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1 Introduction

Recently there has been a growing interest in estimation of nonparametric regression models with endogenous regres-

sors (Newey et al. (1999); Blundell and Powell (2003); Ai and Chen (2003); Su and Ullah (2008); Otsu (2011)). The

problem of endogeneity is widely encountered in empirical models in economics, due to measurement error or simul-

taneity that arises from individual choices or market equilibrium. Thus, the development of estimation procedures that

account for endogeneity has permeated research in Econometrics. Doing so in the context of tightly specified function-

al forms can be misleading due to the high probability of misspecification. Alternatively, accounting for endogeneity

in fully nonparametric models may be undesirable due to reduced precision that results from the well known “curse of

dimensionality”. Thus, a useful alternative is to consider semiparametric structural models to take advantage of any

known functional form information while retaining some nonparametric features.

Semiparametric models that account for endogeneity have been considered by a number of authors (see Li and

Racine (2007) Chapter 16 for an introduction). Prominent among these are Ai and Chen (2003) and Otsu (2011) that

propose two different sieve estimators for a partially linear model with endogenous regressors in the nonparametric

part. In this paper we consider a model that allows for endogeneity on both the parametric and nonparametric compo-

nents of a regression. Martins-Filho and Yao (2012) proposed a kernel-based semiparametric estimator for such model.

Compared with the two natural alternatives in the current available literature (Ai and Chen (2003); Otsu (2011)), this

estimator has an explicit functional form, much easier to implement, and a Monte Carlo study suggests that our es-

timator has a better finite sample performance. However, a full asymptotic characterization of their estimator was

not provided. Such characterization is critical for hypothesis testing and inference. In this paper, we establish: (i)

√
n asymptotic normality of the estimator for the parametric component, and (ii) consistency and the uniform conver-

gence rate of the estimator for the nonparametric component. In addition, we provide a consistent estimator for the

covariance of the limiting distribution of the parametric estimator.
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We consider the following triangular semiparametric structural model:

Yi = β0 +X2iβ+m(X1i,Z1i)+ εi, for i = 1, · · · ,n (1)

Xi =Π(Zi)+Ui (2)

E(Ui|Zi) = 0, E(εi|Zi,Ui) = E(εi|Ui) (3)

In (1), the regressand Yi is a scalar, Z1i ∈ RD11 is a subvector of Zi = (Z′1i,Z
′
2i)
′ ∈ RD1 with D1 = D11 +D12, X1i, X2i

are non-overlapping subvectors of Xi ∈RD2 of dimensions D21 and D22 with D2 = D21 +D22, and εi is an unobserved

scalar random error. m(·) is an unknown real function, β0 ∈ R and β ∈ RD22 are unknown coefficients of the linear

part. In (2), Ui is a vector of unobserved random errors and Π : RD1 → RD2 is an unknown function. Let E(·) denote

expectation. Variables Xi are taken as endogenous in that E(εi|Xi) 6= 0, and the variables Zi are exogenous due to (3).

We are interested in estimating β and m(·) consistently up to an additive constant.

Structural models can be viewed as simultaneous equations models, where economic theory is used to guide the

construction of a system of equations that describe the relationship among endogenous, exogenous and unobservable

variables (Hoyle (1995), Reiss and Wolak (2007)). The triangular system described by (1)-(3) is a special case of a

structural model, since all the endogenous variables Xi in (1) can be suitably modeled by exogenous variables Zi in (2).

Triangular models have appeared frequently in economics and other social sciences. For example, the method of “path

analysis”, which is widely used in sociology, provides a more effective and direct way of modeling mediation, indirect

effects; for more, see Lahiri and Schmidt (1978) and Lei and Wu (2007). Partially linear models like (1) have also been

studied extensively by Stock (1989), Engle et al. (1986), Heckman (1986), Robinson (1988), Li (1996), Hasan (2012),

Lessmann (2014), and among others. However, even though the statistical objectives in these papers may vary, none

of them confront the potential endogeneity. For example, Robinson (1988) provided a
√

n-consistent kernel estimator

for β under regularity conditions, and based on this, Lessmann (2014) on one hand, tested and verified the inverted-U

relationship between spatial inequality and economic development, but on the other hand, to take endogeneity into

account, two methods are employed: one is the standard OLS estimation with lagged endogenous variables as part of

the regressors, and the other uses a difference GMM estimator. Thus, it would be more convenient and convincing to
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employ an estimator that accounts for endogeneity appearing both in the parametric and nonparametric parts of the

semiparametric model.

Given (2) and (3), we have E(εi|X1i,Zi,Ui) = E(εi|Zi,Ui) = E(εi|Ui), and E(X2i|X1i,Zi,Ui) = E(X2i|Zi,Ui) = X2i.

Note that E(εi|Ui) is an unknown function of Ui, thus we can denote it by h(Ui) : RD2 → R, and using(1), we have:

E(Yi|X1i,Zi,Ui) = β0 +X2iβ +m(X1i,Z1i)+h(Ui) (4)

Newey et al. (1999) and Su and Ullah (2008) consider a purely nonparametric structural model with the same

conditional mean restriction given in (3). As Newey et al. (1999) put it, (3) is a more general assumption than

requiring that (εi,Ui) be independent of Zi and E(Ui) = 0. The added generality may be important in that it allows for

conditional heteroskedasticity of the disturbances. Different from the previous literature, this paper allows endogenous

Xi to enter the regression not only nonparametrically through m(·) but also linearly. Newey et al. (1999) employ

series approximation to exploit the additive structure of the model (as we can see from (4) but without the linear

components) and establish the consistency and asymptotic normality for their second-stage estimator of m(·). Su

and Ullah (2008) also exploits the additive structure but their estimation is based on local polynomial regression and

marginal integration techniques. As discussed in Kim et al. (1999) and Martins-Filho and Yang (2007), the marginal

integration estimator (Linton and Hardle (1996)) is not oracle efficient. Thus, Kim et al. (1999) proposed a two-step

oracle efficient estimator for the additive nonparametric model. Note that if β were known and realizations of U were

observed, (4) is just an additive nonparametric conditional expectation that could be estimated using the pilot or two-

step estimator of Kim et al. (1999). We adopt a similar method as their first step pilot estimator does, employing some

particular “instrument” function, to derive the identification of our estimator for β . Here, since U is not observed, like

Su and Ullah (2008), we replace them by the residuals obtained by regressing X on Z nonparametrically. It can be

shown that such a replacement does not impact the asymptotic properties of the resulting estimator.

There are two natural alternative estimators to ours in the current literature, i.e., the sieve minimum distance

estimator of Ai and Chen (2003) and the sieve conditional empirical likelihood estimator of Otsu (2011). This paper is

different from them in that the object of our estimation is the structural model and not just a conditional expectation,
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so that we are able to give identifications and explicit expressions of estimators for each component in the model.

Besides, they have a different moment restriction, i.e., E(εi|Zi) = 0. Strictly speaking, neither restriction is stronger

than the other; see Newey et al. (1999). Under additional restrictions: (i) Ui is independent of Zi, and (ii) E(εi) = 0, the

moment restrictions in (3) imply that E(εi|Zi) = 0. This makes the estimators developed in these two papers and our

estimator suitable for the same model, and it turns out in Martins-Filho and Yao (2012) that the latter outperforms the

previous two in terms of finite sample performance and ease of their implementation from a computational perspective.

The rest of the paper is organized as follows. Section 2 considers identification, moment conditions, and describes

the estimator. Section 3 provides the asymptotic characterization of our proposed estimators and the assumptions we

used in our results. Section 4 contains a Monte Carlo study that gives the finite sample performance of our estimators.

Section 5 provides a conclusion and gives potential directions for further study. All proofs are given in the Appendix.

2 Estimation

Suppose there are n observations and write Y = (Y1, · · · ,Yn)
′, X = (X1, · · · ,Xn)

′, Z = (Z1, · · · ,Zn)
′ for observations

on the regressand and regressors for the model (1)-(3). The objective is to estimate the coefficients for the linear

component, β0 ∈ R, β ∈ RD22 . Let vi = Yi−E(Yi|X1i,Zi,Ui), and rewrite (4) as:

Yi−X2iβ −β0 = m(X1i,Z1i)+h(Ui)+ vi, for i = 1, · · · ,n, (5)

where, by construction, E(vi|X1i,Zi,Ui) = 0.

Note that if β ,β0 were known and if realizations of Ui were given, (5) could be viewed as an additive nonparametric

regression model. With the help of an appropriate choice of “instrument” function, we derive the moment conditions

that motivate our estimator for β .

2.1 Moment Conditions

For identification, it is standard to assume that E(m(X1i,Z1i)) = E(h(Ui)) = 0, since each component in an additive

nonparametric model can only be estimated up to an constant. For simplicity, let M = (X ′1,Z
′
1)
′. Like in Kim et al.
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(1999), define our “instrument” function as η(Mi,Ui) =
fM(Mi) fU (Ui)

φ(Mi,Ui)
≡ ηi, where fM is the joint marginal density of

Mi = (X ′1i Z′1i)
′, fU the marginal density of Ui, and φ the joint density of Mi and Ui. The essential reason for choosing

such “instrument” function lies in that

E
(
η(Mi,Ui)|Mi

)
= 1; E

(
η(Mi,Ui)h(Ui)|Mi

)
= 0.

The equations still hold if we replace the conditioning variable Mi by Ui and h(Ui) by m(Mi). Thus, by pre-multiplying

ηi on both sides of (5), and taking conditional expectations given Mi and Ui separately, we have

E(ηi(Yi−X2iβ −β0) |Mi) = m(Mi); E(ηi(Yi−X2iβ −β0) |Ui) = h(Ui) (6)

If β , β0 were known, we could estimate m(Mi) and h(Ui) based on moment conditions (6) using estimated residuals

{Ûi}n
i=1 and estimated {η̂i}n

i=1. Thus, we need to consider estimation of β and β0. Since m(Mi) and h(Ui) can be

expressed as conditional expectations containing β , β0 in (6), we can plug them into (5), rearranging, with β0 =

E(ηi(Yi−X2iβ )), we have

Y ∗i = X∗2i β + vi, for i = 1, · · · ,n, (7)

where Y ∗i ≡ Yi−E(ηiYi|Mi)−E(ηiYi|Ui)+E(ηiYi), and X∗2i ≡ X2i−E(ηiX2i|Mi)−E(ηiX2i|Ui)+E(ηiX2i).

Note that equation (7) provides infinitely many moment conditions to estimate β , since by pre-multiplying an arbitrary

measurable function L(X1i,Zi,Ui), we still have E
(

L(X1i,Zi,Ui) vi

∣∣∣X1i,Zi,Ui

)
= 0. Here L(X1i,Zi,Ui) can be treated

as a normalizing factor that can be chosen conveniently to derive the asymptotic properties of an estimator for β .

In our case, we choose L(X1i,Zi,Ui) =
√

ηi. Then, we consider:

√
ηi Y ∗i =

√
ηi X∗2i β +

√
ηi vi, for i = 1, · · · ,n. (8)

In matrix form we write
√

η Y ∗ =
√

η X∗2 β +
√

η v, where Y ∗ = (Y ∗1 , · · · ,Y ∗n )′, X∗2 = (X∗21, · · · ,X∗2n)
′, v = (v1, · · · ,vn)

′,

√
η = diag{√ηi}n

i=1, and E
(√

ηi vi
∣∣X1i,Zi,Ui

)
= 0. Note that by choosing β0 = E

(
ηi(Yi−X2iβ )

)
and L(X1i,Zi,Ui) =
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√
ηi, we have E(ηiY ∗i |Mi) = E(ηiY ∗i |Ui) = E(ηiX∗2i|Mi) = E(ηiX∗2i|Ui) = 0. These conditions are crucial in establishing

the asymptotic properties of our estimator of β , as we will see in later sections. However, a more intuitive reason for

choosing such normalizing function is still open to investigation.

Denote the additive components in Y ∗i , X∗2i and corresponding error terms by γ1(Mi) ≡ E(ηiYi|Mi), γ2(Ui) ≡

E(ηiYi|Ui), γ3 ≡ E(ηiYi), g1(Mi) ≡ E(ηiX2i|Mi), g2(Ui) ≡ E(ηiX2i|Ui), g3 ≡ E(ηiX2i), vY 1i ≡ ηiYi− γ1(Mi), vY 2i ≡

ηiYi − γ2(Ui), vX1i ≡ ηiX2i − g1(Mi), and vX2i ≡ ηiX2i − g2(Ui). Now we have
√

ηi X∗2i as our regressors, and

E
(√

ηi X∗2ivi
)
= 0. Equation (8) suggests an estimator of β by inserting estimators of

√
ηi Y ∗i and

√
ηi X∗2i prior

to application of a standard rule, such as no-intercept ordinary least square (OLS) method. Note that by (6), we

have m(Mi) = γ1(Mi)− g1(Mi)β − β0, and h(Ui) = γ2(Ui)− g2(Ui)β − β0. Thus to estimate Y ∗i , X∗2i, m(Mi) and

h(Ui), we need only to estimate each of their additive components separately. Kernel-based nonparametric estimators

are employed throughout this paper. For identification purpose, we need to assume existence and nonsingularity of

Φ0 ≡ E
(
ηiX∗2iX

∗′
2i
)
.

2.2 Estimation Procedure

Based on the moment conditions given in Section 2.1, we now describe specific estimation procedure.

1. Obtain a Nadaraya-Watson (NW) estimator for Π(Zi) from (2), with the jth element denoted as

Π̂ j(Zi) = argmin
θ

1

nhD1
1

n

∑
t=1

(Xt, j−θ)2 K1

(
Zt −Zi

h1

)
for j = 1, · · · ,D2,

where Xt, j is the jth element of Xt , h1 > 0 is the associated bandwidth, and K1 : RD1 →R is a multivariate kernel

function. Denote the estimates by Π̂(Zi) ≡
(
Π̂1(Zi), · · · ,Π̂D2(Zi)

)′ and calculate the nonparametric residuals

Ûi ≡
(
Ûi1, · · · ,ÛiD2

)′, where Ûi j ≡ Xi, j− Π̂ j(Zi), for j = 1, · · · ,D2 and i = 1, · · · ,n.

2. Obtain Rosenblatt density estimators for fU , fM and φ :

f̂U (u) =
1

nhD2
2

n

∑
t=1

K2

(
Ût −u

h2

)
, f̂M(m) =

1

nhD3
3

n

∑
t=1

K3

(
Mt −m

h3

)
,

φ̂(m,u) =
1

nhD4
4

n

∑
t=1

K4

(
(M′t Û ′t )

′− (m′ u′)′

h4

)
,
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where K2 : RD2 → R, K3 : RD3 → R, and K4 : RD4 → R are multivariate kernel functions, D3 ≡ D11 +D21,

D4 ≡ D2 +D11 +D21, and hi > 0 are associated bandwidths, i = 2,3,4. Thus, a natural estimator for ηi would

be η̂(Mi,Ûi) =
f̂M(Mi) f̂U (Ûi)

φ̂(Mi,Ûi)
≡ η̂i.

3. Obtain NW estimators for the conditional expectations in Y ∗i , X∗2i as follows:

γ̂1(Mi) =
1

nhD3
3

1
f̂M(Mi)

n

∑
t=1

K3

(
Mt −Mi

h3

)
η̂tYt , ĝ1(Mi) =

1

nhD3
3

1
f̂M(Mi)

n

∑
t=1

K3

(
Mt −Mi

h3

)
η̂tX2t ,

γ̂2(Ûi) =
1

nhD2
2

1
f̂U (Ûi)

n

∑
t=1

K2

(
Ût −Ûi

h2

)
η̂tYt , ĝ2(Ûi) =

1

nhD2
2

1
f̂U (Ûi)

n

∑
t=1

K2

(
Ût −Ûi

h2

)
η̂tX2t .

(9)

Estimation for expectations γ3 and g3 is trivial, as we can just use the population average with η̂i replacing ηi,

i.e., γ̂3 = 1
n ∑

n
t=1 η̂tYt , and ĝ3 = 1

n ∑
n
t=1 η̂tX2t . Thus, estimators for Y ∗i and X∗2i are given as Ŷi = Yi− γ̂1(Mi)−

γ̂2(Ûi)+ γ̂3, X̂2i = X2i− ĝ1(Mi)− ĝ2(Ûi)+ ĝ3, for i = 1, · · · ,n.

4. Using the estimators η̂i, Ŷi and X̂2i derived in Steps 2 and 3 instead of ηi, Y ∗i and X∗2i in (8), we have the

no-intercept OLS estimator for β :

β̂ =
(
X̂ ′2η̂X̂2

)−1 X̂ ′2η̂Ŷ , (10)

where Ŷ = (Ŷ1, · · · ,Ŷn)
′, X̂2 = (X̂21, · · · , X̂2n)

′, and η̂ = diag{η̂i}n
i=1.

Given β0 = E(Yi−X2iβ ) and β̂ , an estimator for β0 is β̂0 = Ȳ − X̄2β̂ , where Ȳ ≡ 1
n ∑

n
t=1 Yt , and X̄2 ≡

1
n ∑

n
t=1 X2t . For m(Mi) and h(Ui), we have

m̂(Mi) = γ̂1(Mi)− ĝ1(Mi)β̂ − β̂0, ĥ(Ûi) = γ̂2(Ûi)− ĝ2(Ûi)β̂ − β̂0. (11)

3 Asymptotic Characterization of β̂

In this section, we study the asymptotic properties of the estimators described in the previous section. We first establish

the uniform convergence in probability rate of the Rosenblatt density estimator using estimated residuals {Ûi}n
i=1.

Second, we give the uniform convergence in probability rate of the NW estimator constructed using estimated residuals

{Ûi}n
i=1, and third we establish the asymptotic normality of

√
n(β̂ −β ).
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3.1 Assumptions

We now provide a list of general assumptions that will be selectively adopted in our theorems and introduce notation.

In what follows, C always denotes a generic constant in R that may vary from case to case. k( j)(x) denotes the jth-order

derivative of k(x) evaluated at x.

Assumption A1. The kernels Ki, i = 1,2,3,4, satisfy:

Ki(x) =
Di

∏
j=1

ki(x j)

where Di is the corresponding dimension of Ki. Assume ki is symmetric about zero, 4-times partially continuously

differentiable and satisfies a)
∫

ki(x)dx = 1; b) |k( j)
i (x)||x|5+a→ 0 as |x| → ∞, j = 0, · · · ,4; c) ki is a kernel of order

si, i.e.,
∫

ki(x)x jdx = 0 for j = 1, · · · ,si−1, and
∫
|ki(x)||x|sidx <C. Denote s = max{si}4

i=1.

We adopt the “higher-order” kernel approach to reduce bias. Since global differentiability of the kernel functions

is used in order to employ Taylor Theorem in following Theorems 2 and 3, kernels that have compact support are

excluded. The ideal candidates have to decay exponentially, and it turns out kernels constructed below based on

Hermite polynomial and Gaussian densities are one such class of kernels. Construct the kernel that is of even order

s≥ 2 by:

ks(x) =

1
2 (s−2)

∑
j=0

c jx2 j
φ(x) (12)

where φ(x) = (2π)−1/2exp(− 1
2 x2). Given that we can evaluate the moments m2 j =

∫
x2ψ(x)dx, 0 ≤ j ≤ 1

2 (s− 2),

{c j}
1
2 (s−2)
j=0 that satisfy the linear system of 1

2 (s−2) simultaneous equations ∑

1
2 (s−2)
j=0 c jm2(i+ j) = δi0, 0≤ i≤ 1

2 (s−2)

where δi j Kronecker’s delta, will give us the desired kernel. For example, k4(x) =
( 3

2 −
1
2 x2
)
(2π)−1/2exp(− 1

2 x2),

k6(x) =
( 15

8 −
5
4 x2 + 1

8 x4
)
(2π)−1/2exp(− 1

2 x2). As discussed in Pagan and Ullah (1999), when higher order kernels

with large s are needed, it will be helpful to express them in terms of a recurrence relationship. Rewrite (13) as (for

r≥ 1) k2r(x) = P2r−2φ(x), where P2r = P2r−2+(−1)H2r(2rr!)−1 and Hr(x) = xHr−1−(r−1)Hr−2 is the rth Hermite
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polynomial with H0 = 1. Or recursively, with k2(x) = φ(x),

k2r(x) = k2(r−1)(x)+(−1)r−1H2(r−1)(x)(2
r−1(r−1)!)−1

φ(x)

Kernels constructed like (12) will satisfy Assumption A1, since they are continuously differentiable of any order

everywhere, and when multiplied by any polynomial functions they are all uniformly bounded and absolutely inte-

grable as the tails decay exponentially. We show in Lemma 2 that product kernels satisfying A1 are locally Lipschitz

continuous, which is necessary in Lemma 4.

Assumption A2. {(X ′i ,Z′i ,Yi)}n
i=1 is a sequence of independent and identically distributed (IID) random vectors that

are described by (1), (2) and (3). The density functions fM(Mi), fZ(Zi), φ(Mi,Ui), fUZ(Ui,Zi), fU (Ui) are uniformly

bounded away from zero and infinity.

Assumption A3. E
(
m(Mi)

)
=E
(
h(Ui)

)
= 0, E

(
m2(Mi)

)
,E
(
h2(Ui)

)
<∞, E

(
v2

i

∣∣X1i,Zi,Ui
)
=σ2

v <∞, E
(
U2

i j

∣∣Zi
)
=

σ2
U < ∞, E

(
v2

X1i, j

∣∣Mi
)
= σ2

vX1, j
< ∞, E

(
v2

X2i, j

∣∣Ui
)
= σ2

vX2, j
< ∞, E

(
v2

Y 1i

∣∣Mi
)
= σ2

vY 1
< ∞, E

(
v2

Y 2i

∣∣Ui
)
= σ2

vY 2
< ∞,

and Cramer’s conditions: E
∣∣X2i, j

∣∣p ≤ Cp−2 p! E
∣∣X2, j

∣∣2 < ∞, E
(
|Ui j|p|Zi

)
≤ Cp−2 p!σ2

U , for some C > 0, all i,

p = 3,4, · · · , and j = 1, · · · ,D2.

In A3, it is not essential to assume the second conditional moment of those error terms are independent of the

conditioning variables. However, the boundedness of the second moment is crucial. Cramer’s condition is imposed

for some variables due to the use in Lemma 3 of Bernstein’s Inequality to establish the uniform order of some specific

averages in probability. Thus, each of their higher moments is bounded by the second moment.

Assumption A4. Let Ck denote the class of functions that: (i) is k-times partially continuously differentiable, and (ii)

all their partial derivatives up to order k are uniformly bounded. For d = 1, · · · ,D2, Πd(Zi),φ(Mi,Ui), fZ(Zi),m(Mi),

h(Ui) ∈Cs.

A4 assumes smoothness of the regression functions and uniform bounds of their partial derivatives. This assump-

tion, together with a “higher-order” kernel, gives a desired bias order.

Assumption A5. Denote Lin ≡
(

log n

nh
Di
i

) 1
2
+hsi

i , for i = 1, · · · ,4, and Ln = ∑
4
i=2 Lin, where hi→ 0 as n→ ∞ and satisfy:
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(i) h1 = n−δ , where 1
2s1

< δ < min
{i=2,4}

Di
D1(2si+Di)

, and s1
D1

> max
{i=2,4}

si
Di

+ 1
2 ;

(ii) hi = n−
1

2si+Di , si ≥ Di/2+2, for i = 2,4;

(iii) h3 = n−
1

2s3+D3 , s3 ≥ D3/2.

Assumption A5 provides the order of all the bandwidths used in the paper. The fact that, using residual estimates

{Ûi}n
i=1 instead of {Ui}n

i=1 has no impact on the first-order asymptotic property of our estimator, relies on under-

smoothing in the first stage when regressing X on Z nonparametrically and Π(z) has to be sufficiently smooth. For

h2,h3,h4, the orders are chosen optimally by minimizing the mean squared error of traditional NW kernel estimators.

By Theorem 2.6 in Li and Racine (2007), under A1-A5, for a compact subset GZ ⊂ RD1 , we have

sup
Z∈GZ

∣∣Π̂(Zi)−Π(Zi)
∣∣= Op(L1n) (13)

where L1n =
( log n

nh
D1
1

)1/2
+hs1

1 . This uniform convergence rate of NW estimator in probability is used throughout this

paper. Note that f̂U (Ûi) and φ̂(Mi,Ûi) are used to approximate fU (Ui) and φ(Mi,Ui) in ηi. In Theorem 1, we show that

the uniform convergence rate of f̂U (Ûi) to fU (Ui) using {Ûi}n
i=1 is no different from that of the traditional Rosenblatt

density estimator based on the unobserved {Ui}n
i=1. A similar result hold for φ̂(Mi,Ûi). All proofs of the theorems are

provided in Appendix.

Theorem 1. Under A1-A5, for arbitrary convex and compact subsets GZ ⊂ RD1 , GU ⊂ RD2 and GM ⊂ RD3 , we have

sup
{Z,U}∈GZ×GU

∣∣ f̂U (Ûi)− fU (Ui)
∣∣ = Op(L2n), sup

M∈GM

∣∣ f̂M(Mi)− fM(Mi)
∣∣ = Op(L3n),

sup
{Z,U,M}∈GZ×GU×GM

∣∣φ̂(Mi,Ûi)−φ(Mi,Ui)
∣∣ = Op(L4n),

(14)

where GZ×GU denotes the Cartesian product of sets GZ and GU , Lin =
( log n

nh
Di
i

)1/2
+hsi

i , for i = 2,3,4.

Note that in Theorem 1 we establish the uniform convergence rate of f̂U (Ûi) and φ̂(Mi,Ûi) over GZ ×GU and

GZ ×GU ×GM separately. This is due to the fact that Ûi is an estimated residual given by Ûi = Xi− Π̂(Zi) and the

uniform convergence rate of Π̂(Zi) given in (13) is taken over a compact set GZ . Theorem 1 and A2 together imply
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that |η̂i−ηi| = Op(Ln) uniformly, where Ln = ∑
4
i=2 Lin, and consequently we have |ĝ3 j− g3 j| = Op(Ln). With this

result, we are ready to provide the uniform convergence rate of the estimators given in (9).

Theorem 2. Under A1-A5, for arbitrary convex and compact subsets GZ , GU and GM , we have

sup
{Z,U,M}∈GZ×GU×GM

∣∣∣ĝ2(Ûi)−g2(Ui)
∣∣∣ = Op

(
Ln +

L1n

h2

)
, (15)

Similarly, we have the same uniform convergence rate of ĝ1(Mi), γ̂1(Mi) and γ̂2(Ûi), as ĝ2(Ûi) above.

Note that the first term in the order of (15) is not new to us, it is just a sum of uniform orders for different NW

estimators. The h2 in the denominator of the second term comes from a Taylor expansion of the kernel evaluated at

the estimated residuals {Ûi}n
i=1. With well chosen bandwidths in A5, it is essential to have that L2

n,
(L1n

h2

)2
= o(n−1/2).

This result will help establish the order of elements in β̂ −β . Note that

√
n(β̂ −β ) =

(1
n

X̂ ′2η̂X̂2
)−1 1√

n
X̂ ′2η̂(Ŷ − X̂2β ), (16)

where Ŷ = Y − γ̂ = (Y − γ)− (γ̂− γ)≡ Y ∗−VY , X̂2 = X2− ĝ = (X2−g)− (ĝ−g)≡ X∗2 −VX ;

γi ≡ γ1(Mi)+ γ2(Ui)− γ3, gi ≡ g1(Mi)+g2(Ui)−g3;

γ̂i ≡ γ̂1(Mi)+ γ̂2(Ûi)− γ̂3, ĝi ≡ ĝ1(Mi)+ ĝ2(Ûi)− ĝ3;

VYi = γ̂i− γi ≡ VY 1i +VY 2i +VY 3i, VXi = ĝi−gi ≡ VX1i +VX2i +VX3i.

As we can see in (16), there are basically two parts to deal with. We need to: (i) find the asymptotic behavior of

the matrix 1
n X̂ ′2η̂X̂2, and (ii) establish asymptotic normality of the second term 1√

n X̂ ′2η̂(Ŷ − X̂2β ). By Theorem 2,

we already have the uniform order of VYi and VXi, which are defined above. This result will help take care of (i).

However, to establish
√

n asymptotic normality for the second term, we need to employ a U-statistics of degree 3. Yao

and Martins-Filho (2013) provides a direct and convenient method to characterize the asymptotic magnitude of each

component in the H-decomposition of a U-statistics, and many places in our proof are built on their results.

12



In Theorem 3, we derive the
√

n asymptotic normality of β̂ by showing that 1
n X̂ ′2η̂X̂2

p→ Φ0 and 1√
n X̂ ′2η̂(Ŷ −

X̂2β )
d→N (Φ1 +Φ2), where Φ0, Φ1 and Φ2 are given in Theorem 3.

Theorem 3. Under A1-A5, assuming that matrix Φ0 exists and is nonsingular, we have

√
n(β̂ −β )

d−→N
(
0,Φ−1

0 (Φ1 +Φ2)Φ
−1
0
)

(17)

where

Φ0( j,k) = E
[
ηt
(
X2t, j−g1 j(Mt)−g2 j(Ut)+g3 j

)(
X2t,k−g1k(Mt)−g2k(Ut)+g3k

)]
;

Φ1( j,k) = E
[
η

2
t
(
X2t, j−g1 j(Mt)−g2 j(Ut)+g3 j

)(
X2t,k−g1k(Mt)−g2k(Ut)+g3k

)]
σ

2
v ;

Φ2( j,k) = E

[
D2

∑
d=1

D2

∑
δ=1

E
((

Π2 j(Zi)−U2t j−g1 j(Mt)−g2 j(Ut)+g3 j
)
Ddh(Ut)ηt

∣∣Zi

)
×E
((

Π2k(Zi)−U2tk−g1k(Mt)−g2k(Ut)+g3k
)
Dδ h(Ut)ηt

∣∣Zi

)
E(UidUiδ

∣∣Zi)
]
,

for j,k = 1, · · · ,D22.

By Theorem 3, β̂ is asymptotically unbiased, and has an explicit covariance for the limiting distribution. For

statistical inference, we provide consistent estimators for Φi, i = 1,2,3. By proof of Theorem 3, we have that

1
n

X̂ ′2η̂X̂2
p−→Φ0,

1√
n

X̂ ′2η̂v d−→N (0,Φ1),
1√
n

X̂ ′2η̂(VY 2−VX2β )
d−→N (0,Φ2).

Hence, it’s easy to show that

Φ̂0 =
1
n

X̂ ′2η̂X̂2, Φ̂1 =
1
n

X̂ ′2η̂ v̂v̂′η̂X̂2, Φ̂2 =
1
n

X̂ ′2η̂(VY 2−VX2β̂ )(VY 2−VX2β̂ )′η̂X̂2 (18)

are consistent estimators for Φ0, Φ1 and Φ2 separately, where v̂≡ Y −X2β̂ − β̂0− m̂− ĥ.

Given Theorems 2, 3 and (11), we have the uniform convergence rate of m̂(Mi) and ĥ(Ûi) at Op

(
Ln +

L1n
h2

)
, which

generally worse than that of the traditional NW estimator due to the presence of h2 in second term. However, it is

possible to gain a better rate by implementing a second stage estimator for m(Mi) and h(Ui), or even possibly for β .

13



With β̂ , β̂0, m̂(Mi) and ĥ(Ûi), we can estimate m(Mi) and h(Ui) by m̃(Mi) and h̃(Ûi) using local linear regression:

(
m̃(Mi), δ̃ (Mi)

)
= argmin

m,δ

1
n

n

∑
t=1

(
Yt1−m− (Mt −Mi)

′
δ
)2 K3

(
Mt −Mi

h3

)
,

(
h̃(Ûi), η̃(Ûi)

)
= argmin

h,η

1
n

n

∑
t=1

(
Yt2−h− (Ût −Ûi)

′
η
)2 K2

(
Ût −Ûi

h2

)
,

(19)

where Yt1 = Yt −X2t β̂ − β̂0− ĥ(Ût), Yt2 = Yt −X2t β̂ − β̂0− m̂(Mt).

And a second stage estimator for β is given as

β̃ = (X ′2X2)
−1X ′2Ỹ (20)

where Ỹ is n×1 with ith element Ỹi = Yi− m̃(Mi)− h̃(Ûi)− β̂0, and X2 = (X ′21, · · · ,X ′2n)
′.

In this paper, we will not provide asymptotic properties for these second stage estimators and we will leave them

for future study. However, we will provide a simple Monte Carlo study for both estimators in the two stages in the

next section.

4 Monte Carlo Study

In this section, we investigate the finite sample performance of the proposed estimators β̂ , m̂(·), and β̃ , m̃(·) for future

reference. Consider the following data generating processes (DGPs):

DGP1 : Yi = Ln(|X1i−1|+1) sgn(X1i−1)+X2iβ +β0 + εi

DGP2 : Yi =
exp(X1i)

1+ c exp(X1i)
+X2iβ +β0 + εi

for i = 1, · · · ,n. The sample size n is set at 100 and 400. In both DGPs, Z1i and Z2i are generated independently

from a N(0,1), and construct X1i = Z1i +Z2i +U1i and X2i = Z2
1i +Z2

2i +U2i. εi and Ui = (U1i,U2i) are generated as(
εi
Ui

)
∼ NID

0,

 1 θ θ

θ 1 θ 2

θ θ 2 1

, where the values θ = 0.3,0.6, and 0.9 indicate weak, moderate, and strong

endogeneity. It is easy to verify that E(εi|Zi) = 0, E(Ui|Zi) = 0, and thus E(εi|Ui,Zi) = E(εi|Ui) =
θ

1+θ 2 (U1i +U2i).
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We set the parameters β = 1,β0 = 1 and c = 3, and perform 1000 repetitions for each experiment design.

The implementation of the estimator requires a choice of kernel function Ki(·) for i = 1, · · · ,4 and bandwidth

sequences. For all kernels, products of an univariate Epanechnikov kernel were used: k(x) = 3
4
√

5
(1− x2)I(|x|<

√
5),

where I(·) is an indicator function. Note that even though Epanechnikov kernel is not continuously differentiable at

the boundaries of its support, it does satisfy all other assumptions given in A1. We are using it instead of the kernel

constructed by Gaussian distribution since in finite sample it performs better. Bandwidths were selected with the

simple rule-of-thumb bandwidth 1.25σ̂(Wi)hi, for i = 1,2,3,4, where σ̂(Wi) is the sample standard deviation of the

variable Wi, W1 = Zi, W2 = Ûi, W3 = (X1i,Z1i), and W = (X1i,Z1i,Ûi). In our two DPGs, we have D1 = 2, D2 = 2,

D3 = 1, D4 = 3. Thus we choose δ = 1
11 , s1 = 6, s2 = 4, s3 = 4, s4 = 4.

In Table 1, we list the finite sample performances in terms of bias (B), standard deviation (S), and root mean

squared error (R) for the estimation of β , and the mean of root mean squared error (M) for estimating m(·) obtained by

averaging across the realized values of (X1i,Z1i). Results for both of the two stages estimators
(
β̂ , m̂(·)

)
and

(
β̃ , m̃(·)

)
are listed. To avoid any extreme estimates, results are only shown for the 10−90% quantile range of sample estimates.

As it is shown in the table, the estimator’s performance, in terms of the above measures, improves significantly with

the sample size. For example, for DGP1, when θ = 0.3, root mean squared error of β̂ drops nearly 40% from 0.09

to 0.055 when we increase the sample size from 100 to 400. Besides, it turns out that our estimators have correctly

accounted for the endogeneity problem as controlling for the DGP and the sample size, the root mean squared error of

β̂ does not change much as the degree of endogeneity (θ ) increases. As we predicted, the second stage estimators
(
β̃ ,

m̃(·)
)

outperform the first stage
(
β̂ , m̂(·)

)
in all aspects, suggesting a significant improvement in asymptotic efficiency

for both parametric and nonparametric estimation. Superiority of our estimator compared with those in Ai and Chen

(2003) and Otsu (2011) in terms of finite sample performance will not be provided here, as it is already established in

Martins-Filho and Yao (2012).
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Table 1
Finite sample performances.

θ = 0.3 θ = 0.6 θ = 0.9
B S R M B S R M B S R M

DGP1 n = 100(
β̂ , m̂(·)

)
0.065 0.062 0.09 0.66 0.069 0.056 0.089 0.644 0.069 0.057 0.09 0.625(

β̃ , m̃(·)
)

0.004 0.08 0.08 0.427 0.006 0.074 0.074 0.417 0.0001 0.076 0.076 0.417

n = 400(
β̂ , m̂(·)

)
0.045 0.032 0.055 0.677 0.042 0.032 0.053 0.658 0.048 0.031 0.057 0.634(

β̃ , m̃(·)
)

-0.029 0.044 0.052 0.397 -0.037 0.044 0.057 0.388 -0.034 0.04 0.053 0.388

DGP2 n = 100(
β̂ , m̂(·)

)
0.078 0.06 0.098 1.38 0.089 0.064 0.109 1.369 0.105 0.064 0.123 1.353(

β̃ , m̃(·)
)

-0.013 0.081 0.082 1.07 -0.001 0.087 0.087 1.082 0.017 0.087 0.089 1.098

n = 400(
β̂ , m̂(·)

)
0.072 0.032 0.079 1.417 0.069 0.034 0.077 1.41 0.086 0.034 0.092 1.387(

β̃ , m̃(·)
)

-0.047 0.043 0.064 1.027 -0.051 0.047 0.07 1.034 -0.03 0.049 0.057 1.052

5 Conclusion and extensions

In this paper we study a partially linear model in triangular systems where endogenous variables appear both in

nonparametric and linear components. The estimation is based upon the control function approach of Newey et al.

(1999) and an additive regression estimation method of Kim et al. (1999). NW kernel estimator is used for the

nonparametric estimation. We establish the
√

n asymptotic normality of our estimator for the linear component and

uniform convergence rate of estimator for the nonparametric component. Estimators for the covariance of the limiting

distribution of the parametric estimator are provided. Our simple Monte Carlo study suggests good finite sample

properties, and may significantly outperform the estimators of (Ai and Chen, 2003) and Otsu (2011) as Martins-Filho

and Yao (2012) implies.

In the future, there are still some aspects to be investigated, for example, the asymptotic normality of the non-

parametric component, optimal bandwidths selection. And our theoretical results can be extended in three directions.

First, the Monte Carlo results reveal that, one can pursue one step further to obtain a potentially asymptotically more

efficient estimator for both the nonparametric and linear component functions, as we discussed in Remark 8. Second,
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like Newey et al. (1999), Kim et al. (1999), Ai and Chen (2003) and Otsu (2011), we study an IID process. A poten-

tial extension would be allowing some weak dependence like Su and Ullah (2008), and investigate whether theorems

exhibited in our paper still hold. Third, we will provide some empirical applications of our estimator. For example,

we can apply our estimators to the empirical model of Lessmann (2014), and test the inverted-U relationship between

spatial development and economic development directly, with the endogeneity problem being taken care of.

Appendix

This appendix presents the proof of the main theorems and lemmas. We give all the notation used in the proof and a

basic introduction to the U-statistics.

Throughout the proofs, C will represent an inconsequential and arbitrary constant that may take different values

in different context. For a scalar variable x, f ′(x) denotes the derivative of f (x) evaluated at x. For D× 1 vectors

γ,β , define γβ = ∏
D
d=1 γ

βd
d , |β | = ∑

D
d=1 βd , Dd f (γ) = ∂

∂d f (γ), D2
dk f (γ) = ∂ 2

∂d∂k f (γ), Dβ f (γ) = ∂ |β |

∂
β1
1 ···∂

βD
D

f (γ). J f (γ)

and H f (γ) denote the Jacobian and Hessian matrix of f (γ). Note that for a scalar function f (γ), J f (γ) is exactly

the transpose of the gradient vector of f (γ). A×B denotes the Cartesian product of two sets A and B. χA denotes

the indicator function for the set A, P(A) denotes the probability of event A in the probability space (Ω,F ,P), V(·)

denotes variance.

U-statistics will be repeatedly used in the proofs. Let {Pi}n
i=1 be a sequence of IID random variables and φn(Pi1 ,

· · · ,Pik) be a symmetric kernel function that depends on n. Then a U-statistic Un of degree k is defined as

Un =

(
n
2

)−1

∑
(n,k)

φn(Pi1 , · · · ,Pik),

where ∑(n,k) denotes the sum over all subsets 1≤ i1 < · · ·< ik ≤ n of {1, · · · ,n}. Now let φcn(z1, · · · ,zc) = E(φn(P1, · · · ,

Pc,Pc+1, · · · ,Pk)|P1 = p1, · · · ,Pc = pc), σ2
cn = V(φcn(P1, · · · ,Pc)) and θn = E(φn(Pi1 , · · · ,Pik). In addition, recursively

define h(1)n (p1) = φ1n(p1)−θn, · · · ,h(c)n (p1, · · · , pc) = φcn(p1, · · · , pc)−∑
c−1
j=1 ∑(c, j) h( j)

n (pi1 , · · · , pi j)−θn for c = 2, · · · ,
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k. By Hoeffding’s H-decomposition in Hoeffding (1961) we have

Un = θn +
k

∑
j=1

(
k
j

)
H( j)

n (Pi1 , · · · ,Pi j),

where H( j)
n (Pi1 , · · · ,Pi j) =

(n
j

)−1
∑(n, j) h( j)

n (Pi1 , · · · ,Pi j). The order of Un can be determined by studying each H( j)
n and

θn in the finite sum. By Theorem 1 in Yao and Martins-Filho (2013), the order of H( j)
n is determined by n and the

leading variance σ2
jn. Throughout the proofs, we will use {Pi}n

i=1 and the above notation to characterize the U-statistics

of interest, denoted by Un .

Theorem 1 Proof. By uniform convergence rate of Rosenblatt density estimator given in Theorem 1.4 of Li and

Racine (2007), we have sup
M∈GM

∣∣ f̂M(Mi)− fM(Mi)
∣∣ = Op(L3n). Similarly, for the first equation in (14), we only need

to focus on | f̂U (Ûi)− f̂U (Ui)|.

Denote K̂2ti = K2

(
Ût−Ûi

h2

)
, K2ti = K2

(
Ut−Ui

h2

)
, and other kernels similarly. Since K2 is 4-times partially continu-

ously differentiable, by Taylor Theorem,

∣∣ f̂U (Ûi)− f̂U (Ui)
∣∣ = ∣∣∣∣∣ 1

nhD2
2

n

∑
t=1

(
K̂2ti−K2ti

)∣∣∣∣∣
=

∣∣∣∣∣ 1

nhD2
2

n

∑
t=1

(
3

∑
|β |=1

Hβ

|β |!
Dβ K2ti + ∑

|β |=4

Hβ

|β |!
Dβ K2

(
Ut −Ui

h2
+λH

))∣∣∣∣∣
≤

4

∑
i=1
|Ti|

where H ≡ 1
h2
(Ût −Ut)− 1

h2
(Ûi−Ui), λ ∈ (0,1).

Next, examine the uniform order of |Ti| over {Z,U} ∈ GZ×GU for i = 1, · · · ,4.

1. |T1| ≤ ∑
|β |=1

∣∣∣∣∣ 1

nhD2
2

n

∑
t=1

Hβ Dβ K2ti

∣∣∣∣∣
≤

D2

∑
d=1

(∣∣∣∣∣ 1

nhD2+1
2

n

∑
t=1

(Ûid−Uid)DdK2ti +
1

nhD2+1
2

n

∑
t=1

(Ûtd−Utd)DdK2ti

∣∣∣∣∣
)

≡
D2

∑
d=1

(|T11 +T12|).
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1.1. |T11| ≤
∣∣Ûid−Uid

∣∣ ∣∣∣(nhD2+1
2 )−1

∑
n
t=1 DdK2ti

∣∣∣≡ ∣∣Ûid−Uid
∣∣ C1(Ui). It can be shown that by Lemma 4,

E(C1(Ui))→ Dd fU (Ui), sup
U∈GU

|C1(Ui)−E(C1(Ui))|= Op

( log n

nhD2+2
2

) 1
2
= op(1)

Thus supU∈GU
|C1(Ui)| = Op(1). Note that

∣∣Ûid−Uid
∣∣ = ∣∣Π̂d(Zi)−Πd(Zi)

∣∣, and by uniform conver-

gence rate of Nadaraya-Watson estimator, we have supZ∈GZ

∣∣Ûid−Uid
∣∣= Op(L1n). Consequently, |T11|=

Op(L1n) uniformly.

1.2. Given Π̂d(Zt) =
1

nh
D1
1 f̂Z(Zt )

∑
n
l=1 K1ltXl,d , and f̂Z(Zt) =

1
nh

D1
1

∑
n
l=1 K1lt , we have

−(Ûtd−Utd) = Π̂d(Zt)−Πd(Zt)

=
1

nhD1
1 f̂Z(Zt)

n

∑
l=1

K1lt

(
Uld +Πd(Zl)−Πd(Zt)

)
=

{
1

nhD1
1 fZ(Zt)

n

∑
l=1

K1lt

(
Uld +Πd(Zl)−Πd(Zt)

)}
(1+Op(L1n)) (A.1)

by the uniform order of Rosenblatt density estimator f̂Z(Zt). Thus

|T12| ≤

∣∣∣∣∣ 1
n2

n

∑
t=1

n

∑
l=1

1

hD1
1 hD2+1

2 fZ(Zt)
K1ltDdK2tiUld

+
1
n2

n

∑
t=1

n

∑
l=1

1

hD1
1 hD2+1

2 fZ(Zt)
K1ltDdK2ti

(
Πd(Zl)−Πd(Zt)

)∣∣∣∣∣(1+Op(L1n)
)

≡
∣∣∣T121 +T122

∣∣∣(1+Op(L1n)
)

|T121| =

∣∣∣∣∣ 1
n2

n

∑
t=1

1

hD1
1 hD2+1

2 fZ(Zt)
K1(0)DdK2tiUtd

+
1
2

(
O

(
n−3 +

(
n
2

)−1
))

n

∑
t=1

n

∑
l=1

t 6=l

1

hD1
1 hD2+1

2 fZ(Zt)
K1ltDdK2tiUld

∣∣∣∣∣∣∣
≡

∣∣∣E1 +E2

∣∣∣.
We can show that |E1| = Op

(
(nhD1

1 h2)
−1
)

by Markov’s Inequality, and |E2| ≤ C|Un|, where Un =(n
2

)−1
∑

n
t=1 ∑

n
l=1

t 6=l

K1lt DdK2ti

h
D1
1 h

D2+1
2 fZ(Zt )

Uld ≡
(n

2

)−1
∑

n
t=1 ∑

n
l=1

t 6=l
ψnlt ≡

(n
2

)−1
∑

n
t=1 ∑

n
l=1

t<l
φnlt = θn +2H(1)

n +H(2)
n is a U-

statistic. θn = E(φnlt) = 0 in this case. H(1)
n = 1

n ∑
n
l=1 h(1)n (Ui,Pl) =

1
n ∑

n
l=1 φ1n(Ui,Pl) =

1
n ∑

n
l=1 E(φnlt |Ui,

Pl)=
1
n ∑

n
l=1 Uldc(Ui,Zl), where c(Ui,Zl)≡

∫
K1(γ)K2(ψ)Dd fU |Z(Ui+h2ψ|Zl−h1γ)dγdψ . Given Cramer’s
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condition in A3, by Lemma 3, we have sup{Z,U}∈GZ×GU
|H(1)

n |= Op
(
(logn/n)1/2

)
. For H(2)

n , by Theorem

1 in Yao and Martins-Filho (2013), H(2)
n = (σ2

2n/n2)1/2Op(1). And σ2
2n ≡ V(φnlt) = E(φ 2

nlt)≤ 4E(ψ2
nlt) =

O
(
(hD1

1 hD2+2
2 )−1

)
. Thus H(2)

n = (n2hD1
1 hD2+2

2 )−1/2Op(1) uniformly. In sum, |T121| = Op

(
(nhD1

1 h2)
−1

+(logn/n)1/2 +(n2hD1
1 hD2+2

2 )−1/2
)
= Op(L1n) uniformly by A5.

The order of |D122| could be analyzed in the same way, given that Π and fZ are s1 times partially

continuously differentiable, and K1 is a multivariate kernel of order s1, we have

|T122|= Op

(
hs1

1 +(log n/n)1/2 +(n2hD1−2
1 hD2+2

2 )−1/2
)
= Op(L1n) uniformly by A5.

In sum, sup
{Z,U}∈GZ×GU

|T1|= Op(L1n).

2. |T2| ≤ ∑|β |=2

∣∣∣ 1
nh

D2
2

∑
n
t=1 Hβ Dβ K2ti

∣∣∣, when 1 appears in the dth and kth position of β , we have:∣∣∣∣∣ 1

nhD2
2

n

∑
t=1

Hβ Dβ K2ti

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

2nhD2+2
2

n

∑
t=1

[
(Ûtd−Utd)− (Ûid−Uid)

][
(Ûtk−Utk)− (Ûik−Uik)

]
D2

dkK2ti

∣∣∣∣∣ .
Since supZ∈GZ

∣∣Ûab−Uab
∣∣ = Op(L1n), for a = i, j and b = d,k, we have |T2| = Op

(
L2

1n
h2

2

)
1

nh
D2
2

∑
n
t=1

∣∣D2
dkK2ti

∣∣ ≡
Op

(
L2

1n
h2

2

)
C2(Ui) uniformly. As E|C2(Ui)| = O(1) uniformly for Ui ∈ GU , we have supU∈GU

|C2(Ui)| = Op(1)

by Markov’s Inequality. Thus, sup{Z,U}∈GZ×GU
|T2|= Op

(
L2

1n
h2

2

)
.

3. Similarly, sup{Z,U}∈GZ×GU
|T3|= Op

(
L3

1n
h3

2

)
.

4. |T4| is different from |T2| and |T3| in that sup
U∈GU

|C4(Ui)| = Op(1/hD2
2 ), where C4(Ui) ≡ 1

nh
D2
2

∑
n
t=1

∣∣Dβ K2ti
∣∣, for

any |β |= 4, thus sup
{Z,U}∈GZ×GU

|T4|= Op

(
L4

1n

h
D2+4
2

)
.

By A5, it can be shown that |T2|, |T3|, |T4|= op(n−1/2), and L1n = O(L2n), which gives us

sup
{Z,U}∈GZ×GU

| f̂U (Ûi)− fU (Ui)|= Op(L2n)

Uniform order of
∣∣φ̂(Mi,Ûi)−φ(Mi,Ui)

∣∣ is derived in the similar way under A5.
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Theorem 3 Proof. We start with the jth element of ĝ2(Ûi)−g2(Ui). Note that

ĝ2(Ûi)−g2(Ui) =
1

nhD2
2 f̂U (Ûi)

n

∑
t=1

K̂2tiη̂tX2t, j−g2 j(Ui)

=
1

nhD2
2 f̂U (Ûi)

n

∑
t=1

K̂2ti

{
(η̂t −ηt)X2t, j + vX2t, j +

(
(g2 j(Ut)−g2 j(Ui)

)}
︸ ︷︷ ︸

CX2ti

=

{
1

nhD2
2 fU (Ui)

n

∑
t=1

K2tiCX2ti +
1

nhD2+1
2 fU (Ui)

n

∑
t=1

JK2ti
(
Ût −Ut − (Ûi−Ui)

)
CX2ti

+
1

nhD2
2 fU (Ui)

n

∑
t=1

RtiCX2ti

}(
1+Op(L2n)

)
(A.2)

≡

(
3

∑
k=1

Tk

)(
1+Op(L2n)

)
,

where Rti is the remainder term of a Taylor expansion of K̂2ti at
(

Ut−Ui
h2

)
.

We will show that T1 = Op(Ln), T2 = Op

(
L1n
h2

)
, and T3 = op(n−1/2), which completes the proof.

1. Let T1 ≡ ∑
3
k=1 T1k, according to the three components in CX2ti. By Theorem 2 and A2, we have that

sup
{Z,U}∈GZ×GU

|η̂t −ηt |= Op(L2n +L3n +L4n)≡ Op(Ln).

By Markov’s Inequality, |T11| ≤ Op(Ln)
1

nh
D2
2

∑
n
t=1 |K2tiX2t, j|= Op(Ln), since by Lemma 1 and A3 ,

E

(
1

nhD2
2

n

∑
t=1
|K2tiX2t, j|

)
=

1

hD2
2

E
(
|K2ti||Π2 j(Zt)+Ut |

)
=
∫
|K2(γ)||Π2 j(Zt)+Ui +h2γ| fUZ(Ui +h2γ,Zt)dγdZt

→
∫
|K2(γ)|dγ

(∫
|Π2 j(Zt)| fUZ(Ui,Zt)dZt +Ui fU (Ui)

)
< ∞.

By Chebyshev’s Inequality, we have |T12| = 1
nh

D2
2 fU (Ui)

∑
n
t=1

∣∣K2tivX2t, j
∣∣ = Op

(
(nhD2

2 )−1/2
)
= Op(Ln), since

E(T12) = 0, and V(T12) = E(T 2
12)≤

C
nh

2D2
2

E
(
K2

2tiv
2
X2t, j

)
= O

(
(nhD2

2 )−1
)

.
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For T13, note that by Taylor Theorem,

E(T13) =
1

hD2
2 fU (Ui)

E
(

K2ti
(
g2 j(Ut)−g2 j(Ui)

))
=

1
fU (Ui)

∫
K2(γ)

(
g2 j(Ui +h2γ)−g2 j(Ui)

)
fU (Ui +h2γ)dγ

= O(hs2
2 ),

since K2 is of order s2, g2 j(Ut), fU (Ut)∈Cs2 and all the partial derivatives of g2 j(Ut) up to order s2 are uniformly

bounded by A4. V(T13)≤ E(T 2
13)≤

C
nh

2D2
2

E
(

K2
2ti
(
g2 j(Ut)−g2 j(Ui)

)2
)
= O

(
(nhD2−2

2 )−1
)
= o(1). Thus, |T13|=

Op(h
s2
2 ) = Op(Ln).

2. For T2, we have

T2 =
1

nhD2+1
2 fU (Ui)

n

∑
t=1

JK2ti
(
Ût −Ut − (Ûi−Ui)

)
CX2ti

= Op

(L1n

h2

) D2

∑
d=1

1

nhD2
2 fU (Ui)

n

∑
t=1

∣∣∣∣∣DdK2ti

(
(η̂t −ηt)X2t, j + vX2t, j +

(
(g2 j(Ut)−g2 j(Ui)

))∣∣∣∣∣
= Op

(L1n

h2

)
,

similarly as finding order of |T11| by Markov’s Inequality.

3. Rti is the remainder term of a Taylor expansion of K̂2ti at
(

Ut−Ui
h2

)
, thus Rti = ∑

3
|β |=2

1
|β |! Dβ K2tiHβ

+∑|β |=4
1
4! Dβ K2

(
Ûti−Uti

h2

)
Hβ , where

(
Ûti−Uti

h2

)
≡
(

Ûi−Ui
h2

)
+λH, λ ∈ (0,1), and H = 1

h2

(
Ût−Ut− (Ûi−Ui)

)
.

Thus, let T3 ≡ ∑
3
k=1 T3k, with

T31 =
D2

∑
d=1

D2

∑
l=1

1

2nhD2+2
2 fU (Ui)

n

∑
t=1

D2
dlK2ti

(
Ûtd−Utd− (Ûid−Uid)

)(
Ûtl−Utl− (Ûil−Uil)

)
CX2ti

≤ Op

(
L2

1n

h2
2

)
1

nhD2
2

n

∑
t=1

∣∣D2
dlK2tiCX2ti

∣∣= Op

(
L2

1n

h2
2

)

by Lemma 1 and A3. Similarly, T32 = Op

(
L3

1n
h3

2

)
. By A1, T33 ≤Op

(
L4

1n

h
D2+4
2

)
1
n ∑

n
t=1

∣∣CX2ti
∣∣= Op

(
L4

1n

h
D2+4
2

)
. By A5,

we can show that |T3|= Op

(
L2

1n
h2

2
+

L3
1n

h3
2
+

L4
1n

h
D2+4
2

)
= op(n−1/2) uniformly.
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Combining 1-3, we have sup{Z,U}∈GZ×GU
|ĝ2(Ûi)−g2(Ui)|= Op

(
Ln +

L1n
h2

)
. For ĝ1 j(Mi)−g1 j(Mi), note that

ĝ1 j(Mi)−g1 j(Mi) =
1

nhD2
2 f̂M(M̂i)

n

∑
t=1

K3tiη̂tX2t, j−g1 j(Mi)

=

{
1

nhD2
2 fM(Mi)

n

∑
t=1

K3ti

{
(η̂t −ηt)X2t, j + vX1t, j +

(
(g1 j(Mt)−g1 j(Mi)

)}
︸ ︷︷ ︸

CX1ti

}(
1+Op(L3n)

)
(A.3)

Thus order of |ĝ2(Ûi)−g2(Ui)| can be found similarly to |T1| in part 1. For |ĝ3 j−g3 j|, we have

ĝ3 j−g3 j =
1
n

n

∑
t=1

η̂tX2t, j−E(ηiX2i, j) =
1
n

n

∑
t=1

(η̂t −ηt)X2t, j +
1
n

n

∑
t=1

ηtX2t, j−E(ηiX2i, j)

= Op(Ln)+Op(n−1/2) = Op(Ln)

As to |γ̂k|, proof is similar to |ĝk| for k = 1,2,3, thus they will not be provided here.

Theorem 4 Proof. Note that m = γ1−g1β −β0, h = γ2−g2β −β0, we have

Ŷ − X̂2β = Y − γ̂− (X2− ĝ)β = Y −X2β − (γ̂− ĝβ )

= Y −X2β −m−h−β0−
(
(γ̂− γ)− (ĝ−g)β

)
= v−

3

∑
k=1

(VY k−VXkβ ).

Thus β̂ −β =
( 1

n X̂ ′2η̂X̂2
)−1 1

n X̂ ′2η̂
(
Ŷ − X̂2β

)
=
(( 1

n X̂ ′2ηX̂2
)−1 1

n X̂ ′2η
(
Ŷ − X̂2β

))(
1+Op(Ln)

)2, where

1
n

X̂ ′2ηX̂2 =
1
n

X∗′2 ηX∗2 −
1
n

X∗′2 ηVX −
1
n

V ′X ηX∗2 +
1
n

V ′X ηVX ≡
4

∑
k=1

Ak,

1
n

X̂ ′2η(Ŷ − X̂2β ) =
1
n

X̂ ′2ηv− 1
n

X̂ ′2η(VY 1−VX1β )− 1
n

X̂ ′2η(VY 2−VX2β )− 1
n

X̂ ′2η(VY 3−VX3β )≡
4

∑
k=1

Bk.

The proof has five steps:

(1) We show that A1
p−→Φ0 and A2, A3, A4 = op(1).
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(2) We show that
√

nB1
d−→N (0,Φ1).

(3) We show that B2,B4 = op(n−1/2).

(4) Let ani = ∑
D2
d=1

Uid

2h
D1
1 h

D2
2

E
(

ηlX∗2lDdK2tlK1il
fU (Ul) fZ(Zl)

Jh(Ul)
(Ut−Ul

h2

)∣∣Zi

)
. We show that B3 =

1
n ∑

n
i=1 ani +op(n−1/2).

(5) Combine (1)-(4), we show that
√

n(β̂ −β )
d−→N

(
0,Φ−1

0 (Φ1 +Φ2)Φ
−1
0

)
.

Step 1: By Kolmogorov’s LLN and A3, A1 =
1
n ∑

n
i=1 ηiX∗2iX

∗′
2i

p→Φ0, where

Φ0( j,k) = E(ηtX∗2t, jX
∗
2t,k) = E

{
ηt(X2t, j−g1 j(Mt)−g2 j(Ut)+g3 j)(X2t,k−g1k(Mt)−g2k(Ut)+g3k)

}
< ∞,

since {ηiX∗2iX
∗′
2i }n

i=1 is an IID sequence, and E|ηiX∗2i,kX∗2i, j|< ∞ due to

(i) ηi is uniformly bounded;

(ii) E|X2i, jX2i,k| ≤
(

E(X2
2i, j)E(X

2
2i,k)
)1/2

< ∞ by Cauchy-Schwarz Inequality;

(iii) E|X2i, jg1k(Mi)| ≤
(

E(X2
2i, j)E(g

2
1k(Mi))

)1/2
;

(iv) E(g2
1k(Mi)) = E(E(ηiX2i,k|M)2)≤ E(E(η2

i X2
2i,k|M)) = E(η2

i X2
2i,k)< ∞.

By the non-singularity of Φ0 in A3, we have A−1
1

p→Φ
−1
0 . And for−A2 =

1
n

n
∑

i=1
ηiX∗2iV

′
Xi, the (k, j)th element−A2(k, j) =

1
n ∑

n
i=1 ηiX∗2i,kVXi, j ≤ Op(Ln)

1
n ∑

n
i=1 |ηiX2i,k| = Op(Ln) = op(1), by Theorem 3. Similarly we have A3,A4 = op(1).

Thus, (
1
n

X̂ ′2ηX̂2

)−1
p−→ Φ

−1
0 .

Step 2: Note that B1 =
1
n ∑

n
i=1 X̂2iηivi =

1
n ∑

n
i=1 X∗2iηivi− 1

n ∑
n
i=1 V ∗Xiηivi ≡ B11−B12. By Levy central limit theorem

and Cramer-Wold device, we have
√

nB11
d−→N (0,Φ1), since

(i). {X∗2iηivi}n
i=1 is IID; (ii). E(X∗2iηivi) = 0; (iii). E(v2

i |Zi,Ui) = σ2
v ;

(iv). V(X∗2iηivi) = E(X∗2iη
2
i v2

i X∗′2i ) = σ2
v E(η2

i X∗2iX
∗′
2i ))≡Φ1 < ∞, where

Φ1( j,k) = σ2
v E(η2

t X∗2t, jX
∗
2t,k) = σ2

v E
{

η2
t (X2t, j − g1 j(Mt)− g2 j(Ut)+ g3 j)(X2t,k− g1k(Mt)− g2k(Ut)+ g3k)

}
< ∞.
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For B12, the jth element can be written as

B12, j =
1
n

n

∑
i=1

VXi, jηivi =
1
n

n

∑
i=1

VX1i, jηivi +
1
n

n

∑
i=1

VX2i, jηivi−
1
n

n

∑
i=1

VX3i, jηivi ≡
3

∑
k=1

B12k.

We show that B12k = op(n−1/2) for k = 1,2,3.

Note that B123 = 1
n ∑

n
i=1
(
ĝ3 j − g3 j

)
ηivi =

(
ĝ3 j − g3 j

) 1
n ∑

n
i=1 ηivi = Op(Ln)Op(n−1/2) = Op(n−1/2). By A.3 in

Theorem 3, we have

B121 =

{
1
n2

n

∑
i=1

n

∑
t=1

ηiviK3ti

hD3
3 fM(Mi)

CX1ti, j

}(
1+Op(L3n)

)
≡

(
3

∑
k=1

B121k

)(
1+Op(L3n)

)

where B1211 =
1
n2

n

∑
i=1

n

∑
t=1

ηiviK3ti

hD3
3 fM(Mi)

(η̂t −ηt)X2t, j, B1212 =
1
n2

n

∑
i=1

n

∑
t=1

ηiviK3ti

hD3
3 fM(Mi)

vX1t, j,

B1213 =
1
n2

n

∑
i=1

n

∑
t=1

ηiviK3ti

hD3
3 fM(Mi)

(
g1 j(Mt)−g1 j(Mi)

)
.

We show that B121k = op(n−1/2) for k = 1,2,3.

(1a). Since η̂t −ηt = ηtOp(Ln) uniformly, we have B1211 = B′1211Op(Ln),

where B′1211 =
1
n2 ∑

n
i=1 ∑

n
t=1

ηiviK3ti

h
D3
3 fM(Mi)

ηtX2t, j ≡ E1n +E2n, with

E1n =
1
n2

n

∑
i=1

ηiviK3(0)

hD3
3 fM(Mi)

ηiX2i, j, E2n =
1
n2

n

∑
i=1

n

∑
t=1

i 6=t

ηiviK3ti

hD3
3 fM(Mi)

ηtX2t, j

By Chebyshev’s Inequality and that E(E1n) = 0, V(E1n) = E(E2
1n) =

1
n2

1
n E
(

η2
i v2

i K2
3 (0)

h
2D3
3 f 2

M(Mi)
η2

i X2
2i, j

)
= O

(
n−3h−2D3

3

)
,

we have E1n = Op
(
n−1/2(nhD3

3 )−1
)
= op(n−1/2). E2n ≤ CUn, where Un is a U-statistic such that Un =

(n
2

)−1

∑
n
i=1 ∑

n
t=1

i6=t
ψnit =

(n
2

)−1
∑

n
i=1 ∑

n
t=1

i<t
φnit with ψnit =

ηiviK3ti

h
D3
3 fM(Mi)

ηtX2t, j. Since E(vi|Mi) = 0, we have θn = 0, φ1n =

E(φnit |Pi) = E(ψnit |Pi) =
ηivi

fM(Mi)

∫
K3(γ)g1 j(Mi + h3γ) fM(Mi + h3γ)dγ ≡ ηivi

fM(Mi)
C1(Mi). Thus σ2

1n = V(φ1n) ≤

E(φ 2
1n) ≤ Cσ2

v E
(

C2
1(Mi)

f 2
M(Mi)

)
→ E

(
g2

1 j(Mi)
)
< ∞ by Lemma 1 and A3. By Theorem 1 in Yao and Martins-Filho

(2013), H(1)
n = Op

((σ2
1n
n

)1/2
)
= Op(n−1/2). σ2

2n = V(φnit)≤CE(ψ2
nit)≤

Cσ2
v

h
2D3
3

E
(
K2

3ti(ηtX2t, j)
2
)
= O(h−D3

3 ) by
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Lemma 1 and A3. H(2)
n =Op

((σ2
2n

n2

)1/2
)
=Op(n−1/2(nhD3

3 )−1/2)= op(n−1/2). In sum, B1211 =Op(n−1/2)Op(Ln)

= op(n−1/2).

(1b). B1212 =
1
n2 ∑

n
i=1 ∑

n
t=1

ηiviK3ti

h
D3
3 fM(Mi)

vX1t, j ≡ E1n +E2n.

E1n = op(n−1/2) as E(E1n) = 0, V(E1n) =
1
n2

1
n E
(

η2
i v2

i K2
3 (0)

h
2D3
3 f 2

M(Mi)
v2

X1i, j

)
= O

(
n−3h−2D3

3

)
= op(n−1).

E2n ≤ CUn ≡ C
(n

2

)−1
∑

n
i=1 ∑

n
t=1

i6=t
ψnit with ψnit =

ηiviK3ti

h
D3
3 fM(Mi)

vX1t, j. We analyze each component in Un = θn +

2H(1)
n +H(2)

n by Hoeffding’s decomposition in Hoeffding (1961).

• θn = σ2
1n = 0, as E(vi|Mi) = E(vX1t, j|Mt) = 0;

• σ2
2n = V(φnit)≤CE(ψ2

nit)≤
Cσ2

v σ2
X1, j

h
2D3
3

E(K2
3ti) = O(h−D3

3 );

• H(1)
n = 0, H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op(n−1/2(nhD3

3 )−1/2) = op(n−1/2).

We have B1212 = op(n−1/2).

(1c). B1213 =
1
n2 ∑

n
i=1 ∑

n
t=1

i 6=t

ηiviK3ti

h
D3
3 fM(Mi)

(
g1 j(Mt)−g1 j(Mi)

)
≤CUn, where Un =

(n
2

)−1
∑

n
i=1 ∑

n
t=1

i 6=t
ψnit with

ψnit =
ηiviK3ti

h
D3
3 fM(Mi)

(
g1 j(Mt)−g1 j(Mi)

)
is a U-statistic of degree 2.

• θn = E(φnit |Pt) = 0, as E(vi|Mi) = 0.

• φ1n = E(φnit |Pi) =
ηivi

h
D3
3 fM(Mi)

E
(

K3ti
(
g1 j(Mt)−g1 j(Mi)

)∣∣∣Mi

)
≤ Ch

s3
3 |ηivi|

fM(Mi)
.

• σ2
1n ≤ E(φ 2

1n) = O(h2s3
3 ) = o(1).

• σ2
2n = V(φnit)≤CE(ψ2

nit)≤
Cσ2

v

h
2D3
3

E
(

K2
3ti
(
g1 j(Mt)−g1 j(Mi)

)2
)
= O

(
h−D3+2

3

)
.

• H(1)
n = Op

((σ2
1n
n

)1/2
)
= op(n−1/2), H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op(n−1/2(nhD3−2

3 )−1/2) = op(n−1/2).

We have B1213 = op(n−1/2).

By (1a)-(1c), we have B121 = op(n−1/2).

For B122, since 1
nh

D2
2 fU (Ui)

n
∑

t=1
RtiCX2ti = op(n−1/2) uniformly, by A.2 in Theorem 3, we have

B122 =
1
n

n

∑
i=1

VX2i, jηivi =

(
3

∑
k=1

B122k

)(
1+Op(L2n)

)
+op(n−1/2),
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where B1221 =
1
n2

n

∑
i=1

n

∑
t=1

ηiviK2ti

hD2
2 fU (Ui)

CX2ti, B1222 = − 1
n2

n

∑
i=1

n

∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ûi−Ui)CX2ti,

B1223 =
1
n2

n

∑
i=1

n

∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ût −Ut)CX2ti, CX2ti = (η̂t −ηt)X2t, j + vX2t, j +
(
(g2 j(Ut)−g2 j(Ui)

)
.

Similarly to B121 we just analyzed, we have B1221 = op(n−1/2), with Ui replacing Mi. B1222 and B1223 could be studied

similarly, here we only show that B1222 = op(n−1/2). By the three components in CX2ti, let B1222 = ∑
3
k=1 B1222k.

We show that B1222k = op(n−1/2) for k = 1,2,3.

(2a). B12221 = − 1
n2

n

∑
i=1

n

∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ûi−Ui)(η̂t −ηt)X2t, j

≤ Op(Ln)Op

(
L1n

h2

)
1
n2

n

∑
i=1

n

∑
t=1

D2

∑
d=1

∣∣ηiviηtX2t, jDdK2ti
∣∣

hD2
2 fU (Ui)

= Op(Ln)Op

(
L1n

h2

)
= op(n−1/2)

since L2
n,
(L1n

h2

)2
= op(n−1/2) by A5.

(2b). By A.1 in Theorem 2, we have

B12222 = −
D2

∑
d=1

1
n2

n

∑
i=1

n

∑
t=1

ηivivX2t, jDdK2ti

hD2+1
2 fU (Ui)

(Ûid−Uid)

=

{
D2

∑
d=1

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηivivX2t, jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Uld +

(
Πd(Zl)−Πd(Zi)

))}(
1+Op(L1n)

)
≡

{
D2

∑
d=1

(T1d +T2d)

}(
1+Op(L1n)

)
.

We show that T1d , T2d = op(n−1/2).

(i) T1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηivivX2t, jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld ≡

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl

If i 6= t 6= l, let Un =
(n

3

)−1
∑i 6=t 6=l ψnitl =

(n
3

)−1
∑i<t<l φnitl be a U-statistic of degree 3. We analyze each

component in Un = θn +3H(1)
n +3H(2)

n +H(3)
n by Hoeffding’s decomposition in Hoeffding (1961).

• θn,E(φnitl |Pi),E(φnitl |Pi,Pt) = 0, as E(vi|Mi,Ui) = E(vX2t, j|Ut) = E(Uld |Zl) = 0;

• σ2
1n = σ2

2n = 0;

• σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1

1 hD2+2
2 )−1

)
;
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• H(1)
n = H(2)

n = 0, H(3)
n = Op

((σ2
3n

n3

)1/2
)
= Op

((
n3hD1

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l,
1
n3

n

∑
i=1

ψniii

=
1
n3

n

∑
i=1

ηivivX2i, jDdK2(0)K1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uid = Op

((
n2hD1

1 hD2+1
2

)−1
)
= op(n−1/2);

if i = t 6= l,
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ψniil

=
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ηivivX2i, jDdK2(0)K1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld = Op

((
nhD2+1

2

)−1
)
= op(n−1/2);

if i = l 6= t,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψniti

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηivivX2t, jDdK2tiK1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uid = Op

((
nhD1

1 h2
)−1
)
= op(n−1/2);

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηivivX2t, jDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Utd = Op

((
nh2
)−1
)
= op(n−1/2).

In sum, we have T1d = op(n−1/2).

(ii) T2d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηivivX2t, jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)
≡ 1

n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn = E(φnitl |Pi) = E(ψnitl |Pi,Pl) = E(ψnitl |Pt ,Pl) = 0, as E(vi|Mi,Ui) = E(vX2t, j|Ut) = 0;

• σ2
1n = 0;

• E(ψnitl |Pi,Pt) =
ηivivX2t, jDdK2ti

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

K1li
(
Πd(Zl)−Πd(Zi)

)∣∣∣Zi

)
≤ Ch

s1
1

∣∣ηivivX2t, jDdK2ti

∣∣
h

D2+1
2 fU (Ui) fZ(Zi)

;

• σ2
2n ≤CE

(
E2(ψnitl |Pi,Pt)

)
= O

(
h

2s1
1

h
D2+2
2

)
;

• σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1−2

1 hD2+2
2 )−1

)
;
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• H(1)
n = 0, H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op

(
hs1

1

(
n2hD2+2

2

)−1/2
)
= op(n−1/2), H(3)

n = Op

((σ2
3n

n3

)1/2
)

= Op

((
n3hD1−2

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = l 6= t, ψnitl = 0;

if i = t 6= l,
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ψniil

=
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ηivivX2i, jDdK2(0)K1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)
= Op

(
h1
(
nhD2+1

2

)−1
)
= op(n−1/2);

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηivivX2t, jDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zt)−Πd(Zi)

)
= Op

(
h1
(
nh2
)−1
)
= op(n−1/2).

We have B12222 = op(n−1/2).

(2c). Similar to part (2b), we have

B12223 = −
D2

∑
d=1

1
n2

n

∑
i=1

n

∑
t=1

ηivi
(
g2 j(Ut)−g2 j(Ui)

)
DdK2ti

hD2+1
2 fU (Ui)

(Ûid−Uid)

=

{
D2

∑
d=1

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηivi
(
g2 j(Ut)−g2 j(Ui)

)
DdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Uld +

(
Πd(Zl)−Πd(Zi)

))}(
1+Op(L1n)

)
≡

{
D2

∑
d=1

(W1d +W2d)

}(
1+Op(L1n)

)
.

We show that W1d , W2d = op(n−1/2).

(i) W1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηivi
(
g2 j(Ut)−g2 j(Ui)

)
DdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld ≡

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3:

• θn = σ2
1n = E(ψnitl |Pi,Pt) = E(ψnitl |Pl ,Pt) = 0, as E(vi|Mi,Ui) = E(Uld |Zl) = 0;

• E(ψnitl |Pi,Pl) =
ηiviUldK1li

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

DdK2ti
(
g2 j(Ut)−g2 j(Ui)

)∣∣∣Ui

)
≤ C

∣∣ηiviUldK1li

∣∣
h

D1
1 fU (Ui) fZ(Zi)

;
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• σ2
2n ≤CE

(
E2(ψnitl |Pi,Pl)

)
= O

(
h−D1

1

)
;

• σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1

1 hD2+2
2 )−1

)
;

• H(1)
n = 0, H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op

((
n2hD1

1

)−1/2
)
= op(n−1/2), H(3)

n = Op

((σ2
3n

n3

)1/2
)

= Op

((
n3hD1

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = t 6= l, ψnitl = 0;

if i = l 6= t,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψniti

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiviUidDdK2tiK1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)
= Op

((
nhD1

1

)−1
)
= op(n−1/2);

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiviUtdDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)
= Op(n−1) = op(n−1/2).

In sum, we have W1d = op(n−1/2).

(ii) W2d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiviDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)(
Πd(Zl)−Πd(Zi)

)
≡ 1

n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn = E(ψnitl |Pt) = E(ψnitl |Pl) = E(ψnitl |Pt ,Pl) = 0, as E(vi|Zi,Ui,Mi) = 0;

• E(ψnitl |Pi)=
ηivi

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

DdK2tiK1li
(
g2 j(Ut)−g2 j(Ui)

)(
Πd(Zl)−Πd(Zi)

)∣∣Pi

)
≤ Ch

s1
1 ηivi

fU (Ui) fZ(Zi)
;

• σ2
1n ≤CE

(
E2(ψnitl |Pi)

)
≤Ch2s1

1 = o(1);

• E(ψnitl |Pi,Pt)=
ηivi

(
g2 j(Ut )−g2 j(Ui)

)
DdK2ti

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

K1li
(
Πd(Zl)−Πd(Zi)

)∣∣∣Zi

)
≤ Ch

s1
1

∣∣ηivi

(
g2 j(Ut )−g2 j(Ui)

)
DdK2ti

∣∣
h

D2+1
2 fU (Ui) fZ(Zi)

,

E(ψnitl |Pi,Pl) =
ηiviK1li

(
Πd(Zl)−Πd(Zi)

)
h

D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

DdK2ti
(
g2 j(Ut)−g2 j(Ui)

)∣∣∣Ui

)
≤ C

∣∣ηiviK1li

(
Πd(Zl)−Πd(Zi)

)∣∣
h

D1
1 fU (Ui) fZ(Zi)

;

• σ2
2n ≤CE

(
E2(ψnitl |Pi,Pt)+E2(ψnitl |Pi,Pl)

)
= O

(
h

2s1
1

h
D2
2

+ 1
h

D1−2
1

)
;

• σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1−2

1 hD2
2 )−1

)
;
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• H(1)
n =Op

((σ2
1n
n

)1/2
)
= op(n−1/2), H(2)

n =Op

((σ2
2n

n2

)1/2
)
=Op

(
hs1

1

(
n2hD2

2

)−1/2
+
(
n2hD1−2

1

)−1/2
)
=

op(n−1/2), H(3)
n = Op

((σ2
3n

n3

)1/2
)
= Op

((
n3hD1−2

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = l 6= t, i = t 6= l, ψnitl = 0;

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiviDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)(
Πd(Zl)−Πd(Zi)

)

= Op

(h1

n

)
= op(n−1/2).

We have B12223 = op(n−1/2). By (2a)-(2c), we have B122 = op(n−1/2).

Combing all the terms in step 2, we have B1 = B11 +op(n−1/2), where
√

nB11
d−→N (0,Φ1).

Step 3: We first show that B4 = op(n−1/2). Note that−B4 =
1
n X̂ ′2η(VY 3−VX3β ) = 1

n X̂ ′2ηVY 3− 1
n X̂ ′2ηVX3β ≡B41+B42.

By Theorem 3, we have |VXi|, |VY 3| = Op(Ln). Thus B41 = VY 3
( 1

n ∑
n
i=1 X∗2iηi− 1

n ∑
n
i=1 VXiηi

)
= Op(Ln)

(
Op(n−1/2)+

Op(Ln)
)
= op(n−1/2) by A5. Similarly, −B2 = 1

n X̂ ′2η(VY 2 −VX2β ) ≡ B21 + B22, and we will show that B21 =

op(n−1/2). B22 = op(n−1/2) follows by the same arguments. Note that B21 = 1
n ∑

n
i=1 X∗2iηiVY 1i− 1

n ∑
n
i=1 VXiηiVY 1i ≡

B′21 +op(n−1/2) by Theorem 3. And by expression of VY 1i similar to VX1i given in A.3 of Theorem 3, we have the jth

element of B′21 as

B′21, j =

(
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fM(Mi)

CY 1ti

)(
1+Op(L3n)

)
=

(
3

∑
k=1

B21k

)(
1+Op(L3n)

)
,

where B211 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fM(Mi)

(η̂t −ηt)Yt , B212 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fM(Mi)

vY 1t
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B213 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fM(Mi)

(
γ1(Mt)− γ1(Mi)

)
.

We show that B21k = op(n−1/2) for k = 1,2,3.

(3a). Since η̂t −ηt = ηtOp(Ln) uniformly, we have B211 = B′211Op(Ln),

where B′211 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fM(Mi)

ηtYt ≡
1
n2

n

∑
i=1

n

∑
t=1

ψnit ≡ E1n +E2n, with

E1n =
1
n2

n

∑
i=1

ηiX∗2i, jK3(0)

hD3
3 fM(Mi)

ηiYi, E2n =
1
n2

n

∑
i=1

n

∑
t=1

i6=t

ψnit

By Markov’s Inequality and that E|E1n| ≤ C
nh

D3
3

E|X∗2i, jYi|= O
(
(nhD3

3 )−1
)
, we have E1n = op(n−1/2). E2n ≤CUn,

where Un is a U-statistic of degree 2 such that Un =
(n

2

)−1
∑

n
i=1 ∑

n
t=1

i 6=t
ψnit .

• θn = E(ψnit |Pt) = 0, as E(ηiX∗2i, j|Mi) = 0;

• φ1n = E(ψnit |Pi) =
ηiX∗2i, j

h
D3
3 fM(Mi)

E
(
K3tiηtYt

∣∣Mi
)
=

ηiX∗2i, j
fM(Mi)

∫
K(ψ)γ1(Mi +h3ψ) fM(Mi +h3ψ)dψ;

• σ2
1n ≤CE

(
E2(ψnit |Pi)

)
= O(1) by Lemma 1 and A3.

• σ2
2n ≤CE(ψ2

nit) =
C

h
2D3
3

E
(

(ηiX∗2i, j)
2(ηtYt )

2K2
3ti

f 2
M(Mi)

)
= O

(
h−D3

3

)
;

• H(1)
n = Op

((σ2
1n
n

)1/2
)
= Op(n−1/2), H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op

((
n2hD3

3

)−1/2
)
= op(n−1/2).

Thus B′211 = Op(n−1/2), and B211 = Op(n−1/2)Op(Ln) = op(n−1/2).

(3b). B212 =
1
n2 ∑

n
i=1 ∑

n
t=1

ηiX∗2i, jK3ti

h
D3
3 fM(Mi)

vY 1t ≡ 1
n2 ∑

n
i=1 ∑

n
t=1 ψnit ≡ E1n +E2n, where

E1n =
1
n2 ∑

n
i=1 ψnii =

1
n2 ∑

n
i=1

ηiX∗2i, jK3(0)

h
D3
3 fM(Mi)

vY 1i = Op
(
(nhD3

3 )−1
)
= op(n−1/2);

E2n ≤CUn, and Un =
(n

2

)−1
∑

n
i=1 ∑

n
t=1

i 6=t
ψnit = θn +2H(1)

n +H(2)
n is a U-statistic of degree 2.

• θn = σ2
1n = 0, as E(ηiX∗2i, j|Mi) = E(vY 1t |Mt) = 0;

• σ2
2n = V(φnit)≤CE(ψ2

nit) = O(h−D3
3 );

• H(1)
n = 0, H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op((n2hD3

3 )−1/2) = op(n−1/2).

We have B212 = op(n−1/2).
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(3c). B213 =
1
n2 ∑

n
i=1 ∑

n
t=1

i6=t

ηiX∗2i, jK3ti

h
D3
3 fM(Mi)

(
γ1(Mt)− γ1(Mi)

)
≡ 1

n2 ∑
n
i=1 ∑

n
t=1

i 6=t
ψnit ≤CUn, where Un =

(n
2

)−1
∑

n
i=1 ∑

n
t=1

i 6=t
ψnit is a

U-statistic of degree 2.

• θn = E(φnit |Pt) = 0, as E(ηiX∗2i, j|Mi) = 0;

• φ1n = E(φnit |Pi) =
ηiX∗2i, j

h
D3
3 fM(Mi)

E
(

K3ti
(
γ1(Mt)− γ1(Mi)

)∣∣∣Mi

)
≤

Ch
s3
3 |ηiX∗2i, j |
fM(Mi)

;

• σ2
1n ≤ E(φ 2

1n) = O(h2s3
3 ) = o(1);

• σ2
2n = V(φnit)≤CE(ψ2

nit) = O
(
h−D3+2

3

)
;

• H(1)
n = Op

((σ2
1n
n

)1/2
)
= op(n−1/2), H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op(n−1/2(nhD3−2

3 )−1/2) = op(n−1/2).

We have B213 = op(n−1/2).

By (3a)-(3c), we have B21 = op(n−1/2).

Step 4: For B3, we have −B3 =
1
n X̂ ′2η(VY 2−VX2β ) ≡ B31 +B32. We will focus on B31 here, since B32 has a similar

structure to B31 and could be analyzed accordingly. By Theorem 3, we have B31 =
1
n ∑

n
i=1 X∗2iηiVY 2i− 1

n ∑
n
i=1 VXiηiVY 2i≡

B′31 +op(n−1/2). Similar to A.2 given in Theorem 3, by Taylor Theorem, we have

VY 2i = γ̂2(Ûi)− γ2(Ui) =
1

nhD2
2 f̂U (Ûi)

n

∑
t=1

K̂2tiη̂tYt − γ2(Ui)

=

{
1

nhD2
2 fU (Ui)

n

∑
t=1

K̂2ti

(
(η̂t −ηt)Yt + vY 2t +

(
γ2(Ut)− γ2(Ui)

)︸ ︷︷ ︸
CY 2ti

)}(
1+Op(L2n)

)

=

{
1

nhD2
2 fU (Ui)

n

∑
t=1

K2tiCY 2ti +
1

nhD2
2 fU (Ui)

n

∑
t=1

JK2ti

(
Ût −Ut −

(
Ûi−Ui

))
CY 2ti

+
1

nhD2+1
2 fU (Ui)

n

∑
t=1

RtiCY 2ti

}(
1+Op(L2n)

)

where Rti is the remainder term of a Taylor expansion of K̂2ti at
(

Ut−Ui
h2

)
.

Similar to the T3 term in Theorem 3, we have 1
nh

D2
2 fU (Ui)

∑
n
t=1 RtiCY 2ti = op(n−1/2) uniformly. Thus, we have the jth

element of B′31 as

B′31, j =
3

∑
k=1

B31k +op(n−1/2)
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where B311 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK2ti

hD2
2 fU (Ui)

CY 2ti, B312 = − 1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)
CY 2ti,

B313 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ût −Ut

)
CY 2ti, and CY 2ti = (η̂t −ηt)Yt + vY 2t +

(
γ2(Ut)− γ2(Ui)

)
.

We will show that B311 = B313 = op(n−1/2) and B312 =
1
n ∑

n
i=1 a1ni, j +op(n−1/2), where

a1ni, j =
D2

∑
d=1

Uid

2hD1
1 hD2

2

E

(
ηlX∗2l, jDdK2tlK1il

fU (Ul) fZ(Zl)
Jγ2(Ul)

(Ut −Ul

h2

)∣∣∣∣∣Zi

)
.

The components in B311 are similar to B121 with Ui replacing Mi, ηiX∗2i, j replacing ηivi, CY 2ti replacing CX1ti, j, and

E(ηiX∗2i, j|Ui) = 0 replacing E(ηivi|Mi) = 0. By the same arguments in (1a)-(1c), we have B311 = op(n−1/2). By the

three components in CY 2ti, we have −B312 ≡ ∑
3
k=1 B312k, with

B3121 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)
(η̂t −ηt)Yt , B3122 =

1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)
vY 2t ,

B3123 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)(
γ2(Ut)− γ2(Ui)

)
.

We show that B3121 = B3122 = op(n−1/2), and B3123 =
1
n ∑

n
i=1 a1ni, j +op(n−1/2).

(4a). B3121 =

{
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)
ηtYt

}
Op(Ln)

≤ Op(Ln)Op

(
L1n

h2

)
1
n2

n

∑
i=1

n

∑
t=1

D2

∑
d=1

∣∣ηiX∗2i, jηtYtDdK2ti
∣∣

hD2
2 fU (Ui)

= Op(Ln)Op

(
L1n

h2

)
= op(n−1/2)

(4b). By A.1 in proof of Theorem 2, we have

B3122 =
D2

∑
d=1

1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jvY 2tDdK2ti

hD2+1
2 fU (Ui)

(Ûid−Uid)

= −

{
D2

∑
d=1

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, jvY 2tDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Uld +

(
Πd(Zl)−Πd(Zi)

))}(
1+Op(L1n)

)
≡ −

{
D2

∑
d=1

(T1d +T2d)

}(
1+Op(L1n)

)
.
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We show that T1d , T2d = op(n−1/2).

(i) T1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, jvY 2tDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld ≡

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn = σ2
1n = E(ψnitl |Pi,Pt) = E(ψnitl |Pi,Pl) = 0, as E(vY 2t |Ut) = E(Uld |Zl) = 0;

• φ2n = E(ψnitl |Pt ,Pl) =
vY 2tUld

h
D1
1 h

D2
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

∣∣Zl ,Ut

)
≤ C|vY 2tUld |

h2
;

• σ2
2n ≤ E(φ 2

1n) = O(h−2
2 );

• σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1

1 hD2+2
2 )−1

)
;

• H(1)
n = 0; H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op

(
(nh2)

−1
)
= op(n−1/2);

• H(3)
n = Op

((σ2
3n

n3

)1/2
)
= Op

((
n3hD1

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l,
1
n3

n

∑
i=1

ψniii

=
1
n3

n

∑
i=1

ηiX∗2i, jvY 2tDdK2(0)K1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uid = Op

((
n2hD1

1 hD2+1
2

)−1
)
= op(n−1/2);

if i = t 6= l,
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ψniil

=
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ηiX∗2i, jvY 2tDdK2(0)K1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld = Op

((
nhD2+1

2

)−1
)
= op(n−1/2);

if i = l 6= t,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψniti

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jvY 2tDdK2tiK1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uid = Op

((
nhD1

1 h2
)−1
)
= op(n−1/2);

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jvY 2tDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Utd = Op

((
nh2
)−1
)
= op(n−1/2).
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In sum, we have T1d = op(n−1/2).

(ii) T2d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, jvY 2tDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)
≡ 1

n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn = E(ψnitl |Pi) = E(ψnitl |Pl) = E(ψnitl |Pi,Pl) = 0, as E(vY 2t |Ut) = 0;

• E(ψnitl |Pt) =
vY 2t

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)∣∣Ut

)
≤ Ch

s1
1 |vY 2t |
h2

;

• σ2
1n ≤ E(φ 2

1n) = O
( h

2s1
1
h2

2

)
;

• E(ψnitl |Pi,Pt) =
ηiX∗2i, jvY 2t DdK2ti

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

K1li
(
Πd(Zl)−Πd(Zi)

)∣∣∣Zi

)
≤

Ch
s1
1

∣∣ηiX∗2i, jvY 2t DdK2ti

∣∣
h

D2+1
2 fU (Ui) fZ(Zi)

, E(ψnitl |Pt ,

Pl) =
vY 2t

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)∣∣∣Ut ,Zl

)
≤ Ch

s1
1 |vY 2t |
h2

;

• σ2
2n ≤CE

(
E2(ψnitl |Pi,Pt)+E2(ψnitl |Pt ,Pl)

)
= O

(
h

2s1
1

h
D2+2
2

)
;

• σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1−2

1 hD2+2
2 )−1

)
;

• H(1)
n = Op

((σ2
1n
n

)1/2
)
= Op

(
n−1/2hs1

1 h−1
2

)
= op(n−1/2);

• H(2)
n = Op

((σ2
2n

n2

)1/2
)
= Op

(
hs1

1

(
n2hD2+2

2

)−1/2
)
= op(n−1/2);

• H(3)
n = Op

((σ2
3n

n3

)1/2
)
= Op

((
n3hD1−2

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = l 6= t, ψnitl = 0;

if i = t 6= l,
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ψniil

=
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ηiX∗2i, jvY 2tDdK2(0)K1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)
= Op

(
h1
(
nhD2+1

2

)−1
)
= op(n−1/2);

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jvY 2tDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zt)−Πd(Zi)

)
= Op

(
h1
(
nh2
)−1
)
= op(n−1/2).

We have B3122 = op(n−1/2).
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(4c). B3123 =
D2

∑
d=1

1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j
(
γ2(Ut)− γ2(Ui)

)
DdK2ti

hD2+1
2 fU (Ui)

(Ûid−Uid)

= −

{
D2

∑
d=1

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, j
(
γ2(Ut)− γ2(Ui)

)
DdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Uld +

(
Πd(Zl)−Πd(Zi)

))}(
1+Op(L1n)

)
≡ −

{
D2

∑
d=1

(W1d +W2d)

}(
1+Op(L1n)

)
.

We show that ∑
D2
d=1 W1d = 1

n ∑
n
i=1 a1ni, j +op(n−1/2), W2d = op(n−1/2).

(i) W1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, j
(
γ2(Ut)− γ2(Ui)

)
DdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld ≡

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3:

• θn = E(φnitl |Pi) = E(ψnitl |Pt) = E(ψnitl |Pi,Pt) = 0, as E(Uld |Zl) = 0;

• φ1n = E(ψnitl |Pl) =
Uld

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

(
γ2(Ut)− γ2(Ui)

)∣∣Zl

)
≤C|Uld |;

• σ2
1n ≤ E(φ1n) = O(1);

• E(ψnitl |Pi,Pl) =
ηiX∗2i, jK1liUld

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

DdK2ti
(
γ2(Ut)− γ2(Ui)

)∣∣∣Ui

)
≤

C
∣∣ηiX∗2i, jK1liUld

∣∣
h

D1
1 fU (Ui) fZ(Zi)

,

E(ψnitl |Pt ,Pl) =
Uld

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

(
γ2(Ut)− γ2(Ui)

)∣∣∣Ut ,Zl

)
≤CUld ;

• σ2
2n ≤CE

(
E2(ψnitl |Pi,Pl)+E2(ψnitl |Pt ,Pl)

)
= O

(
h−D1

1

)
;

• σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1

1 hD2
2 )−1

)
;

• H(1)
n = Op(n−1/2), H(2)

n = Op

((σ2
2n

n2

)1/2
)
= Op

((
n2hD1

1

)−1/2
)
= op(n−1/2);

• H(3)
n = Op

((σ2
3n

n3

)1/2
)
= Op

((
n3hD1

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = 3H(1)
n +op(n−1/2), where H(1)

n = 1
n ∑

n
l=1 E(ψnitl |Pl). In this case, we need to investigate

H(1)
n a little further. Note that γ2(Ut)− γ2(Ui) = Jγ2(Ui)(Ut −Ui)+

1
2 (Ut −Ui)

′Hγ2(Uti)(Ut −Ui), where

Uti = λUi +(1−λ )Ut , for λ ∈ (0,1). Plugging this into E(ψnitl |Pl), we have

H(1)
n =

1
n

n

∑
l=1

E(ψnitl |Pl)≡
1
n

n

∑
l=1

a1nl, j +
1
n

n

∑
l=1

b1nl, j

where a1nl, j =
Uld

hD1
1 hD2+1

2

E
(

ηiX∗2i, jDdK2tiK1li

fU (Ui) fZ(Zi)
Jγ2(Ui)(Ut −Ui)

∣∣∣Zl

)
,

b1nl, j =
Uld

hD1
1 hD2+1

2

E
(

ηiX∗2i, jDdK2tiK1li

fU (Ui) fZ(Zi)

1
2
(Ut −Ui)

′Hγ2(Uti)(Ut −Ui)
∣∣∣Zl

)
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Since b1nl, j ≤ Ch2|Uld |, E(b1nl, j) = 0, and V
( 1

n ∑
n
l=1 b1nl, j

)
= O(h2

2n−1), by Chebyshev’s Inequality, we

have 1
n ∑

n
l=1 b1nl, j = Op(h2n−1/2) = op(n−1/2), and H(1)

n = 1
n ∑

n
l=1 a1nl, j +op(n−1/2).

Note that W1d = 1
n3

(n
3

)
Un +op(n−1/2). By exchanging i and l in H(1)

n for future notation convenience,

we have

D2

∑
d=1

W1d =
6
n3

(
n
3

)
1
n

n

∑
i=1

D2

∑
d=1

Uid

2hD1
1 hD2

2

E

(
ηlX∗2l, jDdK2tlK1il

fU (Ul) fZ(Zl)
Jγ2(Ul)

(Ut −Ul

h2

)∣∣∣∣∣Zi

)
+op(n−1/2)

≡ 6
n3

(
n
3

)
1
n

n

∑
i=1

a1ni, j +op(n−1/2)

=
1
n

n

∑
i=1

a1ni, j +

(
6
n3

(
n
3

)
−1
)

1
n

n

∑
i=1

a1ni, j +op(n−1/2)

=
1
n

n

∑
i=1

a1ni, j +op(n−1/2).

The last equation follows from that
(

6
n3

(n
3

)
−1
)
= o(1), and 1

n ∑
n
i=1 a1ni, j = Op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = t 6= l, ψnitl = 0;

if i = l 6= t,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψniti

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jDdK2tiK1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
γ2(Ut)− γ2(Ui)

)
Uid = Op

((
nhD1

1

)−1
)
= op(n−1/2);

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
γ2(Ut)− γ2(Ui)

)
Utd = Op(n−1) = op(n−1/2).

In sum, we have W1d = op(n−1/2).

(ii) W2d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
γ2(Ut)− γ2(Ui)

)(
Πd(Zl)−Πd(Zi)

)
≡ 1

n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.
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• θn = O(hs1
1 ) = op(n−1/2);

• E(ψnitl |Pi) =
ηiX∗2i, j

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

DdK2tiK1li
(
γ2(Ut)− γ2(Ui)

)(
Πd(Zl)−Πd(Zi)

))
≤

Ch
s1
1

∣∣ηiX∗2i, j

∣∣
fU (Ui) fZ(Zi)

,

E(ψnitl |Pt) = O(hs1
1 ), E(ψnitl |Pl) = O(hs1

1 );

• σ2
1n ≤CE

(
E2(ψnitl |Pi)+E2(ψnitl |Pl)+E2(ψnitl |Pt)

)
= O(hs1

1 );

• E(ψnitl |Pi,Pt)=
ηiX∗2i, jDdK2ti

(
γ2(Ut )−γ2(Ui)

)
h

D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(
K1li
(
Πd(Zl)−Πd(Zi)

)∣∣Zi
)
≤

Ch
s1
1

∣∣ηiX∗2i, jDdK2ti

(
γ2(Ut )−γ2(Ui)

)∣∣
h

D2+1
2 fU (Ui) fZ(Zi)

,

E(ψnitl |Pi,Pl) =
ηiX∗2i, jK1li

(
Πd(Zl)−Πd(Zi)

)
h

D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(
DdK2ti

(
γ2(Ut)− γ2(Ui)

)∣∣Ui
)
≤

C
∣∣ηiX∗2i, jK1li

(
Πd(Zl)−Πd(Zi)

)∣∣
h

D1
1 fU (Ui) fZ(Zi)

,

E(ψnitl |Pt ,Pl) = O(hs1
1 );

• σ2
2n = O

(
h2s1

1 h−D2
2 +h2−D1

1 +h2s1
1

)
= O

(
h2s1

1 h−D2
2 +h2−D1

1

)
;

• σ2
3n = O

((
hD1−2

1 hD2
2

)−1
)

;

• H(1)
n = Op

((σ2
1n
n

)1/2
)
= O

(
h1/2s1

1 n−1/2
)
= op(n−1/2);

• H(2)
n = Op

((σ2
2n

n2

)1/2
)
= Op

(
hs1

1

(
n2hD2

2

)−1/2
+
(
n2hD1−2

1

)−1/2
)
= op(n−1/2);

• H(3)
n = Op

((σ2
3n

n3

)1/2
)
= Op

((
n3hD1−2

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = l 6= t, i = t 6= l, ψnitl = 0;

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt

=
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
γ2(Ut)− γ2(Ui)

)(
Πd(Zl)−Πd(Zi)

)

= Op

(h1

n

)
= op(n−1/2).

We have B312 = − 1
n ∑

n
i=1 a1ni, j +op(n−1/2). For B313, analysis will exactly similar to B312, but note that for the term

having order Op(n−1/2) in B312, the corresponding term in B313, denote W ′1d , is

W ′1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, j
(
γ2(Ut)− γ2(Ui)

)
DdK2tiK1lt

hD1
1 hD2+1

2 fU (Ui) fZ(Zt)
Uld .
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The difference here is we have Zt instead of Zi, such that E(ψnitl |Pl) = 0 in that E(ηiX∗2i, j|Ui) = 0. Thus, by the same

arguments for the rest of terms, we have B313 = op(n−1/2).

As to B32, analysis is similar to B31 given above. For the term having order Op(n−1/2), we can actually combine

B31 and B32 together to work it out. Note that

VY 2i−VX2iβ =

{
1

nhD2
2 fU (Ui)

n

∑
t=1

K̂2ti

[
(η̂−ηt)(Yt −X2tβ )+(vY 2t − vX2tβ )

+
((

γ2(Ut)− γ2(Ui)
)
−
(
g2(Ut)−g2(Ui)

)
β

)]}(
1+Op(L2n)

)
,

and the term that is of order Op(n−1/2) involves the third term in bracket, which is
(
γ2(Ut)−g2(Ui)β−β0

)
−
(
γ2(Ui))−

g2(Ui)β − β0
)
= h(Ut)− h(Ui). Thus using

(
h(Ut)− h(Ui)

)
instead of

(
γ2(Ut)− γ2(Ui)

)
in W1d , we have B3 =

1
n ∑

n
i=1 ani +op(n−1/2), where

ani =
D2

∑
d=1

Uid

2hD1
1 hD2

2

E

(
ηlX∗2lDdK2tlK1il

fU (Ul) fZ(Zl)
Jh(Ul)

(Ut −Ul

h2

)∣∣∣∣∣Zi

)
.

Step 5: Combing orders of B1,B2,B3,B4, we have 1
n X̂ ′2η̂(Ŷ−X̂2β )=B11+

1
n ∑

n
i=1 ani+op(n−1/2). Next we investigate

√
n(B11 +

1
n ∑

n
i=1 ani).

Let λ ∈ RD2 be a non-stochastic vector such that λ ′λ = 1. Denote B11 +
1
n ∑

n
i=1 ani =

1
n ∑

n
i=1(X

∗
2iηivi + ani) ≡

1
n ∑

n
i=1 bni, and we have E(λ ′bni)= 0 as E(X∗2iηivi)=E(ani)= 0, and E(λ ′bnib′niλ )= λ ′E(X∗2iη

2
i v2

i X∗′2i )λ +λ ′E(ania′ni)λ =

λ ′Φ1λ +λ ′E(ania′ni)λ . Denote X2i, j = Π2 j(Zi)+U2i, j, the jth element of ani can be written as

ani, j =
D2

∑
d=1

Uid

hD1
1 hD2

2

E

(
ηlX∗2l, jDdK2tlK1il

fU (Ul) fZ(Zl)
Jh(Ul)

(Ut −Ul

h2

)∣∣∣∣∣Zi

)

=
∫ 1

hD1
1 hD2

2

(
Π2 j(Zl)+U2l, j−g1 j(Ml)−g2 j(Ul)+g3 j

) D2

∑
d=1

UidDdK2tlK1ilJh(Ul)

(
Ut −Ul

h2

)
× ηl(Ml ,Ul)

fU (Ul) fZ(Zl)
fU (Ut) fZUM(Zl ,Ul ,Ml)dUtdZldUldMl

=
∫ (

Π2 j(Zi−h1γ)+U2t, j−h2ψ2 j−g1 j(Ml)−g2 j(Ut −h2ψ)+g3 j

) D2

∑
d=1

UidDdK2(ψ)K1(γ)

×Jh(Ut −h2ψ)ψ
ηl(Ml ,Ut −h2ψ)

fU (Ut −h2ψ) fZ(Zi−h1γ)
fU (Ut) fZUM(Zi−h1γ,Ut −h2ψ,Ml)dγdψdUtdMl
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→
∫ (

Π2 j(Zi)+U2t, j−g1 j(Ml)−g2 j(Ut)+g3 j

) D2

∑
d=1

Uid (−Ddh(Ut))ηl(Ml ,Ut) fUM|Z(Ut ,Ml |Zi)dUtdMl

= −
D2

∑
d=1

E

((
Π2 j(Zi)+U2t, j−g1 j(Mt)−g2 j(Ut)+g3 j

)
Ddh(Ut)ηt

∣∣∣Zi

)
Uid .

The convergence follows by Lemma 1, A3 and that
∫

DdK2(ψ)ψdψ = (0, · · · ,−1, · · · ,0)′, where −1 appears on the

dth position of the vector. Hence, the ( j,m)th element of E(ania′ni) converges to

Φ2( j,m)
≡ E

[
D2

∑
d=1

D2

∑
δ=1

E

((
Π2 j(Zi)+U2t, j−g1 j(Mt)−g2 j(Ut)+g3 j

)
Ddh(Ut)ηt

∣∣∣Zi

)

× E

((
Π2m(Zi)+U2t,m−g1m(Mt)−g2m(Ut)+g3m

)
Dδ h(Ut)ηt

∣∣∣Zi

)
E(UidUiδ |Zi)

]

By Lyapunov’s central limit theorem, we have
√

n
(
B11 +

1
n ∑

n
i=1 ani

) d−→N (0,Φ1 +Φ2), provided

limn→∞ ∑
n
i=1 E

∣∣n−1/2λ ′ani
∣∣2+δ

= 0 for some δ > 0. Note that by Cr Inequality,

n

∑
i=1

E
∣∣n−1/2

λ
′ani
∣∣2+δ

= n−δ/2 1
n

n

∑
i=1

E

∣∣∣∣∣D22

∑
j=1

λ jani, j

∣∣∣∣∣
2+δ

≤ n−δ/2D1+δ

22

D22

∑
j=1

λ
2+δ

j E|ani, j|2+δ

where E|ani, j|2+δ →
∫ ∣∣∣∣∣ D2

∑
d=1

E
((

Π2 j(Zi)+U2t, j−g1 j(Mt)−g2 j(Ut)+g3 j
)
Ddh(Ut)ηt

∣∣∣Zi

)∣∣∣∣∣
2+δ

×|Uid |2+δ fZU (Zi,Ui)dZidUi

≤C
D2

∑
d=1

∫ ∣∣∣E((Π2 j(Zi)+U2t, j−g1 j(Mt)−g2 j(Ut)+g3 j
)∣∣∣Zi

)∣∣∣2+δ

|Uid |2+δ fZU (Zi,Ui)dZidUi

< ∞ since E
(
|Uid |2+δ |Zi

)
<C < ∞ and E|X2i, j|2+δ < ∞.

Thus limn→∞ ∑
n
i=1 E

∣∣n−1/2λ ′ani
∣∣2+δ

= 0 for some δ > 0, and we have 1
n X̂ ′2η̂(Ŷ − X̂2β )

d−→N (0,Φ1 +Φ2). From

step 1, we have
(

1
n

X̂ ′2η̂X̂2

)−1
p−→ Φ

−1
0 . Together, we have

√
n(β̂ −β )

d−→N
(
0,Φ−1

0 (Φ1 +Φ2)Φ
−1
0
)
.
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Lemma 1. Assume that: a) |K(γ)| ≤ C for all γ ∈ RD; b)
∫
|K(γ)|dγ < ∞; c) ||γ||E |K(γ)| → 0 as ||γ||E → ∞;

d) hn > 0 for all n and hn→ 0 as n→ ∞. Let f (x) : RD→ R such that e)
∫
| f (γ)|dγ < ∞. Then, for every continuity

point x of f (x), we have

∫
K(γ) fX (x+hnγ)dγ → fX (x)

∫
K(γ)dγ ≤C as n→ ∞

Lemma 1 is a standard result. Here we omit the proof.

Lemma 2. Assume that K(x) : RD→ R is a product kernel K(x) = ∏
D
j=1 k(x j) with k(x) : R→ R such that: a) k(x)

is continuously differentiable everywhere; b) |k(x)||x|3 ≤C, for any x ∈ R and some C > 0; c) |k′(x)||x|3 ≤C, for any

x ∈R and some C > 0. Thus, for any |β |= 0, · · · ,3, K(x)xβ satisfies a local Lipschitz condition, i.e., for any x 6= y∈ A,

where A⊂ R is a bounded convex set, we have

|K(x)xβ −K(y)yβ | ≤C||x− y||E , for some C > 0.

Proof. Note that by a)-c), for any x ∈ R, we have |k(x)||x|i, |k′(x)||x|i ≤C, i = 0, · · · ,3.

(a). |β |= 0.

Since by mean value theorem K(x)−K(y) = JK(x∗)(x−y), where x∗= x+λ (y−x), λ ∈ (0,1), and |DiK(x∗)|=

|k′(x∗i )|∏D
p6=i |k(x∗p)| ≤ C, we have |K(x)−K(y)| ≤ C ∑

D
i=1 |xi− yi| ≤ CD

(
∑

D
i=1(xi− yi)

2
)1/2 ≤ C||x− y||E for

some C > 0 by triangular and Cr Inequality.

(b). |β |= 1. For any i = 1, · · · ,D,

|K(x)xi−K(y)yi| = |xi(K(x)−K(y))+K(y)(xi− yi)|

= |xiJK(x∗)(x− y)+K(y)(xi− yi)| by the mean value theorem

=

∣∣∣∣∣(xiDiK(x∗)+K(y))(xi− yi)+ ∑
p6=i

xiDpK(x∗)(xp− yp)

∣∣∣∣∣
≤ C

D

∑
i=1
|xi− yi| by triangular inequality

≤ C||x− y||E by the Cr Inequality
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Mean value theorem is used in the second equation since k(x) is continuously differentiable on the convex set A.

And since set A is bounded, there exists a C ≥ 0 such that yi− xi = ∆i and |∆i| ≤C. Thus x∗i ≡ xi +λ (yi− xi) =

xi +λ∆, and we have |xik′(x∗i )|= |xik′(xi +λ∆)| ≤C by c).

(c). |β |= 2. For any i, j = 1, · · · ,D,

|K(x)xix j−K(y)yiy j| = |x j(K(x)xi−K(y)yi)+K(y)yi(x j− y j)|

≤ |x jK(x)+ x jyiDiK(x∗)| |xi− yi|+
∣∣x jyiD jK(x∗)+K(y)yi

∣∣ |x j− y j|

+

∣∣∣∣∣ ∑
p6=i, j

x jyiDpK(x∗)

∣∣∣∣∣ |xp− yp|

≤C ||x− y||E

(d). |β |= 3. For any i, j, l = 1, · · · ,D,

∣∣K(x)xix jxl−K(y)yiy jyl
∣∣ = ∣∣xl(K(x)xix j−K(y)yiy j)+K(y)yiy j(xl− yl)

∣∣
≤
∣∣xix jxlDiK(x∗)+ x jxlK(y)

∣∣ |xi− yi|+
∣∣xix jxlD jK(x∗)+ xlK(y)yi

∣∣ |x j− y j|

+
∣∣xix jxlDlK(x∗)+K(y)yiy j

∣∣ |xl− yl |+ ∑
p6=i, j,l

∣∣xix jxlDpK(x∗)
∣∣ |xp− xp|

≤C ||x− y||E

Lemma 3. Let {Wi}n
i=1 be a sequence of independent and identically distributed (IID) random variables, Gn(Wi,w) :

R×RK→R such that: a) |Gn(Wi,w)−Gn(Wi,w′)| ≤ Bn(Wi)‖w−w′‖ for all w,w′ and Bn(Wi)> 0 with E(Bn(Wi))<

C < ∞; b) E(Gn(Wi,w))< ∞ and E (|Gn(Wi,w)−E(Gn(Wi,w))|p)≤Cp−2 p!E ((Gn(Wi,w)−E(Gn(Wi,w)))
2)< ∞ for

some C > 0 for all i = 1,2, · · · and p = 3,4, · · · . Then, if Sn(w) = 1
n

n
∑

i=1
Gn(Wi,w), for w ∈ Gw a compact subset of RK ,

sup
w∈Gw

|Sn(w)−E(Sn(w))|= Op

(( logn
n

)1/2)
.

Proof. Since Gw is a compact subset of RK , there exists w0 ∈RK such that Gw ⊂ B(w0,r) = {w∈RK : ‖w−w0‖< r}.
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Thus, for all w,w′ ∈Gw, ‖w−w′‖< 2r. By the Heine-Borel Theorem, every infinite open cover of Gw contains a finite

subcover which we construct as {B(wk,n−1/2)}ln
k=1 with wk ∈ Gw and ln < nK/2C. For w ∈ B(wk,n−1/2), by condition

a), we have

|Sn(w)−Sn(wk)| ≤ n−1/2 1
n

n

∑
i=1

Bn(Wi) = Op(n−1/2)

since E(Bn(Wi))< ∞ and {Wi}n
i=1 is and IID sequence. Similarly, |E(Sn(w))−E(Sn(wk))|= O(n−1/2) and using the

triangle inequality we have, |Sn(w)−E(Sn(w))| ≤ |Sn(wk)−E(Sn(wk))|+Op(n−1/2). Since
(

n
logn

)1/2
n−1/2 = o(1)

it suffices to show that for all ε > 0, there exists a constant ∆ε such that for n≥ N

P

((
n

logn

)1/2

max
1≤k≤ln

|Sn(wk)−E (Sn(wk))| ≥ ∆ε

)
≤ ε.

Let εn =
(

logn
n

)1/2
∆ε and note that

P
(

max
1≤k≤ln

|Sn(wk)−E (Sn(wk))| ≥ εn

)
≤

ln

∑
k=1

P(|Sn(wk)−E (Sn(wk))| ≥ εn) .

Given condition b), and letting cn = 4V (Gn(Wi,wk))+2Cεn, by Bernstein’s Inequality, we have

P

(∣∣∣∣∣ n

∑
i=1

Gn(Wi,wk)−
n

∑
i=1

E (Gn(Wi,wk))

∣∣∣∣∣≥ nεn

)
≤ 2exp

(
−nε2

n

cn

)
= 2exp

(
−∆2

ε logn
cn

)
= 2n−

∆2
ε

cn .

Hence, P
(

max
1≤k≤ln

|Sn(wk)−E (Sn(wk))| ≥ εn

)
≤ 2lnn−

∆2
ε

cn <CnK/2− ∆2
ε

cn . Since, εn→ 0 as and V (Gn(Wi,wk))< ∞, we

can choose ∆ε sufficiently large such that K/2− ∆2
ε

cn
< 0 and

P
(

max
1≤k≤ln

|Sn(wk)−E (Sn(wk))| ≥ εn

)
≤ ε.

Lemma 4. Assume that K(x) :RD→R is a product kernel K(x)=∏
D
j=1 k(x j) with k(x) :R→R such that: a)

∫
k(x)dx=

1; b) |k(x)||x|7+c→ 0 as x→ ∞, for some c > 0; c) k(x) is continuously differentiable everywhere, and |k′(x)||x|3→ 0

as x→ ∞. In addition, assume that 1) {(Xt ,εt)
′}t=1,2,··· is an independent and identically distributed sequence of

random vectors; 2) The joint density of Xt and εt is given by fXε(x,ε) = fX (x) fε|X (ε|x); 3) fX (x) and all of its partial
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derivatives of order < s are differentiable and uniformly bounded on RD; 4) 0 < inf
x∈G

fX (x) and sup
x∈G

fX (x) ≤ C. Let

w(Xt − x;x) : RD→ R and g(ε) : R→ R be measurable functions. Define

s(x) =
1

nhD
n

n

∑
t=1

K
(

Xt − x
hn

)(
Xt − x

hn

)β

w(Xt − x;x)g(εt)

where |β |= 0,1,2,3. If

i) E
(
|g(εt)|a

∣∣X)≤C < ∞ for some a≥ 2;

ii) w(Xt − x;x) satisfies a Lipschitz condition and |w(Xt − x,x)|<C for all x ∈ RD;

Then, for an arbitrary compact set G ⊆ RD, we have

sup
x∈G
|s(x)−E(s(x))|= Op

((
log n
nhD

n

)1/2
)

provided that hn→ 0, nhD+2
n → ∞ and nhD

n
log n → ∞ as n→ ∞.

Proof. Let B(x0,r) = {x∈RD : ||x−x0||E < r} for r ∈R+. G compact implies that there exists x0 ∈RD such that G ⊆

B(x0,r). Therefore, for all x,z ∈ G , ||x− z||E < 2r. Let hn > 0 be such that hn→ 0 as n→∞ where n ∈ {1,2, · · ·}. For

any n, by the Heine-Borel Theorem, every infinite cover for G contains a finite subcover
{

B
(

xk,C
(

n
hD+2

n

)−1/2
)}ln

k=1

with xk ∈ G and ln ≤C
(

n
hD+2

n

)D/2
. Now let

sτ(x) =
1

nhD
n

n

∑
t=1

K
(

Xt − x
hn

)(
Xt − x

hn

)β

w(Xt − x;x)g(εt)χ{|g(εt )|≤Bn}

with B1 ≤ B2 ≤ ·· · such that ∑
∞
t=1 B−a

t < ∞ for some a > 0.

sup
x∈G
|s(x)−E(s(x))| ≤ sup

x∈G
|s(x)− sτ(x)|+ sup

x∈G
|E(s(x)− sτ(x))|+ sup

x∈G
|sτ(x)−E(sτ(x))| ≡ T1 +T2 +T3.

1. T1 = sup
x∈G

∣∣∣∣(nhD
n )
−1

∑
n
t=1 K

(
Xt−x

hn

)(
Xt−x

hn

)β

w(Xt − x;x)g(εt)χ{|g(εt )|>Bn}

∣∣∣∣. By Chebyshev’s Inequality, for a > 0,
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P(|g(εt)|> Bt)<
E(|g(εt )|a)

Ba
t

< C
Ba

t
by i). Consequently,

∞

∑
t=1

P(|g(εt)|> Bt)<
∞

∑
t=1

E(|g(εt)|a)
Ba

t
<C

∞

∑
t=1

B−a
t < ∞

By the Borel-Cantelli Lemma P
(

limsup
t→∞

{|g(εt)|> Bt}
)

= 0. Hence, for any ε > 0, there exists an m′ such

that for all m satisfying m > m′ we have P(|g(εm)| ≤ Bm)> 1− ε . Since {Bt}t=1,2,··· is an increasing sequence

we conclude that for any n > m we have P(|g(εm)| ≤ Bn) > 1− ε . Hence, there exists an N such that for any

n > max{N,m} we have that for all t ≤ n, P(|g(εt)| ≤ Bn)> 1− ε and therefore χ|g(εt )|>Bn = 0 with probability

1, which gives T1 = oas(1).

2. For T2, note that by 1) and 2), we have

E(s(x)− sτ(x)) =
1

nhD
n

n

∑
t=1

∫ ∫
|g(εt )|>Bn

K
(

Xt − x
hn

)(
Xt − x

hn

)β

w(Xt − x;x)g(εt) fX (Xt) f (εt)dXtdεt

≤
∫

K(γ)γβ w(hnγ;x) fX (x+hnγ)dγ

∫
|g(ε)| fε|X (ε|x)χ{|g(ε)|>Bn}dε

≤C
∫
|g(ε)| f (ε)χ{|g(ε)|>Bn}dε

due to uniform bound of w(Xt − x;x), fX (x) and by Lemma 1,

∫
|K(γ)γβ fX (x+hnγ)|dγ → | fX (x)|

∫
|K(γ)γβ |dγ ≤C as n→ ∞.

By Hölder’s Inequality, for a > 1, we have

∫
|g(ε)| fε|X (ε|x)χ{|g(ε)|>Bn}dε ≤

(∫
|g(ε)|a fε|X (ε|x)dε

)1/a(∫
χ{|g(ε)|>Bn} fε|X (ε|x)dε

)1−1/a

,

where the first integral after the inequality is uniformly bounded by i) and by Chebyshev’s Inequality,

(∫
χ{|g(ε)|>Bn} fε|X (ε|x)dε

)1−1/a

=
(
P(|g(ε)|> Bn|X)

)1−1/a ≤C

(
E
(
|g(ε)|a

∣∣X)
Ba

n

)1−1/a

≤CB1−a
n .
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Hence, T2 = O(B1−a
n ).

3. Rewrite T3 as: T3 = sup
x∈G
|sτ(x)−E(sτ(x))| ≤ sup

x∈G
|sτ(x)− sτ(xk)|+ sup

x∈G
|E(sτ(x)− sτ(xk))|

+ max
1≤k≤ln

|sτ(xk)−E(sτ(xk))| ≡ T31 +T32 +T33.

3.1. For x ∈ B
(

xk,C
(

n
hD+2

n

)−1/2
)

, we have

|sτ(x)− sτ(xk)| ≤ 1
nhD

n

n

∑
t=1

(∣∣∣∣∣K
(

Xt − x
hn

)(
Xt − x

hn

)β

−K
(

Xt − xk

hn

)(
Xt − xk

hn

)β
∣∣∣∣∣ |w(Xt − x;x)|

+

∣∣∣∣∣K
(

Xt − xk

hn

)(
Xt − xk

hn

)β
∣∣∣∣∣ |w(Xt − x;x)−w(Xt − xk;xk)|

)
|g(εt)χ{|g(εt )|≤Bn}|

≤
(

C
hD+1

n
||xk− x||E +hn

C
hD+1

n
||xk− x||E

)
1
n

n

∑
t=1
|g(εt)χ{|g(εt )|≤Bn}|

≤ C

((
1

nhD
n

)1/2

+hn

(
1

nhD
n

)1/2
)

1
n

n

∑
t=1
|g(εt)χ{|g(εt )|≤Bn}|,

where the second inequality follows by Lemma 2 and b), i.e., local Lipschitz condition and unifor-

m boundedness of
∣∣∣∣K(Xt−xk

hn

)(
Xt−xk

hn

)β
∣∣∣∣. By the measurability of g and condition 1) we have that

{|g(εt)χ{|g(εt )|≤Bn}|}t=1,2,··· is IID. By condition i) and Kolmogorov’s law of large numbers (LLN) we

have 1
n ∑

n
t=1(|g(εt)χ{|g(εt )|≤Bn}|−E(|g(εt)χ{|g(εt )|≤Bn}|)) = op(1) and T31 ≤C

(
1

nhD
n

)1/2
.

3.2. Following similar arguments we have T32 = E(|s(x)− s(xk)|)≤C
(

1
nhD

n

)1/2
.

3.3. T33 = max
1≤k≤ln

|sτ(xk)−E(sτ(xk))|. For εn =
nhD

n
log n

−1/2
∆ε with 0 < ∆ε < ∞ we note that

P
(

max
1≤k≤ln

|sτ(xk)−E(sτ(xk))| ≥ εn

)
≤

ln

∑
k=1

P(|sτ(xk)−E(sτ(xk))| ≥ εn).

Let sτ(xk)−E(sτ(xk)) = 1
n ∑

n
t=1 Ztn with

Ztn =
1

hD
n

K
(

Xt − xk

hn

)(
Xt − x

hn

)β

w(Xt − xk;xk)g(εt)χ{|g(εt )|≤Bn}

−E

(
1

hD
n

K
(

Xt − xk

hn

)(
Xt − x

hn

)β

w(Xt − xk;xk)g(εt)χ{|g(εt )|≤Bn}

)
.

By the bounds on |K(x)||xβ | and w, |g(εt)|χ{|g(εt )|≤Bn} ≤ Bn we have that |Ztn| ≤Ch−D
n Bn. By Bernstein’s
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Inequality,

P(|sτ(xk)−E(sτ(xk))| ≥ εn)≤ 2 exp

 −n log n
nhD

n
∆2

ε

2n−1
n
∑

t=1
V(Ztn)+

2
3

CBn
hD

n

(
log n
nhD

n

)1/2
∆2

ε


= 2 exp

 −log n∆2
ε

2hD
n V(Ztn)+

2
3CBn

(
log n
nhD

n

)1/2
∆2

ε


= 2 n−

∆2
ε

c(n)

where c(n) = 2hD
n V(Ztn)+

2
3CBn

(
log n
nhD

n

)1/2
∆2

ε . Consequently,

P
(

max
1≤k≤ln

|sτ(xk)−E(sτ(xk))| ≥ εn

)
≤ 2lnn−

∆2
ε

c(n) ≤ 2C
(

n
hD+2

n

)D/2

n−
∆2

ε
c(n) = 2C

 1

hD+2
n n

2∆2
ε

Dc(n)−1

D/2

< 2C
(

1
hD+2

n n

)D/2

provided ∆2
ε/D > c(n). Hence, given that nhD+2

n → ∞ as n→ ∞ the left-hand side of the inequality is

< ε provided c(n) is bounded. To show that c(n) is bounded, we choose Bn such that Bnεn → 0, i.e.,

Bnεn = o(1), guaranteeing that the second term of c(n) is o(1). Furthermore, hD
n V(Ztn)≤C given condition

i) and
∫
|K(γ)γ2β |dγ < ∞ for |β |= 0, · · · ,3 due to b). Thus, T33 = O

((
log n
nhD

n

)1/2
)

.

In sum, we have T3 = O
((

log n
nhD

n

)1/2
)

.

Combining results from 1 to 3, we have that supx∈G |s(x)−E(s(x))|=O(B1−a
n )+O

((
log n
nhD

n

)1/2)
. To show that B1−a

n =

O
((

log n
nhD

n

)1/2)
, since Bnεn = o(1) implies that Bn = o

((
nhD

n
log n

)1/2
)

, we have

(
nhD

n

log n

)1/2

B1−a
n =

(
nhD

n

log n

)1/2( nhD
n

log n

)(1−a)/2

o(1) =
(

nhD
n

log n

)1−a/2

o(1) = o(1),

where the last equality follows if a≥ 2, which is assumed in i). Thus, we have

sup
x∈G

∣∣s(x)−E(s(x))
∣∣= Op

((
log n
nhD

n

)1/2
)
.
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