous with the value of projects,

with known number of bidders, firm’s bidding behavior would be fully accounted for by

the structural model, but because in this setting firms cannot reliably use the number of

bidders to form their optimal strategy, the problem of endogeneity arises. While using the

relative bid partially addresses this issue, endogeneity cannot be assumed away even with

16



normalization, because the magnitude of relative bid is still affected by project value through

the number of bidders, although the project value is no longer correlated with the error term.

Second, as discussed in the Data section, there is a strong simultaneity between the number

of bidders and bidding behavior based on market conditions, which causes the same issues

as endogeneity in estimation. Although it is common in empirical auction studies to assume

that the number of bidders is known, such assumption in the presence of both endogeneity

and simultaneity will cause the estimators to be biased, and while the number of bidders

does not require a parametric estimator itself as the exponent of the survival function, it will

attenuate the estimation of other parameters of bidding behavior in the nonlinear model as

the observed number of bidders strongly correlates with bid markup beyond its actual effect.

Instrumental variable is an obvious strategy to address this issue. Assuming a Poisson

data generating process for the number of bidders with an exponential link function:25:

E[n|XIV] = eX
′
IVBIV (10)

where XIV is a vector of the determinants of entry including an intercept. The

determinants are grouped into two categories: endogenous determinants and simultaneous

determinants. Endogenous determinants include project value (in terms of engineer’s

estimate) and project type, and simultaneous determinants are market indicators and other

covariates excluding the number of bidders. In effect, the determinants are the included

variables and additional instruments similar to that of Z in a two-stage linear least squares

model. A discussion of implementing instrumental variables in a nonlinear GMM model can

be found in section 4.2.1 Moment conditions.

4.1.3 Additional considerations

Despite having a time subscript to include time-dependent variables, such as market

conditions and seasonal dummies, the model is assumed to be cross-sectional and abstracts

from any autoregressive processes such that εi,j is time invariant. While it is difficult to

model temporal autocorrelation due to the lack of a panel structure of the data, this is

also a fair stylization given that the temporal variations in relative bids are well explained

by market conditions, as well as the competitive nature of procurement auctions, it can

be reasonably assumed that there is little endogenous mechanism to cause firm’s bidding

behavior to be autocorrelated outside of firm fixed effects and market conditions, both of

which are accounted for by the model.

25The Poisson process is a reasonable assumption given the distribution of the number of bidders, which
is a count variable with similar mean and variance. Negative binomial distribution may provide a slightly
better fit given the small dispersion difference, but it requires additional parameters to be estimated.
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The model also partially abstracts from endogenous entry with respect to firm size except

for the correlations picked up by the covariates in the structural model. This is justified by

the observations from Table 2 that there is little pairwise linear relationship among firm size,

project type, and project value. The limitation of this abstraction is briefly discussed in the

Conclusion.

4.2 Generalized Method of Moments

The GMM estimator is chosen due to its ability to specify an important second moment

assumption that is discussed in subsections 4.2.1 and 4.2.2. At minimum, the GMM estimator

requires the first moment conditiosn that E[εi,j|W,Θ0] = 0, where W ∈ RK+1 contains

1 containing dependent variable Y, explanatory variables X, and additional instrumental

variables, with Θ0 being the vector of estimation parameters Θ at their true value. The

error term in the nonlinear structural equation is assumed to be additive in y, and the error

term is therefore simply εi,j = yi,j,t − bi,j,t, on which the moment conditions are defined in

the following subsection, and because W only fully appear in εi,j, we define Z as the vector

of explanatory and instrumental variables for other constituent expressions in the moment

conditions.

4.2.1 Moment conditions

All moment conditions are constructed around the usual assumption that the vector of

functions of Z, h(Zi,j,t,Θ), is independent from the error term εi,j = yi,j,t − bi,j,t such that

E[(yi,j,t − bi,j,t)k|h(Zi,j,t,Θ),Θ0] = E[(yi,j,t − bi,j,t)k] = µε,k (11)

where Θ0 is the true value of the the parameters and µε,k is the kth central moment of εi,j.

This leads to

E[h(Zi,j,t,Θ)(yi,j,t − bi,j,t)k|Θ0] = h(Zi,j,t,Θ)µε,k (12)

For the estimation, conditions for the first three moments are used:

g(Wi,j,t,Θ0) = E

 h(Zi,j,t,Θ)(yi,j,t − bi,j,t)
h(Zi,j,t,Θ){σ2

y(si)− (yi,j,t − bi,j,t)2 − [b̃i,j,t − µy(si)]2}
h(Zi,j,t,Θ)(yi,j,t − bi,j,t)3


Θ0

= 0 (13)

The first moment conditions are conventionally defined to assume that the error term has

zero mean and independent from Z. While the first moment conditions are usually sufficient
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for many econometric problems, the structural model requires some higher moments be

defined as well to achieve identification. Most importantly, the first moment conditions

alone do not account for any potential heteroskedasticity with respect to firm size in the

error term (Proposition 2 26).

The problem is resolved in the second moment conditions, where σy(si) is the conditional

variance of y on firm sized si, and it is derived from the fact that σ2
y(si) = σ2

b (si) + σ2
ε under

the assumption that distributions of private value and error term are independent from each

other, which results in additive variance of its constituent variables. It also relies on the

assumption that heteroskedasticity exists in the dependent variable through heterogeneous

uncertainties in the bidding function, but not in the error term, at least not with regard

to firm size. This is a novel assumption based on the structural model, see section 4.2.2

Heteroskedasticity for more discussion.

The third moment condition assumes that that residuals are symmetrically distributed.

While b has an appearance of log-normal distribution with a clear skewness, the random

noise after the optimal bidding strategy based on the log-normally distributed private value

is accounted for is assumed to be symmetrically distributed around 0.

h(Zi,j,t,Θ) can be a vector of any functions of Zi,j,t to the extent that the model can

still be identified, including simply the vector Zi,j,t. Therefore g(Wi,j,t,Θ) is a 3× p matrix

where p is the number of parameters. To obtain optimal estimators of Θ in a nonlinear GMM

model, the vector of functions of explanatory and instrumental variables takes a certain form

of the gradient of the optimal bidding function b:

h(Zi,j,t,Θ) =
∇Θb(Θ|Zi,j,t)

σε(Zi,j,t)
=
∂b(Zi,j,t,Θ)/∂θ

σε(Zi,j,t)
(14)

Where σε(Wi,j,t) is the heteroskedastic error dependent on Wi,j,t of an unknown

form. While there are methods to approximate σε(Wi,j,t), it is not necessary as the

heteroskedasticity with respect to firm size is specially treated (see the following subsection)

while the model abstracts from other sources of heteroskedasticity and, if present, uses a

heteroskedasticity-consistent model. The optimal h(·) therefore becomes

h(Zi,j,t,Θ) = ∇Θb(Θ|Zi,j,t) =
∂b(Zi,j,t,Θ)

∂θ
(15)

This formulation mirrors the first-order condition of nonlinear least squared (NLLS)

regression in the first moment condition. The approach is computationally much more

expensive than using h(Zi,j,t,Θ) = Zi,j,t, but it allows a much more flexible configuration.

For the first order partial derivatives of b(·) that constitute h(Zi,j,t,Θ) with respect to several

26See section A.4 Proof of proposition 2 for a sketch of proof.
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classes of parameters, see section A.3 First-order derivatives27.

4.2.2 Heteroskedasticity

In addition to the second central moment assumption E[(yi,j,t−bi,j,t)2|h(Zi,j,t,Θ),Θ0] = Zσ2
ε ,

the second moment conditions also rely on two additional assumptions that

V[yi,j,t|si] = E[(y − µy(si))2] = E[(y − µy(si))2|h(Zi,j,t,Θ),Θ0] = σ2
y(si) (16)

where µy(si) = E[yi,j,t|si] = E[bIVi,j,t] + E[εi,j] = E[bIVi,j,t], and

E[bi,j|h(Zi,j,t,Θ),Θ0] = σ2
b (Z) (17)

where σ2
b takes the form of [b̃i,j,t−µy(si)]2 as the fitted value b̂i,j,t is correlated with the error

term under instrumental regression. Instead, the fitted b̃i,j,t uses the fitted values ñi,j,t of nj

using Poisson regression against Z as described in section 4.2.2 Heteroskedasticity, similar

to the first-stage estimation in 2SLS. The fitted ñi,j,t can be considered a combined signal of

number of bidders observable to both firms and the investigator.

Because the data is not a random sample, σ2
y(si) is assumed to be the sub-population

variance of all sub-population observations in the data, and it takes the form of and

σ2
y(si) = 1

N

∑
(y − ȳsi)

2 (cf. sample variance estimator σ̂2
y(si) = 1

N−1

∑
(y − ȳsi)

2). The

population variance assumption is a strong but defensible one for want of a means of

incorporating this estimation into the structural estimation itself. This assumption allows

us to estimate sub-population variance directly without changing the structural estimation

while still maintaining a higher level of generality than assuming a known private value

distribution. Properties of the estimator with a random sample is worth exploring in further

studies.

The firm-size-dependent outcome variance σ2
y(si) can be estimated in three ways: simple

cohort sub-population variance, parametric fit, and non-parametric fit. The simple cohort

sub-population variance can be calculated by the equation above. However, due to that

sub-population variance depends on the initial random draw from the distribution of ri,j,

this method is akin to measurement with error and may subject the structural estimation

to attenuation bias.

For the parametric fit, following a similar formulation as the structural model, the

nonlinear parametric estimation takes the form of

27In the current iteration of the working paper, only h = Z is estimated. h = ∇Θb will be estimated
in future explorations with access to high-performance computing environment. This can be made
computationally feasible by subsample bootstrapping with distributed computing.
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σ2
y(si) = σ2

ys
δ
i + εy,i (18)

where σy and δ can be estimated using non-linear least squared (NLLS) by using the

sub-population variance for σ2
y(si). Alternatively, it can also be estimated by the Method of

Moments (MM)28, using the following first and second moment conditions by definition of

mean and variance:

gy(yi,j,t,∆) = E

[
(yi,j,t − µy + δµsi)

σ2
ys
δσ
i − (yi,j,t − µs)2

∣∣∣∣
[

1

si

]]
∆0

= 0 (19)

where µy, σ2
y, δµ and δσ are to be estimated, with σ2

y and δσ being the same as

the NLLS model. Both methods impose some assumptions about the structure of the

heteroskedasticity, which is not known, and while in the parametric estimates they mimic

that of the structural model, they cannot be reliably assumed to be similar. The third method

to estimate non-parametrically29 does not assume any structure to the heteroskedasticity of

y:

σy(si) = m(si) + εy,i (20)

However, because the underlying distribution of y is unknown30, there is no clear criteria

to bandwidth selection, which can affect the behavior of the fit. For the purpose of this

study, the smallest bandwidth that yields a monotonically decreasing fit with respect to firm

size is selected and compared to sub-population variance and the parametric fit.

Figure figure 7 shows the calculated and fitted cohort variance to these specifications.

The fitted values yield similar results. For the main estimation results, the MM fit is used

due to its evaluation from full sample, and other specifications are evaluated to check for

robustness.

The model investigates the heteroskedasticity of the outcome variable in the dimension

of firm size. While the moment conditions include heteroskedastic private values and

assumes the error term is not heteroskedastic to firm size, it is entirely conceivable that

heteroskedasticity still exists in other dimensions. Therefore, heteroskedasticity-consistent

standard errors should still be used for inference. By the same construction, it is important

28Method of Moments is used because the model is just-identified with 4 parameters and 4 moment
conditions.

29The Nadaraya-Watson estimator is easily implemented without incurring the curse of dimensionality
since the regression is univariate (c.f. spline).

30The distribution of y is assumed to be that of the sum of two independent variables, B(r, ·) and ε, where
r is log-normally distributed but B(r, ·) is not, and ε is only assumed to have zero mean, finite variance, and
zero skewness from the moment conditions.
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Figure 7: Cohort variance with fitted lines.

to note that the underlying yi,j,t − µy(si) used to estimate σ2
y(si) is still correlated with εi,j,

without which σ2
y(si) = σ2

b (si) + σ2
ε would not stand.

4.2.3 Identification

For the main parameters of interest, the model mainly utilizes the GMM estimator as

described by Hansen (1982) and this subsection presents an overview of the identification

and properties of the estimator. The moment conditions are estimated by taking its sample

average:

ĝ(Wi,j,t,Θ) = M−1
∑
mi,j,t

g(Wi,j,t,Θ) = 0 (21)

where M is the number of observations and m indexes each observation. By minimizing

a certain norm of the objective function

QM(Θ) = ĝ(Wi,j,t,Θ)′ × wM × ĝ(Wi,j,t,Θ) (22)

where wM is a weighting matrix based on the sample, the GMM estimator is obtained as

Θ̂ = arg min
Θ
||QM(Θ)|| (23)

By convention, the Frobenius norm is chosen. At Θ0, there exists a 3× p matrix G such

that
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G0 = plimM−1
∑
Mi,j,t

[
∂g(Wi,j,t,Θ)

∂θ′

]
Θ0

(24)

The local identification of the nonlinear model requires the sufficient and necessary rank

condition for the estimated Ĝ = G(Θ̂) that

rank(Ĝ) = p (25)

In other words, the estimated Ĝ must be of full rank for the model to be identified,

otherwise the variance-covariance matrix (under optimal weighting matrix)

V̂[β̂] = M(Ĝ′wMĜ)−1 (26)

cannot be calculated as Ĝ′wMG would be singular. The optimal weighting matrix is

calculated as

wM = M−1
∑
Mi,j,t

[gg′|Θo] (27)

While iterative estimator and continuously updating estimators (CUE) can afford better

properties, due to the computational complexity of the estimation, the two-step estimator

is used, which estimates the optimal wL by using the identity weighting matrix in the first

step and is asymptotically consistent and efficient.

4.3 Implementation

There are two obstacles to estimating the structural model directly. The obvious first is

a computational one, where the large parameter space coupled with the large sample in a

highly nonlinear objective function imposes not only a great computational cost, but also

makes the estimation result too sensitive to inital values such that there is little guarantee

of global identification being reached. The second obstacle comes with the matrix of fixed

effects, in which many firms have sparse observations, giving rise to large swaths of zeros, and

the fixed effects themselves have a narrow support near zero as the logged relative private

value estimates. As a result, the issue of numerical invertibility arises. To exacerbate the

issue, any time-invariant measure of firm size is necessarily perfectly collinear with the matrix

of fixed effect dummies. Yet, the estimation of fixed effects cannot be circumvented because

it is crucial to the estimation of private value uncertainty σr and to the minimization of

heteroskedasticity with respect of firm size in the error term.

The second obstacle may be resolved using the optimal instrument, h(Z) = ∇θb, which
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introduces additional variations to the matrix of instruments. Alternatively, generalized

inverse may be used to produce variance-covariance and weighting matrices when numerical

singularity is encountered. However, neither method addresses the first obstacle of

computational cost and global identification.

Instead of estimating private values directly through the structural equation, I use a

semiparametric method based on the nonparametric identification of first-price auction

proposed by Guerre et al. (2000) and subsequent papers. In a standard first-price sealed-bid

auction, assuming equilibrium strategy and no reservation price, such that b∗i = arg max(vi−
bi) Pr(vi < v−i|n), a pseudosample of private value can be estimated using the following

inverse bidding function:

v̂ = b+
1

n− 1
· F̂ (b)

f̂(b)
(28)

where F̂ (b) and f̂(b) are respectively the empirical cumulative distribution and estimated

density of observed bids. The estimation equation does not require an analytical solution to

the bidding function or even any specific assumptions on the underlying distribution of the

private values provided that it is not degenerate. In the case of differing number of bidders

and heterogeneous factors X, the joint distribution and density estimates of observed bids

with the additional variables are used. Adjusted for reverse auction, the inverse bidding

function becomes31

v̂ = b− 1

n− 1
· Ŝ(b, n,X)

f̂(b, n,X)
(29)

where S(·) is the joint survival function of bids, number of bidders, and other covariates.

With the relative bid construction in the structural model, the additional covariates are the

exogenous variables, namely market factors. Athey and Haile (2002) further propose that in

the case of uncertain bidders, the number of bidders can be substituted with a public signal

instead. Because of the multiple simultaneous factors that affect the number of bidders, I

use the Poisson-fitted ñi,j,t against the vector of instruments as a combined signal, as used

in the second moment conditions, in place of the public signal.

The Guerre et al. (2000) paper also establishes the properties of the method using

kernel estimators. However, given the sample size and the number of market factors, the

direct application of equation (29) with kernel estimators is not feasible due to the curse of

dimensionality. At the same time, the market factors cannot be omitted, as they change the

distribution of private value in each period, whereas the nonparametric estimator requires

31See section A.5 for a sketch of proof.

24



private values to be identically distributed.

Krasnokutskaya (2011)32 proposes a log-decomposition of bids if the effect of

heterogeneity is multiplicative factor. This works well with the structural model, in which

the private value is defined as equation (8). For any private value ri,j,t, the bid can be

expressed as bi,j,t = ρ(ñi,j,t, si)ri,j,t = ρ(ñi,j,t, si)e
βi+M

′
tBM such that

ln bi,j,t = ln ρ(ñi,j,t, si) + βi + M
′

tBM (30)

Let ui,j,t = ln ρ(ñi,j,t, si) + βi, BM can be fitted as

ln yi,j,t = M
′

tB̃M + ũi,j,t (31)

which removes the correlation with the market factors from the bids. Conveniently,

M
′
tB̃M is already the market variation in private value since the multiplicative factor for

bidding markup, ρ(·), is additive in logged form, and M
′
tB̃M can be added directly back

to the estimated β̃i,j,t. The pseudosample of private values, including market variations, is

therefore produced according to equation (29):

ˆln ri,j,t = β̃i,j,t + M
′

tB̃M

= ũi,j,t −
Ŝ(ũi,j,t, ñi,j,t, si)

(1− ñi,j,t)f̂(ũi,j,t, ñi,j,t, si)
+ M

′

tB̃M

= ln yi,j,t −
Ŝ(ũi,j,t, ñi,j,t, si)

(1− ñi,j,t)f̂(ũi,j,t, ñi,j,t, si)
(32)

The pseudosample is trimmed according to the method described in Guerre et al. (2000)

due to bias of the kernel estimator at the boundaries of distributional support33. While the

pseudosample is conventionally used to estimate the density of private values, I also use it

to estimate the fixed effects as well as to reëstimate the market variation through a second

fitting according to

32The paper specifically deals with unobserved heterogeneity, and the properties of the estimator are
further explored in Armstrong (2013). This paper assumes that heterogeneity exists in the dimension of firm
size and is therefore observed.

33Bids that fall within a hypercube within the conditional maximum and minimum bids are trimmed,
with the side length of the hypercube defined by the estimation kernel support and bandwidth. In addition,
under the symmetry assumption of logged private value, estimated private values lower than max(b) are
also trimmed, with max(r) = max(b) since the bidder with the highest private value is assumed to never
bid with a markup under the standard model. In the structural equation, the upper limit, representing the
upper bound of the value distribution, is still ∞ for simplicity, since at the highest bid they are numerically
equivalent.
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ln r̄i,j,t = β̄i + M
′

tB̄M +r ε̄i,j,t

The reasons for the refitting are threefold. First, βis still need to be estimated to produce

µr and σr. Second, the refitting corrects some of the correlation between Mt and ñi,j,t that

would bias B̃M through omitted variables. Third, the observed bids are not assumed to

be perfectly in accordance with the equilibrium strategy, and using the pseudosample itself

in place of ri,j,t overfits the model; instead, the refitted values, which are the conditional

expectation of the private values, accounts for the measurement error in the pseudosample

and reduces the likelihood of estimation bias.

Once r̄i,j,ts are estimated, they are plugged back into the structural model. Now the

parameters that remain to be estimated are only βσ and βµ
34. The fixed effect dummies are

hereon dropped from Z for the main estimation, while Mt are retained as instruments for

nj.

5 Results and analyses

This section presents the estimation results and a brief discussion on policy implications.

Several variables are transformed prior to the analysis. The market factors are converted

to 2005 dollars using Construction Pricing Index and scaled to the millions. The engineer’s

estimates are also converted to 2005 dollars and logged. Number of bids within sample

period is normalized to 1 against the firm with the highest number of bids based on the full

valid sample before data cleanup and trimming. Auctions with only 1 bidder are removed

from the sample prior to estimation. A period variable, measured by month, is included as

an additional instrument to account for any unmodeled time trend.

5.1 Estimation results

Figure 8 shows the estimation results for the private value. The top panels compares the

estimated private values to observed bids, and the bottom panels visualize the kernel density

estimates. The left panels show the results for the pseudosample, and the right panels for

the fitted private values.

Given the construction of the pseudosample, the pseudo private value is necessarily less

than or equal to the observed bids, while around one third of the fitted private values are

greater than the observed bids (below b = r line). This does not pose a problem as the

34In future exploration of this working paper, the fitted parameters will serve as starting values for the
full GMM estimation with optimal h(Z) within a high-performance computing environment.
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Figure 8: Estimated private value.

difference is absorbed into the error term, and the linear fit shows an average of 8.55%

markup using the fitted values.

Figure 9 shows the estimated distribution of fixed effects fitted from the pseudosample.

Counterintuitively, I find that larger firms tend to have a higher private value despite the

assumption of economy of scale. However, as the private value estimate is not limited to

accounting cost alone, this finding is not a surprise. Larger firms face more opportunity cost

through at least two channels: first, the greater capacity of large firms bring about more

opportunities within multiple markets, some of which may have better value; second, larger

firms are also more likely to be closer to or exceeding capacity constraint since they have

a revolving inventory of deliverables, whereas smaller firms tend to cycle through growing

and lean seasons. In addition, this result is consistent with both theoretical predictions and

observations; despite having greater opportunity cost, larger firms bid lower on average due

to having less uncertainty in both private and common values.

Tables 3 shows the main parameter results. The models without CV uncertainty assumes

βµ = 0. As expected, an uninstrumented nj attenuates the heterogeneity estimates for both

private and common values, although not to a great degree. The heterogeneous private value

uncertainty estimate, βσ, remains significant in all specifications, and the results from Model

3(4) suggests that one-time bidders face as much as eight times more uncertainty than the

most frequent bidders, although the effect tapers off quickly as firm size increases.
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Figure 9: Estimated fixed effects.

Table 3: Estimation Results.

Model Specification

IV for nj No Yes

CV uncertainty No Yes No Yes

Parameter 3(1) 3(2) 3(3) 3(4)

βσ -0.34789 -0.34581 -0.38698 -0.39061

(0.00707) (0.01201) (0.00577) (0.00964)

βµ 0.02389 -0.13324

(0.33126) (0.21474)

First-stage results

σr 0.20435

E(βi) 0.04346

Total observations 5682

Trimmed observations 340
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Table 4: Alternative specifications for common value uncertainty.

Model Specification

µi,j,t Benchmark M
′

tB̄M + µrs
βµ

i M
′

tB̄Ms
βµ

i + µr (M
′

tB̄M + µEr )s
βµ

i

Parameter 3(4) 4(1) 4(2) 4(3)

βσ -0.39061 -0.40044 -0.41830 -0.48726

(0.00964) (0.00578) (0.02008) (0.05631)

βµ -0.13324 2.39738 -0.34821 -0.39956

(0.21474) (4.69272) (0.13468) (0.21531)

µEr 0.16712

(0.03261)

The benchmark model 3(4) also shows greater common value uncertainty for small

firms, especially with respect to fluctuations in market factors35, although the result is not

statistically significant and has an opposite sign from the estimate without IV. There is an

inherent difficulty in identifying and interpreting common value uncertainty. Note that in

the the construction from the structural model

ln ri,j,t − µi,j,t = ln ri,j,t − sβµi µj,t
= βi + M

′

tB̄M − sβµi (M
′

tB̄M + µr)

= βi + (1− sβµi )M
′

tB̄M − sβµi µr (33)

A negative βµ can therefore be interpreted both as more uncertainty about the effect of

market fluctuation on mean private value and as less responsiveness to market fluctuations

in determining the firm’s own private value. Either interpretation suggest that smaller firms

process market signals less reliably than bigger firms. Given the lack of statistical power of

β̂µ, a few alternative specifications of common value uncertainty are tested, shown in Table

4.

In the alternative specifications, both limiting βµ to market factors only (Model 4(2)) and

allowing the direct estimation of the private value fixed effect mean µEr from the structural

equation (Model 4(3)) not only increase the magnitude and significance of βµ, but also

35Note that M
′

tB̄M varies in sign.
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Figure 10: Estimated error term.

those of µσ. While Model 4(2) deviates from the theoretical definition of common value and

Model 4(3) can be too volatile due to the introduction of one more parameter without added

covariates, these additional results support the heterogeneous private and common value

uncertainty estimate from the benchmark model. The term s
βµ
i µr by itself is more difficult

to interpret; however, the result from Model 4(1), which only estimates the effect on firm

size on the belief of µr, conforms to the casual prediction of Proposition 1 that smaller firms

observe a lower µi,j.

Figure 10 shows the estimated error term. The first and third moment conditions are

well attained (left panel). For the second moment conditions, heteroskedasticity is mostly

reduced except for the smallest firms (right panel)36. This is likely due to that the bidding

behavior of small firms is not as well explained by the structural model as the larger firms,

suggesting that smaller firms abide by the optimal bidding strategy to a lesser degree and

tend to bid more erratically, giving rise to another source of the heteroskedastic outcome

related to uncertainty but not accounted for in the model.abide by the optimal bidding

strategy to a lesser degree and tend to bid more erratically, giving rise to another source

of the heteroskedastic outcomeabide by the optimal bidding strategy to a lesser degree and

tend to bid more erratically, giving rise to another source of the heteroskedastic outcome

5.2 Analysis

The estimation results allow the analysis of firms’ behavior facing uncertain number of

bidders through a simple calibration exercise, as well as the counterfactuals of potential

36Grouping the second moment conditions sample average by firm size, instead of the average of the entire
sample, may improve this result.
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outcomes when the heterogeneity of uncertainty is removed. For the remaining discussion,

the benchmark model is used, which contains the most conservative estimates for

heterogeneous uncertainty.

5.2.1 Number of bidders

While the model assumes that εi,j is independent from Z, the fitted bi,j,t is not in the

instrumental variable model. As such, the correlation between the instrumental variables and

yi,j,t can be estimated by partially fitting the structural model with the estimated parameters

while substituting nj with

n̄i,j,t = ξ(nj, ñi,j,t, si|H) (34)

where H = {η1, η2, η3} are the the parameters to be calibrated. The calibration uses the

method of moments with the following moment conditions:

E[yi,j,t − b̄i,j,t|ñi,j,t, nj − ñi,j,t, si]H0 = 0 (35)

where ñi,j,t is the combined signal for the number of bidders obtained from the Poisson

regression used in b̃i,j,t of the second moment condition and in the nonparametric estimation,

and nj− ñi,j,t is the difference between observed number of bidders and the combined signal.

In this sense, ñi,j,t is the public signal observable to both firms and the investigator, and

nj − ñi,j,t is the additional variation in the number of bidders for which the investigator

observes no signal, but it may be signaled to bidders. The calibrated parameters would

describe how well bidders are able to anticipate both components of the number of bidders.

In Model 5(1), the results show that firms in general anticipate the number of bidders

well, particlarly using signals both observable to the investigator, and to a lesser extent the

remaining variations. The previous section finds that while uninstrumented nj attenuates

the estimates of heterogeneous uncertainty, the effect is not large, which can be explained by

the firms’ good ability to anticipate bids. The effect of firm size is calibrated in Model 5(2),

which finds that smaller firms interpret signals at a greater magnitude than larger firms.

This does not necessarily mean that smaller firms anticipate the number of bidders better;

rather, small firms tend to overestimate the expected number of bidders based on signals

available to the investigator, and large firms tend to interpret more cautiously any additional

signals that the investigator cannot observe. Coupled with the finding in the previous section

that large firms tend to have higher private value yet bid about the same on average, this

result is consistent with the conclusion of De Silva et al. (2003) that entrants tend to bid

more aggressively (with less markup) than incumbents.
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Table 5: Calibrated firm anticipation of the number of bidders.

Model Specification

ξ(nj , ñi,j,t) η1ñi,j,t + η2(ni,j − ñi,j,t) [η1ñi,j,t + η2(ni,j − ñi,j,t)]sη3i
Parameter 5(1) 5(2)

η1 1.05400 0.80147

(0.04464) (0.05348)

η2 0.7789 0.5289

(0.1354) (0.10642)

η3 -0.13753

(0.02839)

The bid submission process does not conveniently allow firms to simultaneously observe

the number of bidders. However, the contingent bid design proposed by Harstad et al. (1990)

lets firms submit multiple bids at once, each for a different realized number of bidders, thereby

removing this dimension of uncertainty37. The effect of removing nj uncertainty is discussed

in the following section.

5.2.2 Expenditure and allocation

Table 6 shows the counterfactuals of average lowest bids grouped by project value, measured

by engineer’s estimates, under various scenarios. The predicted scenario (Model 6(1) ) uses

the fitted bids with combined signal ñi,j,t, the βσ, βµ = 0 scenario assumes a hypothetical

removal of the heterogeneity in both private-value and common-value uncertainty, and the

known nj scenario uses the fitted bids with observed nj.

Given that the observed bids have a larger variance than the predicted bids, the predicted

average lowest bids are conceivably higher than observed. In the equalized private and

common value uncertainty scenario, the average lowest bid in all project value tiers are

lower than the predicted. In the known nj scenario, the opposite is true, which is consistent

with the overestimation of competition, especially by smaller firms, discussed in the previous

section.

Alternatively, Table 7 shows the average bid by project value. Here in the equalized

37Although firms may adopt a different strategy due to increased bidding cost and effort to conceal private
value.
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Table 6: Average lowest bid by project value.

Scenario Observed Predicted βσ, βµ = 0 Known nj Both

Project value Projects 6(1) 6(2) 6(3) 6(4)

$50K-$500K 267 1.0060 1.0437 0.9851 1.0760 1.0048

$500K-$1.2M 267 0.9855 1.0348 0.9833 1.0687 1.0055

$1.2M-$2.5M 239 0.9834 1.0390 0.9908 1.0657 1.0117

$2.5M-$5M 227 0.9662 1.0471 1.0079 1.0707 1.0236

$5M-100M 231 0.9708 1.0489 1.0137 1.0686 1.0283

Total 1231 0.9832 1.0425 0.9954 1.0700 0.0141

private and common value uncertainty scenario, the average bid is lower than both observed

and predicted accounts, with only small differences between the observed and the predicted.

In the known nj scenario, while the average bid is still mostly higher, the difference is quite

reduced. The average bid counterfactual lends a robust additional support for the cost-saving

aspect of equalizing private and common value uncertainty, especially given the conditional

expectation nature of regression models.

Under the same scenarios, I also examine the potential allocational outcome with respect

to firm size. Table 8 shows the lowest bid share by size cohort38. Though there is a larger

discrepancy between the observed and predicted shares for these estimates, compared to

both scenarios, equalizing private and common value uncertainty leads to better allocation

of projects to smaller firms, while removing nj uncertainty has more mixed results.

In both the expenditure and the allocation scenarios, it is clear that equalizing private

and common value uncertainty leads to better outcomes with respect to the government

objectives of cost saving and affirmative policy. While this paper refrain from discussing any

concrete and actionable strategy as to how this can be achieved, efforts undertaken by the

government to reduce private and common value uncertainty for all firms will be in service of

these objectives. Finally, although removing nj uncertainty attains the opposite effect, it may

38Recall that the lowest bid is not necessarily the winning bid under the “best value” selection criteria of
CDOT; however, it provides a good approximation of winner share.
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Table 7: Average bid by project value.

Scenario Observed Predicted βσ, βµ = 0 Known nj Both

Project value Projects 7(1) 7(2) 7(3) 7(4)

$50K-$500K 267 1.1665 1.1164 1.0583 1.1318 1.0666

$500K-$1.2M 267 1.1136 1.0999 1.0476 1.1182 1.0570

$1.2M-$2.5M 239 1.1063 1.0984 1.0534 1.1132 1.0626

$2.5M-$5M 227 1.0742 1.0916 1.0577 1.1031 1.0648

$5M-100M 231 1.0713 1.0955 1.0642 1.1048 1.0701

Total 1231 1.1065 1.1005 1.0563 1.1143 1.0643

Table 8: Lowest bid share by size cohort.

Scenario Observed Predicted βσ, βµ = 0 Known nj Both

Firm size 8(1) 8(2) 8(3) 8(4)

1 - 25 0.2136 0.1227 0.2900 0.1129 0.2868

26-50 0.1641 0.2071 0.2380 0.1917 0.2429

51-75 0.1795 0.2518 0.2015 0.2299 0.1917

76-100 0.1584 0.2348 0.1795 0.2283 0.1803

101-150 0.1560 0.1129 0.0626 0.1324 0.0626

>150 0.1284 0.0707 0.0284 0.1048 0.0357
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still lead to both better overall allocational efficiency and less expenditure uncertainty, with

the increased cost and affirmative loss mostly compensated for, if combined with reduced

heterogeneity in private and common value uncertainty (Models 6(4), 7(4), and 8(4)).

6 Conclusion

In this paper, I show that smaller firms tend to have greater uncertainty in procurement

auctions, and with the identified parameters of heterogeneous uncertainty, I also show

that efforts to reduce heterogeneity in uncertainty may lead to both cost savings for the

government and better allocations to smaller firms. More generally, I propose, develop,

and solve a model to recover structural parameters of heterogeneous uncertainty through

heteroskedastic outcomes in procurement auctions, and the described method may be

extended to studying the origin of heteroskedastic outcomes in other market settings as

well.

A limitation of the paper is the partial abstraction from the selective entry. While neither

project value or type are found to be good predictors of entry and bidding behavior, and they

are also used as instrumental variables such that the error term cannot be correlated with

these factors, the paper assumes that all projects attract bidders from the same distribution

of private values, which may not be the case if entry is endogenous. In this sense, if projects

more often bid on by smaller firms tend to have a higher dispersion in private values from

participating firms, the heterogeneous uncertainty estimate would absorb some of that effect,

though the variance itself is still a form of uncertainty even if it is correlated with, but

arguably exogenous to, firm size. If the opposite is true, the heterogeneous uncertainty

estimate with respect to firm size would be attenuated. Allowing endogenous entry and

conditional distribution of private values on project value and type, if feasible either through

structural modeling or econometric treatment, may yield more refinement to the paper’s

findings.
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A Proofs and Solutions

A.1 Proof of Proposition 1

Given the conversion from log-normal mean m and variance v to normal mean µ and variance

σ2

µ = ln

(
m√

1 + v
m2

)
(36)

σ2 = ln

(
1 +

v

m2

)
(37)

µ can be rewritten as

µ = lnm− 1

2
ln(1 +

v

m2
)

= lnm− 1

2
σ2 (38)

Even if the bidder correctly observes m, a misoberved λiσ results in

µi,j = lnmj −
1

2
(λiσ)2 (39)

Given the reverse conversions from normal mean to log-normal mean

m = eµ+σ2

2

we obtain

µi,j = µj +
1

2
σ2 − 1

2
(λiσ)2

= µj +
1

2
(1− λ2

i )σ
2 (40)

Given the functional form, it can be easily be shown that µi,j decreases in λi. �

A.2 Solution of the bidder’s problem

This is a brief description of the standard Envelope Theorem approach (Milgrom and Segal,

2002) for solving first-price auctions applied to reverse auctions. Each bidder i has a private
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reservation value vi
iid∼ F (vi), where F (·) is the cumulative distribution function of private

values. The probability that bidder i has the lowest private value among n bidders is therefore

Sn−1(vi), where S(vi) = 1 − F (vi) is the survival function of vi. The expected payoff from

any monotonic bidding strategy bi is

π(vi, bi) = (bi − vi)S(vi)
n−1 (41)

Let B(vi) be the optimal bidding function that is monotonically increasing in vi and

symmetric under the same belief and B−1(vi) be its inverse, the payoff can be rewritten as

πi(vi, bi) = (bi − vi)S(B−1(bi))
n−1 (42)

Πi(vi) = (B(vi)− vi)S(vi)
n−1 (43)

By Envelope Theorem,

dΠi(vi)

dvi
=

∂πi(vi, bi)

∂vi

∣∣∣∣
bi=B(vi)

= −S(B−1(bi))
n−1

∣∣∣∣
bi=B(vi)

(44)

= −S(vi)

Integrating the expression above from bidder i’s private value to the upper bound, we

obtain

∫ v̄

vi

dΠi(x)

dx
dx = −

∫ v̄

vi

S(x)n−1dx (45)

By the fundamental theorem of calculus, the same integral is also equal to

∫ v̄

vi

dΠi(x)

dx
dx = Πi(v̄)︸ ︷︷ ︸

=0

−Πi(vi)

= −Πi(vi) (46)

Because the bidder with the highest reservation has a zero probability of winning, Πi(v̄) =

0. Settting the two representations of the integral equal, we obtain the optimal bidding
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function

Πi(vi) =

∫ vi

v

S(x)n−1dx (47)

(B(vi)− vi)S(vi)
n−1 =

∫ v̄

vi

S(x)n−1dx (48)

B(vi) = vi +

∫ v̄
vi
S(x)n−1dx

S(vi)n−1
(49)

Replace S(·) with the survival function of log-normal distribution expressed in terms of

normal CDF, we arrive at

B(ri,j) = ri,j +

∫∞
ln ri,j

[1− Φ(
lnx−µi,j
γiσ

)]nj−1dx

[1− Φ(
ln ri,j−µi,j

γiσ
)]nj−1

(50)

A.3 First-order derivatives

Given the estimation equation

yi,j,t = ri,j,t +

∫∞
ln ri,j,t

{
1− Φ

[
x−sβµi µj,t

σrs
βσ
i

]}nj−1

dx{
1− Φ

[
ln ri,j,t−s

βµ
i µj,t

σrs
βσ
i

]}nj−1

︸ ︷︷ ︸
bi,j,t

+εi,j (51)

Let Φ(·) represent the normal CDF including all relevant variables. By Leibniz’s rule

of integral differentiation, the first-order partial derivatives of parameters of the structural

equation are calculated as below with simplification steps omitted.

Given ñ = eXIV
′BIV , we have for each βiv ∈ BIV

∂b

∂βiv
=

∫∞
ln r

∂
∂βiv

[1− Φ(x, ·)]ñ(βiv)−1dx

[1− Φ(·)]n−1
−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]2(n−1)

∂

∂βiv
[1− Φ(·)]ñ(βiv)−1

=

∫∞
ln r
xivn ln[1− Φ(x, ·)][1− Φ(x, ·)]n−1(x, ·)dx

[1− Φ(·)]n−1

−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]n−1
xivn ln[1− Φ(x, ·)] (52)

Let φ(·) represent the corresponding normal PDF to Φ(·). Given r = eβi+M′
tBM , for each
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βi , we have

∂b

∂βi
=

∂b

∂βi
r(βi) +

∂b
∂βi

∫∞
ln r

[1− Φ(x, βi, ·)]n−1dx

[1− Φ(·)]n−1
−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]2(n−1)

∂b

∂βi
[1− Φ(βi, ·)]n−1

= xir −
∫∞

ln r
(n− 1) xi

σrsβσ
φ(x, ·)[1− Φ(x, ·)]n−2dx+ xi[1− Φ(·)]n−1

Φn−1(·)

+

∫∞
ln r

[1− Φ(x, ·)]n−1dx

[1− Φ(·)]n
(n− 1)

xi
σrsβσ

φ(·) (53)

For each βm in M′
tBM, we have

∂b

∂βm
=

∂b

∂βm
r(βm) +

∂b
∂βi

∫∞
ln r

[1− Φ(x, βm, ·)]n−1dx

[1− Φ(·)]n−1
−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]2(n−1)

∂b

∂βm
[1− Φ(βm, ·)]n−1

= xmr −
∫∞

ln r
(n− 1)(1− sβµ) xm

σrsβσ
φ(x, ·)[1− Φ(x, ·)]n−2dx+ xm[1− Φ(·)]n−1

Φn−1(·)
(54)

= +

∫∞
ln r

[1− Φ(x, ·)]n−1dx

[1− Φ(·)]n
(n− 1)(1− sβµ)

xm
σrsβσ

φ(·) (55)

For the main parameters of interest,

∂b

∂βσ
=

∂b
∂βσ

∫∞
ln r

[1− Φ(x, βσ, ·)]n−1dx

[1− Φ(·)]n−1
−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]2(n−1)

∂b

∂βσ
[1− Φ(βσ, ·)]n−1

=

∫∞
ln r

(n− 1)σrβσs
βσ−1 ln ri−sβµ (M′

tBM+µr)

σ2
rs

2βσ φ(x, ·)[1− Φ(x, ·)]n−2dx

ΦN(·)

−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]n
(n− 1)σrβσs

βσ−1 ln ri − sβµ(M′
tBM + µr)

σ2
rs

2βσ
φ(·) (56)

∂b

∂βµ
=

∂b
∂βµ

∫∞
ln r

[1− Φ(x, βµ, ·)]n−1dx

[1− Φ(·)]n−1
−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]2(n−1)

∂b

∂βµ
[1− Φ(βµ, ·)]n−1

=

∫∞
ln r

(n− 1)βµs
βµ−1 M′

tBM+µr
σrsβσ

φ(x, ·)[1− Φ(x, ·)]n−2dx

ΦN(·)

−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]n
(n− 1)βµs

βµ−1 M′
tBM + µr
σrsβσ

φ(x, ·) (57)

Finally, for the number of bidders decomposition estimation
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∂b

∂η
=

∫∞
ln r

∂
∂η

[1− Φ(x, ·)]n(η)−1dx

[1− Φ(·)]n−1
−
∫∞
r

[1− Φ(x, ·)]n−1dx

[1− Φ(·)]2(n−1)

∂

∂η
[1− Φ(·)]n(η)−1

=

∫∞
ln r
xη ln[1− Φ(x, ·)][1− Φ]n−1(x, ·)dx

[1− Φ(·)]n−1

−
∫∞

ln r
[1− Φ(x, ·)]n−1dx

[1− Φ(·)]n−1
xη ln[1− Φ(·)] (58)

A.4 Proof of proposition 2

This sketch of proof shows that incorporating heterogeneous private value uncertainty in

firm size alone in the first moment conditions does not remove heteroskedasticity from the

error term. Let

g(γ, µ|W,Θ0) = E[ri,j,t +

∫∞
ln ri,j,t

[1− Φ( lnx−µ
σ

)]nj−1dx

[1− Φ(
ln ri,j,t−µ

σ
)]nj−1

− bi,j,t] (59)

and G represent the random variable generated by g(·). Assuming that V[ε|si,Θ0] is

differentiable in si, het(si) defines a continuous measure of heteroskedasticity

het(si) =
∂

∂si
V[ε|si,Θ0]

=
∂

∂si

∫
G

g2(γ, µ|W,Θ0)f(ε|si)dg

=

∫
G

g2(γ, µ|W,Θ0)
∂

∂si
f(ε|si)dg (60)

6= 0

Now incorporate firm size within the moment condition

g(σ(si), µ(si)|W,Θ0) = E[ri,j,t +

∫∞
ln ri,j,t

[1− Φ( lnx−µ(si)
σ(si)

)]nj−1dx

[1− Φ(
ln ri,j,t−µ(si)

σ(si)
)]nj−1

− bi,j,t] (61)

then,
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∂

∂si
V[ε|si,Θ0] =

∂

∂si

∫
G

[g2(σ(si), µ(si)|W,Θ0)− µG]f(ε|si)dg

=

∫
G

∂

∂si

[
g2(σ(si), µ(si)|W,Θ0)f(ε|si)

]
dg

=

∫
G

f(ε|si)
∂

∂si
g2(σ(si), µ(si)|W,Θ0)dg

+

∫
G

g2(σ(si), µ(si)|W,Θ0)
∂

∂si
f(ε|si)dg (62)

Note that het(si) =
∫
G
g2(γ, µ|W,Θ0) ∂

∂si
f(ε|si)dg, then

∂

∂si
V[ε|si,Θ0] =

∫
G

f(ε|si)
∂

∂si
g2(σ(si), µ(si)|W,Θ0)dg + het(si) (63)

Now,

∂

∂si
g2(γ(si), µ(si)|W,Θ0)

= 2g(γ(si), µ(si)|W,Θ0)
∂

∂si
g(γ(si), µ(si)) (64)

Since g(γ(si), µ(si)|W,Θ0) = 0, we have

∂

∂si
V[ε|si,Θ0] = het(si) � (65)

A.5 Proof of inverse bidding function pseudosample estimator

This is a sketch of proof of the pseudosample estimator following Guerre et al. (2000) with

modifications for reverse auctions. Rewrite the objective function 41 as

π(vi, bi) = (bi − vi)S(B−1(bi))
n−1 (66)

where B−1
i (bi) = vi is the inverse optimal bidding function. The first-order conditions

become

d

dbi
π(vi, bi) = (bi − vi)(n− 1)S(B−1(bi))

n−2S ′(B−1(bi))(B
′(B−1(bi))

−1 + S(B−1(bi))
n−1

= [(bi − vi)S(B−1(bi))
−1S ′(B−1(bi))(B

′(B−1(bi))
−1 + 1]S(B−1(bi))

n−1

= 0 (67)
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Given that S(vi) = 1−F (vi) and B−1
i (bi) = vi, simplify to yield the first-order differential

equation

1− (bi − vi)(n− 1)
f(vi)

S(vi)B′(vi)
= 0 (68)

The solution to equation 68 is the same as the solution to the optimal bidding function in

reverse auctions (equation 49). Let Sb(·) and fb(·) denote the survival and density function

of bi. Since B(vi) is monotonically increasing in vi, it must be the case that Sb(bi) = Pr(b−i >

bi) = Pr(v−i > bi) = S(vi) and that B′(vi) > 0 such that fb(bi) = | d
dbi
B−1(bi)|f(B−1(bi)) =

f(vi)/B
′(vi), therefore

fb(bi)

Sb(bi)
=

f(vi)

S(vi)B′(vi)
(69)

Substitute into 68 we obtain

1− (bi − vi)(n− 1)
fb(bi)

Sb(bi)
= 0 (70)

which solves to yield the structural form of the inverse bidding function pseudosample

estimator

vi = bi −
1

n− 1

Sb(bi)

fb(bi)
� (71)
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