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Abstract. In this paper, we introduce the concept of a profit frontier of continuous order « € [0, 1]
and provide an easy to implement nonparametric estimator for such profit frontiers. From a sta-
tistical perspective the estimator we propose is, in essence, the estimator for a conditional quantile
with a suitably defined conditioning set. Inspired by Aragon et al. (2005) in a production function
setting, instead of studying a traditional profit frontier, whose estimation might be very sensitive
to outliers and extreme values, we define a class of profit functions of order o based on conditional
quantiles of an appropriate distribution of profit, input and output prices. We show these quantiles
are useful in measuring profit efficiency. Second, we propose a nonparametric conditional quantile
estimator for the profit function of order « based on a recently proposed class of nonparametric
kernel estimators introduced by Mynbaev and Martins-Filho (2010). We establish consistency and
asymptotic normality of our estimator. Our measures of efficiency are more robust to outliers since
our estimated profit functions of order v do not envelope the data. Under some smoothness as-
sumption on the distribution function, the bias of our proposed estimator converges to zero faster
than that of the estimator which uses traditional kernels. A Monte-Carlo simulation seems to sup-
port our results and show a better performance of our estimator compared to its competitors in
most scenarios.
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1 Introduction

Efficient behavior permeates firm decision making in the classical microeconomic theory of the
firm. For example, given a technology, firms are assumed to produce maximum output given a set of
inputs; minimize cost and and maximize profit. However, there exists voluminous empirical evidence
that suggests not all producers engage in successful optimizing behavior. In various settings it is
useful to measure and study the magnitude and nature of the inefficiency that pulls firms away
from the relevant efficient frontier, be it a production, cost or profit function. Starting with Farrell
(1957), a vast literature has emerged focusing on production or technical efficiency. These studies
usually postulate a common production frontier for all firms, and measure the technical efficiency by
a suitably defined distance between the production plan of each firm and the frontier. However, the
ultimate objective of a firm is to maximize profit. Besides technical efficiency, a major component in
a firm’s profit-seeking behavior involves allocative efficiency, which captures the ability of choosing
optimal proportions of inputs and outputs in the production process. In this paper, we provide
a way of measuring and estimating a profit function and profit efficiency, which represents the
combined effect of both technical and allocative efficiency. The basic idea, inspired by Aragon
et al. (2005), is to describe profit functions at different efficiency levels as quantile functions of a
suitably defined conditional distribution. We then estimate them by an improved nonparametric

kernel method.

FEmpirical and theoretical models for measuring efficiency and estimating frontiers have fallen into
two broad categories: stochastic and nonstochastic models of frontier. The basic principle in
stochastic models is to describe the variable of interest (output, cost, profit) as being generated by
a sum of the function of interest and a non-observed error term consisting of a noise and an ineffi-
ciency term. It was originally proposed by Aigner et al. (1977) and Meeusen and van den Broeck
(1977) in the context of production functions. Greene (2008) and Kumbhakar and Lovell (2000)
provide extensive reviews and applications of these models. Estimation of these models is normally
conducted by maximum likelihood methods. Considering the possibility of mis-specification of
parametric frontier models, Fan et al. (1996) investigate semiparametric estimation of a stochastic

frontier model with nonparametric production function. Recent developments in the estimation



of nonparametric stochastic frontier models include, among others, Kumbhakar et al. (2007) and
Martins-Filho and Yao (2013). A critical drawback of stochastic frontier models is that they gen-
erally require strong distributional assumptions regarding the inefficiency and noise terms. In
addition, by assumption the stochastic frontier model error terms have a non-zero conditional ex-
pectation, and the average production relation is maintained for all firms. However, it is highly

possible that the relationship might vary at different efficiency levels.

On the other hand, nonstochastic frontier models assume that all observations lie inside the frontier
and any deviation from the frontier is caused by inefficiency. The most popular nonparametric
efficiency estimators are based on the idea of estimating the attainable set by the smallest set
within some class that envelops the observed data. Data envelopment analysis (DEA) and free
disposal hull (FDH) estimators are among the most popular and have been widely used in efficiency
analysis since Charnes et al. (1978). The FDH estimator of the frontier is the free disposal hull
of the observations and the DEA estimator is the convex cone of the FDH estimator. They rely
on linear programming methods to search for the most efficient units, which are then connected
to form a minimum enveloping frontier. DEA and FDH are very appealing to researchers because
they rely on very few assumptions and are easy to implement; however, they suffer some critical

drawbacks.

Park et al. (2010, 2000) and Simar and Vanhems (2012) obtain general asymptotic properties and
convergence rates of FDH and DEA estimators under certain assumptions. Convergence rates
are also obtained in Kneip et al. (1998); Korostelev et al. (1995) and Gijbels et al. (1999) in
special cases. Similar to other nonparametric estimators, DEA and FDH estimators suffer the
“curse of dimensionality.” The convergence speed of these estimators becomes much slower as the
dimensionality of the problem increases. Another major drawback of these methods is that the
estimation of the frontier is highly influenced by the most efficient firms, outliers or extreme values.
Hence, these methods are not robust and highly sensitive to a small set of observations. Recently,
Simar and Zelenyuk (2011) propose stochastic versions of the FDH and DEA estimators by allowing

noise into the model, but the properties of these estimators remain unknown.

Considering these drawbacks, Cazals et al. (2002) introduce the concept of production frontier



of order m and provide a robust envelopment estimator. Instead of the full production frontier,
they consider the expected maximum output among m firms drawn from the population of firms
using less than a given level of inputs. A new probabilistic interpretation of the frontiers and the
efficiency scores is provided in the paper. Daouia and Simar (2005, 2007) and Daouia et al. (2010)
further extend this idea and link frontier estimation to extreme value theory. Inspired by this idea,
Aragon et al. (2005) introduces the quantile approach in the production frontier analysis. They
define a production function of continuous order « based on conditional quantiles of a distribution
that describes the generation of inputs and outputs of a production process. Estimators for these
conditional quantiles are by nature much more robust to outliers as they do not envelope all
observations. Martins-Filho and Yao (2008) improves this method by introducing a smooth kernel
estimator at the cost of introducing a bias term vanishing with the sample size. In this paper,
inspired by Aragon et al. (2005), we define a profit frontier of continuous order o and propose an
easy-to-implement nonparametric estimator for these profit frontiers. Our estimator is based on
the kernel estimator proposed in Martins-Filho and Yao (2008), but we improve on their estimation
method by using a new class of kernels proposed by Mynbaev and Martins-Filho (2010) that promise

to reduce the order of the bias of the class of estimators under study.

Throughout the paper we consider competitive firms with technology represented by a production
function y = f(z) where y € Rﬂlrl is an output vector and x € Rcf is an input vector. Given a vector
of input prices w = (wy, -+ ,wq,) € ]Riﬂr and a vector of output prices p = (p1,---,p4,) € R%
profit is given by

T =pf(x) — wz.
We assume that for all prices w € ]R‘ff ', and output price p € Rdl, profit is bounded above as a
function of x, i.e. there exists 0 < B; < 400 such that 0 < 7 < B;. One can maximize the profit

with respect to z to get the input demand functions z* = z(p, w). If the maximum exists, then the

maximized profit is given by

*

™ =n(p,w) = pf(z(p,w)) — wz(p,w),

7 depend on p and w which are exogenous to the firm’s decision making process. 7(p,w) is



what we call the profit function throughout the paper. Given the existence of inefliciency, our
objective is to estimate profit functions and assess firms’ efficiency levels. There are a number of
differences in estimating a profit function compared to estimating a production function. First, the
derivation of the profit function relies on many assumptions on market structure and it is difficult
to assume a parametric form for the profit function. Second, the production function is monotonic
nondecreasing with respect to its arguments (inputs), while the profit function is nondecreasing
with respect to some of its arguments (output prices) and nonincreasing with other arguments
(input prices). Perhaps, due to these difficulties there is a much smaller literature devoted to the
analysis of profit efficiency. Existing empirical studies, such as Ali et al. (1994) and Maudos et al.
(2002) are mostly based on parametric stochastic profit frontier models with very high probability
of misspecification. We show in this paper that these problems can be solved by our nonparametric

quantile approach.

The rest of the paper contains five additional sections and an appendix. Section 2 describes the
model and its estimation in detail. Section 3 provides the main assumptions and theorems that
establish the asymptotic behavior of our estimators. Section 4 contains a small Monte Carlo study
that implements the estimator, investigates its finite sample properties and compares performances
of smooth and nonsmooth estimators. Section 5 provides a conclusion and some directions for
future work. The proofs for all propositions and theorems are collected in the appendix, where a

set of auxiliary lemmas are also given.

2 Model and Estimation

2.1 Profit function of order «

Let {(II;, P;, W;)}?_; be a sequence of independent and identically distributed random vectors
defined in the probability space (€2, F,P) and having the same distribution function as (II, P, W),
which is denoted by F' with associated density function f. II; € R denotes profit, P; € IR‘il . denotes

a vector of output prices and W; € IRi2 ' denotes a vector of input prices associated with a firm



or producing unit i. We denote the support of f by ¥ and focus on the set ¥* = {(m,p,w) € ¥ :
PP <p,W >w)>0}. Given Cp,y ={P < p,W > w} we let

PO, P<pW?>w) (1)
PP <pW>w)

F(ﬂcp,w) =PII< 7P <p, W >w) =
and give the following probabilistic definition of a profit function
m(p,w) :=inf{m € [0, By| : F(7|Cp ) = 1}. (2)

As defined, the profit function 7(p,w) is the “smallest” function that is larger than or equal to the
highest attainable profit given input price larger than or equal to w and output prices less than or
equal to p (vector inequalities are all taken element-wise). By its definition, for any (II;, P;, W)
with P; < p and W; > w, we must have II; < m(p,w) with probability 1. That is, 7(p, w) envelopes

all data points.

Similar to Aragon et al. (2005), in the context of production functions, our definition of profit
function suggests the alternative concept of a profit function of continuous order « € [0, 1], as the

quantile function of order o of the conditional distribution of II given C), ,,. Thus, we define
Ta(pyw) = F~Ha|Cpp) = inf{r € [0, By] : F(7|Cp) > a} (3)

where F~1(:|C,.,) is the generalized inverse of F(-|Cp.,). We call 7, (p,w) the profit function of
order . It is apparent that the profit function in (2) corresponds to that in (3) when o = 1. By
definition F~*(a|C}4,) is the profit threshold exceeded by 100(1—a)% of firms that face input prices
larger than or equal to w and output prices less than or equal to p. If the conditional distribution
F(-|Cp) is strictly increasing, then we have the following result.

Proposition 1. Assume that for every (p,w) such that P(P < p,W > w) > 0, the conditional
distribution function F(-|Cp.) is strictly increasing on the support [0,m(p,w)]. Then, for any

(m,p,w) € U*, we have T = mo(p, w) with o = F(7|Cp ).

Proposition 1 shows that any vector (m,p,w) € ¥* belongs to some profit function of order a.



That is, the quantile curves {(m,(p,w),p,w)|P(P < p,W > w) > 0, € (0,1]} cover the entire
set U* of attainable profits, input and output prices. Given a firm or production unit associated
with (7 (p, w), p,w), its profit is larger than 100a% of all units facing the same or less favorable
prices (higher input prices and lower output prices) and and less than 100(1 — «)% all other firms
or production units. Thus, the order of the conditional quantile curve to which (7, p, w) belongs,

)

gives a measure of “profit efficiency” of the firm or production unit (7, p,w) relative to all other

production units facing the same or less favorable prices.

It is clear that, for any fixed (p,w) such that P(P < p,W > w) > 0, 7mo(p,w) is a monotone
nondecreasing function of a. The following proposition shows that as a — 1, m(p, w) converge
to 7(p, w) pointwise, and under additional regularity condition, the convergence is uniform over a
suitably defined set.

Proposition 2. For any fized (p,w) such that P(P < p,W > w) > 0, limy—; 74 (p, w) = 7(p, w).
If, in addition, for every a € [0,1], mo(p,w) is continuous on the interior of the support of the

marginal density of (P,W), denoted by Sy, then for any compact subset ® C Sy

sup |ma(p,w) —7(p,w)| — 0 as o — 1.
(pw)e®

The most natural measure of profit efficiency of a firm or production unit i, compares its realized
profit II; to the profits attained by all firms facing output prices p < P;, the output prices faced
by unit ¢, and input prices w > W;, the input prices faced by unit ¢ for « = 1. However, in an
attempt to decrease the sensitivity of our measurement of profit efficiency to outliers or extreme
values, we introduce a new measure of efficiency that compares the profit of a production unit to
a profit function of order a. Thus, we say that the firm or production unit ¢ is a-profit efficient if
its profit II; > 7, (P;, W;). Otherwise, such firm is labeled a-profit inefficient. Thus, we can define
an a-efficiency score as ey (Il;, P, W;) = II; /7o (P;, W;). Note, that different from efficiency scores
that emerge from traditional frontiers that envelope all possible triples (II;, P;, W;), eq(I1;, P;, W;)
may be greater than 1, since the profit function of order o does not provide an upper bound for

the profits of all firms facing prices p < P; and w > W; .



The concept of profit functions of order o can be easily extended to settings where additional
constraints on profit and technology are appropriate. we give two examples. First, firms can face
different production capacities and by consequence different profit functions. If a firm has small
production capacity, the value of profit would be small compared to a representative firm, even if
it is “efficient”. As a result, it may be necessary to consider production capacity when assessing
profit efficiency. In these cases, we can adjust our definition of profit frontier by comparing units
with the same or smaller production capacities. Thus, if we use y to measure production capacity,

then our definition of profit function becomes
7(y, p,w) :=inf{w € [0, By] : F(7|Cypw) =1}
and
T (Y, p,w) = F_l(a]C’%p,w) = inf{r € [0, Bz} : F(7|Cypw) > a}

where Cy ;. is a conditional set {Y <y, P <p, W > w} and F(7|Cypw) is a conditional distribu-

tion

PIL<mY <y, P<pW>uw)
PY <y, P<pW>w)

F(xlCypa) = P < 7Y <y, P <p,W > w) =

Therefore, as before, m(y, p, w) represents the smallest function that is larger than or equal to the
highest attainable profit given input prices larger than or equal to w, output prices less than or
equal to p, and with capacity less than or equal to y. 74 (y,p,w) is defined by comparing it with
all units with same or smaller production capacities facing the same or less favorable input and

output prices.

Second, consider a firm that has monopoly power. Then, market demand affects output prices and
output jointly, and only input prices can be viewed as exogenous to the firm’s profit maximizing

problem. In this case, we can define

To(&, w) == inf{m € [0, By : F(7|C¢) > a}



where & represent the elasticity of market demand and F'(7|C¢ ) = P(II < 7Y > £, W > w). The
analysis and estimation procedures defined in the following subsection can easily be extended to

these alternative settings with minor modifications.

2.2 Estimation

In order to estimate profit functions of order a, i.e., mo(p,w), we first need an estimator for a
conditional cumulative distribution function F(m|C} ). In a production function setting, Aragon
et al. (2005) propose a simple estimator based on the empirical distribution function. Their em-
pirical estimator is not smooth and as a result, it might be difficult to identify differences between
firms that are similar in terms of profit efficiency. In the same setting Martins-Filho and Yao
(2008) proposed a smooth kernel based estimator. The smoothness it provides might reduce the
finite sample variance compared to the empirical estimator, but introduces a bias that does not
vanish at the parametric rate. Here, we follow Martins-Filho and Yao (2008), but provide an
alternative kernel that may produce biases of lower order. For convenience, we define the func-
tions P(m,p,w) = P(Il < 7,P < p,W > w) and Ppwy (p,w) = P(P < p,W > w). We estimate
F(m|Cpw) by integrating a smooth kernel density estimator constructed using the observations

{(IL;, Py, Wi) Yiefip<p,wy>w}- Thus, we define

0 itm <0

F(r|Cpu) =14 . (4)
’ P(vavw) 3
ijW(PﬂU) it >0
with
. n ™ II; —
P, p,w) = (nha) 1S ( JRL < . 7) dv) I(P: < p. Wi > ) (5)
i=1 0 "
and
Ppw (p,w) =n"" Y I(P; < p, Wi > w). (6)
i=1

hy, is a nonstochastic sequence of bandwidths such that 0 < h, — 0 as n — oo, I(A) is the

indicator function for the set A and My for k = 1,2,--- is a class of kernels defined by Mynbaev



and Martins-Filho (2010). The kernels M}, are defined as

|k
My,(z) = TZ (7)
Is|=

where ¢ s = (— )s“']"C;kHC , Csljk are the binomial coefficients and K (-) is a traditional (seed) kernel
function. It is easy to show that Mj(z) is a kernel function for all k in that [ Mjy(z)dz = 1. The
main advantage of the definition of M (x) is that it allows us to express the bias of our estimator
in terms of higher order finite differences of the density function (See the proof in the Lemma 1).
It is clear that F(7|C,.,) depends on k through the dependence of P(m,p,w) on k. As a result,
we are defining a class of estimators for F(w|Cp,,). The choice of k depends on the smoothness
assumption on the distribution function, and will be discussed in the next section. Also, note that
our estimator uses a smooth nonparametric estimator of the distribution function in the direction
of profit m, but still uses an empirical distribution function in the direction of p and w. In the
context of a production function, Martins-Filho and Yao (2008) showed that smooth kernel based
estimator implemented in output direction has a parametric (1/n) rate of convergence. In the next
section we will show that our estimator has the same convergence. Note that it is possible to
smooth estimators in the directions of prices as well, but as a result the estimator would suffer

from the well-known “curse of dimensionality.”

Assuming that 7, (p, w) is the unique root of F(-|C} ) = o, we denote its estimator by mq ,(p, w),
the root of

F(Ton(p,w)|Cpa) = a for a € (0,1], p € R‘f: and w € Riﬂr. (8)

By absolute continuity of F'(-|C})), smoothness of the seed kernel, and the Mean Value Theorem,

we write

F(T‘-Oé(p7 w?‘
f(@an(p;

Wa,n(p7w)_7ra(p7w) = Cp ) ?(ﬂa(p7 )’C ,w)

|Cpw)



where

OF (7|Cpw) 0, if 7 =0

7|C = : = o
£ ’ ’w) o (nhn)~ 130, Mk(nﬁ"ﬁ)f(PiS%WiZw)
n=1y " I(P;<p,W;>w) ’

ifm>0

and T n(p,w) = Man(p,w) + (1 — N)7ma(p, w) for some XA € (0,1). In the following section we
provide some asymptotic characterizations for our estimator, including consistency and asymptotic

normality.

3 Asymptotic characterization of 7, ,

In this section we provide theorems establishing asymptotic properties of our estimators. All proofs
of the theorems and required lemmas can be found in Appendix. We begin by listing and discussing

assumptions that are sufficient to establish our main theorems.

3.1 Assumptions

Assumption 1. {(IL;, P;, W;)}, is a sequence of independent random vectors taking values in a
compact set * = [0, B;| x Spw where Spw is a compact set in Ril X Riﬂ. For any i, (I1;, P;, W;)
have the same joint distribution F' and joint density function f as the vector (IL, P, W), f is defined
on R x R4 x R% with support U*.

Assumption 2. (i) The seed kernel K(-) is a bounded symmetric density with compact support
[-Bk, Bk and ffg}( yK(vy)dy = 0. (i) figgK V2K (y)dy = o%. (iii) For any v,v'" € [-Bk, Bk],
we have |K(vy) — K(v')| < mg|y — /| for some 0 < mg < oco. (iv) For all {,¢" € R, we have
|k(C) — k(¢ < mglC — (| for some 0 < m,; < oo, where K(¢) = f_CBK K(v)dvy. (v) For fized k,
[1K(@®)|t?*dt < oc.

The first assumption is standard in the deterministic frontier literature. Assumption 2 is the

same as Martins-Filho and Yao (2008) except (v). We need Assumption 2 (v) for restricting the

10



order of bias(See the similar assumption in Mynbaev and Martins-Filho (2010)). Note that (7)
implies that for any k € N, the above assumptions also hold for kernel M. That is, (i) My(-) is a
symmetric bounded kernel function with compact support [—Bys, Ba]. fiélM My (vy)dy = 0; (ii)
fﬁgM VMg (y)dy == 03, = 20% Z?Zl Miss%; (iil) For any v, € [—~Ba, Bu), we have |My(vy) —
M ()| < marly —+'] for some 0 < my; < oo; (iv) For any ¢, (" € R, we have |k (¢) — k(¢ <
my|C — ('] for some 0 < m,, < 0o, where k() = fEBM My, (y)dry.t

Assumption 3. For all m and ' € G, where G is a compact set, we have

<mp|n — 7|

/ d(P,W)
a1 ([x,7'])

for some 0 < m, 1 < 00.?

Assumption 3 is similar to Assumption 4 in Martins-Filho and Yao (2008). It imposes a Lipschitz

Lof .

type condition on the inverse image 7~
Assumption 4. (i) The joint distribution density function f is continuous in W*, 0 < f(m,p,w) <
By for all (m,p,w) € ¥*. (ii) For all (m,p,w) and (7', p,w) € U*, we have | f(7', p, w)— f(7,p,w)| <
my|n’ —m| for some 0 < my < oo. (i) For all (p,w) such that P(P < p,W > w) > 0 and for all
a € (0,1], f(ma(p, w)|Cpw) > 0, where f(-|Cpw) is the derivative of F(-|Cpyp).

Assumption 5. Given p,w, for all m € (0, By),

5A Fix k, there exist functions Hop(m,p,w) > 0 and eop(m, p, w) > 0 such that
| A Fy(m, p, w)| < Ho(, p, w)h?*

for all |h| < eop(m,p,w). Here, Fy(m,p,w) = ["__ f(v,p,w)dy and A Fy(m,p, w) = Z];:_k ks Fp(m+

sh, p,w) with ¢y, s = (—1)*TFC5.

5B f is continuously differentiable with respect to w. fO) (7, p,w) < oo, where f)(x, p,w) rep-

resent the first order derivative of f with respect to .

Verification of these properties results from writing My(-) as a linear combination of K, i.e., My(z) =
St (ks /8) (K (2/s) + K (—(x/5))) where As = —(ck,s/cr.0)-

*Here, for any two sets A C Dp . := [0,p] X [w,00) and B C [0, 7(p,w)], Define 7(A) = {n(p,w) : (p,w) € A)}
and 771 (B) = {(p,w) € Dpw : 7(p,w) € B}.

11



Assumption 5A imposes an order 2k Lipschitz condition on Fy(m,p,w) with respect to 7. From
the proof of Theorem 1 in Mynbaev and Martins-Filho (2010) we know that boundedness of
F }Qk) (m,p,w) implies a Lipshitz condition of order 2k. As a result, Assumption 5B is a more
strict condition than 5A in the special case k = 1. Given Assumption 5A, we can restrict the order

of the bias for our estimator to h2*. Given Assumption 5B, we can obtain a specific structure for

the asymptotic bias and variance by using a Taylor expansion.

3.2 Asymptotic Properties

We start by showing that F (m|Cpw) is asymptotically a proper distribution function for kernels
that satisfy Assumption 2.

Proposition 3. Under Assumption 2, we have: (i) F(r|Cp.,) is nondecreasing in 7; (ii) F/(7|Cl )
is right continuous; (iii) limy_o F'(7|Cp.) = 0; (iv) For any (p,w), there exists some N(p,w) such

that for all n > N(p,w), we have limy oo F(7|Cpy) = 1.

The next theorem establishes consistency of mq .

Theorem 1. Let h, be a nonstochastic sequence of bandwidths such that 0 < h, — 0 as n —
co. Given w € le?_i_, p € ]Rfli_l, suppose there exist N(p,w) such that when n > N(p,w) we
have ming;.p,<p w,>w) Ili = hnBar. Under Assumption 1-4 along with Assumption 5A (or 5B), if

Hop(m,p,w), F(m,p,w) and eax(m, p,w) are bounded for all (m,p,w) € ¥*, we have

Tan (P w) — Ta (P, w) = 0p(1). 9)

The next theorem shows that under suitable normalization and centering 7, ,(p, w) is asymptoti-
cally distributed as as standard normal.

Theorem 2. Let h,, be a nonstochastic sequence of bandwidths such that nh? — oo and nhi = O(1)
as n — oo. Given w € R‘ﬂ, p € RY, suppose there exist N (p,w) such that when n > N(p,w) we

have ming. p,<p w,>w} i = hnBar. Then,

12



(i) Under Assumption 1-4 and Assumption 5B, we have

Vn(py ) TN/ (T (py W) — Ta(py w) — Bu(p,w)) % N(0,1)

where
(1)
By (p,w) = _1h2o']2w fﬂfl([ﬂa(p,w)»ﬂ(p,lt))]) J (ma(p w), P, W)d(P, W) +o(h2)
’ 2 " PPW(pv 'LU)f(ﬂ'a(p,wﬂC ,w) "
1 F2(74(p, w), p, w)
’U?L , W = Fﬂ-a ,W),p,w) — a\y )
(P0) = o) fmapr ) [y PP ) = )

—ohna / £ (7alp, w), P,W)A(P,W)) + o(hy),
7= H[ra(pw),m(p,w)])

with o, = [ yrar () My (y)dy, and fD(z, P,W) denotes the first derivative of f with respect to .

(i) Under Assumption 1-4 and Assumption 5A, we have

| Bn(p, w)| < chyf [

Dp,w Dp,w TeR

where ¢ represent an arbitrary nonnegative constant.

Part (i) of Theorem 2 shows the explicit structure for bias and variance when k£ = 1. Part (ii) shows
that the bias decays to zero faster when we impose a stronger Lipschitz smoothness condition on the
distribution function and increase the value of parameter k£ accordingly. From Theorem 2, we first
observe that our estimator is v/n asymptotically normal although it is based on kernel smoothing.
In another word, the convergence speed of our estimator is independent of the dimensionality of
the problem. Therefore, our estimator does not suffer the “curse of dimensionality”. Second, note
that the extra smoothness of our estimator provides a smaller variance compared to the empirical
estimator at the cost of introducing a bias which vanishes asymptotically (See Aragon et al. (2005)).
Finally, the order of the bias term is controlled by the smoothness assumptions on the density
function. Note that under appropriate assumptions, the bias term is smaller than the order h?f.

Hence we can reduce the bias by increase the parameter k. For our estimator, the “smoother” the
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density function is, the faster the bias term would vanish.

4 Monte Carlo Study

4.1 Setup and Implementation

In this section, we design and conduct a small Monte-Carlo simulation to implement our estimator
and investigate some of its finite sample properties. We also compare the performance of our
smooth estimator and an similar estimator based on the empirical estimation. The data generating

process is given by

= (P, W;)R; i=1,..,n

I1;
R; = exp(—Z;), Z;~ Ezp(B)

where II; represents profit, P; and W; represent output and input prices. In this simulation, we
assume both output and input price are scalars. Prices are uniformly drawn from a meshgrid
[p1, Pu) X [wy, wy] = [1,3] x [1,3]. R; = exp(—Z;) represents efficiency score for each unit i. Z; are
independently generated from an exponential distribution with parameter 5 = 1/3. As a result
the density function of R; is f(r) = 3r? with support (0,1] and a mean 0.75. 7(p,w) is the
profit function. In this simulation we consider the functional form (p,w) = p%°w=%/5. One can
easily verify this function satisfies all properties of a profit function: a) nondecreasing in p and
nonincreasing in w; b) convex in both p and w; ¢) homogenous of degree one, and d) continuous.
Several experimental designs are considered: We estimate profit frontiers of order o = 0.25,0.5,0.75
and 0.99 using My kernel functions with £ = 1,2 as well as an empirical distribution. In each
experiment, We consider two sample sizes n = 200 and n = 400 and perform 2000 iterations to

obtain the averaged absolute value of bias and root mean squared error of each estimator.

The empirical profit frontier of order « is estimated as follows: Let Ny, = > i) I(P; < p, W; > w).

For j =1,..., Npw, get the order statistic of the observation II(; ) such that II;) < I, < .. <

14



Iy, ). The empirical conditional distribution Fu(7|Cha) is

Np,w
2 I,y <)
Npw

)

Fe(ﬂ"c 7w) =

0 if < H(il)

= m/an ifH(- ) §W<H(z’m+1)7 1§m§Np,w—l

im

iNpw)

Thus the empirical estimator for the conditional quantile 7, (p, w) can be computed as follows

; if aN, ., € N
Te,a (p,w) = (i{anp,w}) pw

(i aNp.w]+1}) otherwise

where [aN, ] denotes the integer part of alVp 4.

The implementation of our estimator requires choices of kernel function as well as bandwidth. We

use the Epanechnikov function K (z) = 2(1 — 2%)I(|z| < 1) as the seed kernel. It is easy to show

this kernel function satisfies Assumption 2. The bandwidth is chosen by minimizing the asymptotic

approximation of our estimator’s mean integrated squared error (AMISE). For k£ = 1, we get the

global optimal bandwidth with respect to « as

1/3

QO.H fol f2 IQ(p,’LU,OC) da 71/3

(7Ta (pvw) |p7w)

h¥ =
n 1 12( ,’LU,OZ)
(05 Jo 720 oy 4

where

Li(p,w,a) = / FO (7o (p,w), P,W)d(P,W), and
71 ([ra (pyw),m(pw)))

D(p,w,a) = / F(Ta(p,w), P,W)d(P,W).
7= ([ra (pw),m(p,w)])

In our simulations, since we know the true distribution, we can compute h} directly. In practice,

use of A} requires the estimation of the unknown distribution. Applying a similar method described
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in Mynbaev and Martins-Filho (2010), we can estimate I;, I5 and f a suitably defined Rosenblatt
density estimator. The optimal bandwidths for the estimators with higher k are yet to be obtained.

We use the same bandwidth as k = 1.

4.2 Results and Analysis

Table 1 gives the bias and root mean square error of our smoothed estimator with order of kernel

k=1 and k = 2 compared with the empirical estimator evaluated at prices p = 2 and w = 2.

Table 1: Bias and RMSE under Each Experiment Design

|Bias| RMSE
n=200 | Kernel Kernel Empirical | Kernel Kernel FEmpirical
o} k=1 k=2 k=1 k=2
0.25 | .018 .019 .021 .024 .024 .027
0.50 | .020 .021 .024 .033 .033 037
0.75 | .027 .027 .030 .031 .032 .037
0.99 | .132 .261 .084 175 .358 .095
n=400 | Kernel Kernel Empirical || Kernel Kernel Empirical
@ k=1 k=2 k=1 k=2
0.25 | .014 .013 .015 .017 .016 .019
0.50 | .015 .012 017 .018 .016 .019
0.75 | .019 .016 .021 .023 .021 .028
0.99 | .083 .098 057 102 121 .068

The simulations seem to confirm our asymptotic results. In particular, the root mean squared error
of all estimators decreases with the sample size, confirming our asymptotic results. Our smoothed
kernel estimator outperforms the empirical estimator in the cases with o = 0.25,0.5 and 0.75.
Although we do not use the optimal bandwidth, the performance of the estimator with kernel order
k = 2 is quite good. When the sample size is 200, the performance of estimators with k = 1 and
k = 2 are very close. When the sample size grows from 200 to 400 we observe a larger improvement
for the estimator with & = 2. For example, with o = 0.5, the bias of the estimator with k£ = 2
decreases from .021 to .012, while the bias of the estimator with & = 1 just decreases from .020 to
.015. We find the similar results for all . This is consistent with the result in Theorem 2 which

states the bias decays faster as k increases.
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We also observe that as a increases, all estimators show larger bias and mean square error. This
can be interpreted as resulting from the fact that there are less effective data available as « grows.
As a result, when « is close to 1, profit functions of order a become more difficult to estimate. Note
that the performance of our smoothed estimator is especially poor when a = 0.99. This is most
likely due to the fact that our distribution function has compact support, and it is not smooth near

the boundary. Therefore, the smoothed estimator can generate large biases.

In summary, our simulation results indicate the proposed smooth estimator for the profit function
of order « can outperform the empirical estimator in most cases as long as « is not very close to
1. Additionally, increases in the order k of the M) kernel may increase the convergence speed of
the bias. However, we do not suggest to use our method in approximating the full frontier where
« is approaching to 1. Note that the full frontier is not required in estimating the efficiency in our
method. According to the analysis in section 2, any « frontier with « € (0,1) can be served as a

standard in the efficiency analysis.

5 Conclusion and Discussion

In this paper we consider the construction and estimation of a profit function of continuous order
a € [0,1]. We define a class of such profit functions based on conditional quantiles of an appropriate
distribution of profit, input and output prices. We show that they are useful in measuring and
assessing profit efficiency. We show that our estimator is consistent and asymptotically normal
with a parametric convergence speed of \/n. Furthermore, the bias of our estimator decays to zero
faster than the traditional kernel estimators. A Monte-Carlo simulation is performed to implement
our estimator; investigate its finite sample performance and compare it to the empirical estimator.
Simulation results seem to confirm the asymptotic results we have obtained and also seems to
indicate that our proposed estimator can outperform its competitors in most cases. However, our
estimator seems to possess large boundary bias. Decreasing the boundary bias would be a desirable
direction for future work. The choice of optimal bandwidth when k > 1 is another issue to address.

It is also desirable to study the decomposition of technique efficiency and allocative efficiency.
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Appendix - Proofs and auxiliary lemmas

Proposition 1 Proof. For any (7,p,w) € *, if 7 < mo(p, w) = inf{m € [0, B;] : F(7|Cp ) > a},
then 7 ¢ {7 € [0, Bx] : F(7|Cp) > a}. That is, F(7|Cp) < o If m > 7o (p, w), there exist some
e > 0 such that 7 > 7,(p,w) + . By the definition of 7, (p,w), for any £ > 0, there exist some
o € {m € [0, By] : F(n|Cp,w) > a} such that my < m,(p,w) + €. By the strict monotonicity of
F(|Cpw), F(m|Cpa) > F(ma(p, w) + €|Cpuw) > F(m|Cpw) > . The result then follows. O

Proposition 2 Proof. (i) Since {74 (p, w)}o<a<1 is monotone nondecreasing in o, and supy< <1 {7a(p, w)} =
m(p, w).The result then follows. (ii) Let ® be a compact set interior to the support of (P, W).
Define ¢, (p,w) = m;_1(p,w). Since {ma(p,w)}o<a<1 is monotone nondecreasing in «, for any
n €N, ¢,(p,w) < ¢n+1Zp, w). From (i), limy, 00 ¢n(p, w) = 7(p, w) pointwise. By Dini’s Theorem,
SUP(p,w)ca |Pn (P, w) —m(p, w)| — 0. Thus, for any & > 0, there exist some N such that when n > N,
SUP(p.wyca |Pn(p;w) — m(p,w)| < e. That is, there exist 6 = 1 — + such that when |a — 1| < 4,

SUP(p,w)ed [Ta(p, w) — 7(p,w)| <e. -

Proposition 3 Proof. (i) First, note that by definition when 7 = 0 we have F(7|Cp.,) = 0. If
0 < 7 < g, we only need to prove P(ﬂg,p,w) — P(m,p,fw) > 0, since the denominator does not

depend on 7. By (5),

R . B n T2 Hz o LS Hz .
i=1 70 n 0 n

0

Y

since M}, is a symmetric density. (ii) For any mg € [0, B], let m — w9 < § for some § > 0. Then,

n

R R n L Hi_ i) Hz’_
(B, p, ) — Plmo,pyw)] = () 3 /O M)y /0 M=) )P, < p, Wi > w)
i=1 n

n

To+0 H’L _ o ]-_-[Z _
< b)) M E D = [ M an (R < p Wz w)

. h
=1
n To+90 H’L _
— ()3 M I, < Wiz )
i=1 /70 i

<h, '6- sup  M(p)<e
w€[—Bnr,B]
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where the last inequality follows for any € > 0, since § can be made as small as desired. (iii) follows
directly from (i) and (ii). For (iv) we need only prove that for any (p, w), there exists some N (p, w)

such that for all n > N(p,w), hy, 1 lim, o0 foﬂ Mk(H;'L:Y)d'y = 1. Now, note that

II
H‘ - 7 . hn
S )dy = lim [ My(p)dp.

™
h, ! lim M,(

T—00 0

n

Since h, — 0 as n — oo, there exists N(p,w) for any (p,w), such that for all n > N(p,w),
—% < By and ”;H" > Bjs. The result follows from the fact that M}, is a density. O

n

Let ¢ > 0 represent an arbitrary constant and D,,,, = [0,p] X [w,00). By the definition of m(p, w),
for any point (p/,w/) € Dy, we have ﬂ(p/,w/) < m(p,w). Therefore, we can write D), =

77 1([0, 7(p,w)]). Denote P(m,p,w) = PAL < m, P < p, W > w) and P(ﬂ',p, w) as defined in (5).

M

Ok = FBM M. (v) vk (7)dy. In order to prove Theorems 1 and 2, we need the following lemmas.

Lemma 1. Under Assumption 1-4 and Assumption 5A, we have: (a)

F ™np,w))— T, p,w S c 2k\T0, L7, )
E(P P h2k Hoy,(m, P,W)d(P, W
Dy w

+ / sup | Fy(m, P,W)|e;2* (m, P,W)d(P,W)| .
D.

p,w TER

If we assume furthermore Hop(m,p,w), Fy(m,p,w) and eo (7, p,w) are bounded for all (m,p,w) €
w*, we have |E(P(r, p,w)) — P(r,p, w)| = O(h2¥) and (b)

A 1
V(P(Tr,p,w)) = ﬁ P(Tr,p,w)(l —P(ﬂ',p,w))
2 1
_EP(Wapa w)ng(ﬂ',p,w, h) + Ele(Wapa w, h)

1
——Rj h
n Qk(ﬂvpvwv )
where both |Rik (7, p, w, h)| and |Rok(m, p,w, h)| satisfy

|Rix (0, p, w, )| gchik[/ Hay(m, P,W)d(P, W)+/ sup | Fy(m, P,W)|ex2* (m, P,W)d(P,W)].
Dp,w Dy TER
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Proof. (a) Since h, — 0 as n — oo, there exist N(p,w) € R4 such that for all n > N(p, w),

B(P(p.w) = Elinka) ™ 3 | D anip < 5.z w)

S /Mk
R41 xR92

_ /]R - / / o P)dpI(P < p,W > w) f(IL, P, W)dIld(P, W)
/.

By
/th xR92

Let Fy(m, p,w) = ffoo f(v,p,w)d~. Using integration by parts,

DAy I(P < p,W > w) f(IL, P, W)dIld(P, W)

T — 11

iar(C) (P < p, W > w) f(I1, P,W)dI1d(P, W)

/ S (N1 < oW > w)p(, W an

e B

= h, / kar(@)I(P < p.W > w)f(m — hup, P,W)dyp

—00

= —/ km(@)I(P < p, W > w)dFy(m — hpp, P,W)
o0

= —km(@)I(P <p,W >w)Ff(m — hyo, P,W)|7Z w__oo +/ Fi(m — hpp, PBLW)I(P < p, W > w)drp ()

—0o0

- / My(0) Fy(n — hoips PW)I(P < p,W > w)dip

- Te / ZCkS K(o/s)Fp(m — hno, P,W)I(P < p, W = w)dyp
k,0
sl=1
1 o0
= o) K ZCkstw—shntPW) (P <p,W > w)dt
Ck,0 Is|=1
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Since — Z\ks\:1 e =1, [ K(t)dt = 1, we have

Ck,0

E(P(m,p,w)) — P(m,p,w )

= / / Ck’st(ﬂ' — shpt, P,W)I(P < p,W > w)dtd(P,W)
Ck: 0 JRI1 xRd2

- [ sepwiddrew)
Dy, J—00
k
= / / K(t Z s Fr(m — shat, P,W)I(P < p, W > w)dtd(P, W)
Ck ,0 JRI1 xR92 =

k 0
n Ckys / / K@t)dtFy(m, P,W)I(P < p, W > w)d(P,W)
s=1 Ck,0 JRU xR92 J—o0

_ / / K (&) A, Fy(r, PW)I(P < p,W > w)dtd(P, W)
Ck ,0 JRA1 xR92

By Assumption 5A, we have

/ | K (t)|(hnt) 2 dt Hop (zr, P, W)d(P, W)
hnt|<egk (m,P,W)

sup |Fy(m, P, W) |K(t)|dtd(P, W)]
p w TeR |hnt|>82k(7r,P,W)

\E(P(m,p,w)) — Plr,p,w)| < / / K (&) A, Fy(m, WP < p,W > w)dtd(P, W)
< / + )K () A Fy (w, P,W)|dtd(P, W)
hnt|<eon(m,P,W)  J|hnt|>eop(m,P,W) "
< /

Since for any N > 0,
t o0
/ K (b)dt < / K@) L pha < N‘Zk/ K ()| at
lt|>N />N N oo
Assume that [ |K(t)[t**dt < oo, we have

|E(p(7r,p,w)) - P(ﬂ-’p)w)’
< ch?] Hop (7, P,W)d(P,W) + / sup | Fy(m, P,W)|e52* (mr, P,W)d(P,W)]
D

n
Dp,w p,w TER
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(b) Note that V(P(m,p,w)) = 2 (Vi, — Va,), where

Vln = _2/ Mk
V2n = /Mk

From part (a), we know the limiting behavior of V,. Now, for Vj,, since h,, — 0 as n — oo, there

exist N(p,w) € Ry such that for all n > N(p, w),

dfy)QI(P < p, W; > w)]

d’yI(P <p,W;> w)])

Vin = Elhn%( VY2 I(P; < p, Wi > w)]

0 hn
= hnz/ /OO</W"‘@(H_7
R21 xR92 n

hn

_ / / (@)d)f(T1, P,W)I(P < p,W > w)dIld(P, W)
R41 xR42

BM
/Rdl xRd2 /—oo

Integrating by parts

dy)? f (I, P,W)I(P < p,W > w)dIld(P, W)

))Zf(H, P,W)I(P < p,W > w)dIld(P,W).

/OO (NM(“; H))Qf(H,P, WHI(P < p,W > w)dIl

—00 n

_ / T (kar(©)2 (5 — g, WP < p, W > w)dy

—0o0

_ /OO (k30 (2))21(P < p,W > w)dFy(r — hyip, P, W)

= —(km()’I(P < p,W > w)Fy(m — hnip, P,W)|£2

go—foo

[ FYr b PP < p.W 2 w)dlsar ()

= 042 [ k(@ MUFy(r = b PWIP < p.W = w)dp

= / Z CkS/QM K(¢/s)Ff(m — hpp, PW)I(P < p,W > w)dy
|s|=1
0o k
2
= - = K () > ki (st)ex s Fy(m = shat, P,W)I(P < p,W > w)dt
Ck,0 Is=1
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Note that

st

k
Z Ck, Z Ck,
HM(St) - s /BM ’S - )

_ c c
BM 51 k0 51 R0

/ " K(u)du = s(t)

_BK

Thus,

Vln_—/ / K(t chst (m — shpt, PbLW)I(P < p,W > w)dtd(P,W)
Ck,0 JRI1 xRd2 ls|=1

Again, integrating by parts,

/ K(t)r(t)dt = 1/2,

since 0 < k(t) <1, [T (t)|t?*dt < co. Similarto the proof in part (a) with K (t)r(t) instead
of K(t),
Vln - P<7T7p7 'UJ) + le(ﬂ',p, w, h)

where | Ry (7, p,w, h)| < ch2k [po‘w Hoy(m, P,W)d(P, W)+po7w sup g |Fr(m, P, W)‘&;lfk(ﬂ', P,W)d(P,W)].

From part (a),

Von = [E(P(m,p,w)))?
= [P(TF,p,'IU) + R2k<7rvp7w7 h)]2

where |Rox (7, p, w, h)| < ch2k [po,w Hop (7, P,W)d(P, W)+po,w sup,eg | Fr(m, P,W)|ey2¥ (m, P,W)d(P,W)].

As a result,

V(P(r,pw)) = %(vm—vgn)

1 2 1

= E P(ﬂ-apvw)(l - P(ﬂ->p7w)) - gp(ﬂ->p>w)R2k(7T7pvwv h‘) + Ele(Trapawah)
1

- —-R3 h
n Qk(ﬂ',p,w, )

where |Ry(m, p, w, h)| and |Roy(m, p, w, h)| are lead than or equal to

B2 [ Hop(r, PW)A(P, W) + / sup | (m, P, W) |52 (m, P, W)d(P, W)].
D

Dp,w pw mTeR
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O]

Lemma 1 gives the order of the bias and variance as functions of k. Thus as we increase k, the
speed of decay of bias and variance increases. If we assume f has bounded first order derivative
with respect to m, by applying Taylor’s Theorem, the next lemma provides a more explicit structure
for bias and variance when k = 1.

Lemma 2. For k =1, under Assumption 1-4 and Assumption 5B, we have: (a)

. P(m,p,w) + $h2a3, [ _ (e () f( ), P,W)d(P,W) +o(h2) if0<m < n(p,w)
E(P(m,p,w)) =

P(Tr,p,w) +o(h2) if m> mw(p,w)
(b)
n~1P(m,p,w)(1 — P(m, p,w)) — 2n"th,ox fw—l((fr,ﬂ'(p,w)]) f(m, P,W)d(P, W) + o(hy/n)
V(P(r,p,w)) = if 0 <m < m(p,w)

3 P, pyw)(1 — P(m, p,w) + o{fn /) i > n(p,w)
where P(m,p,w) =PI < 7, P < p,W > w) and P(r,p,w) is defined in (5). o, = ffggM My (y)vEa (y)dry.

Proof. (a) Since h,, — 0 as n — 0o, there exist N(p,w) € Ry such that for all n > N(p,w),

E(P(r.p.w)) = E[(nhnrlZ(/ WMI«(H —D)ANIP < Wi 2 w)

/d do / / k
R xR
/Z) /( ,Tr P (/1/ /
p,w [ (

_ /Dpw/mpw /BM My ()de f (1, P,W)dTId(P, W)

= / / HJM( H)f(H,P, W)dIld(P, W).
Dy J0.(PW h

n

DNayI(P < p, W > w) f(IL, P, W)dILd(P, W)

Dy (1, P, W)dIId(P, W)

We consider 3 cases: (1) 0 < 7 < 7(p,w); (2) ® > 7w(p,w); (3) 7 = w(p,w).
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For case (1),

By = [ (S R W, W)

T —1I
/ Far (=,
L([0,m(pw)]) J (0,7 (P,W)] n

) f(IL, P, W)dIld(P, W)

m—1I
/ A
L([0,m)U(m, 7 (p,w)] [OW(PW)] n

[ / D) pa, p,wyarace, w
m=1({r}) J[0,7] hy,
= Aln + A2n-

- L
- L

) f(IT, P, W)dIld(P, W)

Note that for the last term, for II < m, nM(’ThH) — 1 as n — oo. By Assumptions 2 and 4,

[k (7 ) f(T1, P,W)| < co. By Lebesgue’s dominated convergence theorem,

A2n = / / KM
w=1({x}) J[0.7] ha
o
S
w=1({x}) J[0.7)

N / F(IL, P,W)dId(P, W)
(= Jo

_ H) f(L, P,W)dId(P, W)

W a1, p,wdnae, w)

_ 11 OF(II, P,W
A1n:/ / KM(”h ) f(an ) ana(p, w)
7= 1([0,m)U(7,7(p,w)]) 4 [0,7(P,W)] n

where Fy(II, P, W) fo (v, p,w)dy. Using integration by parts,

7 — 11 OF(II, P, W)
K ( ) dll
/[o,w(P,W)] han on

_ / (" arya, P w)
[0,7(P,W)]

hn
- w(”,m JAFy (1L, P,W) =g ") — / Fy(IL, P,W)drr( ,;H>
= (P ), P hi Fy(a P w) s
n (0,7 (P,W)] "
P e pw ). e+ [T (e b Py

h w—n(P,W)
n e
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By Taylor’s theorem, Ff(m — hyy, P,W) = Fy(n, P,W) — hoyf(7, W) + 10242 f D (7, P,W) +
o(h2), Hence
An = Ern + Egp + Esn + Eg + o(h2)

where
— (P
- o™ (P W) PP W)
7= 1([0,7)U(7,7(p,w)]) n
T
Eon — / Fr(m W) [ 7 My(y)dyd(P,W)
L([0,m)U(m,m(p,w)]) 7;
FEs, = hn/ f(TQPW) (P.W) k(7)7d7d(P7 W)
Wﬁl([ovﬂp)u(ﬂpvﬂ-(pvw)]) L
1 L
B = 2 0@ rw) [ Meprddew)
([0,m) U, m(p,w)]) A
Now,

B = [ ot ("W b (W), WA, W)
(10,m)U(,m (pw)]) hn

= [ eI B w), PR )
([0,m))

n

T / ear (W o ), Pw (e, W)
7=1((m 7 (pw)]) hn

= FEun,+FEony

For E1j,, note that when (P,W) € n~1([0,n)), %np’w) — 400 and HM(%f’VV)) — 1 as
n — oo. By assumption 2 and assumption 3, |/§M(%5’W))Ff(w(P, W), P,W)| < oo. Thus by

Lebesgue’s dominated convergence theorem we have
Eyy, — Fy(x(P,W), P,W)d(P, W) / / FOIL, P,W)dILd(P, W),
7= 1([0,7]) ((0,7]) J[0,7(P,W)]

), T W) 50 as

n

For Eig,, note that when (P, W) € 7= ((m, m(p, w (%f’w))

— —oo and Ky
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n — oo. As a result, By, — fﬂ_l([O,fr)U(ﬂ,Tr(p,w)D f[O,ﬂ'(P,W)] fL, P,W)dIld(P, W).

E,, = / Fy(m,P,W) o My (y)dvyd(P, W)
([0,m)U(m,m (p,w)]) Ln)

- / ([OW))F(WPW) S Mip(y)dryd(P, W)

hn

v/ Fre Py [ My ()dnd (P, W)
T ((ﬂ— 7r(p,w)]) hn

= Foin+ Eoap

For Es; p,, when (P, W) € 7= 1([0, 7)), w — 400 and f 2wy Mi(v)dy — 0 as n — oo. For

hn

E92.1, when (P,W) € 7= 1((m, 7(p,w)]), %np,w) — —oo and fw () My (y)dy — 1 as n — oo.

As a result, Fs, — 1[0 U (p)]) f[o,w} FAL, P,W)dILld(P, W).

hlEs, = / oo )])f(?TPW)/ o M. (y)ydyd(P, W)
0,m)U(m,m(p,w L

+f f(m, P,W) /  Mi(9)ydyd(P.W)
L((m,m(p,w)]) R

= FE3in+ E3an

For E31 ., when (P,W) € 7—1([0, 7)), %np,w) — 400 and fEW(PW) My(y)ydy — 0 as n — oc.

For Ess,, when (P,W) € n=1((m, m(p, w)]), %np,w) — —oo and f " ey Mi(y)ydy — 0 as

hn
n — oo by the symmetry of My(.). As a result, h, ! E3, — 0.
—2 1 (1) b 2
hy Ban = 5 fOm, PW) | Mi(y)y dyd(P, W)
= 1(0,m)U(m,m(pyw)]) iAW)
_ 1 ) & 2
7=1([0,]) R
5[ 0wy [ M w)
2 Je (o)) 1-n(P.W)
= Eun+ Egpp
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Similarly, when (P, W) € 7~1([0, 7)), %np,w) — +oo and Ey1, — 0 as n — co. When (P,W) €

7 (7, 7(p,w)]), %nP,W) — —oco0 and [ oy Mi(v)v2dy — 02, as n — oo by the symmetry
i

of My(.). As a result, h, 2Ey, — %0%4 frl((w (paw)]) fO(z, P,W)d(P,W). Therefore, if 0 < 7 <
™(p, w),

E(P(ﬂ',p, w)) = Eln + EZn + E3n + E4n + A?n + O(hi)
- / F(IL, P,W)dILd(P,W) + / / F(IL, P, W)dILd(P, W)
1([0,m)) J]0,7] 7= ((m,m(p,w)]) /0,7

+ / F(IL, P,W)dITd(P, W)
{=}) J[0,x]
1
wghiot [ O R W) o)
T‘- 7T p:
— P(rpw)+ h%MJ/‘ O, P,W)A(P, W) + o(h2)
(m,m(p,w)])

= F(T(',p, U}) - FHP(W7P) + 2h%LO-M/ f(l)(ﬂ-) Pu W)d(Pa W) + O(h%)
(w7 (p,w)))

For case (2), when 7 > 7r(p, w), m > w(P,W) for all (P,W) € D, /{M(%f’w)) — 1,

fEn-(P,W) Mp(v)dy — 0, f:nw(P w—m(P,W) Mp(y)ydy — 0 and f:nw(P w—m(P,W) M, (7)72 — 0. By LDC,

h"L h/'VL h/'VL
—7(P.
/‘ﬁmﬂ7dﬁ%ﬂW@M%RWWRW)+!/ Fy(n(P, W), P,W)d(P,W) = P(r, p,w)
DP’LU Dpw
/D B W) [T, MR W) o

b [ fpaw) My(y)dyd(P,W) = 0
D

w—m(P,W)
pw i
1 .
p2 f<wpm/ My(y)y2dvd(P,W) — 0
2 Dp,w 7r77r’§P,W)

Therefore, if © > n(p, w), E(P(x, p,w)) = P(m,p, w) + o(h2).

For case (3), the proof willl be the same as case (1) except that the set (7,7 (p, w)] = ¢.
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(b) Note that V(P(m,p,w)) = 2 (Vi, — Va,), where

Lﬁn = _2 /f Alk
‘én = /r AJk

From part (a), we know the limiting behavior of Va,, now for Vi,,, Since h,, — 0 as n — oo, there

exist N(p,w) € Ry such that for all n > N(p, w),

dfy)QI(P < p, W; > w)]

d’yI(P <p,W;> w)])

H Y
Bin

0Lt
Dy J[0,m(P,W)]

- [ [ M) (I P WP,V
Dy w [0,7(P,W B

Vin = Elh. %

)dy)*I(P; < p, Wi > w))

dv)? f(I01, P,W)dIld(P, W)

= [ TP P WP W)
Dyp,w J[0,m(P,W n

Like part (a), we also consider 3 cases when (1) 0 < 7 < 7(p,w); (2) 7 > w(p,w); (3) m = w(p, w).

For case (1),

—1I
Vie = / / (ear (")) £ (11, P, W) dIld (P, V)
m)U(7, 7 (p,w)] mﬂU”VH n

Lo,
/ / (oar(=2))2 p (11, P, Wyt p, w)
“t({r}) J[0,7] han

- Aln*'AQW

Note that for the last term, for II < m, /@M(’Thn) — 1 as n — oo. By assumptions 2 and 3,

(ﬂ*H

3% W) f(II, P,W)| < co. By Lebesgue’s dominated convergence theorem,

Ay — / f(L, P,W)dIld(P, W)
{=}) J[0,7]

Now,
m =11, o, OF(II, P,W)

Ay = / / (ar( ) LW grace,w)
7=1([0,m)U(mm (pw)]) J [0,m(PW)] hn ol
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where Fy(IL, P,W) = [ f(v,p,w)dy. Using integration by parts,

7 — 1. ,0F;(I, P,W)
dIl
/[O,W(P,W)](HM( hy, ) oIl
—1II
= [ () PAE L W)
0 7r(PW)] hy,
7r —1II
= (PR AL PR - [ p R
n [0771—(P7W)] n
— (P, W 2 —1II —1II
= (T2 e wy, Py 4 2 / Fy(I1, P, W )rias (") My (" )dIl
by, hy, hay, hy,
[0,7(P,W)]
T —m(P,W o
= D e E e (p ). Py 42 [y = o P s ()M ()
n hi

By Taylor’s theorem, F¢(m — hyy, P,W) = F¢(mw, P,W) — hypy f(m, P, W) + o(hy,), Hence
Aln = ‘/iln + vi2n + ViBn + O(hn)

where

—a(P,W
Vi = [ (s ("W 2o o w), Py, W)
(10,m) U, (p,w)]) hn

hn

Vi = 2 [ Fy(r PW) [ M) drd(P W)
7= 1([0,m)U(m,m(p,w)]) e T

View = —2hn [ fpw) [ M) ) drd(P W)
~1([0.m)U(m,m (paw)]) L)
Using the same argument as in the proof of part (a),
[0,m)) J[0,m]

By

Vien — 2 / Fym, PW) [ My()kar(y)drd(P,W)
—1((m,m(p,w)]) —Bm
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Now,

By By
Me(y)rar()dy = /” poar () dis (7)
—Buy —Bum

By

:fwm%%—[wmmwww

By
=1—/mfmwwmw

As a result, fng My (y)kar(y)dy = 1/2. Therefore,

Vi = [ f(IL P, W)d11d(P, W)
n—1 ((71'77"(2971”)}) [0,7r]

Similarly,
Visn — 2hno-fi/ fL, P,W)dlld(P, W)
w1 ((mm(p,w)])
The result then follows. Case (2) and (3) follow similarly. O

Lemma 3. Let h, be a sequence of nonstochastic bandwidths such that 0 < h, — 0 as n —

co. Given w € R‘j_ﬂ_, p € R‘il and there exist some N(p,w) such that when n > N(p,w)
ming;. p,<p w,>w} i > hoBar. Under Assumptions 1-4 along with Assumption 5B (or 5A) and if

Hoy (7, p,w), Fiy(m,p,w) and eox(, p,w) are bounded for all (m,p,w) € ¥*, we have (a) Sup (o r(p.w)] |P (7, p, w)—
E(P(m,p,w))| = 0p(1) and (b) supre(o n(puy) |E(P(m,p,w) = P(m,p,w))| = o(1).

Proof. (a): For given w € Riﬂ, pE Ril there exist some N (p,w) such that when n > N(p,w)

min II; > h,Buy.
{#:P;<p,W;>w}
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Then

P(rpw) = (k)™ S MR < p Wiz w0
i=1 n

s H_

= bt [ M I < p Wiz )
0 n
m—II;

h

= hn_l/ " My(p)deI(P; < p, Wi > w)

;.
hn
71'—1'[7:
hn
— / Mi(@)doI(P; < p, Wy > w)
—Bum
— 11
= hy (IR < p, W > w)

b,

Since [0, 7(p, w)] is compact, there exist mo € [0, 7(p, w)] and r such that [0, 7(p, w)] C B(mo,rx)
where B(mg, ) = {m € R: |7 — mp| < rr}. Furthermore, for all = € [0, 7(p, w)],

n,_1
[077T(p7w)] C U{ﬂ:ﬂG[O,fr(p,w)]}B(ﬂ-7 (7) 2)

n

>

with a > 0. By the Heine-Borel Theorem, there exists { B(m, (h%)_%)}f:"l such that

hﬁ)_i)

n

[0, 7(p, w)] € Ugzy Blm, (

with L, < rﬂ(h%)% Therefore, any 7 € [0, 7(p,w)], there exists some [ € {1...L,}, such that
1

7 € B(m, (&) 2). Then we have
‘P(ﬂ'7p,w) - E(P(ﬂ"p’ w))’
\P(W,p,w) _p(ﬂ-hpaw)’ + |]5(7rl,p,w) —E(P(m,p,w)ﬂ

+’E(P(7Tlvp7w)) —E(P(ﬂ',p,w))|
= P1n+P2n+P3n

IN
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For m € B(m, (h%)*%), we have

Pln = |15(7r,p,w) —P(Wl,p,?,U”
T —

I1;
(B < p, Wi 2 w)

IN

_ “M(

IN

h,flm,{|7r — ]

m,i(nhi_a)_%,

IN

by Assumption 2 and the fact that I(P; < p,W; > w) < 1. Similarly,

P3n = 7-‘-lapa E(P(ﬂ- b, w ))|
o
_ \/ /MPW war (=) (L PW)dILd(P V)

- / [ (S PP W)
Dy J[0,7(P,W n

IN

m — 11 T —1II
Lo ™) — (IO P W) AP W)
Dy w J[0,7(P,W hn, hy,
m,{(nh%_a)_%P{P <p,W>wI <n(P,W)}

< me(nh2 )72

IN

Let a = 1, given nh, — oo, we have Pi,, = 0,(1) and P, = o(1). For any [ € {1,...L,,},

P2n = ’P(sz,p, ) E(P(Trlapa ))|
< P
> 122%’ (Wlap7 ) ( (7T[,p, ))‘

We need to show that for any € > 0, there exists some A, > 0, such that

P{(ln?n))% lg?]_fn |P(m7, p,w) — E(P(m, p,w))| > A} < e.
Note that
n 1 ~ R Ly, n )
P{(ln(n))g 1212 [P (1, p, w) = E(P(m, p, w))| = Az} < ZP{(ln(n))ﬂP(m,p, )—E(

- =1
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Write |P(m,p,w) — BE(P(m, p,w))| = |2 30 | Wi, | where

— 11 — 11
250 [P < p, Wi > w) — Bl (2

Win = KVM( hn hn

(P < p, Wi > w)]

Obviously, E(Wiy,) = 0, |Wiy,| < 2 since both I(.) and kp/(.) are less or equal to one. By Bernstein’s

inequality we have

nA2 . (s)~1
)2 | P(m, p,w) — E(P(m, p,w))] > A} < 2exp(— ¢ ‘ln(n)
11’1(”) ) y» sy - £ 25-721 N %Ae ) (

)

N|=

1n7(Ln) )_

with 62 = n= >0, V(Wiy,) — P(m, p,w)(1 — P(m,p,w)) by Lemma 1 or 2. Thus 252 + %AE .
(%)*% — 2P(m;, p,w)(1 — P(m,p,w)), Hence provided that A2 > 2P(m;, p,w)(1 — P(m,p,w)),

In(n)

< rﬂ(hi)% -2exp(—1In(n)) = rﬂ(nh)—%

n

)2|P(m, p,w) — BE(P(m,p,w))| > AL}

P2n < an{(

Therefore, P, = 0p(1) and as a result, Sup ¢ x(p,w)] |P(m,p,w) — E(P(m,p,w))| = op(1).
(b) Note that for 7 € [0, 7(p, w)],

E(P(m,p,w) :/ / mM(F_H)f(H,P,W)de(P,W)
Dpw  [0.7(PW)] I,

11
_ / / rar (=) F(IL, P, W)dILd(P, W)
==1([0,m)) J [0,m(P,W)] han

11
/ / ot () f(IL, P, W) dILd(P, W)
=1 ({r}) Jo,m(PW)] h

n

Jr
Jr

I
/ / ot () f(IL, P, W) dILd(P, W)
7= 1((m,m(pw)]) J [0,7] hn

11
+f [ (L PP W)
71 (o (pw)]) J e (PW)] hin

Therefore, by triangular inequality, we have

sup ’E(P(ﬂ',p, w)—P(ﬂ',p, w))| = sup Gln"" sup G2n+ sup G3n+ sup G4n
w€[0,7(p,w)] w€[0,7(p,w)] me[0,m(p,w)] w€[0,7(p,w)] we[0,m(p,w)]
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where

Gin = | / / I, P wdna e, w) - / / F(IL, P, W)dITd(P, W)|
1([0o,m)) J[0,m(P,W)] ho, 0,7 0,7 (P,W
Gom = | / / I pan, pw)anta(P W) - / / F(IL, P,W)dILd(P, W)
1{=}) J[o,mr PW)] hy, 1({=}) J[0,m(P,W)]
Gan = | / / ear (A0 (1, P, W) T (P, W) — / f(IL, P, W)dILd(P, W)
“1((mm(pyw)]) J[0,7] hn 7=1((m,m(paw)]) J[0,7]
—1II
G = 1 [ L PP )
(w7 (p, [, (P,W)] n

For the first term, when (P,W) € 7 1([0, 7)), Il < m(P,W) < 7. This implies xs (51 ) — 1 as
n — oo. First, by LDC,

/ / rar(T H)f(H,P, W)dlld(P, W) — / f(IL, P, W)dIld(P,W).
w=1([0,m)) J[0,7(P,W h 0,m(P,W

n 7= 1([0,m))

Second, fn—l([o ) f[o A (PWY] mM(%)f(H, P,W)dIld(P,W) is increasing with n. Furthermore, By

the Lipschitz condition imposed on kps(.),

[.- 1([0,7)) f[07r (PW)] kv (T )f(H P,W)dIld(P,W) is a continuous function in 7. As a result, by

Dini’s Theorem,

n

/—1(0@ /owpw ”M(F;HV(H’RW)de(RW)—>/_1(07r) /OWPW F(IL, P, W)dIld(P, W)

uniformly. Thus, sup ¢ x(p,w) Gin = 0(1). Similarly, we can prove that sup.co(puw) G2n = 0(1)
and SUpre(o r(pwy Gan = o(1). For the last term, note when II € [r,7(P, W)], mM(%) — 0

Similarly, by LDC and Dini’s theorem, sup ¢ x(p,w) Gan = o(1). O

Theorem 1 Proof. First we consider the event set A = {w : [man(p,w) — ma(p,w)| > €}

Given (p,w), provided that m,(p,w) is unique, for any ¢ > 0, we have F(mq(p,w) + €|Cpw) >
F(ra(p,w)|Cpw) > F(malp,w) — €lCpuw). For w € A = {w : [man(p,w) — ma(p,w)| > €},

Tan (D, w) > Ta(p, w)+€ or To n(p, w) < mo(p, w)—e. By the monotonicity of F(.|Cp.), F(man(p, w)|Cpaw) >
F(mo(p, w) 4+ ¢|Cpw) or F(man(p, w)|Cpw) < F(ma(p,w) —€|Cpa). Let

)

(e, p, w) = min{F (74 (p, w)+¢|Cp ) —F(ma(p, w)|Cpw), F(a(p; w)|Cpuw) = F(ma(p, w)—€|Cpw) } > 0
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For all w € A,

(1) when F(man(p, w)|Cpw) — F(ma(p, w)|Cpw) > 0, we have mq pn(p, w) > mo(p, w) + €. By mono-

tonicity,

F(man(p, w)|Cpw) = F(7ma(p, w)|Cpw) > F(ma(p,w) + e[ Cpuw) = F(7a(p, w)|Cpuw) = 6(c, p, w).

(2) Similarly, when F(mqn(p, w)|Cpw) — F(ma(p,w)|Cpw) < 0, we have
F(7an(p,w)|Cpw) — F(ma(p, w)|Cpw) < F(malp, w) — &[Cpuw) — F(ma(p,w)|Cpw) < —0(, p,w).
As a result, For w € A, |F(man(p,w)|Cpw) — F(ma(p,w)|Cpw)| > 6(e,p,w). ie. AC B = {w:

| F(Tan(p, w)|Cpw) — F(ma(p,w)|Cpaw)| > 0(e, p,w)}. Thus, P(A) < P(B). Therefore, we just need
to prove |F(man(p, w)|Cpw) — F(ma(p, w)|Cpw)| = 0p(1). Note that

|E (Tan (P, 0)|Cpw) = F(7a(p, w)|Cp,w)]
|F (Ta,n(p, w)|Cpaw) = F(an(p, 0)|Cpuw)]

< sup |F(n|Cpu) — F(x]Cpu)l
TeR L
P P
< sup | (m,p,w)  P(r,p,w)
TI'GR+ PPW(p7 ) P (p, )
P P
< sup | (Wp,)_A(W,p,w)|+Sp| P(m,p,w) A(Wp’)|
TeR4 PPW(pv ) PPW(p,UJ) TeERL PW(p, ) P ( )
1 1 1 .
< sup P(m,p,w — = + sup |P(m,p,w) — P(m,p,w
P P pa)| s = e s s [P(rp) — Plap)
1 1 1 .
< Pprw(p,w - = + |= sup |P(m,p,w) — P(m, p,w
( )IPPW(]%M) Ppw(p,w)| ‘Ppw( ,w)’ﬂeR_‘.’ ( ) — P( )|

Note that ppw(p, w) — Ppw (p,w) = o0,(1) by the properties of indicator function. By Slutsky

1
Ppyw (p,w

Supﬂ'ER+ |P(7T,p,’w) - p(ﬂ',p,’w” = Op(l)'

theorem we have Ppwl(p o~ ;= op(1). Since Ppw (p,w) = Op(1), we just need to prove

sup |P(m,p,w)—P(m,p,w)| < sup |P(m,p,w)—P(m,p,w)|+ sup |P(m,p,w)—P(r,p,w
Ry el0,m(pw)] € (n(pw),o0)
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From Lemma 3, sup.¢o,x(pw) | £(7: p, w) — P(m,p,w)| = 0,(1). For all 7 € (7(p,w), o),

P(m,p,w) = PII<mP<p W >uw)
= P <7(p,w), P <pW >uw)
= PP <pW>w)

= PPW(pa U})

Given ming. p, <, w,>w} i > hnBar, and for any 4, II; < 7(p,w) < m. There exist N(p,w) such
that for all n > N(p, w),

. . a 0, —
Plr.pow) = (oh) ([ M)A < W > )
i=1 70 n

- ”_12/ " My(@)dI (P < p, Wi > w)

As a result, as Ppw(p,w) — Ppw (p,w) as n — oo

sup ’P(ﬂ',p,w) _P(ﬂ-7p7w)’
me(m(p,w),00)

S sup ’P(ﬂ',p,w)—PPW(p,UJN‘i‘ sup |P(7T7p7w) _PPW(p,'U))’
mE(m(p,w),00) we(m(p,w),00)
= op(1)
The result then follows. O
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Theorem 2 Proof. (i) By Mean Value Theorem,

F (o (p,0)|Cpaw) = F(ma(p,w)|Cpo)
f(Fan(p,w)|Cpow)
Cpw) = F(m ( w)|Cp,w)
(Tan(p; 0)|Cpw)

ﬂa,n(pv ’UJ) - Wa(p,QU) =

F(ma(p, w

)
f

where f(7|Cpw) = % and Ton(p, w) = Man(p,w) + (1 — XN)ma(p, w) for some A € (0,1).

Write
1

7Toz7n(p7 'U}) — 71'0[(])7 w) = (An + Cn)(f(ﬂ'a(p7 w)|c ,w)

+ Bn)

where
E(p(ﬂ'a(p, w)vpv ’UJ))

E(Ppw (p,w))
E(p(ﬂ-a(paw)vpvw)) -
Cn = — — T ,w C w
E(Ppw (p,w)) Fimelp, w)lCpu)
1 1

FFan (@ w)|Cou)  f(Ta(p,w)Cpu)

A, = F(?Ta(p, U})|C ,w) -

ﬁn:

f ~1([ra (pyw), 7 (p,w)]) f (7ro< (p,w),P,W)d(P,W)
Ppw (p,w)

The theorem follows if (a) 8, = 0p(1); (b) Ay, = —3hZ03,

. sn(p,w
o(h2); (c) (m) Ly/nC, — N(0,1) where

(P(Tra(p, U}),p, w))2
Ppw (p, w)

Cohon / F(a(p, w), P,W)d(P,W) + o(hy)
1 (fra (py0)m (o))

sz(p,w) = P(ma(p,w),p,w) —

(a) By Slutsky theorem, it is suffice to prove f(ﬁajn(p,w)]C w) — f(ma(p,w)|Cpw) = 0p(1). Since
Tan(p, w) — To(p, w) = 0,(1) by theorem 1, also, T n(p, w) — ma(p, w) = o0p(1).

VAN
=,
=

)
3
=
S
pQ
g
|
g
=
9
=
£
@Q
g
+
=
S
9
5
=
Q

,w) - f(ﬂa(p,w)fc ,w)‘
< |f Fam P 0)|Cpu) = f(Fa(p,w)|Cpuw)| + 0p(1)

by continuity of f. Therefore it is suffice to prove sup,cq |f(7|Cpw) — f(7|Cpa)| = 0,(1). where

38



G is a compact set and G C (0, 7(p, w)).

S =1 (r mtmayy S (TPW)A(P,W)
Note that f(r|Cp) = ===l

. F(W‘an) =1 and % =0

since when (P, W) € 7=1([0, 7)), I < n(P,W) <

sup ’f(W’Cp,w) - f(ﬂ‘c ,w)’

TeG
— sup |(”hn)_1 > i Mk(H;ZL:r)I(Pz <p,W;>w) _ fﬂfl((wm(p,w)]) f(m, P,W)d(P,W)
Teq@ ppw(p, w) Ppw(p, w)
< - sup (nhn) 1 S0 MR < p Wiz w) - [ f(r, P,W)d(P,W)|
Ppwy (p,w) =G = hn 7= (e (pw)])
1
1] . sup / £, P,W)A(P, W)
Ppw(p,w)  Ppy(p,w) | 7€G Ja=1((x,m(pw)]) (
Since Ppwl(p,w) - ﬁpwl(p@) = 0p(1) by Slutsky theorem,

meWWRMS&/ d(P, W) = 0(1)
w1 (r ()

sup

TG /Wl((mr(nw)])
by Assumptions 3 and 4.

Denote Qn(p, w) = (nhy) ™ o) My(B=")I(P; < p,W; > w), Thus,

wmmmm—/ f(m, PW)d(P, W)
TeG 7= 1((m,m(p,w)])

< sup |@Qn(p, w) = E(Qn(p,w))|
S
Tn(P,W)—m
+sup B@Qupw) — [ "L PP
TeG Dyp,w n
P _
+sup | ear(CE = fw, Pawyacew) — | £l P.W)A(P W)
7eG  Jr=1((mm(pw)]) h, 7= 1((m,m(paw)])
n(P,W)—m
ssupl [ (T g pwyatew)
meG Jr=1([0,7]) n
= an + QQn + Q?m + Q4n
Follow the similar proof process as in Lemma 3 (a), we can prove that Qi, = Op((iLnTZ)%) if
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nh? — oco. For any (p,w), there exist some N(p,w) such that when n > N (p,w)

BQupw) = w7 [ [ PWHMk<Hh‘”>f<H,P,W>de<P,W>

n
7r(P W)

- !/’ L/ o)+ hup, P.W)dipd(P, W)
Dpw J—
PW)
-/ / )P+ hnsp, P,W)dipd (P, V)
Dp w B]M
By Taylor’s theorem, for any m € G,
w(P,W)—m W)
y/ L/ O (F (4 hoipy PLW) — f(m, P,W))dd (P, W)|
Dp w BM
7r(PW
< /’ / N (T + hnip, W) — f(, P,W)|dipd(P, W)
Dp w B]M
< mgh, [ [ anoelded(P ) +o(h)
Dp,w 7BM

- O(hn)

Therefore, Q2, = o(1). Since when (P,W) € n~1([0,7]), /{M(%) — 0 and when (P,W) €
7 (7, 7(p,w)]), KM(%) — 1. By LDC, for any 7 € G,

Tn(P,W)—m
/ (P pa powyae ) - | e, PW)A(P, W)
((m,m(pw))) n ~H((mm(pw)))
and
[ DT e (e w) - 0
([0,7]) n
Therefore, @3, = 0(1) and Qu, = o(1). In sum, Noting that Ppw(p i Op(1), we have

sup ’f( 1Cp,w) = f(7]Cpaw)| = 0p(1)

TeG

As a result, 3, = op(1).
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E(p(ﬂ;&(p¢w)apvw))
E(Ppw (p,w))
E(ppw(p, w))F(ﬂ-a(p?w”Cp,w) _ P(”Ta(pa UI),p,’U))

A, = F(Tra(p’w)‘cp,w)i

E(Ppw (p,w)) E(Ppw (p,w))
P(ﬂ'aA(p,’lU),p,UJ) o E(p(ﬂla(paw)apvw))
E(Ppw (p,w)) E(Ppw (p,w))
1 .
= m[(E(PPW(paw))F(M(pvw)’Cp,w) — P(ma(p, w), p, w))
+(P(7Ta(p’w)apa w) - E(P(Wa(p,w),p,w)))]
1

= B () A

we know E(Ppw (p,w)) = Ppw (p,w). A1, = 0. Since given a € (0,1), ma(p,w) € (0,7(p,w)), by

Lemma 2,
1
A = =50y f Y (a(p, w), P,W)A(P, W) + oh7)
Wﬁl((ﬂa(puw)ﬂr(piw)])

The result then follows.

A

E(P(ﬂ'a(p w),p,w)) .
nC, = n — F(ma(p,w Cp,w
Vn Vn( {3( w(o.0)) A (ma(p )IA )
_ \/E(E(P(ﬂ-? p,w),p,ﬂi))PPW(pa w) N P(ﬂ-ﬁl(pvw))p’w)
E(PP (p, w)) Ppw (p, w) Ppw (p, w)

N PPW ;Zm

where
1 E(P(ra(p,w),p,w)) wy- L relpw) Tl — , w

Zin = 7 ooy (po0) I(P < p,W; > / M ( W AV I(F; < p, Wi 2 w))
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Here,

E(Zi) = %(E(Pm(p, W), p, ) — B(P(ma(p,w),p, )
— 0
Z b, )—31n+32n+33n
where
B (malp, w), p,w))}? , , AE(P(ralp, w), p,w))}?
Sin = PPW(p; U}>2 E(I(Pz <p,W; > w)) = PPW(p,U))
Wa(p w) R A
s = Bl [ MBI < 5. Wi 2 w)] = Bl(Plra(p,w).pw)?
P (1 (p.w).p.w T (pw) o
o - _2E(P§DPQV(VP(;9 Q)U,)p, )E(hln/o M’“(thn v)dﬂ(ﬂ < Wi > w)
= =251
By Lemma 2,
E(P(ra(p,w),p,w)) = P(ma(p,w),p,w)+ hQJM/ 0 FO (z, P,W)d(P,W) + o(h2);
(7,7 (p,w
E[(P(ma(p,w),p,w)?] = P(ma(p,w),p,w) — 2hno-n/ f(ma(p,w), P,W)d(P,W) + o(hy,)
71 (e ()7 (p0)])
As a result,
St = — (P(ra(pw), p,w) + ~h202 / FO (o, PP, W) + o(h2))?
" PPW(paw) an o 2 no M —L((m,m(p,w)]) T 7 "
_ (P(Wa(pvw)7p7w))2 o
= Pow (. ) + o(hy)

smn = P(malp.w)prw) ~ 2o | F (Falp, w), PW)A(P, W) + o(hy)
7= (7o (p,w),m(p,w)])

(P(ma(p, w), p, w))?
Ppw (p, w)

S3n = —281, = —2 + o(hy)
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Z E(Z'?n) = Sint+ 82+ S3n

(P(ma(p, w), p, w))*
Ppw (p, w)

o / F(7a(p, w), P,W)d(P,W) + o(hy)
7 (7o (pw),m(p,w)])

= P(Tra(paw)ap7w) -

]2+5) = 0 for some § > 0.

By Liapounov’s CLT, ", o) N(O 1) if limy o0 o1y E(157

sn(p w)

E ’L’Vl |2+§ < E |Z |2+5’7|2+5)
> 51,7 LCE T

Since s, (p, w) = O(1), we just need to prove lim, o0 > iy E(|Zin|*") = 0. By C, Inequality,

ZE(|Zzn‘2+6) < 21+6(n—2/§E(‘E(P(7Ta(p7 w)apyw))I(Pl < D, WZ > w)‘2+6)
=1 PPW(p>w)

1 71'oz(pfw) HZ —
+ n_2/5E(|h/ M ( 7
0

)y (P < p, Wi 2 w)|*))

QL+0 (=20 E(P(ra(p, w), p, w)) PRE(I(P < p, Wi > w)))

PPW(pv )
2/ / / ma(pw) =1 w1 by ana(p,w)
Dy J[0,7(PW)] hy,
Since E(I(P; < p,W; > w) = O(1),
72/6E’ ( (Wa(p, ) pvw))’2+6 _ n72/6‘E(P(7Ta(pa w)jpjw))‘2+6
PPW(pa ) PPW(pvw)2+6
= O(n 2/
Since kp(.) <1, f < By and 7 < By,
0 / / T ) =T iy, pw)ama (e, w)
Dy J[0.7(PW)] hy,
< n¥B / / dIld(P, W)
Dyp.w J[0,7(P,W)]
<

n~2/B; / / dIld(P, W)
7=1[0,Bx] J[0,Bx]

_ O(n—2/6)
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The result then follows.

.. . . . 1 . . _
(ii) Note that in the proof of part (i), A, = EPru o) (A1, + Asgy) is the bias term and Ap, = 0.
by Lemma 1,
|Agn| = |P(ma(p,w), p,w) — E(P(ma(p,w),p, w))]
< ch?¥| Hop (7o (p, w), P, W)d(P, W) + / sup | Fy(m, P,W)|e52* (ma(p, w), P,W)d(P, W)
Dp,w Dy TER
The result then follows. O
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