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posed by Martins-Filho and Yao (2012). It builds on the additive regression estimation by Kim et al.
(1999). We establish: (i) y/n asymptotic normality of the estimator for the parametric component, and
(ii) consistency and the uniform convergence rate of the estimator for the nonparametric component. In
addition, for statistical inference, a consistent estimator for the covariance of the limiting distribution
of the parametric estimator is also provided. Various intermediate results will also be of use to theorists.

Keywords. Additive semiparametric regression; Instrumental variables; /n-consistent estimation;
Nadaraya-Watson kernel estimation; Structural models.

JEL Classifications. C13; C14.

“I am greatly indebted to Carlos Martins-Filho for his guidance, inspiration and encouragement. I would like to thank Xiaodong Liu, Donald
‘Waldman, Kairat Mynbayev for helpful comments and suggestions. All errors are my own.

JfDepartment of Economics, University of Colorado, Boulder, UCB 256, Boulder, CO 80309 (e-mail: Xin.Geng-1@colorado.edu; website:
https://sites.google.com/site/xingeng2015)


mailto:xin.geng-1@colorado.edu
https://sites.google.com/site/xingeng2015

1 Introduction

Recently there has been a growing interest in estimation of nonparametric regression models with endogenous regres-
sors (Newey et al. (1999); Blundell and Powell (2003); Ai and Chen (2003); Su and Ullah (2008); Otsu (2011)). The
problem of endogeneity is widely encountered in empirical models in economics, due to measurement error or simul-
taneity that arises from individual choices or market equilibrium. Thus, the development of estimation procedures that
account for endogeneity has permeated research in Econometrics. Doing so in the context of tightly specified function-
al forms can be misleading due to the high probability of misspecification. Alternatively, accounting for endogeneity
in fully nonparametric models may be undesirable due to reduced precision that results from the well known “curse of
dimensionality”. Thus, a useful alternative is to consider semiparametric structural models to take advantage of any
known functional form information while retaining some nonparametric features.

Semiparametric models that account for endogeneity have been considered by a number of authors (see Li and
Racine (2007) Chapter 16 for an introduction). Prominent among these are Ai and Chen (2003) and Otsu (2011) that
propose two different sieve estimators for a partially linear model with endogenous regressors in the nonparametric
part. In this paper we consider a model that allows for endogeneity on both the parametric and nonparametric compo-
nents of a regression. Martins-Filho and Yao (2012) proposed a kernel-based semiparametric estimator for such model.
Compared with the two natural alternatives in the current available literature (Ai and Chen (2003); Otsu (2011)), this
estimator has an explicit functional form, much easier to implement, and a Monte Carlo study suggests that our es-
timator has a better finite sample performance. However, a full asymptotic characterization of their estimator was
not provided. Such characterization is critical for hypothesis testing and inference. In this paper, we establish: (i)
\/n asymptotic normality of the estimator for the parametric component, and (ii) consistency and the uniform conver-
gence rate of the estimator for the nonparametric component. In addition, we provide a consistent estimator for the

covariance of the limiting distribution of the parametric estimator.



We consider the following triangular semiparametric structural model:

Y; = Bo+Xoif+m(Xyi,Zy;)+ &, fori=1,---,n )
X; =I1(Z;) + U; )
E(Ui|Z;) =0, E(&|Z;,U;) =E(&|U;) (3)

In (1), the regressand Y; is a scalar, Z;; € RP1 is a subvector of Z; = (Z{i,Zéi)' € RPt with Dy = Dy + D12, Xi;, Xai
are non-overlapping subvectors of X; € RP2 of dimensions Dy and Dy; with Dy = Ds; + Dap, and & is an unobserved
scalar random error. m(-) is an unknown real function, By € R and 8 € RP2 are unknown coefficients of the linear
part. In (2), U; is a vector of unobserved random errors and IT: RPt — RP2 is an unknown function. Let E(-) denote
expectation. Variables X; are taken as endogenous in that E(g;|X;) # 0, and the variables Z; are exogenous due to (3).
We are interested in estimating 3 and m(-) consistently up to an additive constant.

Structural models can be viewed as simultaneous equations models, where economic theory is used to guide the
construction of a system of equations that describe the relationship among endogenous, exogenous and unobservable
variables (Hoyle (1995), Reiss and Wolak (2007)). The triangular system described by (1)-(3) is a special case of a
structural model, since all the endogenous variables X; in (1) can be suitably modeled by exogenous variables Z; in (2).
Triangular models have appeared frequently in economics and other social sciences. For example, the method of “path
analysis”, which is widely used in sociology, provides a more effective and direct way of modeling mediation, indirect
effects; for more, see Lahiri and Schmidt (1978) and Lei and Wu (2007). Partially linear models like (1) have also been
studied extensively by Stock (1989), Engle et al. (1986), Heckman (1986), Robinson (1988), Li (1996), Hasan (2012),
Lessmann (2014), and among others. However, even though the statistical objectives in these papers may vary, none
of them confront the potential endogeneity. For example, Robinson (1988) provided a /n-consistent kernel estimator
for B under regularity conditions, and based on this, Lessmann (2014) on one hand, tested and verified the inverted-U
relationship between spatial inequality and economic development, but on the other hand, to take endogeneity into
account, two methods are employed: one is the standard OLS estimation with lagged endogenous variables as part of

the regressors, and the other uses a difference GMM estimator. Thus, it would be more convenient and convincing to



employ an estimator that accounts for endogeneity appearing both in the parametric and nonparametric parts of the
semiparametric model.
Given (2) and (3), we have E(S,’|X1i,Zi,U,') = E(8i|Zi,Ui) = E(Si‘Ui), and E(X2i|X1i,Zi,Ui) = E(X2i|Zi,Ui) = le'.

Note that E(g;|U;) is an unknown function of U;, thus we can denote it by 4(U;): RP2 — R, and using(1), we have:

E(Y:|X1;,Z:,U;) = Bo +XaiB +m(X1i,Z1;) +h(U;) 4)

Newey et al. (1999) and Su and Ullah (2008) consider a purely nonparametric structural model with the same
conditional mean restriction given in (3). As Newey et al. (1999) put it, (3) is a more general assumption than
requiring that (&;,U;) be independent of Z; and E(U;) = 0. The added generality may be important in that it allows for
conditional heteroskedasticity of the disturbances. Different from the previous literature, this paper allows endogenous
X; to enter the regression not only nonparametrically through m(-) but also linearly. Newey et al. (1999) employ
series approximation to exploit the additive structure of the model (as we can see from (4) but without the linear
components) and establish the consistency and asymptotic normality for their second-stage estimator of m(-). Su
and Ullah (2008) also exploits the additive structure but their estimation is based on local polynomial regression and
marginal integration techniques. As discussed in Kim et al. (1999) and Martins-Filho and Yang (2007), the marginal
integration estimator (Linton and Hardle (1996)) is not oracle efficient. Thus, Kim et al. (1999) proposed a two-step
oracle efficient estimator for the additive nonparametric model. Note that if § were known and realizations of U were
observed, (4) is just an additive nonparametric conditional expectation that could be estimated using the pilot or two-
step estimator of Kim et al. (1999). We adopt a similar method as their first step pilot estimator does, employing some
particular “instrument” function, to derive the identification of our estimator for . Here, since U is not observed, like
Su and Ullah (2008), we replace them by the residuals obtained by regressing X on Z nonparametrically. It can be
shown that such a replacement does not impact the asymptotic properties of the resulting estimator.

There are two natural alternative estimators to ours in the current literature, i.e., the sieve minimum distance
estimator of Ai and Chen (2003) and the sieve conditional empirical likelihood estimator of Otsu (2011). This paper is

different from them in that the object of our estimation is the structural model and not just a conditional expectation,



so that we are able to give identifications and explicit expressions of estimators for each component in the model.
Besides, they have a different moment restriction, i.e., E(&;]Z;) = 0. Strictly speaking, neither restriction is stronger
than the other; see Newey et al. (1999). Under additional restrictions: (i) U; is independent of Z;, and (ii) E(&;) = 0, the
moment restrictions in (3) imply that E(g;|Z;) = 0. This makes the estimators developed in these two papers and our
estimator suitable for the same model, and it turns out in Martins-Filho and Yao (2012) that the latter outperforms the
previous two in terms of finite sample performance and ease of their implementation from a computational perspective.

The rest of the paper is organized as follows. Section 2 considers identification, moment conditions, and describes
the estimator. Section 3 provides the asymptotic characterization of our proposed estimators and the assumptions we
used in our results. Section 4 contains a Monte Carlo study that gives the finite sample performance of our estimators.

Section 5 provides a conclusion and gives potential directions for further study. All proofs are given in the Appendix.

2 Estimation

Suppose there are n observations and write ¥ = (Y1,---,Y,), X = (X4,---, %), Z = (Z1,--+,Z,)" for observations
on the regressand and regressors for the model (1)-(3). The objective is to estimate the coefficients for the linear

component, By € R, B € RP2, Let v; =Y; — E(Y;|X1;,Z;,U;), and rewrite (4) as:

Y; = XoiB — Bo = m(X1;,Z1;) + h(U;) +v;, fori=1,---,n, (5)

where, by construction, E(v;|Xy;,Z;,U;) = 0.
Note that if 8, By were known and if realizations of U; were given, (5) could be viewed as an additive nonparametric
regression model. With the help of an appropriate choice of “instrument” function, we derive the moment conditions

that motivate our estimator for f3.

2.1 Moment Conditions

For identification, it is standard to assume that E (m(Xy;,Z;;)) = E(h(U;)) = 0, since each component in an additive

nonparametric model can only be estimated up to an constant. For simplicity, let M = (X{,Z})". Like in Kim et al.



M,; Ui
(1999), define our “instrument” function as 1 (M;, U;) = W = 1;, where fjy is the joint marginal density of
iy Yi
M; = (X{;Z},), fu the marginal density of U;, and ¢ the joint density of M; and U;. The essential reason for choosing

such “instrument” function lies in that
E(n(M;,U;)|M;) = 1; E(n(M;,U)h(U;)|M;) = 0.

The equations still hold if we replace the conditioning variable M; by U; and h(U;) by m(M;). Thus, by pre-multiplying

n; on both sides of (5), and taking conditional expectations given M; and U; separately, we have
EMi(Yi — X2 — Bo) IMi) = m(M;);  E(mi(Y; —X2iPp — Po) | Ui) = h(Ui) (6)

If B, By were known, we could estimate m(M;) and i(U;) based on moment conditions (6) using estimated residuals
{U;}, and estimated {f);}"_,. Thus, we need to consider estimation of $ and fy. Since m(M;) and h(U;) can be
expressed as conditional expectations containing 3, By in (6), we can plug them into (5), rearranging, with ffy =
E(n;(Y: — X2:)), we have

Yi* = XZ*IB + i, for i=1,---,n, Q)

where Y =Y, —EM:Yi|M;) —E(n:Yi|U;) + E(n:Y;),  and X5, = Xo; — E(0:X2i[M;) — E(N:iX2i|Ui) + E(1:X2:).
Note that equation (7) provides infinitely many moment conditions to estimate f3, since by pre-multiplying an arbitrary

measurable function L(Xy;,Z;,U;), we still have E(L(Xl,-,Zi,U,-) \

X\, 7Z;, U,-) = 0. Here L(X;,Z;,U;) can be treated
as a normalizing factor that can be chosen conveniently to derive the asymptotic properties of an estimator for 3.

In our case, we choose L(Xy;,Z;,U;) = +/Mi. Then, we consider:

\/EYZ* = \/Exikzﬁ + \/ﬁvh for lil,,l’l )]

In matrix form we write \/NY* = /N X;B + /N v, where Y* = (Y/*,--- . Y,"), X5 = (X3;,---.X5,), v=(v1,---,va),

V1T = diag{\/m;}*_,, and E(/M;vi|X1;,Z;,U;) = 0. Note that by choosing By = E(1;(¥; — X2iB)) and L(X1;,Z;,U;) =



V/Mi» we have E(n;Y;*|M;) = E(n;Y;*|U;) = E(n:X5;|M;) = E(n:X5;|U;) = 0. These conditions are crucial in establishing
the asymptotic properties of our estimator of 3, as we will see in later sections. However, a more intuitive reason for
choosing such normalizing function is still open to investigation.

Denote the additive components in Y;*, X3; and corresponding error terms by ¥ (M;) = E(n;Yj|M;), v(U;) =

1

EmiYi|Ui), 5 = E(niY:), g1(M;) = E(iXailM;), g2(Ui) = E(iXoi|Ui), g3 = B(NiXai), vy1i = MiY; = n(Mi), vyai =
niYi — »(Ui), vxii = NiXoi — g1(M;), and vxz; = niXo; — g2(U;). Now we have /7;X5; as our regressors, and
E(\/EXZ*I.W) = 0. Equation (8) suggests an estimator of 8 by inserting estimators of /7;Y;* and /1; X3; prior
to application of a standard rule, such as no-intercept ordinary least square (OLS) method. Note that by (6), we
have m(M;) = vi(M;) — g1(M;)B — Bo, and h(U;) = v2(U;) — g2(U;i)B — Bo. Thus to estimate Y;*, X5, m(M;) and
h(U;), we need only to estimate each of their additive components separately. Kernel-based nonparametric estimators

are employed throughout this paper. For identification purpose, we need to assume existence and nonsingularity of

@0 = E(X5X5))

2.2 Estimation Procedure

Based on the moment conditions given in Section 2.1, we now describe specific estimation procedure.

1. Obtain a Nadaraya-Watson (NW) estimator for IT1(Z;) from (2), with the jth element denoted as

N L Zi—7Z;
II;(Z;) = argmln Z X, — (thl) for j=1,---,Do,
0 =1

where X; ; is the jth element of X;, h; > 0 is the associated bandwidth, and K; : RP1 — R is a multivariate kernel
function. Denote the estimates by I1(Z;) = (ﬁl (), Mp, (Zi))/ and calculate the nonparametric residuals

ﬁiz(Uil,«~~,UiD2) whereU,,X,, ( ), forj=1,---.Dyandi=1,---,n

2. Obtain Rosenblatt density estimators for fy, fis and ¢:

Jow) = 1 ZK2<UII;M>7 Ju(m) = 1» Y K (Mlh;m>,

nhD2 -

$(m,u) = ZK4< (M T)) (! u/)/>7

D
nhy*




where K>: RP?2 5 R, K3: RP3 - R, and Ky : RP4 — R are multivariate kernel functions, D3 = Dy + D»;,

D4 = Dy + D11 + D31, and h; > 0 are associated bandwidths, i = 2,3,4. Thus, a natural estimator for 1; would

Fu(M;) fu (0r)

be ﬁ(M[,Ui) = (]S(M 0)

= ﬁi-

3. Obtain NW estimators for the conditional expectations in ¥;*, X3; as follows:

X o 1 & (M —M . N n

ny) = nh M(MI)ZK ( h3 )n’Y" (M) = nhD3 Fu (M) Z’ ( )anz"
11y U,-0, z U, ®

% (U, K )4, 5, (U; 5, X,

R(U) = nhD2 fU(Uz)Z ( ha )Th ' &) = nhD2 fU f) ; ( >Th o

Estimation for expectations 3 and g3 is trivial, as we can just use the population average with f); replacing 1;,
ie, 5= %2?21 Y, and g3 = %Zf:l A X2 Thus, estimators for ¥;* and X3; are given as Yi=Yi—Hh (M;) —
B0 + 5. Xoi = Xoi — §1(M;) — §2(Ui) + g3, fori = 1,- -+ ,n

4. Using the estimators f);, ¥; and X»; derived in Steps 2 and 3 instead of 7;, ¥;* and XJ; in (8), we have the

no-intercept OLS estimator for 3:

B = (X30%) " XAY, (10)

where ¥ = (Y1,---,%,), Xo = (Xo1,--,X2,)/, and ) = diag{f;}1_,.
Given By = E(Y; — X;8) and f, an estimator for By is fp = ¥ — X>, where ¥ = %Z{‘zl Y;, and X, =

%Z;’:1X2z~ For m(M;) and h(U;), we have

m(M;) =91 (M) — &1 (M)B—Po,  h(T;) = (0;) — €(0:) B — Po. an

3 Asymptotic Characterization of ﬁ

In this section, we study the asymptotic properties of the estimators described in the previous section. We first establish
the uniform convergence in probability rate of the Rosenblatt density estimator using estimated residuals {Ui}?zl
Second, we give the uniform convergence in probability rate of the NW estimator constructed using estimated residuals

{U;}™,, and third we establish the asymptotic normality of V(B —B).



3.1 Assumptions

We now provide a list of general assumptions that will be selectively adopted in our theorems and introduce notation.
In what follows, C always denotes a generic constant in R that may vary from case to case. k/) (x) denotes the jM-order

derivative of k(x) evaluated at x.

Assumption Al. The kernels K;, i = 1,2,3,4, satisfy:

where D; is the corresponding dimension of K;. Assume k; is symmetric about zero, 4-times partially continuously
differentiable and satisfies a) [k;(x)dx = 1; b) |kfj) (xX)[|x[>** = 0 as |x| = o0, j =0,---,4; ¢) k; is a kernel of order
siyi-e., [ki(x)x/dx=0for j=1,---,5;— 1, and [ |k;(x)|x|"dx < C. Denote s = max{s;}?_,.

We adopt the “higher-order” kernel approach to reduce bias. Since global differentiability of the kernel functions
is used in order to employ Taylor Theorem in following Theorems 2 and 3, kernels that have compact support are
excluded. The ideal candidates have to decay exponentially, and it turns out kernels constructed below based on
Hermite polynomial and Gaussian densities are one such class of kernels. Construct the kernel that is of even order
s > 2 by:

L(s—2) _
ks(x) = Z cszf o (x) (12)
=0

where ¢ (x) = (2717)’1/2exp(—%x2). Given that we can evaluate the moments my; = [x*y(x)dx, 0 < j < $(s—2),
Lig— L
{c J}Jzz(i) % that satisfy the linear system of %(s —2) simultaneous equations Z]?Z(SO 2 Moy ) = 00, 0 <i < %(s -2)
3

where &;; Kronecker’s delta, will give us the desired kernel. For example, k4(x) = (3 — $x?) (27)~!/2exp(—1x?),

ke(x) = (L — 322 + §x*) (2m)~!/2exp(—1x?). As discussed in Pagan and Ullah (1999), when higher order kernels
with large s are needed, it will be helpful to express them in terms of a recurrence relationship. Rewrite (13) as (for

r> 1) ky(x) = Pay_20(x), where Py, = Py,_» + (—1)Hp,(2"r!) " and H,(x) = xH,_1 — (r— 1)H,_5 is the rth Hermite



polynomial with Hy = 1. Or recursively, with k»(x) = ¢ (x),

kar(x) = kagr1y () + (1) Hyey (1) (27 (r = 1)) 19 ()

Kernels constructed like (12) will satisfy Assumption Al, since they are continuously differentiable of any order
everywhere, and when multiplied by any polynomial functions they are all uniformly bounded and absolutely inte-
grable as the tails decay exponentially. We show in Lemma 2 that product kernels satisfying A1 are locally Lipschitz

continuous, which is necessary in Lemma 4.

Assumption A2. {(X/,Z],Y;)}"_, is a sequence of independent and identically distributed (IID) random vectors that

are described by (1), (2) and (3). The density functions fy,(M;), fz(Z:), ¢(M;,U;), fuz(Ui,Z;), fu(U;) are uniformly

bounded away from zero and infinity.

Assumption A3. E(m(M;)) =E(h(U;)) =0, E(m*(M;)),E(h*(Ui)) <o, E(v}|X1;,Z;,Ui) =0} <o, E(U3|Z) =

op < oo, E(v)zm’j|M,-) = GEX],J, < oo, E(v)2(2i?j|U,») = szxzd- <eo, E(v;|Mi) =02 <o, E(v},|Ui) = 02, <o,
and Cramer’s conditions: E‘X2i7j|p < Ccr2p! E|X2,j|2 < oo, E(|Uij|”|Zi) < C”_zp!ofj, for some C > 0, all i,
p=3,4,---, and j=1,---,D,.

In A3, it is not essential to assume the second conditional moment of those error terms are independent of the
conditioning variables. However, the boundedness of the second moment is crucial. Cramer’s condition is imposed

for some variables due to the use in Lemma 3 of Bernstein’s Inequality to establish the uniform order of some specific

averages in probability. Thus, each of their higher moments is bounded by the second moment.

Assumption Ad. Let C¥ denote the class of functions that: (i) is k-times partially continuously differentiable, and (ii)
all their partial derivatives up to order k are uniformly bounded. Ford = 1,---,D», I1;(Z;), ¢ (M;,U;), fz(Z;),m(M;),
h(U;) € C°.

A4 assumes smoothness of the regression functions and uniform bounds of their partial derivatives. This assump-

tion, together with a “higher-order” kernel, gives a desired bias order.

1
Assumption A5. Denote L, = (k’%):’) g B, fori=1,---,4,and L, = Y} , Ly, where h; — 0 as n — oo and satisfy:

10



St siog 1.
and D; > max -+ 53

i) hy =n"°%, where s— <& < min
© 25y (i=2.4) Di

D;
{l‘:2‘4} Dy (2S[+D,’) ’

Gi) hi=n F0% 5> Di/2+2, fori=2,4
(iii) h3 = n_ﬁ, s3> D3/2.
Assumption AS provides the order of all the bandwidths used in the paper. The fact that, using residual estimates
{0,};‘:1 instead of {U;}”_, has no impact on the first-order asymptotic property of our estimator, relies on under-
smoothing in the first stage when regressing X on Z nonparametrically and IT(z) has to be sufficiently smooth. For

ho, h3, ha, the orders are chosen optimally by minimizing the mean squared error of traditional NW kernel estimators.

By Theorem 2.6 in Li and Racine (2007), under A1-A5, for a compact subset 47 C RP1 we have

sup |ﬁ(Zi) —I(Z)| = 0p(L1n) (13)
VAS /4

12 . L . . . .
where L, = (1‘;%’1’ ) / + h“ll. This uniform convergence rate of NW estimator in probability is used throughout this

ny

paper. Note that fy(U;) and ¢ (M;,U;) are used to approximate fy (U;) and ¢ (M;,U;) in ;. In Theorem 1, we show that
the uniform convergence rate of fy;(U;) to fy (U;) using {U;}"_, is no different from that of the traditional Rosenblatt
density estimator based on the unobserved {U;}?_,. A similar result hold for ¢ (M;,U;). All proofs of the theorems are

provided in Appendix.

Theorem 1. Under A1-AS, for arbitrary convex and compact subsets 97 C RP1, 9 C RP2 and 4y C RP3, we have

sup | fu(Ui) = fu(Ui)| = Op(Lan), sup | fu(My) — fu(M;)| = 0,(Lsn),
{Z,U}e97 x4y Me%y
(14)
sup |$(Mlaﬁl)_¢(MlaUl)‘ = OP(L4VZ)7

{Z,U,M}G%Z XGy XGy

where 4, x 4Gy denotes the Cartesian product of sets 97 and Gy, Li, = (l(;l‘%)'l' ) vz, b}, fori=2,3,4.
nh;

Note that in Theorem 1 we establish the uniform convergence rate of fi;(U;) and ¢ (M;,U;) over 4, x %y and
G, X Gy x 4y separately. This is due to the fact that U; is an estimated residual given by U; = X; — I1 (Z;) and the

uniform convergence rate of I1(Z;) given in (13) is taken over a compact set %,. Theorem 1 and A2 together imply

11



that |f); — n;| = O,(L,) uniformly, where L, = Z?:Q Li,, and consequently we have |g3; — g3;| = O,(L,). With this

result, we are ready to provide the uniform convergence rate of the estimators given in (9).

Theorem 2. Under A1-AS, for arbitrary convex and compact subsets 9z, G and %y, we have

L
= Op (Ln_|_1")’
hy

Similarly, we have the same uniform convergence rate of §1(M;), 11 (M;) and $(U;), as >(U;) above.

sup 2(0:) — 2(Uy)
{Z,U M}YeG, <Gy <Gy

5)

Note that the first term in the order of (15) is not new to us, it is just a sum of uniform orders for different NW

estimators. The A, in the denominator of the second term comes from a Taylor expansion of the kernel evaluated at

the estimated residuals {Ui}f’zl. With well chosen bandwidths in AS, it is essential to have that L2, (L#
This result will help establish the order of elements in B — B. Note that
~ lojnon—1 1 40 0 o
Vn(B-B)= (;X2WX2) NG 2N (Y —X2B),
where ¥ =Y - 9=Y—-y)-(J—y) =Y"—W, X =X—8=X—g) —(6—g) =X5—Vx;
%= n(M)+nlU) -, g = g1(Mi) +g2(Ui) — g3
i = 1(M) +(0) 5, g = 6i(M) +6:(U) — &3
Vvi = %i—% = Vrui+ VWi + Vs, Vxi = & —8& = Vxii+Vxai + Vxsi.

n
hy

)2 =o(n'/?).

(16)

As we can see in (16), there are basically two parts to deal with. We need to: (i) find the asymptotic behavior of

the matrix 1X}7)X>, and (ii) establish asymptotic normality of the second term ﬁ)?éﬁ(f’ —X,B). By Theorem 2,

we already have the uniform order of Vy; and Vx;, which are defined above. This result will help take care of (i).

However, to establish /n asymptotic normality for the second term, we need to employ a U-statistics of degree 3. Yao

and Martins-Filho (2013) provides a direct and convenient method to characterize the asymptotic magnitude of each

component in the H-decomposition of a U-statistics, and many places in our proof are built on their results.

12



A

In Theorem 3, we derive the y/n asymptotic normality of f by showing that %Xéﬁﬁz L @y and ﬁ X (Y —

X,B) LN N (P + Dy), where Py, P; and P, are given in Theorem 3.

Theorem 3. Under A1-AS, assuming that matrix ®g exists and is nonsingular, we have
A d — —
V(B —B) == A (0,25 (@1 +P2) @5 ) (17)

where

Py, =E (Xar,j— 81;(M;) — 82j(Us) + 837) (Xork — 16 (My) — g2k (Uy) +gzk)} ;

g
@y, =E [nlz (Xzz,j —g1j(M;) — g2j(Ur) +g3j) (Xzz,k — g1 (My) — g (Ur) +g3k)} o2

Dy

Dy
q>2(j,k> = [Z Z ( I(Z U2tj_g1j(Mf)—gZJ‘(Ut)+g3j)Ddh(Ul)nt|Zi)
185=1

E((HZk(Zi) — Unik — g1k (My) — 821 (Ur) + g3x) Dsh(Up ), ‘Zi>E(UidUi6 ’Zi)} ;

fOV jakzla"',DZZ-

By Theorem 3, B is asymptotically unbiased, and has an explicit covariance for the limiting distribution. For

statistical inference, we provide consistent estimators for ®;, i = 1,2,3. By proof of Theorem 3, we have that

A 1 o, 4
~X57%, L5 @y, T Sy — A (0,®y), 7 71 (Via — ViaB) —5 4 (0,®2).
Hence, it’s easy to show that
Py = nXénxz, b= SAVXy, Dy = EXﬁn(Vyz —Vx2P) (Vy2 — V2 B)' 11Xz (18)

are consistent estimators for ®(y, ; and P, separately, where V =Y — X, ﬁ — ﬁo —i—h.
Given Theorems 2, 3 and (11), we have the uniform convergence rate of 7i(M;) and 2(U;) at O, ( 2" ) which
generally worse than that of the traditional NW estimator due to the presence of %, in second term. However, it is

possible to gain a better rate by implementing a second stage estimator for m(M;) and h(U;), or even possibly for 3.

13



With 3, o, i(M;) and h(U;), we can estimate m(M;) and h(U;) by (M;) and h(U;) using local linear regression:

~ 14 M; — M;
(nﬁ(M,-),S(MI-)) — argmin - Y (Y —m— (M, — M;)'8)” Ky ( d ) ,
ms =] hs
N A (19)
~ A o A . 1 1 A NN 2 Uf — U[
(h(0:),n(0;)) = argmin *Z (Yo—h—(0,-0)'n)" K> ,
hn o M hy
where Y1 =Y, = Xap — Bo —h(0r), Yio = Y; — Xaup — o — (M)
And a second stage estimator for 3 is given as
B = (X3X)"'X;¥ (20)
where ¥ is n x 1 with ith element ¥; = ¥; — m(M;) — h(0;) — o, and X = (X}, --- , X},)".

In this paper, we will not provide asymptotic properties for these second stage estimators and we will leave them
for future study. However, we will provide a simple Monte Carlo study for both estimators in the two stages in the

next section.

4 Monte Carlo Study

In this section, we investigate the finite sample performance of the proposed estimators [§, (), and B, () for future

reference. Consider the following data generating processes (DGPs):

DGP;:  Y;=Ln(|X;; — 1|+ 1)sgn(Xy; — 1)+ X2:8 + Bo + &

Xii
DGP,: v — _ PX1)

= 1 XB+ Bo+
1 4 cexp(Xi;) 2P+ Po

for i =1,---,n. The sample size n is set at 100 and 400. In both DGPs, Z;; and Z,; are generated independently

from a N(0,1), and construct X;; = Z; + Z»; + U}; and Xp; = lei —|—Z%i + Uy;. & and U; = (Uy;,Uy;) are generated as

1 6 6
( 5’ ) ~NID | 0, 6 1 62 , where the values 8 = 0.3,0.6, and 0.9 indicate weak, moderate, and strong
! 6 6% 1
0
endogeneity. It is easy to verify that E(&1Z;) =0, E(U;|Z;) = 0, and thus E(g;|U;,Z;) = E(&|U;) = —— (U1; + Ua)).

1+62

14



We set the parameters B = 1, By = 1 and ¢ = 3, and perform 1000 repetitions for each experiment design.

The implementation of the estimator requires a choice of kernel function K;(-) for i = 1,---,4 and bandwidth
sequences. For all kernels, products of an univariate Epanechnikov kernel were used: k(x) = %(1 — (x| < V/5),
where I(+) is an indicator function. Note that even though Epanechnikov kernel is not continuously differentiable at
the boundaries of its support, it does satisfy all other assumptions given in Al. We are using it instead of the kernel
constructed by Gaussian distribution since in finite sample it performs better. Bandwidths were selected with the
simple rule-of-thumb bandwidth 1.256(W;)h;, for i = 1,2,3,4, where 6(W;) is the sample standard deviation of the
variable W;, Wy = Z;, W, = U;, W3 = (X1;,Z1;), and W = (X1;,Z1;,U;). In our two DPGs, we have D; =2, D, = 2,
D3 =1, D4y = 3. Thus we choose § = ﬁ,sl =6,50=4,53=4,54 = 4.

In Table 1, we list the finite sample performances in terms of bias (B), standard deviation (S), and root mean
squared error (R) for the estimation of 3, and the mean of root mean squared error (M) for estimating m(+) obtained by
averaging across the realized values of (Xi;,Z1;). Results for both of the two stages estimators (j3,7i(-)) and (B,7(-))
are listed. To avoid any extreme estimates, results are only shown for the 10 —90% quantile range of sample estimates.
As it is shown in the table, the estimator’s performance, in terms of the above measures, improves significantly with
the sample size. For example, for DGP;, when 6 = 0.3, root mean squared error of [§ drops nearly 40% from 0.09
to 0.055 when we increase the sample size from 100 to 400. Besides, it turns out that our estimators have correctly
accounted for the endogeneity problem as controlling for the DGP and the sample size, the root mean squared error of
ﬁ does not change much as the degree of endogeneity (0) increases. As we predicted, the second stage estimators ( B,
n”1()) outperform the first stage (B , m()) in all aspects, suggesting a significant improvement in asymptotic efficiency
for both parametric and nonparametric estimation. Superiority of our estimator compared with those in Ai and Chen
(2003) and Otsu (2011) in terms of finite sample performance will not be provided here, as it is already established in

Martins-Filho and Yao (2012).
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Table 1
Finite sample performances.

0=03 0=0.6 60=09

B S R M B S R M B S R M

DGP; n =100

(B,m()) 0.065 0.062 0.09 0.66 0.069 0.056 0.089 0.644 0.069 0.057 0.09 0.625

(B,m()) 0.004 0.08 0.08 0427 0.006 0.074 0.074 0417 0.0001 0.076 0.076 0.417
n =400

(ﬁ,rh()) 0.045 0.032 0.055 0.677 0.042 0.032 0.053 0.658 0.048 0.031 0.057 0.634

(B,m()) -0.029 0.044 0.052 0.397 -0.037 0.044 0.057 0388 -0.034 0.04 0.053 0.388
DGP, n=100

(ﬁ,rﬁ()) 0.078 0.06 0.098 138 0.089 0.064 0.109 1.369 0.105 0.064 0.123 1.353

(B,ﬁ’l()) -0.013 0.081 0.082 1.07 -0.001 0.087 0.087 1.082 0.017 0.087 0.089 1.098
n =400

(ﬁ,rﬁ()) 0.072 0.032 0.079 1417 0.069 0.034 0.077 141 0.086 0.034 0.092 1.387

(B,rh()) -0.047 0.043 0.064 1.027 -0.051 0.047 0.07 1.034 -0.03 0.049 0.057 1.052

5 Conclusion and extensions

In this paper we study a partially linear model in triangular systems where endogenous variables appear both in
nonparametric and linear components. The estimation is based upon the control function approach of Newey et al.
(1999) and an additive regression estimation method of Kim et al. (1999). NW kernel estimator is used for the
nonparametric estimation. We establish the y/n asymptotic normality of our estimator for the linear component and
uniform convergence rate of estimator for the nonparametric component. Estimators for the covariance of the limiting
distribution of the parametric estimator are provided. Our simple Monte Carlo study suggests good finite sample
properties, and may significantly outperform the estimators of (Ai and Chen, 2003) and Otsu (2011) as Martins-Filho
and Yao (2012) implies.

In the future, there are still some aspects to be investigated, for example, the asymptotic normality of the non-
parametric component, optimal bandwidths selection. And our theoretical results can be extended in three directions.
First, the Monte Carlo results reveal that, one can pursue one step further to obtain a potentially asymptotically more

efficient estimator for both the nonparametric and linear component functions, as we discussed in Remark 8. Second,
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like Newey et al. (1999), Kim et al. (1999), Ai and Chen (2003) and Otsu (2011), we study an IID process. A poten-
tial extension would be allowing some weak dependence like Su and Ullah (2008), and investigate whether theorems
exhibited in our paper still hold. Third, we will provide some empirical applications of our estimator. For example,
we can apply our estimators to the empirical model of Lessmann (2014), and test the inverted-U relationship between

spatial development and economic development directly, with the endogeneity problem being taken care of.

Appendix

This appendix presents the proof of the main theorems and lemmas. We give all the notation used in the proof and a
basic introduction to the U-statistics.
Throughout the proofs, C will represent an inconsequential and arbitrary constant that may take different values

in different context. For a scalar variable x, f’(x) denotes the derivative of f(x) evaluated at x. For D x 1 vectors

v, B, define Y8 = [12_, ¥}, 1Bl = £2_, B> Daf (v) = 32/ (1), DA (V) = 35 (), DPF(7) = 81,3;’_‘,’_3 ;DﬁD - IF()

and Hf(y) denote the Jacobian and Hessian matrix of f(y). Note that for a scalar function f(y), Jf(y) is exactly
the transpose of the gradient vector of f(y). A x B denotes the Cartesian product of two sets A and B. x4 denotes
the indicator function for the set A, P(A) denotes the probability of event A in the probability space (Q,.%,P), V()
denotes variance.

U-statistics will be repeatedly used in the proofs. Let {P,}!"; be a sequence of IID random variables and ¢, (P, ,

-, P;,) be a symmetric kernel function that depends on n. Then a U-statistic U, of degree k is defined as

-1
n
Un—( > Z(pn(PiU“'aPik)v
2/

where Y, 1) denotes the sum over all subsets 1 <ij <--- < <n of {1,---,n}. Now let @cy(z1,--,2c) = E(@n(Py,- -,
PPy, P)|PL = p1,-+, P. = pe), Gczn =V(¢Pen(P1,---,P.)) and 6, = E(@,(P;,,---,P,). In addition, recursively

deﬁnehg,l)(pl) :¢1n(pl)*Gny"',hr(f)(pla'”;pc) :¢cn(p17"';pc)72;;}2(0]’)}151].)(171'”'"7pij)79}1 forc=2,---,
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k. By Hoeffding’s H-decomposition in Hoeffding (1961) we have

s f (i

)= (") - ):<n7j) hﬁ,j) (P, ,Pij). The order of U,, can be determined by studying each H,(,j) and

where H,(,j) (P, -, B ;

b l/'
6, in the finite sum. By Theorem 1 in Yao and Martins-Filho (2013), the order of H,Ej ) is determined by n and the

leading variance G . Throughout the proofs, we will use {P,}""_, and the above notation to characterize the U-statistics

of interest, denoted by U, .

Theorem 1 Proof. By uniform convergence rate of Rosenblatt density estimator given in Theorem 1.4 of Li and

Racine (2007), we have sup ‘ Fu (M) — fM(Mi)] = 0,(L3,). Similarly, for the first equation in (14), we only need
Me%y

to focus on | fy (U;) — fu (U;)|.

Denote Ky = K> ( _ZU" ), and other kernels similarly. Since K> is 4-times partially continu-

0,-U; U
n ’), Kori =K2< v

ously differentiable, by Taylor Theorem,

A A A 1 &,
|fu (@) - fuU)| = DzZ(Kzn Koi)
h2 t=1
1 i iHﬁDK +ZH DK(U’ U+7LH>
”h§2t=1 |ﬁ|:1|ﬁ|' " ‘[3‘:4|ﬁ| h
4
<Y I7
i1
where H = IL(U U — ((7,-7U,-), A€ (0,1).
Next, examine the uniform order of |T;| over {Z,U} € ¥z x4y fori=1,---,4.
1. nj< Y ZH“D‘*KZU
IB|=1 ”hz =1
D, n
< X D2+1 Z Uia)DyKasi + Z Uiq — Uia)DyKai
d=1 =1
2
= Z(|T]1+T|2D.

d

1
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|U,d ,d’ C,(U;). It can be shown that by Lemma 4,

LL [Ty | < |Ui— ,d|‘ nhDZH) Y1 DaKyi| =
1

E(Ci(U)) = Dafu(Uy), Sup |C1(U;) —E(C1(U))| = 0, (;;gzliz) =0p(1)
€Yy n 2

Thus supy ey, |C1(Ui)| = Op(1). Note that \Uia — Uia| = |ﬁd(Zi) —1I1;(Z;)|, and by uniform conver-

gence rate of Nadaraya-Watson estimator, we have sup,cy, ‘Uid - U,-d’ = Op(L1,). Consequently, |T1;| =
Op(L1,) uniformly.

1.2. Given ITy(Z;) = WZZ 1 Ki:X1 4, and f2(Z) = IDI Y/ Ky, we have
1
*(Utd - Utd) = ﬁd(Z,) - Hd(zt)

= nh]l”Z() Y K (Uld +114(Z;) - Hd(Zz))

= {nh]lcz(z)zl(llt<Uld+Hd(Zl) Hd(ZI))}(1+0p(Lln)) (A1)

by the uniform order of Rosenblatt density estimator fz(Z;). Thus

5 — K1 DaK2iUa
tZ:IZZIhDIhD2+] 2(Z) ! 1

ZZ D; thH

=1i=1h f2(Z)

= ‘Tm + lez‘ (1 + Op(Lln))

T2

K111DgKoyi (Hd(zl) -1 (Zt)> ‘ (1 + Op(Lln))

|Tio1| = K1(0)DgK»iUq

2 Z Dl hD2+l (Z[)

1
+=-lo(n3+ () —————Ki1:DaK»iUyq
2( ( ,Zuzlh"lh”“ f2(2)
1#1

= ‘El-i-Eg‘.

We can show that |Ej| = 0p<(nh1D‘h2)’1) by Markov’s Inequality, and |Ez| < C|U,|, where U, =
; my—1 1 1 2) .
() "I K 22U = () L Vo = (8) T T = 604 28 B s U-
141 hy* f2(Z) t;él 1<l

statistic. 8, = E(¢,;;) = 0 in this case. H = 12 (U,,Pz) IZ?:I 01,(Ui,B) = %):f’:lE(%an

Pl):%Z;’zlUldc(Ui,Zl),Wherec(U,-,Zl) JKi(V)K2(W)Da fu|z(Ui+haw|Z; — hiy)dydy. Given Cramer’s
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condition in A3, by Lemma 3, we have supz 11cq, xg, 7" | = 0, ((logn/n)'/?). For H?, by Theorem
1 in Yao and Martins-Filho (2013), H\*) = (62, /n?)'/20,(1). And 62, = V(@) = E(¢2,) < 4E(y2,) =
O ((hPHE>2)71). Thus HY = (24712 ) 7120, (1) uniformly. In sum, |Tixy| = O, (7 h) ™"
+ (logn/n)"/? + (nzh?lh§2+2)—1/2) = 0,(L1,) uniformly by AS5.

The order of |Dy2,| could be analyzed in the same way, given that IT and f are s; times partially
continuously differentiable, and K is a multivariate kernel of order sy, we have
|Tin| =0, (hsll + (logn/n)'/? + (nzh?172h§2+2)_1/2) = Op(L1y) uniformly by AS.

In sum, sup  |Ti| = Op(Lin).
{Z,U}e9 x4y

D <Y nh%z Y" HPDPK,,;|, when 1 appears in the d"" and k' position of B, we have:
2

1 & 1 oo N N N
5z Y HPDP Kot < | —55 Y [(Ora = Ura) = (Uia = Uia)] [(Ok — Uni) — (O — Ui) ] DKoui|
nh2 =1 2nh2 =1

. N .. L}
Since supzcq, |Uab — Uab| = 0,(Lyy), fora=i,jand b =d, k, we have |Ir| = O, (hfl%”) ﬁifﬂ |D§kK2n'| =

2
0, (%) C»(U3) uniformly. As E|C2(U;)| = O(1) uniformly for U; € %y, we have supyg, |C2(Ui)] = 0,(1)

2
by Markov’s Inequality. Thus, sup; ;1cq, «g, |T2| = Op (L#)
' 2

- 0
. Similarly, supyz ;1eq, <o, |31 = Op (h#%")

. |Ty| is different from |T3| and | T3] in that sup ICo(U)| = 0,(1/h5?2), where C4(U;) = MLDZZLI |DP K], for
Ue9y 2
L4
any |B| = 4, thus sup [Ty =0, (Dzl’j%>
{Z,U}e9 x4y Iy
By AS5, it can be shown that |T3|, | T3|,|T4| = 0,(n~'/?), and Ly, = O(Ly,), which gives us
sup | fu(0i) = fu(Ui)| = Op(Lan)
{Z,U}e97 x4y
Uniform order of ‘(ﬁ(Mi, U;) — ¢(M;,U;)| is derived in the similar way under AS5.
O
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Theorem 3 Proof. We start with the j element of ¢,(U;) — g2(U;). Note that

. 1
&(U) —&U) = WZ&”W,J 82;(Ui)
= A ZKzn { — M) X2 j+Vvxo,j+ ((ng(Uz) —gzj(Ui))}
nhy fU (Uy)
Cxoi
1
= —5—— ) KuiCxoui + JK»i (U, U;—U,))Cxai
{nh “fulU >Z o h§2“ Z At G onee
— ) R;iCx>» 1+0,(L, (A.2)
nthfU( )Z 1 ll}( P( n))
3
= | Y T ) (14+0,(Lan)),
k=1
where R;; is the remainder term of a Taylor expansion of Ky at ( Ui )
We will show that Ty = O, (L), T = O, (Lh—lz"), and T3 = 0, (n~!/?), which completes the proof.
1. LetT} = 22:1 Tk, according to the three components in Cyy;. By Theorem 2 and A2, we have that
sup  |fly =Ny = Op(Lan + Lan + Lan) = Op(Ln).
{Z,UYey Yy
By Markov’s Inequality, |77;| < OP(Ln)ﬁ Y51 |K2iXos j| = Op(Ly), since by Lemma 1 and A3,
n12
1 & 1
E( —5-) [KuiXorj| | = DZE<|K2ti||H2j(Zt)+Ut|>
I’lh2 =1 /’12
= / \K2() | Th2j(Z:) + Ui+ ho Y| fuz(Ui + hay, Z, )d yd Z,
> [IKlar( [ 1)z foz U, 2)dZ + Uify (V) ) < =
By Chebyshev’s Inequality, we have |Tj;| = Wzt 1|K2,,VX2,]| = ((nhgz)*lﬂ) = 0,(L,), since

E(Ti2) =0, and V(Ti2) = E(T}3) < hznz E(K3var ;) = 0((’”’2)2)* )
2
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For T13, note that by Taylor Theorem,

BTi) = B (R0 (1))
= 7)(82(Ui+h2) — 82, (Ui)) fu (Ui + hay)dy
= O(hy),

since K is of order 52, g2j(Uy), fu (Ur) € C*2 and all the partial derivatives of g»;(U;) up to order s, are uniformly

bounded by A4. V(Ti3) <E(T3) < ZDZ E(Kzzti<g2j(Ut) —gZ,(U,-))Z) =0((nh5>7*)7") = o(1). Thus, |Ti3| =

2

Op(hy’) = Op(Ln).

. For T, we have

1 N
T2 = WZJIQ”( Ut (Ui_Ui))CXZti
nn, U\Ui)t=1
= 0p< I ) Zlmlz DdKzn((Th—nz)Xzz,j+vxzr,j+ ((gzj(Uz) —gzj(Uz)))|
_ Liy
= OP(E)’

similarly as finding order of |77;| by Markov’s Inequality.

. Ry is the remainder term of a Taylor expansion of Ry at ( ) thus R;; = ZI Bl—2 BL\ ﬁKzt,Hﬁ

+X|p|=4 %!DﬁKz (U’%ZU”) HP  where (U’%ZU”) = (U U)Jr?LH A€(0,1),and H = %(Uth,f(ﬁ,’*Ui)).

hy

Thus, let T3 = Y;_, Ty, with

Dy D,

= L)

—1i=1 ZnhD2+2fU( Ui)i=

N 1 13,
<0p( 7 hDZZ|Dd,K2t,Cx2n!f Oy h2
2 2 t=1

ZDdlen (Utd —Usg— (Uig — Uid)) (Uzl — Ui — (U — Uil))CXZti

by Lemma 1 and A3. Similarly, T3, = O (—'3) By Al, Ty < O ( D2+4)% T |Cxan| = op(h52114) By AS,
2

2
h2

L1 L} ~12
we can show that |T3| = 01,( + 4+ Dz+4> =0,(n~"/7) uniformly.
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Combining 1-3, we have sup;; ;1cq, 4, 182(0;) — g2(Ui)| = O, (L,, + L,#) For 8;(M;) — g1;(M;), note that

1
o1:,(M;)—g1:,(M; =5 K31 X M;
81;(M;) — g1;(M;) nhzsz( )z 3if: X2, j — 81 (M;)

{nthfM ZK%:{ — M) X+ vxrj+ ((1;(My) _glj(Mi))}}(l +0p(Lzn)) (A3)

Cx1ri

Thus order of [¢>(U;) — g2(U;)| can be found similarly to |7} | in part 1. For |23; — g3;],

. 14, 1 &
83— 83 = ;Zﬂzxzz,j E(niXai ;) ZZ — M) X2 j+ — ZTI:Xzz, E(niXai ;)
=1

t=1

Op(Ln) + Op(”il/z) = 0p(Ly)

As to |/, |8 | for k = 1,2, 3, thus they will not be provided here.

Theorem 4 Proof. Note that m =7y, — g8 — Po, h =1 — g28 — Bo, we have

V —Xof =Y —7—(X—-8)B=Y—-XB—(7—4B)
=Y-XoB—m—h—Bo— ((7—7)—(8—2)B)

3
v—Y" (Vyk— Vi)
k=1

Thus f— B = (%XéﬁXz)il 1X0([¥ -XB) = ((%Xén)zg)il%)gn(? —Xzﬁ)) (1 —|—0,,(Ln))2, where

Leingy = Lxgmxs — Lnve — Lvgmxs + Ly V—iA
XA = Ap Ay — Ay MVx = Vx4 nx"?X—kZIka

1, 1, 1, 1, 1,
X (¥ = XoB) = ~Xanv——Xin (Ve = VaaB) = - Xon (Vs = ViaB) — - Xam (Vs = Vi) = ZBk

The proof has five steps:

(1) We show that A; 2+ d and As, A3, Ay = 0,(1).
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(2) We show that /B, —% A (0,®y).

(3) We show that By, B4 = 0,(n~'/?).

X5, DKoy Ky . _
(4) Let ay; = Y22 lthl’thE(meZ(lUll P h(U )(Ufh2U1)|z,-).We show that By = LY, ay+0,(n~1/2).

(5) Combine (1)-(4), we show that \/n(f — B) ~5 .4 (0,®; ' (@1 +P2)®; ).
Step 1: By Kolmogorov’s LLN and A3, 4| = Z L\ NiX5X5! RN d(, where

Do, =EMiX5 ;X5 4) = E{nt (Xor,j — 81 (M) — 82j(Ur) + 837) (Xorx — 81 (My) — g2x (Ur) +g3k)} <

since {1;X3;X5; }i_; is an IID sequence, and E[n;X3; , X5; ;| < o due to
(i) m; is uniformly bounded;

12
(i) E|Xa i Xoix| < ( (X22”)E(X22lk)) < oo by Cauchy-Schwarz Inequality;

(iii) E|Xo; jgic(M;)| < (E(Xzzi,j)E(g%k(Mi)))l/2§

(iv) E(gf (M) = E(E(MiXaix|M)*) < B(E(n7X;,|M)) = E(17X3;) < o=.
By the non-singularity of @ in A3, we have A KN ®,"'. And for —A; = %élnin*iV;ﬁ, the (k, j) element —Aoy ;) =
EY X5, Vi < Op(La)y Ximy MiXaik| = Op(Ln) = 0p(1), by Theorem 3. Similarly we have A3, Ag = 0,(1).
Thus,

1. R —1
(XénX2> A
n

Step 2: Note that B] = %2?21 )?ginivi = %Z;’zl Xsmivi— %Z7=1 V¢iMivi = B11 — B12. By Levy central limit theorem
and Cramer-Wold device, we have /nBj| LNY% (0,9), since

(). {X;mvi}, is IID; @ii). E(X5mvi) = 0; (iii). E0?|Z;, U;) = o2;

(V). V(X5mm) = E(XGm2v2X)) = 02E(MAX5X3) = By < oo, where

Py = T E(Xs, X5, = o E{m (Xar,j — glj(Mz)*gzj(Uz)Jrgaj)(Xzz,k*gu((Mz)*gzk(Uz)Jrgsk)} <
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For By, the jth element can be written as
12 12 12 12 3
By, = *ZVXi,jrliVi: *ZVXli,jniVi“v‘*ZVXZi,jniVi_*ZVXBi,jniViE ZBIZk-
niz niz nizi niz k=1

We show that By, = o,,(n_l/z) fork=1,2,3.
Note that Bjy3 = %Z?:l <g3j —g3j)T]ivi = <g3j — 831)%2@1 nivi = OP(LVJOP(YFI/Z) = Op(l’lil/z). By A3 in

Theorem 3, we have

I o s MiviKag >
B = 7ZZWCX1@]‘ (1+0p(Lsn)) Y Biow | (1+0,(L3))
i—1=1h73 ; =1

1 & T]'V'K3 1 & T[VKz
where Bip; = nﬁzz#(n nt) 2t,j» Biia = 722 D3lfl ”) X1t,j»
i i=1=1h M

1 ZK tl
Bioiz = ”2,21;:1};;;”(3 )(glj(Mt)_glj(Mi)).

We show that Bsq, = o,,(n_l/z) fork=1,2,3.

(1a). Since 7}y — 1, = 1,0, (L,) uniformly, we have Bi211 = B)5;,0,(Ly),

where By, = nzZ 1 11;73’;¢ﬂzX211—E1n+E2m with
1 iviKs (0 1O ik
Ey = 72 131 Ni 21,]7 By = 722#”&@!.]
- 1h3 Su(M, ) e iSimi s fu(M;)
i#t

By Chebyshev’s Inequality and that E(E1,) =0, V(E1,) = E(E},) = %E(Mnl 5 /) =0(n3n;"™),

2D3f2 )

we have Ey, = 0, (n’l/z(nh??)’l) = op(n’l/z). E», < CU,, where U, is a U-statistic such that U, = (g)_l

m —1 .
LT Wi = (3) LI T G With Yy = %n X j. Since E(v;|M;) = 0, we have 6, =0, ¢, =

03
i#t i<t fu(

E(‘Pnit‘Pi) = E(Wnil'ﬂ) = fM(X’I ( )glj(M +h37)fM(M +h37) Y= A;]éx;i)cl(Mi)- Thus Gln = V(‘Pln) <

E(92) < CGzE( 3 (( M))) ~ E(g?,(M;)) < > by Lemma 1 and A3. By Theorem 1 in Yao and Martins-Filho

2 2 _
2013), A" = Op(("'n)l/z) =0,(n""7?). 6}, = V(¢ui) < CE(y2,) < —;‘; E(K2,(nXa.j)?) = O(h; ™) by
3

n
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Lemma | and A3. H\” =0, ((‘L%) 1/2) = 0, (012 (nh2)"1/2) = 0, (n~1/2). In sum, Bia1 = Op(n~"/2)0, (L)

n

=o0,(n"172).

1b). Biopp=5y7  yr ik 0 =F 4 E.
(1b). Bi212 ”ZZ'*lztflh?}fM(M,-) X1t,) tn+Eon

_ 2,2K2(0 3,2 _
Epy=o0,(n""/?) as E(Ey,) =0, V(Ep,) = ZE%E(%VJZHM) —0(n3h ) =0, (n ).
3 M\

-1

E)y, <CU, =C (g) Y Wi With W = M\/xn, ;. We analyze each component in U, = 6, +
i#t

H23 fu(M;)

ZH,S1> —&—H,Sz) by Hoeffding’s decomposition in Hoeffding (1961).
. 0,=o02,=0,as E(vi|[M;) = E(vx1,;|M;) = 0;

Co26Z, ; b
. 622,, = V(i) < CE(y/r%it) < hziDg(wE(thi) _ 0(h3 ).
3

1 2 2 \1/2 _ Dsy_ _
HY =01 =0,((%)") = 0, (n ()1 2) = 0, (n7V2).
We have By = Op(nil/z).
s . —1 .
(Ic). Biaiz = ,%22?:12?:1%(81]'(%) —81j(M;)) < CUy, where Uy = (5) X/ X/ Wiy with

it 3 (M) it

Wiir = —piiK (81;(M;) — g1;(M;)) is a U-statistic of degree 2.
hy? fu (M;)

. 9,, = E(¢m‘;‘Pt) = O, as E(V,’|Mi) =0.

i Ch [mivil
. ¢1n = E(¢mt|Pl) = mE(K&i(glj(Mt) —glj(M,')> ‘M,) S f;/l(Mi) .

. o7, SE(¢7,) = O(h™) = o(1).

2 _
- 63, = V(0u) < CE(v;;) < B (KR, (1,(M) —1,(M)") = 0(; ).
3
. H,El) — 0p<(iﬁ:)1/2) — Op(nfl/z), H}’(12) — 0p<(622n)1/2> _ Op(nfl/z(nhé)’ziz)*l/z) _ op(nfl/z).

n n2

We have Biy13 = Op(nil/z).

By (la)‘(lc), we have 3121 = op(nfl/z).

1

n
For By5», since e Y R:iCxori = op(n’1/2) uniformly, by A.2 in Theorem 3, we have
n =

5~ fu Ui

124 3 B
B = ;ZVXZi,jniVi = (ZBI22k> (14 0,(Lon)) +0p(n 12y,
i=1 k=1
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where Biyp = ! ii M;viKoi Cxui By = ! iz v JKi(U; — U;)Cxa
— 75 NN tiy — T 75 DAl . ti 1 tiy
&5y fu ) n S5 ()

. R
Bz = ;ZZ#J&;:(U Uy)Cx i, Cxai = (M — M) Xarj+vxaej + (82 (Ur) — 82;(Uy)).
i—=1hy" " fu(Us)

Similarly to Bj2; we just analyzed, we have By = op(n’l/ 2), with U; replacing M;. B2 and Bj2»3 could be studied
similarly, here we only show that B1s2 = 0,(n~'/?). By the three components in Cxa, let Bioos = Y3_ | Bioon.

We show that Byyoo = 0, (n~'/?) for k=1,2,3.

1l & & Vi A N
(28). Bioo1 = —722#-]1@1'(“‘—“)(71:—nr)X2t,j
i—1i=1 fu(U;)
Lin\ 1 &3 2 |nivintX2t,deK2ti|
<010, () G LY 3
i—li=1d— hy? fu(U;)

= 0,(1,)0, (52 ) =0yl

since L2 (f)z 0,(n"1/2) by AS.

(2b). By A.1 in Theorem 2, we have

D21nl

ZZ Nivivxos, JDdKzfl
t

Bian = :
i=1t=1 hD2+ (Ul)
We show that T4, Thy = op(n’l/z).

nz (Uld*Ui )
=1

[
™3 ¥

—

1
3

R Nivivxar, iDaK2iK1y;
Uia + (Ha(Z;) — Ha(Z; 14+ 0,(Li,
;tz;;h?lhgzﬂﬁjwi)fz(zi)( 1a+ (Ma(Zy) — I )))}( +0p(Lin))

1

(Tha + T2d)} (14 0,(L1n))-

Il
-

n n

1 D, KyiK l & & &
(i) Tia :;ZZZ Nivivxas, jDa k21K 7;;1_21'%#1

i—li=1i= 1hD1hD2+1fU( Ui)fz(Z )

Ifi#t#1 letU, = (’31)_1 Yititl Wnitl = (’37)_1 Yici<1 Onint be a U-statistic of degree 3. We analyze each
component in U, = 6, + 3H,El) + 3H,E2) —|—H,E3) by Hoeffding’s decomposition in Hoeffding (1961).

« 0,0, E(Quint|P), B(Guirt [P, P) = 0, as E(vi|M;,U;) = E(vxar ;|U;) = E(Up4|2)) =

. 07, =03, =0;

. 63, = V(9uin) < CE(Y2,) = O, (KR 7)=1);

27



Y =B =08 = 0,((%

We have U, = 0, (n"'/?).

For all other cases, by Markov’s Inequality and AS, we have
1 n
3 Z Whiii

Z Nivivxai, deKZ (O)Kl (O)
S fy () f2(20)

I’l3 Z Z WYhiil

i=1ll=
i#l

if i=t=I,

if i=t#1,

anlVXZI,/DdKZ(O)Klli U
S W2 fy (U f2(2Z0)

it i=1%#t,

Nivivxar, jDaK2iK1(0)
= Z y

S5m0 R U f2(Z)
i#t

3 Z Z Whitt

i=1t=

i#t

ZZ ntvtVXZIJDdKZIiKlti
=t 1y fy (U) f2(20)

i#t

it itt=1,

7]/2).

In sum, we have Ty = 0,(n

ZZ Z ntVtVXZt,deKZz‘iKlli (

imli=li= lthhDZHfU( Ui)fz(Zi)

(ii) T: I;(Z;) -

i1 #11et Uy = () Lisost Wit = 60+ 3HY ) +3H + H}

6, = E(¢nitl|Pi) = E(‘I/nitl|PiaPl) = E(‘Vnitl|P;7Pl) =0, as

. o, =0;

n

E(Woint| P, Pr) = fuU)
. ng < CE(EZ(Wnit1|Pi7B)) - O(

251

Zl 2)'
2+ )

hy

27 Dy+2y —
h22+) 1).

)

* c73n - (¢mtl) < CE(Wmtl) OP((/’Z?I

28

1) D K”
Dlzgz\jrxlz,] d 2( )E(Klli(nd(zl)ind(zi))

)1/2) Op((n3hll)|hé)2+2)*l/2) :Op(nfl/Z)'

Uia = 0p (PR HE) ™) = 0, (n72);

Op ((”h?ﬁl)il) = 017(”_1/2)§

Ui = 0p((nh{"h2) ™) = 0y (n™'/2);

Uy = op((nhz)*‘) = 0,(n"172).

1
*3 Z Yhitl -
1=

i=lt=

%) be a U-statistic of degree 3.

E(vi|M;,U;) = E(vx2:,;|U;) = 0;

Chy! ‘ThvtVXZt‘deKZti‘ .
D+1—7
2 fuU)f2(Z)

Zi) <



B =0, B = 0,((%)"?) = 0, (1 (242 4) ) =001, Y = 0,((%)")
=0, ((n3h1D1_2h§2+2)_1/2) =o0,(n"12).

We have U, = 0, (n"1/?).

For all other cases, by Markov’s Inequality and A5, we have

if i=t=I, i=1l#1, Wairt = 05

‘l n n
if i=t#I, jZZWm’il

nivivx2i DKo O)Kvi oy g o) — o (2N — o (12
lzl?i%ththJrlfU( i)fz(Zi)( a(Z1) a( l)) P( 1(” 2 ) ) op(n=/7);

n
lf i?él:l, n3ZZWmtl

i=1t=
i#t
" Nivivxa, jDaKyiKii ~1 “1)2
I'Id(Z)fHd(Z,») =0 ]’l1 nh2 =0 (n )
IZ];Z] thhD2+1 ( )fz( ) ( t ) P( ( ) ) P
17t

We have By = op(n_l/z).
(2c). Similar to part (2b), we have

& nivi(82;(Ur) — 82(Ui) ) DaKai
B2z = - ) — (Uia — Uia)
dgl n? z;z; h12)2+1fU(Ui)

G 1 nvi(g2)(Un) — 82j(Ui)) DaKoiiKui B .
{ Z h]Dlhé)2+1fU (Ui)fZ(Zi) (Uld + (Hd(Z[) Hd(Zl))) } (1 + Op(Lln))

Dy
= { Z(W1d+W2d)} (1+0,(L1n)).

We show that W4, Wy, = op(n_l/z).
. 1 & Nivi (ng Ut gZJ(U))DdK2ttKlll
i Wi = Wil
n zZItZIIZ W RS (U £2(Z) zzlzzuz

Ifi£r#1letU, = ('31)71 Yitett Wit = On + 38V + 387 + HY be a U-statistic of degree 3:

. 6, =0}, =E(Yuu|P,,P) = E(Wuit|P,P) =0, as E(vi|M;,U;) =E(U4|Z) =
) < g‘ni"iUldKlli| :
it fu (U) f2(Zi)

iviUiaKiii
E(l[/m-,l|Pi,P1) Dlngrlfl’j( 1i’)fZ( _)E(DdKZIi(ng(Ut) _g2j(Ui))
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2

. 63, < CE (E>(Yu|P,P)) = O(h™");

V(@) < CE(W2,) = 0, (P H)2)~1);
1" =0, 1 =0,((%)"?) = 0, (@) ) = opw2). 1Y = 0,((

=0, ((n3h1D1h52+2)_1/2) =o0,(n"1/?).

2
« 03, =

We have U, = 0, (n"'/?).

For all other cases, by Markov’s Inequality and AS, we have

O3

3>1/z)

n

if i=t=I, i=t#I, Wit = 0;
lf l:l#t, 322””“”
n i=lt=
i#t
NiviUigD g K21 Ky (0) ( D\ —1 -1/2
- 82,(U) = 2;(U1)) = O (k") ") = 0p(n™"/2);
ngwwl()m> ’ '
i#t
n
lf i?él:l, 3ZZWmtt
n i=lt=
i#t
n
nllethdKzllKltl ( -1 —1/2
= 82j(Ur) = £2j(U)) = 0p(n™ ") = 0p(n~ /7).
;;W%M‘()&()J e ’
i#t
_ ~1/2
In sum, we have Wiz = 0,(n™"/#).
C NiviDg KoKy

_1
=*3

)}

=1

@%w-ii (82)(Us) — 8;(U1)) (T(21) — Ta(Z2)

Wy fu (U) £2(2)

HM:
HM:

n
Z Whitl -

Ui fz(Z;)’

Ifi#t#11letU, = (’31)_1 Litrtt Wit = On + 3Hr(11) + 3H;52) +Hr(13) be a U-statistic of degree 3.
- O = E(Wnirl|Pt) = E(l[/m',[‘P[) = E(Wnitl|PtaPl) =0, as E(Vi|Zi>UiaMi) =0;
- Chy! nivi
E(Woint|P) = DlhD2+17;;( ’_)fZ(Z_)E(DdKanm(gzj(Ut) 22U, )) (Hd(zl) )|P) (171
. 67, < CE(EX(Wuu|P)) < Chy = o(1);
) 0) ulo g @)|z) < [ (g2 (01) 2,00 Do
Ly E( Ky (I4(Z)
E(YiulF B) = Dlh’(’Z“fu( N2(Z) ui(Ma(2) | n2+(1fu< )2(Zi) N
nviKyi (1 (Zp) Hd(Zz)) ( ) C|miviky (M (2)-114(Z;)
Fi, P E(D4K U, U))|U;
E(Win | B) = DlhDZHJ‘U( U aZ) K0t (gz;( 1) —82( )) h e O
h2x1
° 0-2271 S CE (EZ(WHitl|Pi7Pt) +E2(Wnill‘Pz’7PZ)) = O(hIZT2 + h?]%)’
: G32n = V(uirt) < CE(l//r%m) = Op((hll)l—zhgz)—l);
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1" =0,((%)"2) =0y (712, 1Y =0, (%)) =0, (7 (r22) 12+ (2] 2) 17 =
0p((50)"7) = 0p (™ 20222 %) = o712,
We have U, = 0,,(n"'/?).

For all other cases, by Markov’s Inequality and A5, we have

if i=t=I, i=14#t, i=t#l, Wit =0
) . 1 n n
if i#£t=1, *322 Whitt

St

O NiviDa KKy

n zzfzzi th hDZHfU( Ui)fz(Z;)

i#t

= Op(%) = Op(”il/z)-

(22j(Ur) — g2(Un) (Ia(Zy) — T (Z:))

We have Bi223 = 0,(n~'/2). By (2a)-(2c), we have Biay = 0, (n~'/?).

Combing all the terms in step 2, we have B} = By —|—0p(n’1/2), where \/nB1; M, N(0,P9).

Step 3: We first show that B4 = 0, (n~/2). Note that —By4 = 1Xj1 (Vy3 — Vx3B) = 1XInVy3 — 1XInVy3B = B4y +Bao.
By Theorem 3, we have |Vx;|, [Vy3| = O,(Ly). Thus B4 = Vy3 (% L Xmi— %Z;?:l Vxl-ni) = O,,(Ln)(O,,(n_l/z) +
0p(Ly)) = 0,(n~/2) by A5. Similarly, —B> = 1X31(Vy> — Vxo) = Bai + B2, and we will show that By =
op(n’l/z). By = op(n’l/z) follows by the same arguments. Note that Bo; = - Y7 | X5:n:Vy1; — Z?:] VxiniVr1i =
B’21 + op(n_l/ 2) by Theorem 3. And by expression of Vy; similar to Vx; given in A.3 of Theorem 3, we have the jth

element of B}, as

/ 1 ! 21]
By = 72

1t

1 & n1X2,1K3t1 N n1X211K3tl
where By = — (A —m)Y;, Byip = ’
2ZItZIhD*fM< M) ,Zl,zlh%fM M)
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1 & NiX5; K3
Bz = T;IZ{hD%;AZ( K3 v (n (M) —n(M;)).

We show that Byj; = 0, (n~'/?) for k = 1,2,3.

(3a). Since f); —n; = 1,0, (L,) uniformly, we have By11 = B, 0,(Ly),

lI/ml = Eln + E2n7 with

where By, = ZZ X5, %” Y, = izi

imli= 1hD3fM )

||M=

n:iX3; K3(0) 1 &
nY; Eyy = —
1n 2lzl hDng( ) 1y n nzl;; nit
it
By Markov’s Inequality and that E|E},| < <- E| 5 Vil = O((nh*)~"), we have Ey, = 0, (n~'/2). Ez, < CU,,

where U, is a U-statistic of degree 2 such that U, = (g) ! Y Whir
i#t

0, = E(yi|P}) =0, as E(n:X3;,|M;) = 0;

iX*,' i ,'X*l- :
o 010 = E(Wu|P) = o2 E(K3in:Y:|M;) = ; (zzw'.j) JKW) 7 (Mi+haw) fu(M; + ha w)d y;
By fr (M) i (Mi

. 62, <CE(E*(y|P)) = O(1) by Lemma 1 and A3.
* )2 252
2 errur - o (RN o by
03, < CE(y2,) h§D3E< i) O(h3™);
2
Oin

%)) = 0,(n712), 1 =0,((%)") =0, ((285) 1) = 0p(n'12).

n

. HY :0,,<(

Thus By, = 0,(n~'/2), and By11 = O,(n""/2)0,(L,) = 0,(n"'/?).

0iX5; i Kari
(3b). Baa =5 Y1 X, ngc/( 3’)1}

n:X5; /K3 (0) D3\ — -
In = ,%22;1:1 WYnii = ﬁ):izl 711032];;4(;[_) Vyli = OP((nh33) 1) =o0p(n 1/2);
3 1

E», <CU,, and U, = (’;)71 Y Wi =6, + 2H,S1> —|—H,(,2> is a U-statistic of degree 2.
i#t

— 1 —
t=2 Z?:] Z;lzl Vit = E1y + Enp, where

. 6,=0% =0,as E(T‘[,‘XZ*I»J\M,') =E(vru|M;) =0;

° O-Zn - (¢mt) < CE(‘I’nn) (h;D3);

1/2 _ _
CHY =08 =0,((%)"7) = 0,((2HD) 1) = 0, (n112)

n

We have By = op(n_l/z).
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ThX*,- K3t -1 .
(3¢c). Baiz = H%Z,”:l Z?:l# (71 (M) —m (M,)) = an):l'}:l Z?:[Wnil < CU,, where U, = (;) ):lr'lzl ):;lzllllnit 1sa
A e u(M) i i

U -statistic of degree 2.

6y = E(¢nir|P) = 0, as E(n:X3; ;|M;) = 0;

T]in*,g, i ChTS |77iX2*,'7 ‘ .
NIPES E(¢mt|P1) = h?3f}u(1]v1i)E(K3”(% (Mt) ‘M) > }M(Mz‘) o
2‘.
- o7, <E(9f,) = O(h3") = o(1);

. 63, = V(9ur) < CE(w2,) = O(h; ™)

11 =0,((52)2) = opln 1), 1Y = 0,((%)') = 0y iy ) 712) = 0, (072),

We have By13 = 0,(n"1/?).

By (3a)-(3c), we have By = 0,(n"'/?).

Step 4: For B3, we have —B3 = %Xz’n(Vyz —Vx28) = B31 + B3>. We will focus on B3 here, since B3, has a similar
structure to B3; and could be analyzed accordingly. By Theorem 3, we have B3; =~ Y.i' | X5:1iVy2i — 2?:1 VxiniVyai =

By, +o, (nfl/z). Similar to A.2 given in Theorem 3, by Taylor Theorem, we have

N 1

U A
»(Ui) o (O

sz,,( —n)Ys v+ ((U) - () ) } (1+0p(L20))

Cyoi

Z KoiCyoi + ZJKQn( —(Ui—U;i ))Cyzzi
ZR”Cm} (1 - 0p<LG))

nthJrlf /

Vyoi ZKZH 0:Y: — 1 (U;)

nhDZfU

P
{ nhy? fu (U,
+

where R;; is the remainder term of a Taylor expansion of I%zt,- at (U’h;zU’)
Similar to the T3 term in Theorem 3, we have W Yo RiCyoi = op(n*l/2) uniformly. Thus, we have the jth
nn, = ju\Yi

element of B as

3
3/31,]' = Z B3k +0p(”_1/2)
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1 & & MiXs; Ko LG Xy .
where  B3j = *ZZDziCan‘, B3 = ZZ DyiT IKi (Ui — Ui) Cy i,
i—i=1h;" fu(Ui) imu=1hy>" fu(Ui)

1 ¢ niXy; .
B33 = 722#']1{2;1( —U;)Crui and  Cyzi = (i —n)Y: +vva + (R(U) — 1(U)).

n* S SR )

‘We will show that B3} = B33 = Op(nfl/z) and B3y = %Z?:l Alni,j +0p(n71/2), where

Z)

The components in B31 are similar to B1p; with U; replacing M;, 1;X5; i replacing n;v;, Cya; replacing Cxyy;,j, and

awmij = ) fu(Un)fz(Z) hy

2 Uy X5, iDaKouKii ) (Uz - Ul)
(2 =Y
A= 2n)

; = 0 replacing E(n;v;|M;) = 0. By the same arguments in (1a)-(1c), we have B3;; = o n=1/2). By the
77 2t ] n p

three components in Cyy;;, we have —B3y = Zl%:l B39k, with

1 n n; ;1] 1 & ni ;,]
B S —— = K (0 —U; Y, B = = 577 ——JKi (Ui = U; ;
3121 n2 l:Zl; hD2+1fU( ) 2t ( )(n nl‘) t 3122 n2 l:Zl; hD2+1fU( ) 2t ( )Vth
I & & 77[ 2,’,/ ~
B3z = =YY 5ot —IKai (U — U) (1(Ur) — 1 (U))).
3123 2 i:lt:1h§2+1fU(Ui) 2 ( )(Yz( 1) —nl( ))

We show that B3121 = B3122 = 0,(n~"/?), and Baio3 = & X1 auij+0p(n~'/2).

Ui)
(L1n> ! |77i 2i$jnthDdK2n'|

LYy

i=li=1d= 52 fu (Us)

= 0,(L,)0, (ﬁ;) op(n 1)

n nl ;
(42). B3z = { ZZthH 2ij JKi (U; — U)T’th} »(Ln)
i=lr=1

< Op(Ly

(4b). By A.1 in proof of Theorem 2, we have
D21 & & miXy; jvyarDaKoi

B3 = Z ZZ

=1 iD= thHfU(Ui)

{D2 1 & & Xy, vyaDaKoiKu

(Uia — Usa)

Z1 n’ zzlzzilzi WVRY T £y (U3 £2(Z:)
B {d

(U,d + (M) —nd(zl-)))} (14 0p(L1a))

=
v

(T]d + T2d)} (1 + Op(Lln)).
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We show that Ty, Tog = 0,(n~'/?).

M T = 3222

NiX3; vy2uDaKoiKiii

imli=1i= lthhD2+1fU( Ui) fz(Z;) i 3i=1i=1

Ifi#t#1letU, = (’31)71 Yttt Wnitt = On+ 38" 130 + B be a U-statistic of degree 3.

. 6, = 0%, =E(Yuu|P;, ) = E(Win|P,P) =0, as E(vyx|U;) =E(U4|Z)) =

vya;: U, TIzXz dK2th111 C\v 2w Upql .
. o0 = E(Wiu| P, P) = nyl’hé‘;E( i 12,,0;) < Cloraal,

It fu (Ui

- 03, SE(97,) = O(hy”):

+ 03, = V(i) < CE(vy)) = Op (k703> %) 1)

Y =0, 1Y =0,((%)") =0y ((0ha) ") = 0p(n7);
CHY =0,((5)"7) =0, (P2 2) ) = 0, (0112,

We have U, = 0,,(n"1/?).

For all other cases, by Markov’s Inequality and A5, we have

if

if

if

if

. 1 n
i=t=1, ﬁgllfniii

o Z niX; 2i ijZfDdKZ(O)Kl (O)
”3 D'hDZHfU(Ui)fZ(Zi)
i:t#la 322Wnul
iD=
i#l
_ ZZ NiX3; vy DaK>(0)Kyyi

SRy (U) f2(20)
i#l

i:l;ﬁt, 322‘/’711!1
n i=1t=
i#t
B ZZ niX3; jvy2DaK2iK1(0)

- 1: 1hD'hD2+1fU( Ui)fz(Z:)

Uia =0, ((nzh?‘h§2+l)_l> =0,(n"1?);

Una = 0p((n5**) ™) = 0p(n™72);

=0y (1)) =0y

i#lzl, n3zzl’/mtt

i=1t=

i#t

)

A U2

NiX5; vy2DaKoiKiii

Uy = 0p<(nh2)_1) = op(nfl/z).
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In sum, we have Tj4 = 0,(n"'/?).

i) = 3y (7)) =

0 3
imli=1i= 1h11h§2+ fu(Ui) fz(Z)) i 3i=1i=1

NiX3; vy2uDaKoiKii

Ifitt#1letU, = (’31)71 Yo Wit = On+ 3 130 + B be a U-statistic of degree 3.

« 0, =EYni1|P,) = E(Wnir1|P1) = E(Wnit| P, P1) =0, as E(vyx|Uy) =

MiX3; ;DaKoiKyyi

_ Chy' vyl
E(Win|P) = h?]v;§>12+|E( TuUNF2(Z) (Hd(zl) _Hd(zi))|Uf) < ITM’

251

h
. 012,, SE((Plzn) = 0( Ilz% );

NiX3; jvy2DaKoyi _ ' cry! anQ,jVYZthKZti’
Bl BoB) = iy E(Ku,»(nd@)—nd 2)[z:) < S

h Tu (Ui fz(Z;)
U7 ) Chy! \VYZr\

2

* c722n SCE( (Wmt!|PnPt)+E (Wmtl‘PtvPl < [)l )
2

> E(‘I/nitl |})17

iX5: :DyKoiK
vy Ni%y; jPakuilkiii
R) = pir B (i

(Ia(21) — I4(Z1))

. 63, = V(9ui) < CE(Y2,,) = 0, () 210221,

. H,E]) _ Op((ci,,)lﬂ) _ op(n*‘/zh?hg') :Op(n—l/Z);

£
D
I
)
<
N
—
3 ‘,\9
=
SN—
=
(38}
N———
Il

0, (h;I (n2h§2+2)*1/2) _ op(n’l/z);

We have U, = 0, (n""/?).

For all other cases, by Markov’s Inequality and A5, we have

if i=t=I, i=1#t, Wairt = 05
if i:t#l, n3zzllfnul

11

llyél

n L MiX5; vy DaKo (0) Ky

B 3;12‘1hD'hD2+]fU( Ui) fz(Z;)
i#l

if iA1=, n3ZZv/nm

i=lt=
i#t
B ZZ NiX5; vy2DaKoiKiii

iz 1[ 1hD1hD2+1fU( Ui) fz(Zi)

(Hd(zl) - Hd(Zi)) =0, <h1 (nhgzﬂ)fl) _ 0p<n71/2);

(14(7) ~ a(Z2)) = 0p (s (nh2) ") =0, (n™'72).

We have B3122 = op(n’l/z).

36



D, 1 non TIZXZ,] Uy) — Yz(Ui))DdKzn' .
P2

TR
__t

1 &L Ni 21]( ( ) 7/2( ))DdKZIIKllL
3
{d

11 i=1t=zil:21 WS fy (Ui f2(20)
We showthatZd 1W1d**2, L inij+op(n~ /) Wzd:()p(n_l/z).
1 & & & NiXs  (nU) — »(U) DdKZiKllz 1 &
R B D R

i—li=1i= DlthHfU( Ui) fz(Z;) i3y

(4c). B3z

]
Sy

(Uld + (Ia(2)) —Hd(zi))> } (14+0p(L1n))

15

(Wig +Wzd)} (1+0,(L1n)).
1

Whirl

™=
™=

1i=1

Ifi#£t#11etU, = (g)fl Yitett Wnitt = On + 3V + 38 + HY be a U-statistic of degree 3:

« 6, =E(0uin1|P) = E(Wirt| i) = E(Wpint [P, ) =0, as E(Uya|Z) =

U NiX5; iDaKaiKyyi
o P10 =E(Yoia| 1) = Dlhli)lﬁ] E ( fli(]Ui)dfz(IZi)U (YZ(UI) - 72(Ui)) |Zl) < ClUul;
. o, <E(¢1,) = O(1);

n:iX5; iK1iUia
E(‘I/nitl|PiaPl) D] h02+; >

CniX5; KU,
Ul) S L|)? '21’1 ll. 1 s

! fu(Ui)fz(Z;)
UnZl) < CUy;

E{DaKi U;) — 7y (U;
fuU)f2(Zi) ( K (12(Ur) = 1(U;)

NiX5; :DakoiKyii
E(Yin|Fr, ) = hl’lz]DﬁIE( fj(jl/i;lfiz(tzi)]l (y2(U’) _W(Ui))
1

03, < CE (B (Y|P P) + B2 (Wit B 1)) = O (I )

+ 03, = V(nin) < CE(¥) = Op (1) );

HD = 0,1, B =0,((5)'?) =0, () ) =opn 1)

1 =0,((Z)'7) = 0, (2P 2) = 0pn12),

We have U, = 3H," + 0,(n~1/2), where aY = %):Ll E(,i|P). In this case, we need to investigate

A" alittle further. Note that »U) — nU) =InU) (U —U) + 5 (U, — U)Hy (Uyi) (U, — Uy), where

Ui =AU+ (1= A)U;, for A € (0,1). Plugging this into E(,;;|F;), we have

H ZE lI’mtl|PI Zalnl,j+ Zblnl,j
Ula <77z 2, jPaKiKui >
where aj,; = JrU)U -U)\Z |,
Inl,j thlh?2+1 fU( z)fZ( i) 7( z)( t z) 1

Ui) 0y, (U) (U — Us)

A U (niXQ*iJDdKZIiKlli l(U
= = U;
T et JoUi) fz(Zi) 2

)
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Since b1, < Cho|Usg|, B(b1u,;) =0, and V(L Y7 by, ;) = O(h3n~"), by Chebyshev’s Inequality, we

have 1Y% by j = 0p(han /%) = 0,(n"V2), and HY" = LY a1, i+ 0,(n12).

Note that W, = n% (g’) U, + op(n_l/ 2). By exchanging i and / in H,E Y for future notation convenience

we have

Dy 6 1 ; DKo Ky U, —U,
Y Wig —3< ),ZZZ Vi (m 2 1IJVz(Uz)( ! l)
d=1

L 2nP Y2 Tu(U)fz(Z)) h>
6 (n -1/2

n (3) E;alnivj +op(n / )

o 1 ! 6 n 1 ! o 71/2

- n;alm’]—k (n3 (3) 1) n;almd—kop(n )

_lzn: . -1/2
= Y +o,n ).

z,) +o0,(n"1/?)

The last equation follows from that (’% (3) — 1) =o(l),and 1 Y7 ay, ;= 0,(n"17?).

For all other cases, by Markov’s Inequality and A5, we have
if i=t=I, i=t#I1, Yoirt = 0;

if i:l#t, 322'",/”’”

i=1t=

i#t

n D KyiK;(0)
_ 2,j d B2t ]
Ly

— NU,, — WP Y = o (12
SE P ER 1 (U) f2(Z) () = (V) Ui Op(( i) ) r( ):
i#t

if iA1=l 3ZZwm

i=lt=

i#t

L NiXo; DaKoiiKi B i
= Ul — O - .
121121 HPTRRT £y (U £ 22) (n(U) = nU)Ua = 0p(n~") = 0,(n /%)

In sum, we have Wi4 = 0, (n~'/?).

1l L& & 21]DdK2HKlll U — U 1.(Z) —I1.(Z :ln 7 '
®W”‘3§§;fwwmmwa»m“)”“wd“) 1) = L Vi

Ifi#£t#11etU, = (g)il Yititt Wnitt = On + 3V 438 + HY be a U-statistic of degree 3.
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. 6,=0(h}") = 0,(n'/?);

nzxz,‘,' Chsll niX;i./
E(Win|P) = D|hD2+1fU< .)fz(zi)E(DdKZtiK]li(YZ(Ut) - Yz(Ui)) (Hd(Zl> —Hd(zi))) < To U2 Z)

E(Win| ) = O(hy'),  E(Whin|P) = O(hy'):

- 62, < CE(EX (Yt | P) + EX (i P) + B (Vi P) ) = O(h}));

0iX3; DaKoi ()’2( t)*Yz(Ui)) chyl ﬂixﬁ‘,-,deKzri(J@(Ut)*)’z(Ui))‘
E(Ky; (I1;(Z)) —11;(Z;)) | Z;) <
E(YniulFr Fr) = DlhDZH]‘U( Ui)fz(Z;) ( ll( ) g ))| ) ‘ hé)ZHfU(Ui)fz(Zi) |
ntXZIIKllt(Hd(ZI) Hd(Zi))E DKo B ' \ < c Tlin*i_jKlzi(Hd(Zt)—Hd(Zi))
BB P) = WS fy (U f2(20) (Dakai (6 (Un) = (L) |Ur) < i fo (Ui f2(2:) ’

E(Yoin [P, P1) = O(hy');
e 03, =0 (W h P ) = 0 (WP )
. 62,=0 ((h?lzhgz)l);
5~ 0,((%8)") = 0 (R 5-17) = oy VP
1 =0,((%)2) = 0, (k! (w285) 72 4 (27 2)72) = 00112

) =0, ((%)'7) = 0, (2222 2) ) =0y (01,

.

We have U, = 0, (n"'/?).
For all other cases, by Markov’s Inequality and AS, we have

if i=t=I, i=1+#t, i=t#1, Yairt = 0;

if itr=1, 322111”1”

i=1t=

i#t

ZZ 2, deKzllKltl
i—li= 1hD1hD2+1fU( Ui) fz(Zi)
i#t

= Op(%l) =op(n~'1?).

We have B3jp = —- Z 1@1nij+0p(n _1/2). For B33, analysis will exactly similar to B3;,, but note that for the term

having order O, (n~'/?) in B2, the corresponding term in B33, denote W/, is

i (U DaKuiK
Wi, = 322211 zu(72 1) — 12(U;)) DaKa mUzd-

imli=li= KR £ (U) £2(Z,)
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The difference here is we have Z; instead of Z;, such that E(Y;;|P;) = 0 in that E(1;X5; ;|U;) = 0. Thus, by the same

arguments for the rest of terms, we have B33 = 0, (n’l/ 2).

As to B3, analysis is similar to Bz; given above. For the term having order 0,,(n_1/ 2), we can actually combine

B31 and B3, together to work it out. Note that

LY R M8~ XaB) + (v )

VWoi—Vxaif =4 —p——
l l {nhngUU]i)t:l

+ (W) = 1) = (82U~ 22(U))B)] } (1+0p(La)

and the term that is of order O, (n~'/?) involves the third term in bracket, which is (1(U) —g2(U)B —Bo) — (12 (Ui)) —

& (U)B — Po) = h(U;) — h(U;). Thus using (h(U;) — h(U;)) instead of (%2(U;) — %(U;)) in Wiy, we have B3 =

@.

Step 5: Combing orders of By, B>, B3, Bs, we have 1X3A (Y —X,B) =By1 + 1 ¥ ay +0,(n~1/?). Next we investigate

V(B + 1Y ay).

%Zf':l ani + op(n’l/z), where

Doy X5 DaKaKi; U, -1,
g — id g MAyLdXii g o) (til)
i Y ( foOnfz) O\

Let A € RP2 be a non-stochastic vector such that A’A = 1. Denote B + %Z?:l ani = % 1 (Xomivi+an) =
1y | by, and we have E(A'by,;) = 0 as E(X5:mvi) = E(an) =0, and E(A'byib; ) = AE(X5n2v2 X5 A+ A'E(anid),) A =

A'® A + A'E(apia),;)A. Denote Xo; j = ILj(Z;) 4+ Uy j, the 7" element of a,; can be written as

)

: v U —U,
- /W(sz(zl)JrUz’J*gU(Ml) *g2j(Ul)+g3,i> Y UiaDaKou K1y Jh(Uy) < lhz Z)
1M =

by, MX3; iDaKo Ky U -U,
ani,j — Z - ( ) l)(til)

d=1 thlfé)Q fu(U)) fz(Z) hy

(M, Up)

X me(Uz)fZUM(Zl,Uz,Ml)dUdeIdUldMl

Dy
= /(Uzj(Zi—hIY)+Uzz,j—hzlllzj—glj(Ml)—gzj(Uz—hzll/)+g3j> Y UiaDaKa(w)Ki(y)
d=1

MM, Uy —hoy)

X Ih(Ur = hoy) lI/fU(Ur —hay) f2(Zi — hyy)

foU) fzum(Zi — h1y, Uy — how,M;)dydydU,;dM;
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H/ IL(Z) +Us,j — 81;(M)) — 82;(Ur) +g3,)ZU,d =Dyh(Up)) i(My, Ut) fum|z(Ur, Mi|Z;)dUrd M,

e

The convergence follows by Lemma 1, A3 and that [ D K, (w)wdy = (0,---,—1,---,0), where —1 appears on the

)

Zi) E(UiaU;s\Z;i)

:72 ((HZJ +U217J glj(Ml) gZ/(U1)+831)Ddh(Ut)nt

d™ position of the vector. Hence, the (j,m)™ element of E(ay,a’,;) converges to

= [ii <(H21 )+ U j— glj(Mz)*gzj(Uz)Jrgaj)Ddh(Uz)nz
1621

><E<(172m( )+U2tm glm(Ml)_me(Ut)+g3m>D5h(Ul)nl

By Lyapunov’s central limit theorem, we have /n (311 + % ¥r am-) i> A(0,® 4+ ®,), provided

lim, e Y7, E‘n"/zk’ani|2+5 =0 for some & > 0. Note that by Cr Inequality,

| 2+6
—1/2471 1246 521
§E]n AMay|"" =n n.z,lE

Dy
Y Ajani
j=1

Dy

—8/2 146 248 246

< n %PDLO Y ATTOE ay "
=1

246

|2+5

where  Elay; j ZE (ILj(Zi) + Unj — g1j(M;) — 82j(Us) + 837) Dah(Up) 1,

2)

X |Uia|**® fu (2, Up)dZidU;

2+0 245
<CZ/‘E (ILj(Zi) + U j — g1 (My) — 82j(Us) + 83/) |Z )‘ \Uia|“"° fzv(Zi,U;)dZ;dU;

<o since E(|Ug|**?|Z) <C<oo and E[Xy[**% < oco.

246

Thus lim, 0 Y1, E|n’1/27t’am~’ = 0 for some & > 0, and we have %Yz’ﬁ(f/ —XB) BN N (0,8 +P,). From

1o N\
step 1, we have (XénX2> LN D, I Together, we have
n

V(B —B) L 4 (0,0, (@1 +D2)P; ).
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Lemma 1. Assume that: a) |[K(y)| < C forall yeRP; b) [|K(y)|dy < ; c) ||Yl|elK(y)| = 0 as ||Y]|g — o;
d) hy > 0 for all n and h, — 0 as n — . Let f(x) : RP — R such that e) [|f(y)|dy < . Then, for every continuity

point x of f(x), we have

/K(V)fx(x+hn7)d7—> fx(x) /K(y)dyg C as n— oo

Lemma 1 is a standard result. Here we omit the proof.
Lemma 2. Assume that K(x) : RP — R is a product kernel K (x) = H?:l k(x;) with k(x) : R — R such that: a) k(x)
is continuously differentiable everywhere; b) |k(x)||x|> < C, for any x € R and some C > 0; ¢) |K'(x)||x|> < C, for any
x € R and some C > 0. Thus, for any |B| =0,---,3, K(x)xB satisfies a local Lipschitz condition, i.e., for any x #y € A,

where A C R is a bounded convex set, we have
|K(x)xﬁ—l((y)yﬁ| <Cllx—yllE, for some C > 0.

Proof. Note that by a)-c), for any x € R, we have |k(x)||x|', |K'(x)||x]' < C,i=0,---,3.
@. || =0,
Since by mean value theorem K (x) — K (y) = JK(x*)(x—y), where x* =x+A(y—x), A € (0,1), and | D;K (x*)| =
K ()| TI2. 1k(5p)] < C. we have [K(x) — K(y)| < CT2 lxi —i| < CD (£ (i~ 1)) ""* < Cllv— |l for
some C > 0 by triangular and C; Inequality.
(b). |B|=1.Foranyi=1,---,D,
(K (x)xi = K(y)yil = |xi(K(x) = K(y)) +K(y) (xi —yi)]|

= |IGJK(")(x—y)+K()(xi —yi)] by the mean value theorem

= |(uDiK(x*) +K(y)) (xi —yi) + ;{xiDpK(X*) (xp = ¥p)
pFi

D
< CY |xi—yil by triangular inequality
i=1

IN

Cllx—ylle by the C, Inequality
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Mean value theorem is used in the second equation since k(x) is continuously differentiable on the convex set A.
And since set A is bounded, there exists a C > 0 such that y; —x; = A; and |A;| < C. Thus xf = x; +A(yi —x;) =

xi+AA, and we have |x;k’(x])| = [x;ik' (x; + AA)| < C by ).
(¢). |B|=2.Foranyi,j=1,---,D,
[K(x)xixj = K(y)yiyj| = [xj(K(x)xi = K (y)yi) + K (y)yi(x; = y))]
< JxK () +xiDiK (x)| i = il + |xyiD K (x°) + K (y)i] |xj = yjl

+1 Y xjyiD,K(x%)

p#i,j

lxp —Ypl

<Cllx—ylle

(d). |B|=3.Foranyi,jl=1,---,D,

|K (x)xixjx; — K(y)yiyjvi| = |xi(K(x)xix; — K(y)yivj) +K@)yivj (=)
< ]xz'ijzDiK(X*) +ij1K(Y)’ |xi — vil + |XinXIDjK(X*) +X1K(y)yi| lxj —jl

+ ‘XixjxlDlK(X*) +K(y)yiyj} |x; —yi| + Z !XixjxleK(X*ﬂ |xp — xp|
pF#i,jl

< Cllx—ylle

O

Lemma 3. Let {W;}!_, be a sequence of independent and identically distributed (IID) random variables, G,(W;,w)
R x RE — R such that: a) |G,(W;,w) — G,(Wi,w')| < B,(W;)||w —w|| for all w,w'" and B,(W;) > 0 with E(B,(W;)) <
C < o0; b) E(Gu(Wi,w)) < o0 and E (|G(Wi, w) — E(Ga(Wi,w)|?) < CP2plE ((Gu(Wi, w) — E(Ga(Wi,w)))?) < oo for

some C>O0foralli=1,2,--- and p=3,4,---. Then, if Sy(w) = % Y. G.(W;,w), for w € G,, a compact subset of RK,
i=1

sup 15,(0) — E(5(0))| = 0, ((2%2)").

weG,, n

Proof. Since G,, is a compact subset of R, there exists wy € RX such that G,, C B(wy,r) = {w € RE : ||w —wy|| < r}.
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Thus, for all w,w’ € G,,, ||w—w'|| < 2r. By the Heine-Borel Theorem, every infinite open cover of G,, contains a finite
subcover which we construct as {B(wk,n’l/z)}fc”=1 with wy € Gy, and I, < nX/2C. For w € B(wy,n~'/2), by condition

a), we have

1S40) = Su(we)| < n'/ziim(m:op(n‘ﬂ)

since E(B,(W;)) < e and {W;}_, is and IID sequence. Similarly, |E(S,(w)) — E(S,(wi))| = O(n~'/?) and using the

triangle inequality we have,

logn

Su(w) = E(Su(w))] < ISa(we) — E(Su(we))| +O0p(n~"/2). Since( n )”zn—l/zzo(n

it suffices to show that for all € > 0, there exists a constant A, such that forn > N

n O\ 12
P<< ) max S,,(wk)E(Sn(wk))|2Ag>§£.

logn 1<k<ly

1/2
Letg, = (l"%) A¢ and note that

Z’l
P (jmax 15,00~ (S, 2 ) < X PS50 > ).
=1

1<k<Iy

Given condition b), and letting ¢, = 4V (G,(W;,wy)) + 2Cg,, by Bernstein’s Inequality, we have
2 2 )
€ Al A2
P( 2n8”> < 2exp <n n> = 2exp ( £ 0gn> =2n ©.
Cn Cn

A2 A2
Hence, P <1r<nka<xl 1S, (wi) — E (Sn(w))| > s,,) <2l,n" e < Cn®/*" @ . Since, €, — 0 as and V (G, (W;,wi)) < o, we

éGn(VViawk) - ilE (Gn<VVl,Wk))

2
can choose A, sufficiently large such that K /2 — %f < 0and

P (112%" 1Su(wi) — E (Sn(wi))| > e,,> <e.

O

Lemma 4. Assume that K (x) : RP — R is a product kernel K (x) = HJD=1 k(xj) withk(x) : R — Rsuch that: a) [ k(x)dx=
1; b) |k(x)[]x|"¢ — 0 as x — oo, for some ¢ > 0; c) k(x) is continuously differentiable everywhere, and |k (x)||x|> — 0
as x — oo. In addition, assume that 1) {(X;,&)’'}i=12,... is an independent and identically distributed sequence of

random vectors; 2) The joint density of X; and & is given by fxe(x,€) = fx (x)fex (€|x); 3) fx (x) and all of its partial
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derivatives of order < s are differentiable and uniformly bounded on RP; 4) 0 < in(i fx(x) and supfx(x) < C. Let
xXey x€¥9

w(X; —x;x) : RP — R and g(€) : R — R be measurable functions. Define

0= ok () (X’h;)‘)Bw(xt ~xx)g(e)

where |B| =0,1,2,3. If

i) E(|g(&)]*|X) < C < o for some a > 2;

ii) w(X, —x;x) satisfies a Lipschitz condition and |w(X; — x,x)| < C for all x € RP;

Then, for an arbitrary compact set 9 C RP, we have

- logn 172
suplss) ~Els(2)| = 0, (( ) )

D
n

provided that hy, — 0, nh?+? — oo and ]'(’)Z -~ — 0o as n — oo,

Proof. Let B(xo,r) = {x € RP : ||x—x||g < r} for r € R*. & compact implies that there exists xo € R such that 4 C

B(xo,r). Therefore, for all x,z € ¥, ||x—z||g < 2r. Let h, > 0 be such that s, — 0 as n — o where n € {1,2,--- }. For
—1/2\ )
any n, by the Heine-Borel Theorem, every infinite cover for ¢ contains a finite subcover {B (xk, C (hl)%) > }
n k:1

D/2
withx* €@ and [, < C (h[’%) . Now let

1 & Xi—x Xi —x P
ST(X)—nhDZK< I, )( I > W(Xt7X;x)g(8’)x{|g(3r)\§3n}

with By < B <--- such that };7 | B, < e for some a > 0.

sup|s(x) —E(s(x))| < sup|s(x) —s*(x)| + sup|E(s(x) = s*(x))| +sup|s” (x) = E(s*(x))| = 1 + T + T.

x€¥ x€9 x€¥ x€¥

B
(nh)=1yr K (X’_x) (M) w(X; — x:x)8(&) X{|¢(e)|>B,} |- BY Chebyshev’s Inequality, for a > 0,

1. T} =sup n "

x€9
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P(lg(&)| > B;) < E(lgé‘;’)‘a) < B% by i). Consequently,

=)

Y P(ls(e)| > B,) < Z |g€’ ) ey B e
t=1 t=1

By the Borel-Cantelli Lemma P <li£nsup{|g(8t)| > B,}> = 0. Hence, for any € > 0, there exists an m’ such
oo

that for all m satisfying m > m’ we have P(|g(&n)| < Bn) > 1 — €. Since {B;},—12.... is an increasing sequence

we conclude that for any n > m we have P(|g(&,)| < B,) > 1 — €. Hence, there exists an N such that for any

n > max{N,m} we have that for all  <n, P(|g(&)| < B,) > 1 — € and therefore x|, (¢,)|~p, = 0 With probability

1, which gives T} = 044(1).

2. For T», note that by 1) and 2), we have

// (&)[>Bn (thn ) (Xth:x>ﬁw(xf_X;x)g(gt)fx(Xt)f(gt)dxtdé‘z

S/K(}’)WW(hn}’;X)fx(x+hn7’)d}’/|g(8)|fe\x(€|x))c{|g(s)|>3,,}d€

E(s(x) —s"
nhgt '

<C / 18(e)1 £ (&) X{|g(e) > B, ) dE
due to uniform bound of w(X; — x;x), fx(x) and by Lemma 1,

[ K@P et hldy =15 @] [ KDPIdy<C as noe.

By Holder’s Inequality, for a > 1, we have

1-1/a

1/a
[ ete) i (ebtoron, e <  [le@l ntelilde) ([ 2eoronfoxteiae)

where the first integral after the inequality is uniformly bounded by i) and by Chebyshev’s Inequality,
1-1/a E(] P 1-1/a
1-1 g(e)*|X _
(/ %{g<e>|>3n}fs|x(8|x)d8) = (Plg(e) > B,J) " < ( | Bl X <CB,.
n
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Hence, T» = O(B}~9).

3. Rewrite T3 as: T3 = supls®(x) —E(s"(x))| < sup|s®(x) — s7(x*)| 4 sup[E(s” (x) — s (x*))|

3.1.

3.2.

3.3.

xX€¥ xe¥ x€9

+ max |s%(x*) —E(s*(xY))]

1<k<Iy

131 + T3 + T33.

—-1/2
ForxeB(xk,C(hD"ﬂ) ),wehave
1 & X —x\ /X —x\P X —x\ /X —x\P
T T < t t _ t t
) — 57 ()| < nhg;l(\K( ) (B) e (B (2
K Xt—xk X[—xk ﬁ
h}’l hl‘l
C C 1 &
(gl =l oy =3l ) Yoot
n n t=1

1\ 12 1 \12\ g
< ) hn D - )
= ¢ <nh5> + <nhD> ngg(gr)%{\g(s,)\sm

where the second inequality follows by Lemma 2 and b), i.e., local Lipschitz condition and unifor-

w(X; — )]

_|_

[w(X; —x;x) —W(Xt—xk2xk)|> |8 (&) X{1g(e)|<Bu|

hy

B
m boundedness of ‘K (X’h;n"k> (X’f"k ) ’ By the measurability of g and condition 1) we have that

{lg(&) x{g(e)|<Bp} | }1=12. is TID. By condition i) and Kolmogorov’s law of large numbers (LLN) we

1/2
have L X7 (19(8) 2 steni<B.1| — E(8(6) X iseoi< D) = 0p(1) and Ty <€ () .

1/2
Following similar arguments we have T3, = E(|s(x) — s(x¥)|) < C ( L ) .

nhb

i whP —1/2 .
T3; = 1r<nka<xl |5 (x¥) —E(s*(xX))]. For &, = Toga A¢ with 0 < Ag < o we note that
=R =tn

In
P( max |s%(x*) —E(s*(x*))| > 8n> < ZP(|sT(xk) —E(s"(x))]| > &,).
k=1

1<k<l,

Let s7(x) —B(s°(x%)) = 1 Y, Z,, with

1 (X —x\ (X —x\P
Zin :hDK< th >< t/’l ) W(Xt_xk;xk)g(&‘l)x{‘g(é‘tﬂﬁlgn}

U (X =2 (X —x\P
_E<hDK< T )( h ) W(Xf‘xk;xk)g(et)%{|g<e,>|ssn}>-

By the bounds on |K (x)||x#| and w, (&) X|¢(e)|<B,} < Ba We have that |Z,,| < Ch,”B,. By Bernstein’s
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Inequality,

_ lognAz
Tk nhD
P(|s" (") —E(s"(x"))| > &,) < 2exp ) s cm o\
- EV(ZM)+3 B (m.g) A2
—lognA2
=2exp O8N 7
2V (Z) +3CB, (S) A
oA
:2n c(n)

1/2
where ¢(n) = 202V (Z,,) + CB, (log") AZ. Consequently,
D)2

ok _ A n \P? 8 1
P( max |s%(x*) —E(s*(x¥))] >8n> <2Ln W <2C<hg+2> n =20 ——5—

1<k<lI, hE#’ZnTé)il
L \PP2
<ac <h5+2n>

provided A2/D > c(n). Hence, given that nh?+2 — oo as n — oo the left-hand side of the inequality is
< € provided c¢(n) is bounded. To show that ¢(n) is bounded, we choose B, such that B,&, — 0, i.e.,

B,&, = o(1), guaranteeing that the second term of ¢(n) is o(1). Furthermore, 12V (Z,,) < C given condition

1/2
i)y and [ |K(y)y*P|dy < oo for |B| =0,---,3 due to b). Thus, Ts3 = O ((log") )

nhb
1/2
In sum, we have T3 = O ((ff;) )

1/2
Combining results from 1 to 3, we have that sup, . |s(x) —E(s (x))| OB~ + 0( (log") ) . To show that Bl =% =

D
nhy;

1/2
0( (l:l)hgun) )s since B,g, = 0( ) lmplleS that B,=o0 < logn ) we have
D
n

nhp 1/231%_ whP \ V2 /P \ (1792 ) nhP \ 192 o)
logn " \logn logn ~ \logn NV =0

where the last equality follows if @ > 2, which is assumed in i). Thus, we have

N\ 12
supls(x) —E(s(x))| = 0, ((1250) ) .
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