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Abstract 

We propose a bootstrap ARDL test. By applying the appropriate bootstrap method, some 
weaknesses underlying the Pesaran et al. (2001) test are addressed including size and power 
properties and the elimination of inconclusive inferences. In addition, inferences based solely on 
the significance of the F-test and single t-test of Pesaran et al. (2001) are not sufficient to avoid 
degenerate cases. The bootstrap ARDL provides an additional test on the significance of 
coefficients on lagged levels of the regressors, which provides a better insight on the 
cointegration status of the model.  
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1. Introduction 

In the early 2000s, Pesaran et al. (2001) (PSS hereafter) developed a cointegration test, namely, 

the Autoregressive-Distributed Lag Bounds Test (ARDL hereafter), for dealing with models that 

involve time series with mixed orders of integration. This approach has gained popularity due to 

several advantages over other cointegration testing methods. However, many researchers apply 

this test in environments that violate the underlying assumptions of the bounds testing 

framework. For example, the bounds test assumes that there is no feedback at the levels from 

the dependent variable to independent variables. Some researchers implicitly violate this 

assumption by treating each of the variables as the dependent variable in a sequence of 

regressions on the others. This implicitly allows two or more variables to be (weakly) 

endogenous in violation of the assumptions underlying the distributions of the test statistics 

presented in PSS.  

 

Therefore, one of the objectives of this paper is to evaluate the performance of the test under 

violation of the assumption of no feedback from the dependent variable to the independent 

variables. We employ Monte Carlo simulations to investigate the size and power properties of 
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the PSS ARDL bounds test under a range of environments, including those violating the 

assumption of weak exogeneity of the regressors. In addition we employ these same Monte 

Carlo experiments to investigate the performance of ARDL cointegration tests using the 

bootstrap procedure, providing a comparison of the performance of the bootstrap and 

asymptotic tests in the ARDL model. This adds to the existing research on bootstrapping in time 

series models (for example, Li and Maddala, 1997; Chang and Park, 2003; Palm et al., 2010; Ko, 

2011). It is increasingly common to use the bootstrap to perform hypothesis tests in econometric 

analysis, as bootstrap test statistics’ critical values are often more accurate than asymptotic 

critical values (Singh, 1981; Beran, 1988). Palm et al. (2010) (PSU hereafter) prove the 

consistency of the bootstrap test of cointegration in a conditional ECM, and then demonstrate 

with simulation the improved properties of the bootstrap test statistics relative to the asymptotic 

ones. Their consistency proof supports the methodology used in this investigation since both 

studies work within the ECM framework. One difference is that their study does not consider 

the endogeneity problem underlying the bounds cointegration test. 

 

Defined by PSS, cointegration under the bounds test can be found if and only if two tests 

individually reject their respective null hypotheses, together with the condition that the 

dependent variable is known to be I(1). Some researchers draw conclusions based solely on the 

joint significance of the first test in PSS, the F-test on the lagged levels of all variables. They 

neglect to perform the second test, which is the t-test on the coefficient of the lagged level of the 

dependent variable (for example, Alhassan and Fiador, 2014; Garg and Dua, 2014; Jiang and 

Nieh, 2012; Muscatelli and Spinelli,2000 and Getnet et al., 2005). In this situation, incorrect 

conclusions may be drawn from a degenerate case, which PSS define as arising when the overall 

F-statistic is significant, but the coefficient on the lagged level of the dependent variable is not 

significantly different from zero. In this degenerate case, there is no cointegration among the 

series in the model. 

 

PSS rules out another degenerate case by assuming the dependent variable is integrated of order 

one.1 However, researchers applying the ARDL bounds test do not always check for unit roots, 

recognizing that this test is explicitly designed for cases of mixed and unknown orders of 

integration among the several explanatory variables. But, this flexibility does not extend to the 

dependent variable.2 Furthermore, the low power problem of unit root tests may lead one to 

incorrectly conclude that a dependent variable is I(1) and proceed with the ARDL tests.  For 

example, Goh and McNown (2015) examined whether Malaysia’s interest rate was cointegrated 
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with that of the US during the recent managed floating exchange rate regime. They found that 

despite the significant F and t-statistics for the two tests in PSS, the t-statistic for the lagged 

independent variable (i.e. US interest rate) was insignificant. Hence, this suggests that the 

lagged level of the dependent variable is the sole source for the overall statistical significance of 

the lagged levels. In this case the ARDL equation reduces to a generalized Dickey-Fuller 

equation, the dependent variable is actually stationary, and cointegration between the two series 

does not exist.  

 

Instead of assuming the dependent variable to be I(1) in order to rule out the degenerate case, 

we propose an explicit test on the lagged level of the independent variable(s) to have a full 

picture of the cointegration status between the dependent and independent variables. By 

application of all three ARDL tests - the joint F-test on all lagged level terms, the test of 

significance on the coefficient of the lagged level of the dependent variable, and the new test on 

the lagged level(s) of the independent variable(s) - we can have a better insight into whether the 

relationship between the dependent variable and independent variables is one of cointegration, 

non-cointegration, or a degenerate case. The critical values for this additional test may be 

generated through the bootstrap procedure in any empirical application.  

 

A further advantage of the bootstrap ARDL test is the elimination of inconclusive inferences 

with the bounds test. To determine the existence of a long-run relationship between the 

dependent variable and its regressors, PSS presented a pair of tests: an F-test of the joint 

significance of the coefficients of lagged level variables, and a t-test on the single coefficient on 

the lagged level of the dependent variable. Critical values for these tests are generated based on 

two alternative data-generating processes, with all regressors I(0) in one case and all I(1) in the 

other. The values generated with I(0) regressors provide lower bounds to the critical values 

whereas values produced by the I(1) regressors establish upper bounds to the critical values. If 

the computed test statistics fall outside the bounds, conclusive inference is made without 

knowing the integration orders of the underlying regressors. Otherwise the test is inconclusive. 

However, through the bootstrap procedure, the critical values are generated based on the 

specific integration properties of each data set, and the possibility of an indeterminate test is 

eliminated.    
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In summary, this study offers several contributions to the ARDL testing methodology. From the 

Monte Carlo simulations, there is evidence that the endogeneity problem has only minor effects 

on the size and power properties of the ARDL bounds testing framework using the asymptotic 

critical values. In addition, if the resampling procedure is applied appropriately, the bootstrap 

test performs better than the asymptotic test in the ARDL bounds test based on size and power 

properties. Furthermore, the bootstrap procedure has the additional advantage of eliminating the 

possibility of inconclusive inferences. Finally, we present an extension of the ARDL testing 

framework for the alternative degenerate case, with critical values generated by the bootstrap 

procedure. In an empirical application we demonstrate the occurrence of this alternative 

degenerate case when both the joint F test and t test on the lagged level of the dependent 

variable are significant, but the coefficient on the lagged level of the independent variable is 

insignificant. We find occurrence of this alternative degenerate case even when the dependent 

variable appears to be I(1) based on standard unit root tests. Therefore, the proposed bootstrap 

ARDL test provides a better insight on the cointegration status of the series in the model.  

 

This paper is constructed as follows. Section 2 explains the degenerate cases in greater detail. 

Section 3 discusses the data generating process (DGP), model, and simulation setup of the 

Monte Carlo experiments. Next, we present our simulation results in Section 4. Section 5 

describes an empirical application and illustrates the degenerate cases, and Section 6 concludes 

the study. 

 

2. Assumption 3 of Bounds Testing Approach and the Existence of Degenerate Case 

2.1 Assumption 3 of Bounds Testing Approach 

PSS used 5 assumptions as the foundation for the bounds testing approach. Some researchers 

may miss one of the crucial assumptions i.e. Assumption 3 that is spelled out by PSS, page 293. 

Consider a (k+1)-VAR model of order p: 

( )( ) , 1, 2,t tL t t− − = =Φ z μ γ ε         (1) 

where L is the lag operator, 1{ }t t
∞
=z  is a (k+1) random process that can be partitioned into 

( , ) 't ty x , μ  and γ  are unknown (k+1)-vectors of intercept and trend coefficients. The 

( 1, 1)k k+ +  matrix of lag polynomials ( )LΦ  is equal to 1 1
( )p i

k ii
L+ =

−∑I Φ , where 1k+I  is an 
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identity matrix of order k+1, with { } 1
( 1, 1)p

i i
k k

=
Φ + +  matrices of unknown coefficients. 

Applying PSS Assumptions 1 and 2, the VAR(p) in Equation (1) is expressed as a conditional 

ECM system: 

1
'

0 1 1 1 1
1

'
p

t yy t yx t i t t t
i

y c c t y up
−

− − −
=

∆ = + + + + ∆ + ∆ +∑π x ψ z ω x , 1, 2,t = 

   (2) 

1
'

0 1 1 1 1
1

p

t xy t xx t xi t xt
i

t
−

− − −
=

∆ = + + + + ∆ +∑x c c π y π x Γ z ε , 1, 2,t = 

    (3) 

where p  denotes a long-run coefficient matrix or vector, '
iψ  and '

xiΓ  are matrices of short-run 

multipliers, ∆  is the difference operator, 'ω  contains the coefficients on t∆x , and tu  and xtε  are 

i.i.d. errors.3 PSS states Assumption 3 as: the k-vector xy =π 0 , i.e. there is no feedback from 

the level of ty  in the conditional unrestricted ECM for tx , but it does not impose similar 

restrictions on the short-run multipliers in the equations for tx . Under Assumption 3, Equation 

(3) becomes 
1

'
0 1 1 1

1

p

t xx t xi t xt
i

t
−

− −
=

∆ = + + + ∆ +∑x c c π x Γ z ε ,  

This assumption restricts the vector tx  to be long run forcing variables for { } 1t t
y ∞

=
. Under 

Assumption 3, the conditional ECM (2) now becomes 
1

'
0 1 1 . 1 1

1

'
p

t yy t yx x t i t t t
i

y c c t y up
−

− − −
=

∆ = + + + + ∆ + ∆ +∑π x ψ z ω x .4    (4) 

This is the crucial assumption that supports the PSS methodology. By incorporating Assumption 

3 together with other assumptions, one can detect cointegration irrespective of the level of 

integration of the regressors.   

 

The PSS framework assumes weak exogeneity of the regressors. These regressors are not 

impacted by the dependent variable in the long-run, but this does not preclude the existence of 

cointegrating relationships among the regressors; nor does it assume the absence of (short run) 

Granger causality from the dependent variable to the regressors. Since the asymptotic 

distributions presented by PSS build on Assumption 3, its violation may invalidate test results. 

Unfortunately, some researchers have ignored this assumption in their empirical applications of 

the ARDL bounds test, for instance, as in Shahbaz et al. (2013), Satti et al. (2014), Blotch et al. 

(2015), Baharumshah et al. (2009), Guru-Gharana (2012) and Ahmed et al. (2007). These 
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studies tested for cointegration by treating each variable sequentially as the dependent variable, 

changing the classification of the dependent and forcing variables for each different 

specification. This implicitly assumes that all variables are endogenous and PSS Assumption 3 

is violated. The findings of cointegration (or long-run relationship) in each of these studies is 

therefore suspect. It is common to assume all the variables as endogenous in contemporary 

macroeconometrics, and regressors in ARDL equations may not generally be weakly exogenous. 

Since this problem could be pervasive, an important question addressed in this study is how the 

violation of Assumption 3 affects the size and power of the ARDL bounds testing procedure. 

 

2.2 The Existence of Degenerate Cases 

The hypotheses behind the F and t-tests in the ARDL bounds procedure are the following. In the 

unrestricted error-correction model of Equation (4), PSS introduced the test for the absence of 

any level relationship between ty  and 
tx  by defining the null hypothesis as . x

0 0 0
yy yxH H Hp p= ∩ , 

where 
0 0,:yy

yyH p p =  .

0 . ':yx x

yx xH p =π 0 ,  while the alternative hypothesis is defined as 

. x

1 1 1
yy yxH H Hp p= ∪  and it covers not only 1 0,: yyH p ≠  . 'yx x ≠π 0  but also permits 1 0,: yyH p ≠  

. 'yx x =π 0  or 1 0,: yyH p =  . 'yx x ≠π 0 . Cases when 1 0,: yyH p ≠  . 'yx x =π 0  and 1 0,: yyH p =  

. 'yx x ≠π 0  PSS refers to as degenerate level relationships between ty  and 
tx . We call the former 

degenerate case #1 and degenerate case #2 for the latter. Degenerate cases imply no 

cointegration.   

 

To establish the existence of a levels relationship between ty  and 
tx , the F statistic on yyp  and 

.yx xπ  must be significant. However, to conclude the existence of a level relationship, using the 

significance of the F test solely is insufficient because it only rejects the null of 
. x

0 0 0
yy yxH H Hp p= ∩  in favor of the alternative hypothesis . x

1 1 1
yy yxH H Hp p= ∪ .  However, this 

alternative hypothesis includes the possibility of a degenerate level relationship as well. For this 

reason, the t-test of 0 0: yyH p =  against its alternative 1 0: yyH p ≠  must be applied to ensure 

the outcome is free of degenerate case #2. Although PSS presents the necessary critical value 

bounds for testing the lagged level of the dependent variable, some studies fail to apply this 

test.5   
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To rule out degenerate case #1, one also needs to make sure that the dependent variable is 

integrated of order one or I(1). If the F test is significant and the dependent variable is I(1), then 

the coefficient .yx xπ  must be significant, ruling out degenerate case #1. If the dependent 

variable is I(0) and the independent variables are I(1), then there cannot be cointegration. The 

significance of the overall F-statistic in this case results from the stationarity of the dependent 

variable. The ARDL test in this case is equivalent to a generalized unit root test with the 

difference of the dependent variable regressed on its lagged level plus additional irrelevant 

lagged levels of the independent variables. For instance, Morley (2006) in his study using 

conventional ADF tests found that the immigration variables from three countries were 

borderline I(0)/I(1) processes. If immigration is actually I(0), then the ARDL test with 

immigration as the dependent variable is non-informative since an I(0) series cannot be 

cointegrated with I(1) regressors. 

 

Despite that, as mentioned previously, ruling out this degenerate case by using the assumption 

of dependent variable as I(1) can lead to incorrect conclusions. We would suggest that when 

conducting the bounds test, the F-test must be complemented with tests of both degenerate cases 

as well. These tests will be able to identify whether there is cointegration or a degenerate case, 

as will be shown through Monte Carlo simulations and illustrated in the empirical applications.  

 

3. The Data-Generating Process (DGP), Model and Bootstrap Procedures 

3.1 The Data-Generating Process (DGP) 

PSS has listed five different cases of interest according to the choice of deterministic 

components. For this investigation, we focus on a bivariate version of Case III, i.e. the model 

with unrestricted intercepts but no trend in the long run relation.6 The DGP setting is similar to 

PSU but with some modifications that fit the needs of this study. To accommodate a variety of 

cases of cointegration, non-cointegration, and degenerate cases, the most general model is an 

unrestricted bivariate ECM(1,1): 

( )1 1 2 1 1 1 2 1
y y y y y y y

t t t t t ty y x y xt α β β φ φ ε− − − −∆ = − − + ∆ + ∆ + , and     (5) 

( )1 1 2 1 1 1 2 1
x x x x x x x

t t t t t tx x y y xt α β β φ φ ε− − − −∆ = − − + ∆ + ∆ + ,    (6) 

followed by generation of ty  and tx  recursively as 

1t t ty y y−= + ∆  and         (7) 
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1t t tx x x−= + ∆ ,           (8) 

for t = 3, …, T where T is the sample size. For Equations (5) and (6), parameters denoted t are 

the intercept terms; α  terms are the coefficients of the error correction components that capture 

the gravitation towards the equilibrium relationship by ty  and tx ; β  terms are the coefficients 

on lagged level variables (where 1β  refers to the coefficient on the lagged dependent variable 

and 2β  represents the coefficient on the lagged independent variable), φ parameters are 

coefficients on lagged differences. The tε is the disturbance and is related to the structural 

innovations tu  and tv  by:  

y
t t tv uε ρ= +  and         (9) 

x
t tvε = ,          (10) 

where tu  and tv  are independently and identically distributed as ( )20,N σ   

2

2

00
,

0 0
t

t

ut

t v

u
IN

v

σ

σ
=

                 
.        (11)

  

Here ρ allows dependence between the equation errors and is equivalent to the 

contemporaneous correlation between ty  and tx , after controlling for conditioning information. 

The superscript y denotes variables in equation for Y; x denotes variables in equation X.   

 

This DGP framework allows various types of interdependencies between ty  and tx  through 

choice of alternative parameter values in the ECM(1,1), including allowance for unilateral or 

bilateral direction feedbacks from the levels of the variables, cointegrating relations, and 

degenerate cases. Without loss of generality, we may choose combinations of the vector β for 

( ) 't ty x  by setting it to ( )0 1 , ( )1 0 or ( )1 1 . For the ty  equation if the vector is set to 

( )0 1 , then only 
1tx
−

 or lagged level of independent variable appears in the error-correction 

term. In this case there is no cointegration, but rather the degenerate case #2 mentioned by PSS. 

Similarly with the vector ( )1 0 , only 
1ty
−

 (the lagged level of the dependent variable) appears 

in the error correction term, which defines degenerate case #1. ty  is not related to tx  in the 
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long-run, and the significant  F is due to the stationarity of ty . Lastly, if the vector is ( )1 1 , ty  

and tx  are cointegrated, provided the speed of the adjustment parameter is less than zero 0α < .  

 

In designing the direction of feedback in the levels between ty  and tx , for unilateral feedback 

from tx  to ty  we omit the lagged level of ty  from the equation for tx∆  . For example, in 

Equations (5) and (6), with adjustment parameter 0α ≠ , specify 1 2 1 0y y xβ β β= = ≠  while 

2 0xβ = , so that in Equation (5) 
ty∆  is related to both lagged levels 

1ty
−

 and 1tx − . However, in 

Equation (6) tx∆  only contains its own lagged level, 1tx − . This is consistent with PSS’s 

Assumption 3, treating tx  as the long-run forcing variable for ty , with no feedback from the 

level of ty  in the equation for tx∆ . However, in designing an environment that violates 

Assumption 3, allowing feedback from the dependent variable to the independent variable, we 

specify 1 2 2 0y y xβ β β= = ≠  and 1 0xβ = . In this case, because 
1ty
−

 is present in the tx∆  

equation, tx  is no longer an exogenous long-run forcing variable to ty . As long as 
1ty
−

 appears 

in the RHS of the tx∆  equation, Assumption 3 is violated in the use of the PSS ARDL bounds 

tests in the 
ty∆  equation.  

 

3.2 Bootstrap Procedures  

In bootstrapping time series data PSU establish the consistency of cointegration tests using the 

residual-based bootstrap procedure. Papers that use the residual-based bootstrap method in 

cointegrating regressions include Li and Maddala (1997), Harris and Judge (1998), and Chang 

et al. (2006). To perform the residual-based bootstrap, one can obtain the residuals from OLS 

estimation of either the restricted or the unrestricted model (see Remark 2, page 654, in PSU). 

To obtain the restricted residuals, estimate the restricted ARDL(1,1) model, 

0 1 0 1 1 1 2 1
ˆ ˆˆt t t t t ty c y x y xε δ δ θ θ− − − −= ∆ − − − − ∆ − ∆ , by imposing the null hypothesis of 0 0δ = ; to 

obtain the unrestricted residuals, estimate the residuals from the ARDL(1,1) model, 

1 1 2 1 1 1 2 1
ˆ ˆ ˆ ˆˆt t t t t ty c y x y xε δ δ θ θ− − − −= ∆ − − − − ∆ − ∆ , under the alternative hypothesis of 

cointegration with 1 20, 0δ δ≠ ≠ . The consistency of bootstrap tests of cointegration within the 

error correction model framework is established by PSU. The cointegration tests analyzed in 

this current study are also grounded in the ECM framework, with bootstrapped pseudo-data 
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generated with and without the restrictions of the null hypothesis. Since the proof of consistency 

of these bootstrap tests is provided in PSU, it is unnecessary to repeat this proof here. 

 

The bootstrap procedure that follows is identical to that presented in Section 3.2 of PSU. In 

particular, Equation Y from (12) below with the restriction 0 0δ =  duplicates PSU Equation (8). 

The equation for X relaxes the restriction of non-cointegration, 1 20, 0x xδ δ≠ ≠ , which duplicates 

PSU’s alternative bootstrap procedure discussed in their Remark 2, although they allow a more 

general case for deterministic components. As is common in most Monte Carlo studies, PSU 

generate series in some environments that depart from the assumptions that support the 

asymptotic theory. For example, they consider specifications with multivariate GARCH error 

processes and also models with non-constant parameters in the short run dynamics. They also 

analyze variations on the method of resampling the residuals in the bootstrap. They find the 

bootstrap procedure to be robust to these alternative specifications. Similarly, the current study 

analyzes the performance of the bootstrap tests in environments that depart from the narrow 

assumptions that support the asymptotic distribution theory. Of course, this type of robustness 

test is one of the primary advantages of Monte Carlo studies over sole reliance on asymptotic 

distributions. Reasonable size and power performance of the bootstrap tests under these 

alternative conditions would be evidence that the asymptotic distribution theory provides 

general support for the empirical bootstrap distributions.  

 

The algorithm to obtain the bootstrap critical values is presented in 8 steps for the Equation Y 7:  

Step 1: Fit the restricted ARDL(1,1) model for ty∆ and unrestricted ARDL(1,1) model for tx∆ . 

 The ty∆ equation is imposed with the null of the F test, 0 0yδ δ= = . Estimate both 

 equations by OLS and save the restricted residuals defined as 

0 1 0 1 1 1 2 1

1 1 2 1 1 1 2 1

ˆ ˆˆ
ˆ ˆ ˆ ˆˆ

y y y y
t t t t t t

x x x x x x
t t t t t t

y c y x y x

x c y x y x

ε δ δ θ θ

ε δ δ θ θ
− − − −

− − − −

= ∆ − − − − ∆ − ∆

= ∆ − − − − ∆ − ∆





.8    (12) 

Note that this same set of restrictions applies to the t-tests on the lagged level of the 

 dependent variable and the lagged level of the independent variable, regardless of the  

null hypothesis. 

Step 2: Rescale and recenter the restricted residuals by the following formula: 

 ( ) 1ˆ ˆ1t t tt
n qε ε ε−= − − − ∑

,       (13) 
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where n is the number of observations and q is the lag length of the model. In this case,

 the q is equal to 1. This step follows the recommendation of Davidson and MacKinnon

 (2005). Save the rescaled and recentered residuals. 

Step 3: Resample the tε  with replacement to obtain the bootstrap residuals *
tε . 

Step 4: For generating bootstrap observation t, use the model (12) in Step 1 to generate ty∆  and 

tx∆ , inserting the bootstrap residuals in place of the original residuals. Then generate 

*
ty  and *

tx  as: 

 
* * *

1
* * *

1

t t t

t t t

y y y
x x x

−

−

= + ∆
= + ∆

.        

Step 5: Repeat Step 4 T times to obtain T observations on the bootstrap series *
ty  and *

tx . 

Step 6: Use OLS to estimate the unrestricted ARDL(1,1) equation with the bootstrap data  

* * * * * *
1 1 2 1 1 1 2 1

* * * * * *
1 1 2 1 1 1 2 1

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆˆ

y y y y y y
t t t t t t

x x x x x x
t t t t t t

y c y x y x

x c y x y x

δ δ θ θ ε

δ δ θ θ ε
− − − −

− − − −

∆ = + + + ∆ + ∆ +

∆ = + + + ∆ + ∆ +
.    (14) 

Step 7: Calculate the bootstrap F and t test statistics. 

For the F test of joint significance of both lagged level terms (the null hypothesis of 

 0
yδ δ= =0), we follow PSS in the use of the F statistic version of the Wald test. The

  bootstrap version of this test statistic is *
yF ; similarly DV*

yt  is the bootstrap t statistic     

on the lagged level of the dependent variable, and IDV*
yt is the bootstrap  t statistic on the

  lagged level of the independent variable. 

Step 8: Repeat from Step 1 to Step 7 B times to obtain bootstrap test statistics *
,y bF , or DV*

,y bt  and 

IDV*
,y bt , where b = 1, 2, …, B. Construct an empirical bootstrap distribution from the 

ordered bootstrap test statistics, and determine the critical values from this empirical 

distribution. Select bootstrap critical values *cα  or *
1c α−  as 

( ){ }* *
1 1

min : B
bb

c c I T cα α− =
= > ≤∑ , or     (15)

 ( ){ }* *
1

max : B
bb

c c I T cα α
=

= < ≤∑       (16) 
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where *
bT  is the order bootstrap test statistic, equivalent to (1 )α−  and α-quantiles of 

 the ordered bootstrap statistics respectively. Reject the null hypothesis if the test  

statistic ( yF  or IDV
yt ) calculated from Equation (4) is greater than *

1c α−  or test statistic  

( DV
yt ) less than *cα , where α  is the nominal level of the test. For the estimation of  

Equation X,  follow the same algorithm above, except that the restriction of the null  

in Step 1 is imposed on  the tx∆  equation. The same changes apply in Step 4.  

 

4. Simulation 

4.1 Size and Power Analyses for Asymptotic and Bootstrap Tests 

In this section, we report on a set of simulations with replications of N = 2,000 and bootstrap 

replications B = 1,000 to investigate both asymptotic and bootstrap ARDL bounds test 

performances. The upper and lower bound critical values used for the experiment are adopted 

from  PSS and Narayan (2005) and they are used for the F-test and t-test on lagged dependent 

variable respectively. For those cases involving I(1) independent variable, the upper bound 

critical value is used, whereas for those cases with I(0) independent variable the lower bound 

critical value is used. Experiments with sample sizes of 50 and 100, with and without 

contemporaneous correlation under 16 different DGP cases are examined. The 16 simulation 

DGPs are described in Table 1 following the notation of Equations (5) and (6). These 16 cases 

include designs with no-cointegration, weak exogeneity, endogeneity of the regressor, and 

cointegration with various types of feedback effects between ty  and tx . The cointegration 

status for Equations X and Y, PSS Assumption 3 violation status and each variable’s integration 

order are summarized in Table 2. When the cointegration status of the two equations differs, one 

of the two series is weakly exogenous so that the ARDL equation for that series should not 

show significant response to the error correction term. 

 

First, the asymptotic test is analyzed based on the critical values defined by the bound for I(1) or 

I(0) regressors consistent with the DGPs in these simulations. The size and power performances 

of the asymptotic test are summarized in Table 3. The simulation results suggest that the 

asymptotic F test generally works well in all cases, even with an endogenous regressor. The 

rejection rates are close to the 5% nominal level, ranging between 0.028 and 0.077. Cases in 

which  
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Table 1: Parameter combinations used in the DGP simulation 
Case xt  xα  1

xβ  2
xβ  1

xφ  2
xφ   yt  yα  1

yβ  2
yβ  1

yφ  2
yφ  

1 0.02 0 0 0 0 0  0.02 0 0 0 0 0 
2 0.02 0 0 0 0 0.5  0.02 0 0 0 0.5 0 
3 0.02 0 0 0 0.2 0.5  0.02 0 0 0 0.5 0.2 
4 0.02 0 0 0 0 0.5  0.02 0.5 1 0 0.5 0 
5 0.02 0 0 0 0.2 0.5  0.02 0.5 1 0 0.5 0.2 
6 0.02 0 0 0 0 0.5  0.02 0.5 0 1 0.5 0 
7 0.02 0 0 0 0 -0.5  0.02 0.5 0 1 -0.5 0 
8 0.02 0 0 0 -0.2 -0.5  0.02 0.5 0 1 -0.5 -0.2 
9 0.02 0.5 0 1 0 0.5  0.02 0.5 1 0 0.5 0 
10 0.02 0.5 0 1 0.2 0.5  0.02 0.5 1 0 0.5 0.2 
11 0.02 0.5 1 1 0 0.5  0.02 0.5 1 0 0.5 0 
12 0.02 0.5 1 1 0.2 0.5  0.02 0.5 1 0 0.5 0.2 
13 0.02 0.5 1 1 0 0.5  0.02 0.5 1 1 0.5 0 
14 0.02 0.5 1 1 0.2 0.5  0.02 0.5 1 1 0.5 0.2 
15 0.02 0 0 0 0 0.5  0.02 0.5 1 1 0.5 0 
16 0.02 0 0 0 0.2 0.5  0.02 0.5 1 1 0.5 0.2 

Note: Notations with superscript x refer to variables in Equation X and y for Equation Y. 

 

Table 2: Information of the experiments 

Case 
Equation X  Equation Y  
Status Violation 

assumption  
Integration 
order of xt 

Status Violation 
assumption  

Integration 
order of yt 

1 No-cointegration No I(1) No-cointegration No I(1) 
2 No-cointegration No I(1) No-cointegration No I(1) 
3 No-cointegration No I(1) No-cointegration No I(1) 
4 No-cointegration No I(1) Degenerate #1 No I(0) 
5 No-cointegration No I(1) Degenerate #1 No I(0) 
6 No-cointegration Yes I(1) Degenerate #2 No I(1) 
7 No-cointegration Yes I(1) Degenerate #2 No I(1) 
8 No-cointegration Yes I(1) Degenerate #2 No I(1) 
9 Degenerate #2 No I(1) Degenerate #1 Yes I(0) 
10 Degenerate #2 No I(1) Degenerate #1 Yes I(0) 
11 Cointegration No I(1) Degenerate #1 Yes I(0) 
12 Cointegration No I(1) Degenerate #1 Yes I(0) 
13 Cointegration Yes I(1) Cointegration Yes I(1) 
14 Cointegration Yes I(1) Cointegration Yes I(1) 
15 No-cointegration Yes I(1) Cointegration No I(1) 
16 No-cointegration Yes I(1) Cointegration No I(1) 

 

 

Assumption 3 is violated do not necessarily produce important size distortions; for example, 

Cases 6-8 in Equation X show empirical sizes of 0.049 – 0.058. 
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On the other hand, the t-test faces a more serious undersize problem, but again this occurs 

regardless of the consideration of violation of Assumption 3.  For Cases 1-3 in both Equations X 

and Y, the sizes are close to the nominal 0.05 value. However, in all other cases in which the 

null hypothesis is true (the coefficient on the lagged level of the dependent variable equals zero), 

the empirical size is below 0.05. This is particularly extreme in Cases 15 and 16 for the 

Equation X (0.006 and 0.007) and Cases 6-8 (0.006 – 0.010) in the Equation Y. These cases 

involve a mixture of Assumption 3 violations and non-violations, so there is no indication that 

endogeneity is the source of these size problems. In any case, the evidence of size distortions for 

the ARDL bounds test motivates analysis and comparison of the ARDL tests based on a 

bootstrap procedure. In addition, power comparisons are presented below, together with an 

investigation of the performance of the new test for degenerate case #1.  

 

Table 3: Size and power of the asymptotic test (n = 50, ρ = 0.5) 
Case 

xF  yF  DV
xt  y

DVt  

1 0.057 0.050 0.053 0.047 
2 0.067 0.060 0.065 0.053 
3 0.054 0.077 0.039 0.056 
4 0.044 0.960 0.058 0.977 
5 0.056 0.967 0.068 0.978 
6 0.049 0.925 0.012 0.006 
7 0.058 0.821 0.045 0.008 
8 0.055 0.737 0.031 0.010 
9 0.680 0.758 0.050 0.820 
10 0.517 0.663 0.039 0.708 
11 0.997 0.953 0.996 0.708 
12 0.997 0.997 0.986 0.550 
13 0.638 0.770 0.673 0.803 
14 0.497 0.619 0.509 0.627 
15 0.028 0.964 0.006 0.971 
16 0.032 0.885 0.007 0.898 

Note: Testing level α  = 0.05. Number in bold refers to size property. 

 

Table 4 summarizes the results for both asymptotic and bootstrap tests (the latter indicated with 

an * below). Generally, the *F test performs well in all the cases. The test has similar size 

properties as the asymptotic test with empirical sizes close to 5%. For the t-test on the lagged 

dependent variable, the bootstrap test helps to correct the size distortions that existed with the 



15 
 

asymptotic test in some cases. The undersized problem underlying the asymptotic DVt test is 

reduced by the bootstrap test, with nominal sizes close to 5% for almost all cases (note 

especially Cases 15 and 16 in the Equation X and 6-8 in the Equation Y, which were especially 

problematic for the asymptotic test). For the *IDVt test the bootstrap procedure has reasonable 

sizes in most cases. However, in Case 8 for the Equation X and Case 10 for the Equation Y this 

test is somewhat undersized with empirical rejection rates of 0.02.  

 

Overall, the bootstrap test performs well in terms of size, overcoming the most severe size 

distortions shown by the asymptotic test. In addition, the Monte Carlo evidence shows that it 

has 

 

Table 4: Size and power of the asymptotic and bootstrap tests (n = 50, ρ  = 0.5) 
Case 

xF  *
xF  yF  *

yF  DV
xt  *DV

xt  y
DVt  *

y
DVt  *

x
IDVt  *

y
IDVt  

1 0.057 0.065 0.050 0.061 0.053 0.068 0.047 0.060 0.051 0.041 
2 0.067 0.071 0.060 0.062 0.065 0.076 0.053 0.066 0.058 0.056 
3 0.054 0.057 0.077 0.070 0.039 0.044 0.056 0.054 0.038 0.044 
4 0.044 0.053 0.960 0.954 0.058 0.057 0.977 0.977 0.040 0.037 
5 0.056 0.052 0.967 0.946 0.068 0.059 0.978 0.982 0.050 0.032 
6 0.049 0.061 0.925 0.930 0.012 0.061 0.006 0.036 0.049 0.981 
7 0.058 0.058 0.821 0.907 0.045 0.047 0.008 0.039 0.029 0.923 
8 0.055 0.068 0.737 0.855 0.031 0.048 0.010 0.040 0.021 0.936 
9 0.680 0.698 0.758 0.762 0.050 0.057 0.820 0.910 0.877 0.026 
10 0.517 0.530 0.663 0.633 0.039 0.067 0.708 0.827 0.785 0.021 
11 0.997 0.995 0.953 0.952 0.996 0.995 0.708 0.833 0.817 0.060 
12 0.997 0.996 0.997 0.997 0.986 0.988 0.550 0.765 0.687 0.055 
13 0.638 0.747 0.770 0.843 0.673 0.912 0.803 0.956 0.920 0.964 
14 0.497 0.607 0.619 0.703 0.509 0.831 0.627 0.886 0.843 0.896 
15 0.028 0.057 0.964 0.972 0.006 0.048 0.971 0.985 0.048 0.976 
16 0.032 0.065 0.885 0.890 0.007 0.061 0.898 0.942 0.063 0.936 

Note: Testing level α  = 0.05. Number in bold refers to size property. 

 

higher power than the asymptotic test. This can be seen from all the cases from in Table 4. For 

example, the power of the F-test for Equation Y in Case 8, is 11.8 percentage points higher than 

the asymptotic test, and the smallest improvement is 0.5 percentage points in Case 12 for 

Equation X. Across all cases, the average increase in power with the bootstrap F test is 3.0 

percentage points, relative to the asymptotic test. 
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The increase of power from the bootstrap procedure is especially strong for the t-test on the 

lagged dependent variable. The power is higher for the bootstrap test in almost all the cases. For 

example, power increases as much as 32.7 percentage points (Case 12, Equation Y) and the 

average increase in power is 11.3 percentage points across all cases. For the power of the 

bootstrap *IDVt test, Table 4 shows that its power is high with an average rejection rate of 88.8%. 

  

Besides that, two additional bootstrap procedures were also implemented in our study besides 

the one presented in this paper. The first bootstrap procedure is based on the system null 

imposition on VAR model as suggested in PSU, and the second bootstrap follows the same 

procedure as presented in the paper with the imposed restriction specific to each particular test. 

However, these alternative bootstrap procedures do not improve the size and power properties 

relative to the asymptotic test, and are inferior in some cases to those based on the bootstrap 

design used for the results in Table 4. Although the asymptotic theory in PSU is based on the 

first alternative design, the similarity of results indicates that this theoretical support is robust to 

the specific choice of restrictions imposed in the bootstrap generating procedure.9  

 

In addition, we extended our analysis for the case of pure I(0) series although this may not be 

the focus of the ARDL bounds test as presented by PSS. Their simulated bounds for the critical 

values area all based on data generation processes with the dependent variable as I(1). In any 

case the bootstrap tests are robust to this stationary environment, as shown in the Appendix. 

Therefore, reasonable size and power properties of the bootstrap tests are maintained across the 

full range of I(0) and I(1) combinations for dependent and independent variables.  

 

4.2 Analyses with Different Combinations of Sample Sizes and Cross Equation Correlations 

Tables 5 - 7 present size and power results for the bootstrap test in environments with zero and 

non-zero correlations between the equation errors and with different sample sizes. Table 5 

shows the results from an experiment using a sample size of 50 and with the absence of 

contemporaneous correlation between series Y and X. 

 
 

Table 5: Size and power of the asymptotic and bootstrap tests (n = 50, ρ  = 0.0) 
Case 

xF  *
xF  yF  *

yF  DV
xt  *DV

xt  y
DVt  *

y
DVt  *

x
IDVt  *

y
IDVt  
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1 0.054 0.068 0.053 0.071 0.059 0.082 0.054 0.083 0.064 0.065 
2 0.063 0.069 0.070 0.071 0.064 0.085 0.068 0.091 0.057 0.068 
3 0.068 0.068 0.072 0.080 0.071 0.089 0.069 0.091 0.084 0.074 
4 0.062 0.054 0.993 0.977 0.069 0.059 0.997 0.990 0.051 0.030 
5 0.056 0.055 0.993 0.981 0.066 0.060 0.997 0.982 0.052 0.022 
6 0.046 0.064 0.982 0.965 0.016 0.056 0.003 0.018 0.051 0.981 
7 0.057 0.063 0.857 0.945 0.056 0.066 0.003 0.029 0.036 0.961 
8 0.053 0.064 0.832 0.915 0.040 0.060 0.002 0.023 0.021 0.961 
9 0.872 0.891 0.896 0.911 0.028 0.033 0.945 0.972 0.971 0.048 
10 0.789 0.794 0.791 0.757 0.043 0.038 0.845 0.898 0.945 0.030 
11 1.000 1.000 0.943 0.959 1.000 1.000 0.861 0.933 0.968 0.071 
12 1.000 1.000 0.993 0.993 1.000 1.000 0.783 0.886 0.913 0.050 
13 0.945 0.966 0.942 0.973 0.958 0.991 0.958 0.995 0.992 0.996 
14 0.860 0.907 0.851 0.900 0.885 0.974 0.879 0.975 0.979 0.979 
15 0.032 0.056 0.999 0.999 0.009 0.063 1.000 1.000 0.051 0.998 
16 0.037 0.061 0.996 0.995 0.006 0.064 0.997 0.996 0.065 0.996 

Note: Testing level α  = 0.05. Number in bold refers to size property. 

 

From Table 5, the asymptotic F and t-tests performance is fairly similar in both size and power 

properties to the experiments with dependency between series (Tables 3 and 4; cross equation 

error correlation of 0.5). The same is true for the bootstrap test, which performs well in most of 

the cases except for the first three cases of no-cointegration. In these cases, the bootstrap F-test 

and t-test on the lagged dependent variable are slightly oversized compared to the asymptotic 

test with sizes as high as 0.09. Generally, these size differences are not large; 0.03 is the greatest 

difference between the test sizes in these first three environments. For the t test on lagged 

independent variable, except Case 3 (sizes of 0.084 and 0.074), the bootstrap test performs well 

with reasonable empirical sizes. In addition, the bootstrap F and t tests have higher power than 

the asymptotic test although comparison of tests with unequal sizes can be problematic. The t-

test on the lagged independent variable has high power properties as well and with an average 

rejection rate of 97.2%. 

 

Next, Table 6 presents the test results using a larger sample size (100 observations), first 

allowing dependence between the series. Again, the asymptotic test performs the same as in the 

previous experiments, showing that the flaws underlying the t-test on lagged dependent variable 

are not resolved by increasing the sample size, but the bootstrap tests again overcome the 

problem of small sizes. In Cases 15 and 16 for Equation X the sizes are 0.002 and 0.004 for the 

asymptotic t-test, versus 0.050 and 0.066 for the bootstrap test. There is similar improvement  
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Table 6: Size and power of the asymptotic and bootstrap tests (n = 100, ρ  = 0.5) 
Case 

xF  *
xF  yF  *

yF  DV
xt  *DV

xt  y
DVt  *

y
DVt  *

x
IDVt  *

y
IDVt  

1 0.047 0.063 0.044 0.060 0.047 0.066 0.046 0.063 0.046 0.043 
2 0.050 0.069 0.053 0.066 0.056 0.077 0.041 0.056 0.050 0.042 
3 0.064 0.064 0.061 0.062 0.041 0.046 0.044 0.050 0.030 0.039 
4 0.053 0.062 1.000 1.000 0.057 0.063 1.000 1.000 0.046 0.044 
5 0.057 0.063 1.000 1.000 0.062 0.072 1.000 1.000 0.042 0.038 
6 0.053 0.070 1.000 1.000 0.005 0.076 0.004 0.033 0.041 1.000 
7 0.064 0.064 0.996 0.999 0.035 0.061 0.005 0.044 0.032 1.000 
8 0.044 0.059 0.987 0.997 0.019 0.048 0.009 0.039 0.020 0.999 
9 0.972 0.965 0.984 0.986 0.046 0.044 0.990 0.998 0.997 0.037 
10 0.896 0.905 0.949 0.947 0.041 0.047 0.953 0.992 0.987 0.037 
11 1.000 1.000 1.000 1.000 1.000 1.000 0.977 0.995 0.991 0.057 
12 1.000 1.000 1.000 1.000 1.000 1.000 0.895 0.983 0.965 0.060 
13 0.964 0.985 0.983 0.994 0.969 1.000 0.986 1.000 1.000 1.000 
14 0.844 0.921 0.939 0.968 0.853 0.989 0.943 0.997 0.990 0.997 
15 0.023 0.053 1.000 1.000 0.002 0.050 1.000 1.000 0.052 1.000 
16 0.038 0.069 0.999 0.999 0.004 0.066 0.999 1.000 0.063 1.000 

Note: Testing level α  = 0.05. Number in bold refers to size property. 

 

with the bootstrap test for Cases 6, 7 and 8 in the Equation Y. However, there is little difference 

in the power of the asymptotic test compared with the bootstrap, as the power for both tests is 

very close to a 100% rejection rate. 

 

Finally, the results of the experiments with a larger sample size and zero correlation between the 

equation errors are shown in Table 7. There are no important differences between the results in 

Table 7 and those of the Tables 4 - 6. The bootstrap test still performs well in this environment, 

but large sample size does not help in resolving the size problem from Cases 1 to 3. In any case 

this problem is not severe; in no case is the size of any bootstrap test greater than 0.09, and the 

bootstrap F tests all have sizes less than 0.07. As in the previous experiment, a large sample size 

experiment pushes the power of the test to the extreme level and not much comparison can be 

made here.  

 

Several conclusions emerge from the Monte Carlo experiments. First, the ARDL bounds test of 

PSS is not adversely affected by the presence of endogenous regressors. There are cases that 

produce undersized performance, but these are not necessarily associated with the violation of 

PSS Assumption 3. Second, the tests using the bootstrap show improvements in size relative to 
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Table 7: Size and power of the asymptotic and bootstrap tests (n = 100, ρ  = 0.0) 
Case 

xF  *
xF  yF  *

yF  DV
xt  *DV

xt  y
DVt  *

y
DVt  *

x
IDVt  *

y
IDVt  

1 0.048 0.062 0.056 0.066 0.049 0.082 0.055 0.081 0.070 0.062 
2 0.057 0.064 0.059 0.065 0.053 0.083 0.062 0.091 0.078 0.074 
3 0.058 0.060 0.059 0.063 0.055 0.076 0.051 0.082 0.067 0.073 
4 0.058 0.059 1.000 1.000 0.053 0.057 1.000 1.000 0.044 0.029 
5 0.056 0.050 1.000 1.000 0.052 0.052 1.000 1.000 0.051 0.023 
6 0.036 0.070 1.000 1.000 0.005 0.063 0.005 0.013 0.049 1.000 
7 0.069 0.065 0.999 0.999 0.048 0.066 0.001 0.028 0.026 1.000 
8 0.042 0.062 0.998 1.000 0.020 0.064 0.001 0.014 0.023 1.000 
9 1.000 0.999 1.000 0.998 0.033 0.031 1.000 1.000 1.000 0.060 
10 0.994 0.990 0.990 0.988 0.032 0.030 0.993 0.999 1.000 0.052 
11 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.059 
12 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.999 1.000 0.061 
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
14 0.998 0.999 0.997 0.998 0.998 1.000 0.997 1.000 1.000 1.000 
15 0.026 0.060 1.000 1.000 0.007 0.057 1.000 1.000 0.052 1.000 
16 0.028 0.060 1.000 1.000 0.003 0.050 1.000 1.000 0.047 1.000 

Note: Testing level α  = 0.05. Number in bold refers to size property. 

 

the asymptotic test, especially when the asymptotic test is severely undersized. Third, the 

bootstrap tests produce higher power compared to the asymptotic test, without additional size 

distortions. Fourth, through the results of the extension analysis for the case of pure I(0) series, 

this reinforces the point that the bootstrap procedure produces exact critical values, not merely 

lower and upper bounds as in the asymptotic tests. 

 

The proposed new ARDL bounds test based on bootstrap procedure is a more robust 

cointegration test than the PSS test. Finally, the new bootstrap test on the lagged level of 

independent variable(s) shows reasonable size and power properties, providing a more complete 

picture of the cointegration status among the variables. Erroneous conclusions can be reached if 

one does not explicitly perform a test for degenerate case #1 ( 0yyp ≠ , . 'yx x =π 0 ), and the Monte 

Carlo evidence above indicates that the bootstrap test is informative about this hypothesis. 

 

5. Empirical Application 
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In this section, we re-examine the long run saving-investment (S-I) relation to test for 

international capital mobility using the bootstrap ARDL test. Identification of degenerate cases 

is illustrated here as well. The relation between savings and investment can serve as an indicator 

of international capital mobility, an idea introduced by Feldstein and Horioka (1980) (F-H 

henceforth). In their study of 16 OECD countries over the period 1960-1974, they found that 

savings and investment ratios are strongly related to each other with a slope coefficient not 

significantly different from one, implying very low international capital mobility. Reinterpreted 

in a contemporary time series context, the absence of cointegration between savings and 

investment ratios for a country implies considerable capital mobility. On the other hand, 

cointegration between these two series means that they move together in the long run, but a 

coefficient less than one in this relation also allows for some degree of capital mobility. 

Cointegration with a coefficient of unity implies strong capital immobility in the long run.  

 

The use of the cointegration method in examining the S-I correlation was first conducted by 

Miller (1988), who applied the Engle-Granger two-step procedure to U.S. data over the period 

of 1946-1987. Our application covers 15 selected OECD countries over the period 1960-2013 

using data from the World Bank database. Estimation periods vary for each country depending 

on data availability. The basic F-H relation is: 

t t tIR c bSR ε= + + ,       (17) 

Where IR is the investment-GDP ratio, SR is the saving-GDP ratio, c is a constant term, b is the 

coefficient measuring the degree of capital mobility, tε is the error term and subscript t is the 

time index. We test for cointegration applying the bootstrap ARDL test based on the equation: 

1 1
1 1 2 1 1, 2, ,1 1 1

p p k
t t t i t i i t i j t j ti i j

IR c IR SR IR SR Dδ δ θ θ σ ε− −

− − − −= = =
∆ = + + + ∆ + ∆ + +∑ ∑ ∑ . (18) 

Equation (18) is an unrestricted ECM for IR and SR as the dynamic counterpart to the 

cointegrating Equation (17). Dummy variables, Dt,j, are included in the estimation to deal with 

possible structural breaks in (18). Before modelling, we have to ensure the integration orders of 

variables IR and SR do not exceed one to fit with the assumption made by the bounds test. For 

the sake of parsimony and to avoid over-parameterization, the maximum optimal lag length in 

this study is up to p = 4, which should be adequate for annual data. The choice of optimal lag 

length p is based on Akaike’s Information Criteria. Estimations using IR as the dependent 

variable (denoted as Equation IR) following Equation (18) for the 15 countries are shown in 
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Table 8. All the equations passed all standard diagnostics; the critical values were obtained from 

the bootstrap procedure. 

 

Based on the bootstrap overall F-test and the t-test on the lagged dependent variable,  there is 

evidence that IR and SR are cointegrated for Australia, Iceland, Israel, South Korea, Mexico, 

New Zealand, Norway, Portugal, Turkey, and UK (10 countries). Conversely, there is 

insufficient evidence to show that SR and IR are cointegrated for Austria, Finland, Japan, 

Netherlands and Spain (5 countries). However, the test on the lagged independent variable fails 

to reject the null hypothesis that its coefficient is zero, even at a 10% significant level, for Israel, 

Norway, and Turkey. This suggests that these countries actually fall into degenerate case #1, 

and the SR and IR series are not cointegrated. The significance of the F test comes solely from 

the significance of the lagged dependent variable in these three cases. Furthermore, this also 

indicates that the dependent variable is actually I(0). Notice that the possible existence of 

degenerate case #1 is not testable with the existing tests from the PSS methodology. To conduct 

the test on lagged independent variable, the bootstrap procedure has been used. 

 

There is an additional interesting case in these estimations. The coefficients on 1tIR −  and 1tSR −  

for Israel and the Netherlands both have negative signs. These perverse signs do not match the 

theory or the ECM system. For the IR – SR relation the signs of these two coefficients must be 

opposite, in order to adjust the system back to equilibrium. In any case it can be seen that, these 

countries are non-cointegration and degenerate cases. Table 9 summarizes the cointegration 

status for all countries.  
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Table 8: ARDL bounds test estimation using IR as dependent variable 

Note: 75 in dummy columns denote dummy year 1975. *, **, *** denote significant at 10%, 5% and 1% 
level respectively based on the critical value generated from bootstrap. 

 

 Australia  Austria  Finland  
Dummy for Equation tIR∆  75, 83, 91, 01 75, 79, 82, 09 91, 09 

Dummy for Equation tSR∆  83, 91, 10 75, 79, 09 91, 09 
Period/Sample size (n) 1960-2012/53 1970-2012/43 1975-2012/38 

2R  0.6006 0.6591 0.5242 
Q-stat(12) 13.490 9.5327 10.370 
LM(2) 2.1222 2.0188 0.3817 
JB 1.2871 0.5632 1.7026 
F-statistic 4.8561** 1.1651 1.4418 
t-statistic (lagged DV) -2.9129** -1.5075 -1.6648 
t-statistic (lagged IDV) 2.1985** 0.9890 0.7734 
 Iceland  Israel  Japan  
Dummy for Equation tIR∆  06 74, 85 09 
Dummy for Equation tSR∆  08 71, 85, 90 09 
Period/Sample size (n) 1979-2012/33 1965-2013/49 1977-2012/36 

2R  0.4878 0.6901 0.5950 
Q-stat(12) 8.4674 10.690 5.9501 
LM(2) 0.2157 3.9329 0.1199 
JB 1.4653 0.8862 3.5717 
F-statistic 12.7310*** 19.0203*** 2.1713 
t-statistic (lagged DV) -4.4394*** -6.1389*** 0.2152 
t-statistic (lagged IDV) 3.7065*** -3.4092 -0.5847 
 South Korea  Mexico  Netherlands  
Dummy for Equation tIR∆  98, 09 86, 93 73, 81, 09 
Dummy for Equation tSR∆  - 83, 86 73 
Period/Sample size (n) 1976-2012/37 1979-2012/34 1970-2012/43 

2R  0.8333 0.7073 0.4312 
Q-stat(12) 6.3989 9.6003 14.868 
LM(2) 1.4257 0.7927 3.2328 
JB 1.9898 0.7021 1.2121 
F-statistic 14.7517*** 24.7609*** 7.6571*** 
t-statistic (lagged DV) -3.6370** -6.9738*** -2.2291 
t-statistic (lagged IDV) 5.3525*** 3.6219*** -0.6717 
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Table 8: ARDL bounds test estimation using IR as dependent variable (Continued) 

Note: 75 in dummy columns denote dummy year 1975. *, **, *** denote significant at 10%, 5% and 1% 
level respectively based on the critical value generated from bootstrap. 

 

 New Zealand  Norway  Portugal  
Dummy for Equation tIR∆  - 86 80, 89 

Dummy for Equation tSR∆  91 86, 09 85, 96, 08 
Period 1972-2012 1975-2012 1975-2012 
Sample size (n) 41 38 38 

2R  0.3846 0.4121 1 
Q-stat(12) 15.687 5.5753 7.7885 
LM(2) 1.2258 2.8832 0.9625 
JB 0.6956 0.7897 2.5675 
F-statistic 6.9562** 7.0545** 10.7534*** 
t-statistic (lagged DV) -3.5296** -3.4727** -4.6347*** 
t-statistic (lagged IDV) 3.2084*** 0.6384 2.8599** 
 Spain  Turkey  UK  
Dummy for Equation tIR∆  09 87, 09 76, 80, 88 

Dummy for Equation tSR∆  81, 92, 95 87, 09 76 
Period 1975-2012 1974-2012 1970-2012 
Sample size (n) 38 39 43 

2R  1 0.3938 0.5046 
Q-stat(12) 5.9327 12.229 5.3859 
LM(2) 1.5858 1.7747 0.8942 
JB 0.7878 0.9863 3.7070 
F-statistic 2.9910 5.3983** 9.4140*** 
t-statistic (lagged DV) -2.3803 -2.9009** -4.3391*** 
t-statistic (lagged IDV) 2.0793 1.2033 3.7250*** 
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Table 9: Summary of cointegration status 
Equation IR Conclusion 
Australia Cointegration 
Austria No-cointegration 
Finland No-cointegration 
Iceland Cointegration 
Israel Degenerate #1  
Japan No-cointegration 
Mexico Cointegration 
Netherland No-cointegration 
New Zealand Cointegration 
Norway Degenerate #1  
Portugal Cointegration  
South Korea Cointegration 
Spain No-cointegration 
Turkey Degenerate #1  
UK Cointegration 

 

6. Conclusion 

The ARDL bounds testing approach has been misused by some researchers. As developed by 

PSS (2001), this approach to cointegration testing assumes that there is no feedback from the 

dependent variable to the regressors. However, in many cases it is unreasonable to assume any 

series in a given model is weakly exogenous. Therefore, in some applications of the ARDL 

bounds tests, each variable is treated as the dependent variable, sequentially, and regressed on 

the other variables. This is implicitly allows each variable to be endogenous, thereby violating 

the weak exogeneity condition of the bounds testing framework.   

 

Another problem found in applications of the ARDL bounds test is a failure to consider and test 

for degenerate cases. PSS present the critical values suitable for testing the significance of the 

coefficient on the lagged level of the dependent variable, but some applications omit this test. In 

addition, another degenerate case is possible, in which the coefficients on the entire set of 

lagged level series are jointly significant, but this is solely due to the significance of the 

coefficient on the lagged level of the dependent variable. Since PSS do not provide critical 

values for a test of this degenerate case, this test is not found in applications of the ARDL bound 

testing procedure. 
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One of the objectives of this study is to evaluate the performances of the ARDL bounds test 

when the weakly exogenous regressors assumption is violated. Based on Monte Carlo 

simulation evidence presented here, it is found that the tests underlying the PSS ARDL bounds 

testing approach are not affected by the violation of this assumption.  

 

However, the Monte Carlo simulations uncover some evidence of size distortions for these tests, 

especially for the t-test on the lagged dependent variable. As an alternative approach this study 

evaluates the ARDL test procedures based on bootstrap simulations. The Monte Carlo evidence 

indicates that bootstrap procedures resolve the size problems found with the PSS critical values, 

while also performing well in terms of power. In addition, when critical values are generated by 

bootstrap procedures, the possibility of inconclusive inferences from the ARDL bounds tests is 

reduced.  

 

Moreover, the demonstration of the occurrence of degenerate cases is a further aspect of this 

study. Empirical application of the ARDL approach to savings-investment cointegration testing, 

shows that inferences based on the F and t-tests provided by PSS are not sufficient to uncover 

the degenerate case #1. The two tests of PSS are augmented by an additional bootstrap test on 

the significance of the lagged level(s) of the explanatory variable(s), to uncover the possibility 

of this degenerate case. Furthermore, this test has an additional advantage i.e. allowing one to 

infer the order of integration of the dependent variable. Monte Carlo simulations show that this 

new test has reasonable size and power properties, and the empirical applications of this test to 

the savings-investment relations of several countries demonstrate that this degenerate case #1 

can arise in practical applications. 
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Appendix 

Analysis on Pure I(0) Series 

Our analysis extended beyond the original scope of the PSS ARDL bounds test to consider 

cases when the dependent variable is stationary. Although this case was not considered in the 

simulation of bounds for the ARDL test critical values by PSS, some researchers may want to 

apply ARDL cointegration testing in this environment. In addition to checking the robustness of 

the bootstrap test in this case, this experiment also reinforces the point that the bootstrap 

procedure provides exact critical values. Regardless of the orders of integration of the series 

involved, a single bootstrap critical value is determined (estimated) that is specific to the 

integration properties of the series. This establishes a further advantage of the bootstrap test 

over the asymptotic bounds test by eliminating the possibility of inclusive inferences.  

The DGP for the series yt and xt as: 

y x
t tε ρε=           (A1) 

and followed by the autoregressive equations 

1 1 2 2
y y y

t t t ty y yλ λ ε− −= + +           

1 1 2 2
x x x

t t t tx x xλ λ ε− −= + + . 

There are total 4 cases are considered in the analysis and the first 3 cases follow the simple DGP 

above. For the last case it considers feedback effect hence, its DGP replaces equation (A1) by 

the following equations 

( )1 1 2 1
y y y y y

t t t ty x uε α β β− −= − − + , and      

x x
t tuε = , 

where  y
tu  and x

tu  are the independent innovations. Table A below shows the parameter 

combinations used in the DGP simulation and Table B is the results. 

 

Table A: Parameter combinations used in the DGP simulation 
Case yα  1

yβ  2
yβ  1

xλ  2
xλ  1

yλ  2
yλ  ρ  Integration 

order xt 
Integration 
order yt 

1 - - - 0.8 0 0.8 0 0 I(0) I(0) 
2 - - - 0.6 0.3 0.6 0.3 0 I(0) I(0) 
3 - - - 0.8 0 0.8 0 0.5 I(0) I(0) 
4 0.5 0 1 0.8 0 0.8 0 0 I(0) I(1) 
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Table B: Size and power of the bootstrap tests 
Case *

xF  *
yF  *DV

xt  *
y
DVt  *

x
IDVt  *

y
IDVt  

1 0.054 0.061 0.055 0.067 0.056 0.060 
2 0.061 0.055 0.063 0.054 0.068 0.062 
3 0.050 0.046 0.044 0.039 0.046 0.039 
4 0.060 0.799 0.058 0.034 0.052 0.903 

Note: Simulations run at N = 2000 and B = 1000 replications with sample size of n = 50. Testing level  
α  = 0.05. Number in bold refers to size property. 

 

These cases were generated as pure I(0) series for both yt and xt except Case 4 where series yt is 

generated as I(1) and xt as I(0).  Table B presents evidence of reasonable size properties for the 

bootstrap procedure in these stationary environments. The smallest size is 0.04 and the largest is 

0.07. It is also worth noting that the tests are applied with the exact critical values generated by 

the bootstrap; the tests are not bounds tests with possible indeterminate outcomes. Whether the 

regressors are I(0), as in Table B, or I(1), as in Tables 4 – 7, the bootstrap tests employ exact 

estimated critical values that will depend on the integration properties of the series in the model.  

 
 

                                                             
Endnotes 
 
1  PSS (2001) discusses this alternative degenerate case in line one, p.295, in which the differenced 
dependent variable depends on its own lagged level in a conditional ECM and not on the lagged level of 
independent variable(s). In this case the dependent variable is actually stationary. Hence, the degenerate 
case can be ruled out if the dependent variable is not stationary. 

2 PSS mentions that the bounds test approach is applicable regardless the integration order either I(0) or 
I(1) for regressors only, which does not include the dependent variable itself. 

3 The derivation details can be found in PSS, page 291. 

4 The notations for coefficient on 1t −
x  from Equation (2) and (4) are defined as '

yx y x
≡ −π π ω Π  and 

.
'

yx x yx xx
≡ −π π ω Π  in PSS. Details see PSS. 

5 For example, Alhassan and Fiador, 2014; Garg and Dua, 2014; Jiang and Nieh (2012), Muscatelli and 
Spinelli (2000) and Getnet et al. (2005). 

6 It is common to use bivariate data to investigate a test statistic’s performances. See PSU, Kremer (1992) 
and Banerjee (1998). 

7 yt is defined as the dependent variable for Equation Y, whereas xt is defined as the dependent variable 
for Equation X. 
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8 The bootstrap set up is general and suitable for the cases when the number of independent variables, k 
exceeds one. Those k independent variables follow the same setup as for Equation X. 

9 The alternative bootstraps results are not present here. These results are available from the authors upon 
request. 


