
 

 

 

DISCUSSION PAPERS IN ECONOMICS 

 

 

Working Paper No. 13-09 

 

Orthogonalization of Categorical Data: 

How to Fix a Measurement Problem 

in Statistical Distance Metrics 

 

 
Ross Knippenberg 

University of Colorado at Boulder 

 

 

 

 

November 2013 
 

 

 

 

Department of Economics 
 

 

 

 

University of Colorado at Boulder 

Boulder, Colorado 80309 

 
© November 2013 Ross Knippenberg 

 

 

 

 

 

 

 



Orthogonalization of Categorical Data:

How to Fix a Measurement Problem

in Statistical Distance Metrics ∗

Ross Knippenberg †

November 10, 2013

Abstract

Policy makers depend on economists, statisticians, and other social scientists to make ac-
curate observations and draw solid conclusions from quantitative analysis. Econometrics, for
example, has come a long way in the past century and guides many decisions made today. On
the other hand, some statistical procedures have not had signi�cant advances, but are instead
applied and their original assumptions are forgotten. The appropriateness of many of these
measurements has come into question, and while criticism is often accepted, little is done to
correct them. In reality, there is a proli�c measurement problem being committed everyday.
This problem involves the use of statistical distance metrics to measure social phenomena. For
example, measurements which would routinely be used to answer questions like: by how much
have the imports of the United States changed in the past year? By how much has racial diver-
sity changed in the past decade? Does greater ethno-linguistic diversity lead to civil con�ict?
These and similar questions rely on accurate multi-variate distance metrics. However all dis-
tance metrics su�er from a common calculation problem. No one can deny that the math is
correct, rather, the problem lies with an overlooked implicit assumption: that all categories are
mutually orthogonal (right angles). This is a bold assumption in any context. In this paper I
�rst show that this assumption is rarely valid, and second I suggest an orthogonalization pro-
cedure: measure the similarity or angle between categories, and then apply a transformation
from spherical to rectangular coordinates. I illustrate the e�ect of the methodology using a
simulation, a collection of potential applications, and two examples from international trade.
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�Many multivariate statistical methods can be regarded as techniques for investigating a sample space

in which each sample member is represented by a point.� John C. Gower (1967), pg 13.

�Measurement is a big part of mobilizing for impact. You set a goal, and then you use data to make

sure you're making progress toward it. This is crucial in business-and it's just as important in the

�ght against poverty and disease� Bill H. Gates (2013), pg 52.

1 Introduction: The Problem

Before introducing any formal mathematics, consider the �ve following measurement puzzles:

Puzzle 1 : Consider a two-country world where Country C exports half corn and half corn meal.

Country D exports half corn and half computers. Which one has the most diverse exports? Mea-

sures of export diversi�cation indicate that both countries are exactly equally diverse.

Puzzle 2 : In City A exactly 5 percent of the labor force are Economics Professors. In City B, ex-

actly 5 percent of the labor force are Research Economists. The Location Quotient doesn't recognize

cross-discipline similarities, so between the two cities, City A is classi�ed as being relatively sparse

in Research Economists and City B is classi�ed as being relatively dense in Research Economists.

Puzzle 3 : The Census Bureau send out a variety of questionnaires that include questions on race

and ethnicity. The index of qualitative variation increases as the number of categories increases, so

simply increasing the range of de�nitions of race and ethnicity lead to an increase in the measure-

ment of diversity in the USA.

Puzzle 4 : In Index Number Theory, researchers have proposed hundreds of weighting structures

for price indices, but, as far as this author knows, no consensus has been reached on a universally

applicable price index, except, perhaps the Divisia Index (Malaney, 1996).

Puzzle 5 : Similar to Puzzle 1 ; add Country E to the world, where E exports half corn and half

high fructose corn syrup. Are E's exports more like that of C (corn and corn meal) or D (corn

and computers)? Measures of export similarity indicate all three countries are exactly equally alike

because each exports the same proportion of corn.

Of course I don't agree, and neither should the reader, with the conclusions of these puzzles.
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These puzzles are not the result of inadequate data, classi�cations, qualitative descriptions, unlying

technological progression, preferences, supply, or demand. Rather these puzzles are purely the

result of mis-applied statistical measurements. In this paper I outline the problem and suggest a

geometrically-consistent solution which will solve the measurement problem.

In 1966, John C. Gower lamented to practitioners of multivariate statistical analysis: �The

method of principal components analysis is often used, and misused, by statisticians. When un-

ordered qualitative variates occur it is not applicable, except possibly for the special case of (0,1)

data� (p.327). Indeed, I take this quote as the guiding motivation for this paper: that data on

arbitrary categories must be treated appropriately, and not have statistical methods blindly applied

to them.

Let me be clear about the type of data to which I am referring in this paper. I am looking

at proportion or shares data: data whose shares sum to unity across categories. Shares data

is unique in the way that it combines both a qualitative variable, the categorical label, and a

quantitative variable, the ratio of the value of that category to the total value of all categories. For

example weights in a price index index may be composed of food, entertainment and housing. Or

within food could be the categories of meat, grains, fruits, vegetables and desserts. Similarly, an

industrial production index may be composed of heavy manufacturing, light manufacturing, and

precision manufacturing, and sub-cateogories thereof. Another example would be the shares of

export categories of manufactured goods, primary products, and intermediate products in exports.

Some of these categories are broken down by incredibly complex classi�cation systems. For instance

the third revision of Standard International Trade Classi�cation system at the 5-digit level comprises

over 3200 export product categories. The Harmonized System details trade at the 10-digit level,

with many thousands more categories. A �nal example is to think about the ethnic origins of the

population of the United States: you can break it down by race and then break down each of those

by ethnicity or nationality. Either way there is a proportion, or share, of data in each category and

no matter what the aggregation level, the sum of the shares is always 1.

Thousands of academic papers use measures which simplify vast amounts of categorical data
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into an index, and I agree with John Gower that these are misapplications. Geometrically, all of

these measures are equivalent to plotting points in n-space and then �nding the distance between

them, using one of several common distance measures. 1 However, these categories of data may be

arbitrarily chosen. For example, the Harmonized System (HS) of international trade data is broken

down into industrial sectors and subsectors, always in a logical manner, but with no consistent

relationships between categories. For another example, consider psychological questionnaire data

which attempts to decipher various aspects of a person's personality. The problem is that this data

is measured in certain arbitrary ways, methods which may be obvious to the initial observer, but

does not follow the constraints of any particular theory to which a researcher may wish to analyze

it. When the arbitrary categories are in some way aggregated into an index, each category is treated

as if it were a separate dimension. In reality, these measures proxy for an underlying quantity: more

speci�cally, a personality test measures perhaps four di�erent aspects of personality, and no two

questions will measure those di�erences perfectly symmetrically. Some examples of statistical meth-

ods used to correct for this arbitrariness of categories, and to �nd the underlying latent variables,

include factor analysis, principal components analysis, principal coordinates analysis, and canonical

correlation analysis.

Consider a concrete example using international trade categories. The following are 4-digit SITC

Revision 3 categories: 8412 Men's suits and ensembles, 8413 Men's blazers and jackets, and 7832

Road Tractors for Semi-Trailers. Categories 8412 and 8413 are clearly quite similar since blazers

and jackets make up one of the components of a suit. On the other hand, both 8412 and 8413 are

probably not very similar to 7832: Road Tractors for Semi-Trailers. The problem is that all current

distance metrics treat each of these categories (and every other category) as a separate dimension,

orthogonal to every other dimension. However, in reality, categories are quite heterogeneous in

their similarity to one another, so it would be fallacious to assume mutual orthogonality. A distance

metric which accounts for this heterogeneity is described in a previous paper, Knippenberg (2012).

However, a more useful procedure would enable a researcher to calculate any distance metric 2 while

1I use the terms �distance measure� and �distance metric� interchangeably.
2Be it an absolute distance like Hirschman-Her�ndahl, or a relative distance from another object like Euclidean,
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still maintaining the original structure of the data. That procedure is the subject of this paper and

is detailed in the Methodology section.

How big is this problem and the corresponding bias? That depends on the data, but a rough

estimate is given by �nding the average value of the data's similarity matrix, where φi,j is the (i, j)

of a similarity matrix Φ:

bias =

n∑
i=1

n∑
j=1

φi,j − n

n2 − n
(1)

Using 4-digit SITC international trade data for the year 2000, this number is 481801.6−772
7722−772 = 0.808. In

other words, the average export product xi is, on average 80.8 percent like product xj . However, all

current distance metrics, and hence all standard trade metrics, implicitly assume that similarity is

zero between all categories. This is clearly not true, and without zero similarity between categories,

the standard multi-dimensional metrics are not valid.

The question naturally arises: how wide-spread is the problem? Well it exists in every branch of

science where each variable is treated as a separate dimension, and a distance metric is computed.

This includes Economics, Statistics, Biology, Psychology, Sociology, Political Science, and Computer

Science, to name a few. In Statistics the problem is most prevalent in Multi-dimensional scaling,

Cluster Analysis, Correspondence Analysis, and Procrustes Analysis where distances between multi-

dimensional objects is the chief concern. In this paper I will provide guidance on how to correct

metrics in these �elds. Second, how can one create useful and meaningful statistics based on high

dimensional data? I suggest a methodological solution and show how it changes the accepted

results of international trade statistics. Social science �elds in particular could bene�t greatly from

this procedure because of the extensive use of indexes of arbitary categories and weights. The

main limitation of this procedure is that it assumes a known similarity (or distance) matrix of its

components, which is not always well-de�ned. For my largest example I use international trade

data because a well-known procedure for calculating similarity has been introducted by Hidalgo,

Klinger, Barabási, and Hausmann (2007), however most sample spaces do not have an established

Canberra, or Manhattan.
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procedure and so may be unable to use this procedure until a similarity-calculating procedure is

found. This would be an ideal subject for future research.

To preview the proposed orthogonalization procedure, one can see it as a change of coordinate

systems. I take as given a set of data vectors and the measure of similarity between every pair of

its dimensions. The basic idea is that the similarity between dimensions can increase which reduces

distance between individual dimensions in a vector. This is best seen in the spherical coordinate

system (see Spiegel 1959, Munkres 1991). The measure of the angle from the vector to an axis is

given by θ or φ. the orthogonalization procedure then uses the change of coordinates to �nd the

length of this vector along each axis. The rectangular coordinate system is what most empirical

measures are based upon, at least those with concepts like angle and distance. So in order for a

quantitiative measure to be valid, we must change the coordinate system to what the measure is

assuming. This is the basic idea of the paper.

2 Literature

The aforementioned problem of heterogeneity between dimensions is, as far this author can tell,

completely unacknowledged when working with shares data. That said, the problem is recognized

when working with quantitative variables which are not in the form of shares, and has been the

focus of substantial research. I can identify 9 distinct orthogonalization procedures each of which

are based on two basic methods, of which there are undoubtedly more. The �rst method, found

overwhelming in Statisitics and Econometrics, involves the use of a correlation or covariance matrix

to �nd orthogonal dimensions. The second method, found in Mathematics and applied in Computer

Science and Physics, involves knowing exactly how the system behaves in a non-stochastic fashion

and having perfect measurements.

Two ideas distinguish my problem and solution from the rest of the literature. The �rst is that

the data which I am examing always exists on a unit simplex. Thus the range of possible values

that variables may take is relatively limited, and no negative values are allowed. This eliminates

the use of correlation and covariance matrices since these procedures commonly produce negative
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values. Secondly, my over-arching argument rests on the idea that the true coordinates of these

observations are not known, but detailed information exists in the form of similarity values which

can be used to �nd the true location.

2.1 Stochastic Methods of Orthogonalization

First I examine statistical methods in which the data is understood to be stochastic. That is, every

observation is multi-dimensional and has error, so notions of variance, covariance, and correlation

are applicable. Many orthogonalization methods take a latent variable (eigenvalue-eigenvector) ap-

proach. These methods includes multidimensional scaling, principal components analysis, principle

coordinates analysis and factor analysis, which I discuss in detail below. Furthermore regression

analysis is a statistical method of orthogonalization but does not use latent variables.

First consider principal components analysis. In principal components analysis, for a given set

of multidimensional observations, there are assumed to be underlying latent variables which are

correlated, and can be combined into fewer dimensions. Using the eigenvalues of the covariance or

correlation matrix, the corresponding eigenvectors tell how the data should be rotated and scaled,

and judgment may be exercised to identify the most important of the resulting dimensions. So

principal components analysis is similar to what I am proposing because of the rotation. The re-

sulting data produced from principal components has the identity matrix as its correlation matrix.

Similarly, my proposed orthogonalization procedure also produces the identity matrix as its simi-

larity matrix. Now it is worth noting that my orthogonalization procedure di�ers from principal

components analysis in several ways. For one, I am only using shares data, for which the analysis is

not the same as with correlation data. With shares data similarity matrices are more relevant than

covariance matrices, because the dimensions can only be positively related. Third, reduction and

identi�cation of dimensions is not at all a priority in this paper, contrary to principal components

analysis. Lastly, the big advantage over principal components analysis is that this orthogonalization

process can have more variables than observations.

Similar to principal components analysis is principal coordinates analysis. This process allows a

researcher to create a dataset of orthogonal variables, much like this paper suggests. However, the
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idea behind principal coordinates is that it takes a distance measure between all pairs of observations

and gives them coordinates; according to Gower (1967, pg.19), �We can ask how the coordinates of

points with the given distances be found.�. On the other hand, the orthogonalization method that I

discuss in this paper adjusts for a similarity measure between variables. The idea of this adjustment

between variables is that, afterward, similarity between observations (or other measures) can be

measured, based on the adjusted variables. Consider that principle coordinates analysis takes a

matrix of similarities between observations as given, and then adjusts the variables to �t those

similarities. In contrast, the orthogonalization procedure described herein is quite the opposite

in that it seeks to create a similarity matrix between observations based on the given similarity

between the variables.

Third, and also similar to principal components analysis, is factor analysis. In factor analysis a

researcher attempts to identify unobserved, latent categorical variables. In this case the covariance

between dimensions leads to recognition of a previously unidenti�ed latent variable. So this statis-

tical method successfully deals with the problem of heterogeneous similarity between categories.

Fourth, this paper is related to the multidimensional scaling literature which is a modern,

simpli�ed version of principal coordinates analysis and which makes very wide use of similarity

matrices in order to represent large multivariate data sets in several smaller dimensions. In terms

of economics, this is the same as breaking downs factors into wide categories like high- or low-

skill labor, capital, land, etc. Or in consumer preferences as demand for di�erent foods like grains

versus fruits, vegetables, meat, etc. What di�ers from multidimensional scaling? Consider this: a

researcher is often not interested in di�erences between attributes and how to categorize them, but

rather is interested in how di�erent attributes a�ect agents. In other words, consider three goods:

corn, wheat, and computers. This paper is concerned not with the attributes of corn, �our, and

computers, but rather with the reasons why one person would prefer one bundle of these goods over

another. Or in the context of international trade, why one country which produces a given bundle

would trade with a country that produces another bundle. In such an analysis, the similarities

between any two goods is trivial and only matters because it a�ects how I calculate production or
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exports.

Fifth, regression analysis and analysis of variance, are chie�y concerned with accounting for

covariance. Each variable is treated as a dimension, and the covariance between dimensions can

greatly a�ect the estimate of the mean value of a regressor on the regressand. In an abstract way

this is similar because the practitioner realizes that variables are not completely independent of one

another, and so the covariance, or angle between dimensions, is included in the process by design.

Not including important covariates leads to omitted variable bias: the magnitude of a parameter is

inaccurate. This is geometrically equivalent to a parameter value being projected onto an n-plane

but not parallel to its coordinate axis, with the angle between its proposed axis and the actual

projection proportional to the correlation with the omitted variable. This is exactly the argument

that I am making for distance measures.

2.2 Exact Methods of Orthogonalization

The second class of orthogonalizatin procedures is based on mathematical procedures for rotation,

have no stochastic assumption, and the underlying data generating process has no latent variables.

The ever-present implicit assumption that I am trying to upend here is that n-space coordinates are

always known. For this reason the Gram-Schmidt process, the Householder Transformation, and

the Givens Rotation can all be ruled out as potential orthogonalization techniques because they all

make this assumption. I am not going to detail each method, because none of them can work due

to this assumption. Again, each assumes that the coordinates of a vector are known, whereas I only

assume partial information about the coordinates is known.

2.3 Other Literature

Sixth, this paper has ties to Measure Theory. A main point of measure theory concerns distinguish-

ing a measurement of an attribute from the attribute itself. Consider common commodities like

wheat, corn, and computers. How di�erent are these things? As economists, we don't particularly

care about wheat, corn, or computers in themselves, but rather about the implied underlying pro-

ductive or demand structures of each of which determine the composition of output. So what we are
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able to measure is not necessarily the same as what we need to measure to form general theoretical

statements.

Seventh, this paper closely relates to Index Number Theory, however, this paper has nothing

direct to say about prices. In Index Number Theory, one can typically identify two distinct ap-

proaches: the Axiomatic Approach versus the Economic Approach. What is the point to having

these two di�erent approaches? The point is that the data does not line up exactly with theory be-

cause the theory is coordinate-free. So the Axiomatic Approach is more like a theoretical approach

in that it carries over weights from one period to another, or from one country to another, whereas

the economic approach is more like an empirical approach in that it allows comparison of consumers

revealed preferences. The reason for these two approaches is that data is not exact enough to specify

exactly what the researcher is trying to show. The problem is that product categories are pair-wise

arbitrarily determined, so that no pair of goods can be assumed to have any particular relationship

to any other pair of goods. This is implicitly understood by economists, and the two approaches

take di�erent steps to ameliorating this problem. This paper suggests another method: to make

the pair-wise relationships between goods the same in any data vector. This process will make both

approaches equally valid because it will eliminate the problem of assigning weights.

No papers directly address or recognize the non-orthogonality problem in relation to distance

metrics. I can �nd only two exceptions. The �rst is the textbook Gentle (2007) which dedicates

an entire section of the book to angular representations of correlation, covariance, similarity, and

distance matrices. And second are pages 25-26 of Gower (1967). Gower writes at length about

how the angle between two vectors is given by a cosine representation, which is exactly the same

problem that I discuss in this paper. The di�erence here is that Gower is assuming these angles are

the subject of interest, whereas I assume that these angles are given and are not of any particular

interest. Furthermore, he assumes that the angles between observations is given, not the angle

between variates (see Table 1). So, in a sense, I am assuming and proving the contra-positive of

Gower's passage.

10



3 Methodology

The problem, stated in yet another way, is that the categories in which much data is classi�ed

is ad hoc, with some categories more alike than others. To �x this problem, one �rst needs a

measure of similarity between all dimensions, to which I will defer to other papers. For example

in International Trade see Hidalgo, et al (2007) or for a more general treatment see Dauxois and

Nkiet (2002). Second, accoding to Gentle (2007), this similarity data is best viewed as representing

the angle between dimensions. With this in mind, the orthogonalization procedure is then to take

each data share xc,i and project it onto an orthogonal coordinate system, Euclidean n-space. Then

one can apply any number of distance metrics. This projection is best viewed as a change from

hyperspherical 3 to rectangular coordinates for each individual dimension.

3.1 Similarity Matrices and Angle Between Dimensions

Similarity matrices are rarely studied in the Economics literature. For one, the term �similarity�

is ambiguous in that it could refer to a host of attributes. Additionally, similarity does not come

from any speci�c theoretical model. In relation to international trade data, two interpretations

of similarity should immediately come to mind. First on the demand side, similarity could be a

measure of the elasticity of substitution between goods A and B: more similar goods are better

substitutes for one another. Second, on the production side, similarity could refer to how similar are

two production processes or to the similarity in factor content. In this paper I am abstracting away

from this discussion and leaving it to other scholars to debate. I simply assume that a similarity

matrix is given.

Now for some notation. The most important distinction here from most textbooks is that I will

be treating each entry xc,i of a shares vector as a vector in and of itself. This is perfectly valid

because each entry represents a magnitude and, together with the similarity matrix, represents a

direction.

According to Gentle (2007), a similarity matrix gives information about the orientation of a set

3Known as polar coordinates when n = 2, spherical coordinates when n = 3, and hyperspherical coordinates when
n ≥ 4.
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of vectors: �The cosine of the angle between two vectors is related to the correlation between the

vectors, so a matrix of the cosine of the angle between the columns of a given matrix would also be

a similarity matrix� (pg 298). This is the most important fact: the values in a similarity matrix are

interpretable as the angle between dimensions. Furthermore, from pg. 26 of the same book:

angle(x, y) = cos−1
(
< x, y >

||x||||y||

)
(2)

Let x denote a vector of elements x1, ..., xn of arbitrary category shares such that
n∑

i=1

xi = 1. Let

φij denote the measure of similarity between any two dimensions i and j (equivalently, let 1 − φij

denote the measure of dissimilarity), where φij = 0 denotes completely dissimilar (orthogonal)

categories and φi,j = 0 denotes categories which would otherwise be identical if not for the arbitrary

misclassi�cation.

A special note here on the �Almost Orthogonal� property. The Almost Orthogonal property,

as described in Gentle (2007) on page 38 does not apply here. A simple proof shows that, for any

arbitrary vector with a 45◦ angle to each axis, the angle with any particular axis approaches 90◦ as

the number of dimensions increases. However, this does not apply to heterogeneous spaces such as

the product space. See Appendix C for further explanation.

3.2 The Spherical Coordinate System

Hyperspherical coordinate systems have found widespread use in Quantum Chemistry and Quantum

Physics, as the movement of atoms and molecules relative to one-another can be more parsimoniously

described. Other than the physical sciences, I can �nd only one paper that applies hyperspherical

coordinates. This is a Computer Science paper written about distance functions in search indexing

by Panda, Chang, and Qamra (2006). The only paper in the Statistics literature that is remotely

related to this study is that of Marsaglia (1972) which suggests that Monte Carlo simulation su�ers

from sampling problems and the way to �x this problem is to treat the data as if it were from a

sphere.

The following borrows heavily from Spiegel (1959). Denote a vector in three-dimensional Eu-

clidean space as (x1, y1, z1). Let r be the norm (Euclidean length) of a vector. Let θ be the angle
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between the z-axis and the x-y plane, in radians. Let φ be the angle between the x-axis and the

z-y plane. Then given the values for spherical coordinates (r, θ, φ), the corresponding rectangular

coordinates (x1, y1, z1) can be found by:

x = r sin θ cosφ (3)

y = r sin θ sinφ (4)

z = r cos θ (5)

The above equations are a projection of a vector in spherical coordinates into the rectangular

coordinate system. These should be familiar to the reader and are typically �rst encountered in

multvariate Calculus.

3.3 The Orthogonalization Procedure: Change of Coordinates

The most promising method to obtain an orthogonal coordinate system is to use a change from

hyperspherical to rectangular coordinates. I use the algorithm described in Lin (1995) 4. The basic

idea here is to treat each dimension of a vector as its own vector. Then, because the angle of each

dimension is known in regards to every other dimension, and using a trigonometric-based algorithm,

one can project the length of the vector onto each dimension, repeat for each entry in the vector,

and sum them up at the end.

De�ne a vector of shares data by x which has n rows indexed by i. The associated n by n

similarity matrix is Φ, with elements φi,j where rows are indexed by i and columns indexed by j.

Rede�ne Φ in terms of degrees and convert it from a similarity matrix to a distance matrix:

φ̂i,j = (1− φi,j)90 (6)

For every i, de�ne each entry in the vector xi as a radius. De�ne each column entry j in row i of

matrix Φ as the angle formed by the vector i to dimension j. To convert to rectangular coordinates,

4I thank Professor Jeanne Du�ot for providing me with an equivalent algorithm.
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align the numeraire good as the �rst good. This represents a simple rotation of the coordinate

system 5.

x̂1,i = x1 cos(φ1,1) (7)

Now, similarly, �nd the projection of the second good onto each axis. Do this for each of the n

goods using the following algorithm.

x̂2,i = x1 cosφ1,i

x̂3,i = x1 sinφ1,i cosφ2,i

x̂4,i = x1 sinφ1,i sinφ2,i cosφ3,i

· · ·

x̂n−2,i = r sinφ1,i sinφ2,i sinφ3,i · · · sinφn−3,i cosφn−2,i

x̂n−1,i = r sinφ1,i sinφ2,i sinφ3,i · · · sinφn−2,i cosφn−1,i

x̂n,i = r sinφ1,i sinφ2,i sinφ3,i · · · sinφn−1,i sinφn,i

(8)

The previous algorithm is adapted from Lin (1995).6 Note that the pattern of the hyperspherical

algorithm is such that the vast majority of terms are sine and each line ends with cosine except for

the very last line which ends in sine.

Repeat the above producedure for all i and then de�ne for all j:

x̂j =
n∑

i=1

x̂1,i (9)

The algorithm can be simpli�ed to the following for the i-th good and j-th adjusted good:

x̂i =
n∑

j=1

xj

(
i−1∏
k=1

sinφk,j

)
cosφi,j , ∀i < n. (10)

And when i = n, replace the cosine term with a sine term.

5A strictly coordinate-less or good-less coordinate system is not possible to calculate in this way because the
similarity matrix is symmetric with 1's down the diagonals, so the rank is at most (n-1), and declaring a numeraire
good allows one to compute the rectangular coordinates for n dimensions. This simple rotation does not a�ect the
magnitude of a distance measure, according to Borg and Groenen (1997, pg 281).

6As well as from a personal correspondence with my former undergraduate professor Jeanne Du�ot.
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And �nally, because this is shares data and exists on a unit simplex, the sum of the entries must

add to 1. De�ne total unadjusted shares (TUS)as:

TUS =

n∑
j=1

x̂j (11)

And normalize each entry using TUS:

x̂ai =
x̂i

TUS
(12)

The above equations outline the orthogonalization procedure for a single data vector. Likely

a researcher would be comparing many di�erent data vectors and would need to complete this

procedure for each vector. This is the end of the orthogonalization procedure.

3.4 Distance Metrics

The following is an introduction to a subset of common distance metrics used in many di�erent

statistical and social science �elds. Many more distance metrics exist, and as with the literature

review, this list is by no means exhaustive. In various �elds these distance metrics go by speci�c

names. For example, the Hirschman-Her�ndahl Index is computationaly equivalent to both the

Simpson Index in Sociology as well as the Hunter-Gaston Index in Microbiology, which are all

simply non-normalized Euclidean distance metrics of an observation's distance from the origin. In

other words, all multivariate measures on ratio data are applications one of the following distance

metrics.

Let Xc, Xd ∈ R, where Xc =

n∑
i=1

Xc,i and Xd =

n∑
i=1

Xd,i. And denote xc,i =
Xc,i

Xc
and xd,i =

Xd,i

Xd

so that
n∑

i=1

xc,i = 1 and
n∑

i=1

xd,i = 1. Let C and D be points in Euclidean n-space such that

C =


xc,1
xc,2
...
xc,n

 , D =


xd,1
xd,2
...
xd,n

 .
. The distance between points C and D can be calculated in several ways. The �rst basic class of

distance metrics is the Minkowski Metric:

DMinkowski =

(
n∑

i=1

|xc,i − xd,i|p
) 1

p

, p ≥ 1 (13)
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Where only the positive root is used. When p = 1, the distance metric is known as either Manhattan,

or City-Block Distance:

DManhattan =

n∑
i=1

|xc,i − xd,i| (14)

City-block distance gets its name from the fact that to get from one point to another in a city

grid one must follow the streets. Particularly in Manhattan, streets intersect at right angles, so the

absolute value in the di�erence in each street dimension is the total area one must travel. When

p=2, this is the straight-line distance, known as Euclidean Distance:

DEuclidean =

√√√√ n∑
i=1

(xc,i − xd,i)2 (15)

When p approaches in�nity, one gets Chebyshev's Distance:

DChebyshev =
n

max
i=1
|xc,i − xd,i| (16)

A second class of distance estimators scales the coordinate values. Canberra Distance typi�es this

class:

DCanberra =
n∑

i=1

|xc,i − xd,i|
|xc,i|+ |xd,i|

(17)

A third class of distance estimators include the Czekanowski Coe�cient, which goes by a myriad

of other names in other academic �elds. These metrics measure the amount of Manhattan overlap

between two multidimensional observations:

DCzekanowski = 1−
2

n∑
i=1

min (xc,i, xd,i)

n∑
i=1

(xc,i + xd,i)

(18)

Or with a slightly di�erent weighting structure which is invariant to relative size:

DFK =
n∑

i=1

min (xc,i, xd,i) (19)

DSN =
n∑

i=1

|xc,i − xd,i|
2

(20)

Where I show in Appendix A that:

DFK +DSN = 1 (21)
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4 Simulation

My above qualitative argument for the need for an orthogonalization procedure is hopefully persua-

sive. However, I �nd it useful to present a very general example using a series of simple simulations.

I will consider a three-dimensional world where a single observation xi is composed of k share at-

tributes, where the sum of k attributes is one. Using a random number generator, I will assign

values to the k attributes as well as to the k2

2 − k similarity between attributes. This is equivalent

to �nding a random point in a random k-space. I will then calculate the Euclidean distance to

the origin �rst ignoring the similarities, and then compare this to the Euclidean distance using the

orthogonalization procedure. I repeat this for varying values of n and k, with the results displayed

in Figures 2 and 1. Here the number of observations are n = 1, 2, ...120 7 which are plotted along the

x-axis, and the number of dimensions is k = 2, 3, ..., 160, 8 plotted along the y-axis. The z-axis (ver-

tical) represents the measured distance on k dimensions between a point and the origin, averaged

for n observations. Figure 2 ignores the similarity between dimensions and computes Euclidean

distance in the normal way. Compare these average values to those in Figure 1 which do take into

account the similarity between dimensions and thus compute the true average distances. Figure 3

plots the simple di�erence between the two surfaces.

By de�nition, the distances using the Law of Cosines are correct, it is the Euclidean distances,

ignoring the similarity between dimensions, that are incorrect. The di�erence between the two

methods is dramatic. Regular Euclidean distance shows a well-behaved, uniform decrease in distance

as the number of dimenions increases and is nearly invariant to the number of observations. On

the other hand, the distance metric based on the orthogonalization procedure shows a great deal of

variability in its measure, appropriately re�ecting the randomness programmed into the simulation.

Despite the di�erences in shape, the correlation between the two measures is 0.8.

This simulation demonstrates that the Euclidean distance metric ignores relevant data in its

computation. Furthermore, the values obtained from standard Euclidean distance are almost com-

7n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120
8k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160
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Figure 1: Actual Distance Using the Law of Cosines

pletely invariant to the number of observations, and are completely dependent on the number of

dimensions used. So these measures depend more on the number of dimensions used rather than

the actual values in the shares data.

5 Applications

The following section outlines a few examples in the literature where the orthgonalization method

can potentially yield great bene�t. I plan to academically pursue these topics in the near future. I

have drafted or am working on proposals on all of the following topics.

5.1 Application: Price Indices

The computation of index numbers su�ers from three primary challenges. The �rst is that the data

is in the form of categories, which naturally do not obey the laws of arithmetic. The second is

that the weights of categories change over time. These �rst two challenges are commonly referred

to as the �Index Number Problem.� The third is that classi�cation and categorical ambiguity
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Figure 2: Estimate Using Euclidean Distance

can frequently lead to mis-measured data because categories are arbitrarily chosen. Using the

Orthogonalization procedure to produce product category weights, as I've outline above, solves all

three problems simultaneously. This process, instead of bypassing the arithmetic problem, uses the

categories to its advantage. I solve the weighting problem of index numbers by using time-invariant

weights: each orthogonal category carries an equal weight. I also solve the measurement problem

by allocating any potentially cross-related categories into appropriate orthogonal categories. Using

the orthogonal categories, indexes such Laspreyes, Geometric Mean, Walsh, Paasche, etc. are all

equally valid measures of the price index.

5.2 Application: Sociology: The Index of Qualitative Variation

In sociology a common measure of categorical variation is the Index of Qualitative Variation (IQV).

The Index is most often used to compare levels of racial diversity across locales or across time.

Consider this: in the 18th century, German scientist Johann Friedrich Blumenbach proposed cat-
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Figure 3: Di�erence Between Actual and Estimated

egorizing people as red, yellow, brown, black, and white (Funderburg 2013, 83). The simplicity

of this categorization has, quite understandably, been contentiously opposed. The o�ense is likely

not so much in the names used, as it is in the broadness of each category. When being given a

label, most individuals would likely want to be recognized as closely as possible to the category in

which they self-identify. To this end, a researcher may feel compelled to divide the categories into

smaller subcategories. The only problem is that the index monotonically increases with the number

of categories. While it's possible that this measure is correct at any aggregation level, the point is

that it's not clear which level of aggregation is appropriate. In particular, think about multi-racial

people. In computing the IQV, most researchers treat a bi- or multi-racial person as being in a

completely di�erent category. However, a multi-racial person is really, by de�nition, a combination

of races, making him or her a combination of racial categories.

The IQV equation is given by:
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IQV =
1−

∑
(pk)2

n− 1
(22)

Where pk is the share of group k in the total population. This is a normalized version of

Euclidean distance from the origin. So with cross-category observations, the bi- or multi-racial

observations can be partially grouped into categories, changing the computation in a way that is

not immediately clear.

5.3 Application: Development and Political Institutions: The Index of Ethno-

linguisitic Fractionalization

Incredibly similar to the IQV is a measure known as the Index of Ethno-linguistic Fractionalization

(ELF), which is applied extensively in the literature in the �elds of political science and economic

development. The equation is given by:

ELF = 1−
k∑

i=1

p2k (23)

Where k ≥ 2 and p2k is the share of ehtnic group k in the total population. This is a version of

non-normalized Euclidean distance from the origin.

The basic idea behind the Index is, just like the IQV, to measure diversity. The problem, as

clearly de�ned by Laitin and Posner (2001) is two-fold. First, a researcher needs to be careful about

the level of aggregation used in de�ning ethnic groups. Second, not all ethnic groups are equally

unalike. To this end, Bossert, D'Ambrosio and Ferrara (2005) de�ne a Her�ndahl Index that they

coin the Generalized Index of Ethno-linguistic Fractionalization Index which accounts for similarties

between categories. Indeed they almost de�ne the Law of Cosines distance metric in Knippenberg

(2013), but stop short of taking a geometric interpretation of distance metrics. So I am pleased that

this problem of non-zero similarity between categories has been recognized before in this literature,

but has not had any orthogonalization procedure applied.
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5.4 Application: Labor: Location Quotient

A location quotient can refer to a number of economic measures, but the idea and calculation is the

same. Consider the location quotient of professional Economists in Boulder, CO. According to the

BLS, The percentage of Economists in the workforce in Boulder over the percentage of Economists

in the workforce in the USA is 2.289. But aren't Professors of Economics also Economists? In many

cases isn't the work of a Statistician, Data Scientiest, or Climate Modeler substantially similar to

that of an Economist? In many cases the title of Economist is just that, a title. A collaborator of

an economist may be called by some other name, though their work is similar. If you accept the

argument that occupations are typically interdisciplinary or potentially haphazardly categorized,

then the case for orthogonalization speaks for itself. In fact, the location quotient is exactly the

same as the measure of revealed comparative advantage in international trade, which I discuss

throughly in the section 5.7.

5.5 Application: Business Analytics

In business, �rms bene�t from knowing the buying habits of consumers. For example the accuracy

and prevalence of the �next best o�er� model has simply exploded. This model predicts what a

costumer is likely to purchase next. This is based on the buying patterns of previous customers. For

example anyone who has had Internet access in the past decade should be familiar with ebay's �My

Feed�, Amazon's �Recommendations for You�, Net�ix's �Viewers Also Liked�, LinkedIn's �Groups you

may like�, or really anything with user-level targeted marketing. Every single one of these methods

uses a combination of similarity measures10 and distance metrics to measure the probability that

a consumer will buy a speci�c product, then issues that consumer the sales advertisement for the

good which he or she will most likely purchase. This maximizes expected sales, consumer uptake,

and customer interaction. The business analytics �eld would bene�t greatly from using corrected

distance metrics, since accurate measurements should equate to more sales, at least according to

9Data from the Occupational Employment Statistics, accessed online October 7, 2013. The calculation for the
location quotient is exactly the same as that for revealed comparative advantage.

10Either product similarity based on previous users' probabilities of purchasing or viewing two products, or simi-
larity between the pro�les one user and a group of others
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Bill Gates (2013, pg 52).

5.6 Application: Internet Search Indexing

Similar to business analytics, distance metrics are widely used by Internet search algorithms in order

to identify the most relevant webpages. The idea behind Google, Bing, Yahoo! and other indexers

is to gleen only the necessary data from massive databases that serves to both minimize the amount

computational work as well as maximize the relevance of the search results. This work could be

sped up by identifying and extracting only the orthogonal dimensions within the dataset. One

paper which identi�es the importance of hyperspherical coordinates and takes a similar approach

was written by Google engineers Nanveet Panda and Arun Qamra, along with Stanford Professor

Edward Chang (2006). The paper develops a multi-step matching algorithms for �nding nearest-

neighbors using hyperspherical coordinates. A similar paper by Wu, Chang and Panda (2005)

develops a computationally e�cient distance metric for search algorithms. My orthogonalization

technique is the same concept: it organizes large amounts of data in order to compute more accurate

distance metrics. The di�erence is that my technique does not have a built-in notion of dimensional

similarity, and is general enough to incorporate any class of distance metrics after the data has been

orthogonalized.

5.7 Application: Trade: International Trade Indices

This section details a few examples, starting with the lowest-dimensions (easiest) and �nishing

with higher dimensions. The �rst example takes place in two dimensions where hyperspherical

coordinates are referred to as �polar coordinates�. The second example expands this to a hypersphere

of 799 dimensions, taken from an example in International Trade, where the set of all exportable

goods is referred to as the �product space�.

5.7.1 International Trade Indices

This section details how every common international trade statistic using micro-trade (import/export

categories) data can be viewed as plotting a point in n-space and either �nding its absolute distance

from zero, or relative distance to another point. These de�ntions are taken from Ng (2002). Using
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the same notation as above, denote total exports of country c as Xc, where Xc =

n∑
i=1

Xc,i. De�ne

xc,i to be the share of good i in total exports of country c, where xc,i =
Xc,i

Xc
, and, consequently,

n∑
i=1

xc,i = 1. Equivalently for a second, but with the subscript d, and for the world, with the sub-

script w. All measurements except the last two are assumed to be taken in the same time period,

so time subscripts are otherwise suppressed.

The Hirschman-Her�ndahl Index:

HHIc,d =

√√√√√√
1(

n∑
i=1

xc,i

)2 (24)

The export similarity Index, Finger and Kreinin (1979):

FKc,d =
n∑

i=1

min (xc,i, xd,i) (25)

The Grubel-Lloyd Index, Grubel and Lloyd (1971):

GLc,d = 1−

n∑
i=1

|Xc,i −Xd,i|

n∑
i=1

(Xc,i −Xd,i)

(26)

Two de�nitions are common for the Export Diversi�cation Index. The �rst follows directly from

Finger and Kreinin (1979):

DX1c =
n∑

i=1

min (xc,i, xw,i) (27)

Where the subscript w stands for �world�. The more common de�nition is exactly the same as the

Hirschman Index:

DX2c =

√√√√√√
1(

n∑
i=1

xc,i

)2 (28)

The Trade Compatibility Index, Michaely (1996)11:

TCc,d = 100−

n∑
i=1

|Xc,i −Md,i|

2
(29)

11Also called the �Trade Complimentarity Index� [emphasis added], see Ng (2002).
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The Export Specialization Index:

ESc =
xc,i
md,i

(30)

Changes in Global Demand for Major Exports:

CGDc =

n∑
i=1

Si,0 (Xi,t −Xi,0) (31)

Changes in Global Market Share for Major Exports:

CGMSc = (Si,t − Si,0)Mg,t (32)

And lastly, the Thiel Index of export concentration:

Tc =
1

n

n∑
i=1

(
xi∑n
i=1 xi

)
ln

(
xi∑n
i=1 xi

)
(33)

As the reader can see, each trade statistic treats each export (or import) product as a separate

dimension, and there is no system of weights or compensation for dimensions being more or less

alike.

These trade statistics can be classi�ed in several ways. The Hirschman Index is of the absolute

type: they describe a country's export shares as some distance from the origin. All of the others are

of the relative type. The export diversi�cation (Finger and Kreinin) tells the manhattan distance

between a country's export shares and the world export shares. The rest give the distance between

two country's export shares: the Grubel-Lloyd gives the distance exactly in terms of Canberra

distance, and the rest of the trade statistics are of the relative type: they tell the distance between

two non-origin points. The export similarity and export diversi�cation measures (both based on

the work of Finger and Kreinin) are nearly identical to the Czekanowski Coe�cient, except that

they are already in terms of shares, whereas the Czekanowski Coe�cient converts to shares after

summing the values.

5.7.2 Simple Example: 2x2 International Trade

Consider a two-country world with two goods: guns and butter. The �rst country, denoted by c,

produces 20 percent butter and 80 percent guns, while the second country, denoted by d, produces
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70 percent butter and 30 percent guns:

yc =

[
yc,b
yc,g

]
=

[
0.2
0.8

]
, yd =

[
yd,b
yd,g

]
=

[
0.7
0.3

]
.

Then suppose the production of guns and butter share some common attributes. For example, both

need land: butter producers more so to raise dairy cows and but guns producers also need land

for placing factories. Both also need metal: butter producers need metal for producing churns and

vats, and but gun producers need metal relatively more to produce stocks and barrels. By some

external measurement process we know the the similarity between guns and butter to be 0.8, or 80

percent of the inputs are alike. Then the similarity matrix, denoted by Φ with individual elements

φb,b, φb,g, φg,b, and φg,g can be written:

Φ =

[
φb,b φb,g
φg,b φg,g

]
=

[
1 0.8

0.8 1

]
In polar coordinates, 0.8 is the proportion of the angle betwen the two vector dimensions of

guns and butter. Note that the bias indicated by this similarity matrix, using equation (1) is 0.8.

Now the measure of similarity needs to be converted into either radians or degrees, depending on

the software requirements, and so we can rede�ne the similarity matrix as a matrix of angles:

Φ̂ =

[
φ̂b,b φ̂b,g
φ̂g,b φ̂g,g

]
=

[
(1− 1)90◦ (1− 0.8)90◦

(1− 0.8)90◦ (1− 1)90◦

]
=

[
0◦ 18◦

18◦ 0◦

]
And note that cos(0◦) = 1 and cos(18◦) ≈ 0.951. See Figures 4 and 5 for a graphical represen-

tation. Now projecting the yc,b vector onto the yc,1 and yc,2 axes yields:

ŷc,1,1 = yc,b cos(0◦) = 0.2(1) = 0.2

ŷc,2,1 = yc,b sin(0◦) = 0.2(0) = 0

Similarly, projecting the yc,g vector onto the yc,1 and yc,2 vector space yields:

ŷc,1,2 = yc,g cos(18◦) = 0.8(0.951) = 0.761

ŷc,2,2 = yc,g sin(18◦) = 0.8(0.309) = 0.247

Then adding together the results of the two projections:

ŷc,1 = ŷc,1,1 + ŷc,1,2 = 0.2 + 0.761 = 0.961
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Figure 4: Unadjusted Shares

Figure 5: Projection onto Principal Axes

ŷc,2 = ŷc,2,1 + ŷc,2,2 = 0 + 0.247 = 0.247

Lastly, because this is shares data, the the sum of the shares must equal 1:

ŷc,1 + ŷc,2 = 0.961 + 0.247 = 1.208

And then:
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ŷac,1 = 0.961
1.208 = 0.796

ŷac,2 = 0.247
1.208 = 0.204

Equivalently for country d: Project the yd,b vector onto the yd,1 and yd,2 axes:

ŷd,1,1 = yd,b cos(0◦) = 0.7(1) = 0.7

ŷd,2,1 = yd,b sin(0◦) = 0.7(0) = 0

Similarly, projecting the yd,g vector onto the yd,1 and yd,2 vector space yields:

ŷd,1,2 = yd,g cos(18◦) = 0.3(0.951) = 0.285

ŷd,2,2 = yd,g sin(18◦) = 0.3(0.309) = 0.093

And the last step for country c is to add together the results of the two projections:

ŷd,1 = ŷd,1,1 + ŷd,1,2 = 0.7 + 0.285 = 0.985

ŷd,2 = ŷd,2,1 + ŷd,2,2 = 0 + 0.093 = 0.093

Lastly, because this is shares data, the the sum of the shares must equal 1:

ŷd,1 + ŷd,2 = 0.985 + 0.093 = 1.078

And then:

ŷad,1 = 0.985
1.078 = 0.914

ŷad,2 = 0.093
1.078 = 0.086

Where the �nal orthogonalized values can be rewritten in vector form as:

ŷac =

[
0.796
0.204

]
, ŷad =

[
0.914
0.086

]
.

One must be careful to realize that after adjusting the vectors, the magnitudes no longer have

the original interpretation. In other words, the components of the vectors no longer represent shares

of guns and butter. Each component of each new vector is now a non-linear composite of the other

components.

If one wanted to compare the structure of these economies, one could now �nd the normalized

Euclidean distance between the two:

distac,d =
1√
2

√
(0.795− 0.914)2 + (0.204− 0.086)2 =

0.168√
2

= 0.119, (34)
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And notice that for the unadjusted vectors, the normalized Euclidean distance would have been:

distac,d =
1√
2

√
(0.2− 0.7)2 + (0.8− 0.3)2 =

0.707√
2

= 0.5, (35)

As an aside, the Law of Cosines distance metric in Knippenberg (2012) �nds the Euclidean

distance between the unadjusted vectors which is equivalent to the distance between the adjusted

but non-normalized vectors, see Appendix B for the proof.

The reader can hopefully see that when similarity is zero, then cos(0) = 1, allowing the orthog-

onalization process to return the original vectors of guns and butter. Now, to take the analysis a

step further, assume that the export share vector of each country is in exactly the same proportion

as their production vectors:

xc = yc =

[
0.2
0.8

]
, xd = yd =

[
0.7
0.3

]
.

To abstract from any confounding e�ects, assume that each country has equal economic output, that

these are the only two countries in the world, and that each exports goods equal to 1 normalized unit

of value. Abstracting away from any theory on why the countries are trading or on their quantities

of that trade, the empirical international trade literature suggests a number of measures.

Using the original, unadjusted trade vectors, the composition of bilateral trade is given by

GLun
c,d = 0.5. Contrast this to using the adjusted vectors: GLa

c,d = 0.833. Is this di�erence

economically substantial? This is unclear from our arbitrary example, but if any of the values

were di�erent, this index could potentially change substantially. Note that the orthogonalization

producedure makes the absolute di�erence between the two vectors equal. For the �rst good:

|0.705− 0.872| = 0.167 and for the second good: |0.295− 0.128| = 0.167. This implies a future

application of this procedure: that this procedure should produce a continuum of theoretical goods

which, which arranged in a line, should have properties which mimic those of a continuum of goods

assumption, as in Dornbusch, Fischer, and Samuelson (1977), Krugman (1979, 1980), Helpman and

Krugman (1984), Melitz (2003), and so forth. Again, this is another area for future research.

Second, consider the non-normalized Hirschman-Her�ndahl Index of export concentration (Hirschman
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1945, 1964):

Hc =
2∑

i=1

(
xc,i
Xc

)2

(36)

Where xc,i/Xc is the share of good i in the export bundle of country c. Using the original data,

this comes out to be Hun
c = 0.68 and Hun

d = 0.58. And using the adjusted data vectors this comes

out as: Ha
c = 0.584 and Ha

d = 0.777. Again, the economic signi�cance of the di�erences between

these two measures is subjective, but what is interesting is that the ordering has reversed. Where

in the unadjusted index, country c was the more concentrated country, in the adjusted index, the

more concentrated country is now d.

5.7.3 The Product Space

Here I demonstrate the change-of-coordinates orthogonalization procedure in a high-dimensional

example: that of the product space of international trade. The product space is an idea conceived

and visualized by Hidalgo, et al. (2007), who use export shares to �nd a measure of similarity

between export product categories and then map them using a network analysis approach. I take

their analysis a step further by using the similarity measures to adjust the original country export

vectors, and I show that the measurements, while clearly correlated, are very di�erent. Because of

the computational intensity of the orthogonalization producedure 12 , I have only produced estimates

on the export similarity measure. A detailed treatment of the consequences of changing the export

similarity measure can be found in Knippenberg (2012), where I insert the new export similarity

measure into a gravity equation of international trade and �nd very di�erent results from previous

studies.

Export similarity was �rst conceived by Finger and Kreinin (1979) as a simple measure for

comparing export content across either countries or time. I denote this measure as FKc,d and it is

de�ned in equation (22). I use a version of FKc,d, which is derived in Sun and Ng (2000), and is

given in equation (19). The measure has been used in hundreds of academic papers on international

trade.

12Computing this variable for 47,653 observations took approximately four weeks on a desktop computer with a
quad-core 3.3Ghz processor.

30



The steps taken to arrive at these export similarity indices are as follows. First I downloaded

the export data from Feenstra's website. The data is 4-digit SITC trade data with 799 categories.

I am using 5-year intervals from 1970 to 2000 for 133 countries. Second, I transform export values

into export shares. Third, I follow Hidalgo, et al. (2007) to calculate similarity between export

categories. Fourth, using this similarity matrix and export shares, I apply the orthogonalization

procedure to obtain the adjusted export vectors. Lastly, I apply a Euclidean Distance algorithm

to the adjusted export vectors to calculate export similarity between countries c and d at time t.

Strictly for the sake of comparison, I then use the original shares data to calculate export similarity

in the way that Finger and Kreinin suggest, as given in equation (25).

Now look below at Figure 1 which compares histograms of the adjusted (left) and unadjusted

(right) export similarity values. For both histograms, 0 represents two countries having no exports

in common and 1 represents two countries having exactly the same proportion of exports. The

adjusted measure is approximately normally distributed, with a mean of 0.55. In contrast, the

Finger and Kreinin measure is approximately exponentially distributed with a mean of 0.1066 13.

The point of this �gure is to show that a simple distance metric can have extremely di�erent values

based on its underlying assumptions, even though they claim to be computing equivalent measures.

Next, Figure 2 shows the same data, but combined in a scatterplot. Each point represents the

value of the adjusted export similarity measurement (y-axis) with the unadjusted export similarity

measurement (x-axis). Again, observations are for each country pair (c, d) at time t. Notice that all

points lie on or above the 45◦ line; where the 45◦ line represents no di�erence between the export

similarity measures. This is because the adjusted export similarity measure accounts for both the

typical categorical similarities as well as cross-category product similarities, something which is not

measured by the traditional metric.

5.8 Other Applications

The orthogonalization producedure described herein applies to situations where aggregates of ar-

bitrarily chosen categories are used to measure di�erences between structures. It is not applicable

13The lambda parameter of the exponential distribution is 1/E(X) = 9.381.
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Figure 6: Histograms of Export Similarity Measures

to situations in which similarity between variates or correlation is already accounted for, such as

regression analysis or principal components analysis. Given the nature of international trade shares

data, this orthogonalizaiton procedure is clearly applicable. Furthermore, New Trade Theory mod-

els assume an equal marginal rate of substitution between varieties of a good. However, if two

varieties are more similar than either are to any third, then equal marginal rates of substitution

cannot mathematically hold. After applying this orthogonalization procedure, the marginal rates

of substitution between the adjusted goods should be equal because the variables are orthogonal

to one another. This would make the data consistent with the theory, and is a promising area for

future research.

This procedure works only when a bivariate notion of �similarity� or �distance� is computable,

as these similarity measures directly feed into the equation. This procedure is not applicable where

similarity is not de�ned or calculable. Finding a way to calculate this similarity in many di�erent

contexts is an area for future research where notions of covariance, correlation, may be very impor-

tant. Furthermore, a simple lack of a way to calculate similarity doesn't make the previous distance

metrics any more valid - they are still computed using the incorrect coordinate system.
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Figure 7: Scatterplot of Original and Adjusted Export Similarity Measures

This procedure does not apply in regression because regression already adjusts for covariance

between variables. All types of regression procedures accounts for any similarity between dimensions.

Also, this procedure does not apply to computed indices which have mutually-exclusive categories

which clearly never overlap. For example, the Her�ndahl Index of industry concentration is a sum of

the squared market shares of �rms (see for example Hirschman (1964), among many others), with

the keyword being �rms. This is di�erent from the international trade de�nition, which de�ned

on categories, not �rms. The orthogonalization procedure would not work here because �rms are

independent entities, and a similarity matrix would already be the identity matrix, meaning no

adjustment is necessary.
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6 Conclusion

I like the following quote from a linear algebra textbook: �Physical Laws must be independent of

any particular coordinate system used in describing them mathematically, if they are to be valid�

Spiegel (1959 pg 166). It reminds me that just because you can measure something doesn't mean

that what you have measured must necessarily obey the laws of your theory: sometimes a researcher

has to manipulate data to make sense of it. In the case of shares data, often it is in the wrong

coordinate system and must be converted to the proper system before familiar measures can be

applied, like measures of distance in the rectangular coordinate system. I have argued throughout

this paper that arbitrary classi�cations are not automatically de�ned by the rectangular coordinate

system. However the rectangular coordinate system is the only requirement for applying familiar

statistical distance metrics. In other words, the principle axes of the coordinate system are rarely

the same as the axes of the data, so distance metrics cannot be immediately applied.

Besides the justi�cation of the orthogonalization procedure, the previous paragraphs have also

laid out areas for future research. The more mundane of these include re-estimating the e�ects

of unbiased indices on outcomes. For example in trade, this would include the e�ect of export

similarity or diversi�cation on bilateral trade (Knippenberg 2012), or likewise the e�ect of the

Grubel-Lloyd or Her�ndahl Indices on various response variables. Theoretical research, on the

other hand, holds even more promising avenues. As touched upon earlier, the continuum of goods

assumption in International Trade can be re-visited: after normalizing the goods vectors, each

adjusted good should have equal marginal rates of substitution, as each represents an orthogonal

underlying good. I have written this paper in an attempt to stay as general as possible about its

applications: the extensive examples in international trade are merely a consequence of my own

experience. The concepts described herein have wide applicability in all areas of empirical research

and I look forward to conducting these applications in the near future.
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A Appendix: Proof to Equivalence of Finger-Kreinin and Sun-Ng

Distance Measures

This section provides a proof that the export similarity measures from Finger and Kreinin (1979)

(FK) and Sun and Ng (2000) (SN) are perfectly negatively correlated. Because of the minimum

function in FK and the absolute function in SN, this proof is not conducive to deduction, but an

inductive argument is easier to show. De�ne FK and SN according to their authors:

FK =

n∑
i=1

min(
xc,i
Xc

,
xd,i
Xd

), (37)

and:

SN =
n∑

i=1

|xc,i − xd,i|
2

(38)

Proposition:

Let n denote the number of export products. Let c and d be any two countries. Denote
export share of good i in country c as xc,i, where i = 1, ..., n. Because xc,i is an export share,

n∑
i=1

xc,i = 1, (39)

is satis�ed by the de�nition of a share. The same equation also holds for any other country
d. Let the sums FK and SN be de�ned as above, then the following equality always holds:

SN = 1− FK (40)

Proof:

A.1 Case 1.1

Let n = 2 and Let xc,1 = xd,1, then because xc,1 + xc,2 = 1 and xd,1 + xd,2 = 1, it must also
be true that xc,2 = xd,2. In this case,

FK = min(xc,1, xd,1) +min(+xc,2, xd,2)

= xc,1 + xc,2

= 1

(41)

Similarly,

SN =
xc,1 − xd,1

2
+
xc,2 − xd,2

2
(42)

By assumption, xc,1 − xd,1 = 0 and since xc,2 = xd,2, then xc,2 − xd,2 = 0, making SN = 0.
Thus, trivially,

SN = 1− FK. (43)
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A.2 Case 1.2

Let n = 2 and xc,1 > xd,1. Then the de�nition of shares data, (39), implies that xc,2 < xd,2.
So by the de�nition of FK:

FK = xc,2 + xd,1. (44)

Rewrite the shares de�nition (39) for country c as:

xc,1 = 1− xc,2. (45)

Likewise, rewrite the shares de�nition (39) for country d as:

xd,2 = 1− xd,1. (46)

The SN index (38) can be written as:

SN =
xc,1 − xd,1

2
+
xd,2 − xc,2

2
(47)

Now directly plug-in (45) and (46):

SN =
1

2
[(1− xc,2 − xc,2) + (1− xd,1 − xd, 1)] (48)

Simplifying:

SN =
1

2
[(1− 2xc,2) + (1− 2xd,1)] (49)

and:

SN =
1

2
− xc,2 +

1

2
− xd,1, (50)

and:
SN = 1− (xc,2 + xd,1), (51)

and notice that the two terms in the parentheses are exactly equal to FK (44), so subbing
into the equation gives:

SN = 1− FK, (52)

A.3 Case 2.1

Let n ≥ 2 and xc,i = xd,i for i = 1, ..., n. Then, trivially,

FK =
n∑

i=1

xc,i = 1 (53)

And, similarly,

SN =
n∑

i=1

1

2
[xc,i − xd,i], (54)

and since xc,i = xd,i ∀i = 1, ..., n by assumption, SN = 0. Thus, trivially:

SN = 1− FK (55)
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A.4 Case 2.2

Let n ≥ 2 and xc,i > xd,i for i = 1, ..., j. Let xc,i > xd,i for i = 1, ..., k. Let xc,i > xd,i for
i = 1, ..., l. Where j + k + l = n, and j, k, l ≥ 0. Then by de�ntion, Equation (37) implies:

FK =

j∑
i=1

xc,i +
k∑

i=1

xd,i +
l∑

i=1

xc,i. (56)

Or equivalently where the last summation is replaced by xd,i, i = 1, ..., l. By the shares
de�nition, Equation (39) implies for country c:

j∑
i=1

xc,i +
k∑

i=1

xc,i +
l∑

i=1

xc,i = 1, (57)

as well as for country d:
j∑

i=1

xd,i +
k∑

i=1

xd,i +
l∑

i=1

xd,i = 1. (58)

And by the de�nition SN (38):

SN =
1

2

[
j∑

i=1

(xc,i − xd,i) +
k∑

i=1

(xd,i − xc,i) +
l∑

i=1

(xc,i − xd,i)

]
. (59)

Distributing through the summations and rearranging yields:

SN =
1

2

[
j∑

i=1

xc,i −
k∑

i=1

xc,i +
l∑

i=1

xc,i −
j∑

i=1

xd,i +
k∑

i=1

xd,i −
l∑

i=1

xd,i

]
. (60)

Rearranging (57) implies:

j∑
i=1

xc,i +
l∑

i=1

xc,i = 1−
k∑

i=1

xc,i, (61)

and likewise from rearranging (58):

k∑
i=1

xd,i = 1−
j∑

i=1

xd,i −
l∑

i=1

xd,i. (62)

Plugging these two expressions into (60) yields:

SN =
1

2

[
1−

k∑
i=1

xc,i −
k∑

i=1

xc,i + 1−
j∑

i=1

xd,i −
j∑

i=1

xd,i −
l∑

i=1

xd,i −
l∑

i=1

xd,i

]
. (63)

Grouping like terms gives:

SN =
1

2

[
2− 2

k∑
i=1

xc,i − 2

j∑
i=1

xd,i − 2
l∑

i=1

xd,i

]
. (64)
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Simplifying:

SN = 1−

[
k∑

i=1

xc,i −
j∑

i=1

xd,i −
l∑

i=1

xd,i

]
. (65)

Then substituting in the de�nition of FK, Equation (56), yields the desired result:

SN = 1− FK. (66)

Thus the relationship holds for both n = 2 and n ≥ 2, proving the proposition by induction.
�
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B Appendix: Proof of Equivalence Between Orthogonalization and

the n-Dimesional Law of Cosines

Proposition:

In an n-Hilbert space, the norm distance ‖< ~x1, ~x2 >‖ with similarity matrix Φ equals

‖< ~̂x1, ~̂x2 >‖ with similarity matrix I, the identity matrix.
I will only prove this equivalence for the two-good case. The notation needed to prove

the proposition in higher dimensions is incredibly cumbersome, but the concepts needed are
simply algebraic. One can easily see how to extend the proof to higher dimensions.

Proof: (2-dimensions) According to Knippenberg (2012), the distance measure using the
n-dimensional Law of Cosines is:

distc,d =
1√
2

√
(xc,1 − xd,1)2 + (xc,2 − xd,2)2 − 2(xc,1 − xd,1)(xc,2 − xd,2)cos(90− φ) (67)

According to the orthogonalization procedure described in the text, the adjusted vectors can
be written as:
x̂c,1 = xc,1 + xc,2 cos(90− φ),
x̂c,2 = xc,2 sin(90− φ),
x̂d,1 = xd,1 + xd,2 cos(90− φ),
x̂d,2 = xd,2 sin(90− φ).
Note that: cos(90− φ) = sin(φ),
and sin(90− φ) = cos(φ).
Sub these into the usual de�nition of Euclidean distance, the norm distance in a Hilbert
subspace, normalized to the unit inverval:

2dist2c,d = [(xc,1 + xc,2 cos(90− φ))− (xd,1 + xd,2 cos(90− φ))]2 (68)

+ [(xc,2 sin(90− φ))− (xd,2 sin(90− φ))]2 (69)

Rearrange, grouping like terms:

distc,d =
1√
2

√
(xc,1 − xd,1 + (xc,2 − xd,2) cos(φ))2 + ((xc,2 − xd,2) sin(φ))2 (70)

Multiply out the squared terms, group like terms and simplify:

distc,d =
1√
2

√
(xc,1 − xd,1)2 + (xc,2 − xd,2)2(cos2 φ+ sin2φ)− 2(xc,1 − xd,1)(xc,2 − xd,2)cos(φ)

(71)
By de�nition, sin2 φ+ cos2 φ = 1, which yields:

distc,d =
1√
2

√
(xc,1 − xd,1)2 + (xc,2 − xd,2)2 − 2(xc,1 − xd,1)(xc,2 − xd,2)cos(90− φ) (72)

Which exactly equals the distance measure obtained from the Law of Cosines. �
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C Appendix: The Almost Orthogonal Property

A potentially damaging Proposition is the Almost Orthogonal Property, found for example
in Gentle (2007, pg 38). It states that the angle between a vector and an axis increases to
90◦ as the number of dimensions increases. The property is given below and is followed by
an explanation as to why it does not apply to this study.

Proposition:

For an arbitrary vector xc, the angle between the vector and any given axis approaches 90
degrees as the number of dimensions increases. For purely illustrative purposes, consider the
property in lower dimensions: Let

x =

[
1
1

]
,

and de�ne each unit axis as

yc =

[
1
0

]
, yd =

[
0
1

]
.

De�ne the angle between any two vectors x and y as: angle(x, y) = cos−1
(

<x,y>
||x||||y||

)
. Then

angle(x, yc) = angle(x, yd) = cos−1
(

1√
12+12

√
12

)
= 45◦. For three dimensions, the angle is

about 54.74◦.

Proof: (for n-dimensions) Let

x =


1
1
...
1

 ,
and de�ne each axis as

yi =


0
...
1
...
0

 , ∀i = 1, ...n

where yi is a vector of zeroes except in the i-th entry.
Then the angle between x and any yi is:

angle(x, yi) = cos−1
(

1√
n
√
12

)
.

and taking the limit as n approaches in�nity:

lim
n→∞

angle(x, yi) = cos−1
(

1√
∞

)
= cos−1

(
1

∞

)
= cos−1(0)

= 90◦,∀i (73)
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However, this property does not apply to a heterogeneous space such as the product
space for two reasons. First of all, as evidenced in Hidalgo et al (2007), the Product Space is
extremely heterogeneous: some areas of the product space are dense and others are disparate.
In terms of the previous equation, this di�erence can be interpreted as unit axes having
multiple entries with length perhaps summing to more or less than unity.

Secondly, and probably more importantly, the distribution of xi (export shares) is neither
uniform nor random. Most countries in the world do not export or import every possible
good, reducing the number of dimensions in most cases. Also, the patterns of similar goods
that countries do export is not random nor evenly divided between categories. In other
words, in an orthogonal coordinate system, all axes are equally di�erent from one another.
But in a non-orthogonal coordinate system, such as one that naturally arises with categorical
dimensions, the

Because of these two reasons, the Almost Orthogonal property does not apply to the
Product Space of International Trade, nor to any part of economics made up of industry
classi�cations, though I cannot necessarily speak for disciplines other than economics.
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