
 
 
 

DISCUSSION PAPERS IN ECONOMICS 
 

 

Working Paper No. 09-15 

 

Valuing public goods with changing implicit prices 
 

 

 
 
 
 
 
 
 

Megan Lawson 
 

 
University of Colorado 

 
 

December 2009 
 

 

  
 Department of Economics 

 
 
 
 

University of Colorado at Boulder 
Boulder, Colorado 80309 

 
© December 2009 Megan Lawson 



Valuing public goods with changing implicit prices

Megan Lawson
University of Colorado-Boulder

November 21, 2009

Abstract

Traditional panel data methods applied to estimate hedonic models assume that
the implicit prices of housing attributes remain constant over time. In this paper I
demonstrate that this assumption may not hold true when there are large changes in the
supply of the public good over time, and failure to account for changing implicit prices
can lead to biased estimates of the value of changes in public goods. I use air quality
in southern California, measured as exposure to toxic air emissions, to demonstrate
the effect of violating the assumption of constant implicit prices on estimates of the
implicit price for air quality improvements.

1 Introduction

If toxic air pollution is a disamenity, hedonic theory tells us that the prices of houses with

more exposure to pollution should be lower than houses with less pollution. However, em-

pirical evidence has not always supported this hypothesis. One possible explanation for this

inconsistent evidence is that implicit prices for air quality improvements may change over

time, and models that do not account for these changes will produce biased estimates of

the value of changes in pollution levels. In this paper I ask the following research question:

in hedonic models, what portion of observed changes in housing prices is attributable to

changes in the implicit price of that public good? When they are not identified separately

from per-unit values, changes in the implicit prices of an amenity can bias estimates of the

effect of changes in amenities on housing prices. In this paper I evaluate the relative mag-
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nitude of these two components of price change and demonstrate the effect of their relative

sizes on inference about capitalization, using exposure to toxic air pollution.

Panel data and difference-in-difference methods are increasingly popular methods of esti-

mating amenity capitalization in the hedonic price valuation literature (Gautier, Siegmann,

& Van Vuuren, 2009; Pope, 2008b, 2008a; Anderson & West, 2006). These methods are pop-

ular because they allow researchers to control for unobserved differences between properties,

avoiding unobserved variable bias and endogeneity problems associated with cross-section

analysis. These methods, however, are only effective if the underlying attributes and implicit

prices of these attributes are constant over time, an assumption that has received relatively

little attention in the hedonic price literature (see McMillen (2008) and Redfearn (2009) for

exceptions to this), and has yet to be applied to research on the capitalization of environ-

mental amenities in housing prices. In this paper I demonstrate that failing to account for

changes in both the supply and price of public goods over time can bias estimates of their

implicit value.

Consider a house with high air quality at a time when many houses in the region have

poor air quality. High air quality is a relatively scarce amenity, so this home would demand

a higher price. If air quality throughout the region improves, the effect on this home’s price

will depend upon the relative changes in the implicit price of air quality and the levels of

pollution. In general, when the supply of a good increases, its price decreases. If more houses

have high air quality, air quality can be expected to command a smaller price premium per

unit. If the price elasticity of supply for air quality is sufficiently large, then the house’s

price could actually decrease despite the air quality improvement.

Conversely, consider a home that begins with low air quality. When air quality improves

over the study area, this home’s air quality will also improve. However, because increases in

its supply lead to a lower implicit price in the second time period, the overall price increase

is smaller than it would have been had the house experienced the improvement in the first
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time period. Because traditional panel data methods only account for the total price change

for a house, if implicit prices decrease over time, then these methods - used in most hedonic

studies - will yield biased estimates of the value attributable to improved air quality. I avoid

this bias by decomposing the change in house price into changes in the level and the implicit

price of air quality. In the Results section, I predict price changes over a range of baseline

exposure and changes in exposure, to illustrate the effect of changing implicit prices.

In southern California, the area studied in this analysis, between 1990 and 2000 the

average exposure to toxic air pollution was cut in half, thereby increasing the number of

homes with relatively high air quality. When more houses have high air quality, air quality

may command a smaller price premium, thereby decreasing the implicit price of air quality

over time. I find strong evidence that changes in the implicit price of air quality is the primary

component of pollution-related changes in house price. This change in the implicit price of

a public good could result from changes in its supply, particularly if there are non-marginal

changes over the time period.

I use house sales data from five counties in southern California in 1990 and 2000, along

with data on toxic air emissions from the Toxic Release Inventory (TRI), to demonstrate

the components of changes in housing prices over time. Results from a basic first differences

model suggests a per-household capitalization of $520 from changes in pollution in the study

area. However, once I control for changes in implicit price, the per-household capitalization

increases to $1,553 due to a large change in the implicit price air quality improvements.

In the remaining sections of this chapter I discuss the methods that have been used to

address problems of unobserved variable bias in hedonic price models; my empirical strategy;

the data used to address the research question; and model results and implications for

inferences about total price changes.
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2 Literature Review

While hedonic models are a widely-used tool for valuing goods and attributes not traded in

markets, researchers have long been concerned about unobserved variables and their effect

on estimated implicit prices. When these unobserved variables are correlated with housing

prices, parameter estimates - and implicit prices - will be biased. Specifically related to

questions of pollution, pollution levels (and subsequent risks from the pollution) are often

positively correlated with business cycle variables such as employment and urbanization lev-

els. These variables are also positively correlated with housing prices, which can cause biased

parameter estimates. Researchers have used several strategies - including instrumental vari-

ables, difference-in-difference, and price decomposition approaches - to manage the problem

of unobserved variable bias in hedonic models. Each of these is discussed in turn below.

2.1 Instrumental variables

Several authors have addressed the endogeneity problem using an instrumental variables ap-

proach. Gayer (2000) examines whether a community’s marginal willingness to pay for risk

reduction from Superfund site cleanup, and subsequent welfare gain from that reduction,

varies according to the community’s sociodemographic characteristics. He uses an instru-

mental variables approach to control for the fact that environmental risk both determines

and is endogenous to housing values. The IV estimation equations are based on a structural

equations model, using the probability of collective action as a proxy for risk, assuming that

collective action is likely to reduce the likelihood that polluters locate in the neighborhood.

He quantifies collective action as the voter turnout rate from the 1988 presidential election,

the proportion of votes for the Democratic candidate, and the proportion of homeowners.

He finds that the OLS specification is likely to be biased due to endogenous risk levels, and

results from the IV approach suggest that household MWTP differs according to community
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sociodemographic characteristics.

Chay and Greenstone (2005) use an instrumental variables approach to estimate house-

hold WTP for changes in air quality, using features of the Clean Air Act to create an

instrument for household exposure to pollution. Under the Clean Air Act, a county can be

designated “non-attainment” if ambient air pollution levels exceed either an annual mean

standard or the second-worst day exceeds a separate acute standard. The authors find that

attainment status is strongly correlated with changes in pollution over time, but is not

correlated with housing prices and is therefore a strong instrument for air quality. They

estimate several different models, comparing OLS to IV estimates and demonstrating that

OLS estimates of the effect of pollution on housing prices is biased towards zero.

Strong instruments for endogenous variables can eliminate endogeneity bias in cross-

section and panel data models. However, they do not account for changes in implicit prices

over time, which remains a concern when using panel data.

2.2 Panel Data methods

Panel data methods - including first differences, difference-in-difference (D-in-D), and fixed

effects regressions - have become increasingly popular in hedonic models because of their

usefulness in controlling for some types of unobserved variability within study areas. Figlio

and Lucas (2004) investigate the effect of school report cards on housing prices. In their

study, the omitted variable bias concerns the relationship between “better neighborhoods”

and “better schools.” To avoid this problem they used repeat sales data and both house-

specific fixed effects and neighborhood fixed effects to control for larger neighborhood trends.

Their results are identified by variation in an individual house’s price as a function of changes

in school quality, controlling for unobserved differences in inter-neighborhood quality. Davis

(2004) uses similar methods to investigate the effect of pediatric leukemia risk on housing

prices in a small Nevada town using repeated-sales data.

5



Greenstone and Gallagher (2006) use differencing in the context of a regression discon-

tinuity design to estimate the effect of Superfund site cleanup on nearby housing prices.

Utilizing a feature of Superfund site designation, which resulted in very similar neighbor-

hoods either being cleaned up or not making the list, they were able to control for unobserved

variation between the communities. Using this quasi-experimental approach, they found that

site clean-up had no significant effect on housing prices.

2.3 Decomposing Price Changes

While panel data methods are useful tools for mitigating unobserved variable bias, their

effectiveness hinges on the assumption that these unobserved variables are constant over

time. If this assumption is not met, then observed price changes are a function of changes

in both attribute levels and the implicit prices. Several authors have adapted methods

developed in the labor economics literature to address this issue and decompose the changes

in housing prices.

Along these lines, McMillen (2008) decomposes the changes in the distribution of hous-

ing prices. Analyzing Census tract-level price indices that are a function of the average

house’s physical attributes in the tract, he found that most of the change in housing prices

was attributable to a change in the coefficient distribution, not a change in the variable

distribution. He only considered a house’s physical characteristics, not its level of public

goods.

Redfearn (2009) used locally-weighted regression methods on two cross-sections of data to

identify differences in implicit prices for light rail access between census tracts. By exploiting

a quasi-experiment of the timing of new rail station openings, he was able to compare price

changes between different neighborhoods with different light rail access. He strongly rejected

the assumption of constant implicit prices for attributes across neighborhoods near light rail

stations and found that forcing constant implicit prices rendered coefficient estimates of light
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rail access highly unstable.

Building on McMillen’s and Redfearn’s insights regarding the inappropriateness of the

assumption of constant implicit prices, I extend their insights to the question of the valuation

of intertemporal changes in public goods. The analysis considers explicitly the implications

for non-market valuation when the supply of the public good changes substantially over time.

3 Empirical Strategy

Hedonic price theory assumes that a house’s price in a given time period is a function of the

level of its attributes:

yi,t = βXi,t + ψn + εi, (1)

where y is house price, X is a vector of house attributes, β is a vector of coefficients describing

the marginal effect of X on price, ψ is a vector of time-invariant unobserved neighborhood-

specific characteristics (indexed by n), and ε represents time-invariant unobserved house-

specific heterogeneity (indexed by i). Let βX be the sum of different categories of explanatory

variables, such that βX = λA + γP , where A is a vector of house attributes and P is a

house’s pollution exposure. First differencing exploits multiple observations on a given parcel

over time to eliminate time-invariant parcel characteristics such as unobserved heterogeneity

between neighborhoods - ψ - and parcels - ε. Assume there are two time periods, 0 and 1.

yi,1 − yi,0 = β(Xi,1 −Xi,0) (2)

Therefore the effect on y of the change in X between time periods 0 and 1 is equal to β.

However, it is clear that the power of first differencing depends on a constant value of

β and ψ between time periods. Suppose this is not the case. Oaxaca (1973) was one of

the first to separate the elements of intertemporal change in what is known as the “Oaxaca
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decomposition”, studying differences between male and female wages. Assume that the

vector of coefficients, β, differs between the first and second time periods, and is designated

by β0 and β1, respectively. By adding and subtracting the term β1Xi,0, which is the baseline

value for X multiplied by the current value for β to Equation 2, it is apparent that the change

in house price is comprised of two components (with the i subscript dropped for brevity):

y1 − y0 = (β1X1 − β1X0) + (β1X0 − β0X0), (3)

This can be simplified to present changes in y as a function of changes in coefficients and

attributes, in what I call the “corrected” first differences model:

y1 − y0 = β1(X1 −X0) + (β1 − β0)X0 (4)

Using this framework, I identify the change in capitalization attributable to a change in X

(β1) and the change in prices due to a change in implicit prices (4β).

By separating X into its constituent components, A and P , I arrive at the equation I

will estimate:

4ln(price) = [λ1(4A) + (4λ)A0] + [γ1(4P ) + (4γP0)] (5)

Thus the change in the log of price is a function of the change in attributes, 4A, and

pollution, 4P , and the change in the implicit prices for A and P : 4λ and 4γ. In models

that use panel data, a house’s physical characteristics would remain constant over time

(assuming implicit prices for these remain constant as well), so the term λ1(4A) would drop

out of Equation 5. As I explain in the next section, in lieu of repeat sales data, I construct

price indices at the Census block level, similar to the approaches used by McMillen and

Redfearn. Because these price indices represent the average house in the block, they vary
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over time, and the attribute expression in Equation 5 does not drop out in estimation.

Implicit in Equation 5 is the assumption that the neighborhood’s unobserved heterogene-

ity remains constant over time. As McMillen (2008) demonstrates, this does not always hold

and if ψn varies over time, first differencing will not control for unobserved heterogeneity.

To control for the changes in spatially correlated unobserved heterogeneity, I include tract

fixed effects in Equation 5.1

Identification of changes in sale prices is based on within-Census tract differences in

changes in average Census block covariate values. I expect that this small spatial scale

ensures relative homogeneity in unobserved neighborhood characteristics. I also assume that

the distribution of types of houses sold is constant between time periods.

4 Data

To approximate repeat sales data I create Census block level price and attribute indices by

averaging house attributes and pollution exposure over all the houses in each Census block.

There are, on average, 10 individual house observations per block per year, with a median

of seven. Creating price and attribute indices facilitates a comparison of the same location

- the individual census block - between time periods, holding time-invariant unobserved

differences between the blocks constant. In lieu of data on repeated sales of the same house,

this approach of creating small-scale price indices is the next best means of controlling for

spatially-correlated unobserved variable bias.

1It would also be possible to estimate changes in these tract fixed effects between time periods to further
control for changes over time. However, due to the high cost in terms of degrees of freedom, I was unable to
estimate a model using this approach.
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4.1 TRI Emissions

Data on TRI facilities comes from U.S. EPA’s database on TRI emissions and includes only

air emissions, either directly from stacks (point) or fugitive (nonpoint). When the TRI

program first began in 1987, firms were required to report emissions if they fulfilled one or

more of the following criteria:

1. Firm falls under SIC codes 20 - 39 or is a federal facility,

2. Firm manufactures or emits at least 75,000 pounds of chemicals on the TRI list, or

3. Firm manufactures or emits at least 10,000 pounds of any one chemical on the TRI
list.

The reporting threshold decreased over time, from 75,000 in 1987 to 50,000 in 1988, and

has remained at 25,000 pounds from 1989 on. The 1987 mandatory chemical list included

320 chemicals and chemical categories, referred to as the “1988 Core Chemicals” list. This

list was expanded in 1991 and 1995. For consistency, this analysis only uses emissions of the

mandatory chemicals required in 1988 and counts any emissions exceeding 25,000 pounds,

the 1989 reporting standard.

This data includes the latitude and longitude of the facilities,the type and level of emis-

sions, and the 4-digit SIC code. Figure 1 shows where the TRI facilities are located in

Southern California. I include proximate facilities located outside the five counties where

the housing transactions occurred, assuming that facilities near the study areas would impact

housing prices.

Figure 2 shows the distribution of the housing sample, with red indicating those locations

with positive exposure to toxic air emissions in 1990 and blue indicating those with no ex-

posure in 1990. While more non-exposed properties are located outside of the densest urban

areas, the inset (Figure 2a) shows that in the densest locations (both in terms of popula-
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Figure 1: Facilities emitting air pollutants requiring reporting in the Toxic Release Inventory
in Southern California, 1990-2000

tion and observations in the dataset), exposed and non-exposed properties are distributed

relatively evenly.

A census block’s exposure to TRI emissions is measured by counting the total number of

facilities within 1/2 mile of its centroid.2

4.2 Housing Data

Housing transaction data is taken from 5 counties in Southern California - Los Angeles,

San Bernardino, Orange, Ventura, and Riverside - for the years 1990 and 2000. A price and

attribute index is constructed for each Census block, averaging sale price, lot size, house size,

2I also estimated these models using the sum of emissions and the toxicity-weighted emissions, with
similar results.
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(a) Distribution of all houses

 

(b) Close-up

Figure 2: Houses with and without TRI facilities within 1/2 mile, 1990

year built, month sold, and the number of facilities releasing TRI-listed pollutants within a

half-mile of the block’s centroid in 1990 and 2000.

The dataset includes sale price and characteristics about the property, including home

and lot size and number of bedrooms, bathrooms, and the year the house was built. Ap-

proximately 6% of these observations have zero entered for the number of bedrooms, number

of bathrooms, and the year built; these observations were dropped to control for outliers.

Observations associated with the upper and lower 1% of sale prices were also removed. Table

1 compares the distribution of pollution, price, and attribute values between 1990 and 2000,

as well as the quarter when the house was sold.

Across the distribution of values, sale price is consistently higher in 2000 than in 1990,

with 13% higher mean price in 2000. Mean TRI exposure decreased by 58%, but the dis-

tribution is more difficult to evaluate because in both years, relatively few blocks have any

exposure. The distribution shifts further left in 2000 as only 15% of the blocks were exposed

to any TRI emissions while 28% were exposed in 1990. The dramatic change in exposure to
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Table 1: Summary statistics for 1990 and 2000

Variable Mean Std Dev p5 p25 p50 p75 p95
Block average values for 1990 sales, n=1,206
Sale price $229,095 $105,550 $104,091 $154,055 $216,167 $273,639 $431,114
# of TRI facilities 0.65 1.57 0 0 0 1 3
Lot size 8,128 5,639 3,449 5,722 7,043 8,887 15,865
House size 1,768 454 1,185 1,459 1,695 1,999 2,584
Bedrooms 2.26 0.44 1.58 2 2.25 2.5 2.92
Bathrooms 3.38 0.48 2.5 3.09 3.4 3.71 4
Year built 1975 11 1955 1967 1976 1984 1989
q1 0.19 0.18 0 0 0.18 0.27 0.5
q2 0.26 0.19 0 0.13 0.25 0.4 0.6
q3 0.28 0.19 0 0.17 0.25 0.4 0.6
q4 0.25 0.19 0 0.12 0.25 0.33 0.6
Block average values for 2000 sales, n=1,206
Sale price $259,026 $118,457 $113,071 $175,402 $245,216 $312,623 $461,190
# of TRI facilities 0.27 0.91 0 0 0 0 1
Lot size 8,030 4,606 3,535 5,672 7,050 9,057 15,799
House size 1,727 418 1,152 1,438 1,661 1,951 2,484
Bedrooms 2.15 0.49 1.2 1.9 2.2 2.46 2.88
Bathrooms 3.31 0.47 2.5 3 3.33 3.62 4
Year built 1975 11 1956 1968 1976 1984 1992
q1 0.21 0.17 0 0.09 0.2 0.29 0.5
q2 0.27 0.16 0 0.17 0.25 0.38 0.56
q3 0.27 0.17 0 0.17 0.25 0.39 0.6
q4 0.25 0.16 0 0.14 0.25 0.33 0.5
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Table 2: Summary statistics for exposed versus non-exposed census blocks

Variable Mean Std Dev p5 p25 p50 p75 p95

Census blocks with no TRI facilities within 1/2 mile, n=1,898
Sale price 243371 118370 106914 158373 221560 297689 460177
Sale year 1995 5 1990 1990 2000 2000 2000
Lot size 8431 5542 3535 5807 7320 9253 16871
House size 1758 445 1161 1449 1686 1994 2565
Bedrooms 2.21 0.48 1.33 2 2.23 2.5 2.92
Bathrooms 3.33 0.49 2.5 3 3.38 3.67 4
Year built 1976 11 1955 1970 1977 1985 1990
q1 0.2 0.18 0 0.04 0.19 0.29 0.5
q2 0.27 0.18 0 0.17 0.25 0.4 0.6
q3 0.28 0.18 0 0.17 0.25 0.4 0.6
q4 0.25 0.18 0 0.13 0.25 0.33 0.57
Census blocks with at least 1 TRI facility within 1/2 mile, n=514
Sale price 246608 91439 113985 189771 247446 284856 405959
Sale year 1993 5 1990 1990 1990 2000 2000
Lot size 6782 2972 3230 5362 6270 7519 11929
House size 1708 403 1152 1438 1643 1909 2484
Bedrooms 2.18 0.4 1.5 2 2.19 2.4 2.83
Bathrooms 3.4 0.44 2.67 3.17 3.41 3.67 4.11
Year built 1971 9 1957 1966 1970 1977 1986
q1 0.19 0.16 0 0.04 0.2 0.29 0.5
q2 0.26 0.18 0 0.13 0.25 0.36 0.58
q3 0.29 0.18 0 0.17 0.27 0.4 0.6
q4 0.25 0.17 0 0.14 0.25 0.33 0.56

toxic air emissions supports the hypothesis that changes in the implicit price are attributable

to an increase in the supply of clean air across the region.

The distribution of all other house characteristics between the two years are very similar.

The consistency in mean housing attribute values suggests that the types of houses selling in

each year are relatively consistent and the block price indices are sufficiently small to allow

for homogenous housing stock.

Summary statistics for prices, exposure, and house attributes for exposed and non-

exposed census blocks are presented in Table 2. Houses in exposed blocks cost, on average,
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$3,200 more than houses in non-exposed blocks, although this difference is not statistically

significant. This is driven by higher prices in the lower half of the distribution for exposed

blocks: the 5th, 25th, and 50th percentile sale prices are greater for exposed blocks, while

sale prices are lower for the 75th and 95th percentiles. The range of house prices is more

compressed in exposed blocks than non-exposed blocks.

Across much of their distribution, blocks with nearby TRI facilities generally are older,

have smaller houses on smaller lots, and have fewer bathrooms. This pattern holds across

much of the distribution for each variable, with the exception of the number of bathrooms

through the 75th percentile.
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Figure 3: Mean house prices and toxic air pollution exposure in Southern California, 1990-
2000

As Figure 3 shows, both mean exposure and sale price changed significantly over the

study period. If community composition, household preferences for air quality, or supply of

air quality changes over time, I have to be concerned about changes in the implicit price for
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air quality. As Figure 3 demonstrates, air quality changed dramatically between 1990 and

2000, making a strong case that any observed changes in implicit prices are attributable to

changes in supply.

5 Results

Two sets of empirical models are implemented to evaluate the effect of allowing parameter

estimates to vary over time in a first differences model. The first set consists of two cross-

section models, one for 1990 and the other for 2000, to see the implicit prices for pollution

exposure in both years. The second set consists of two first differences models, in which

the first assumes constant implicit prices and the second allows them to vary between time

periods. In each set I include one specification with Census tract fixed effects (and one

without) to control for any spatially correlated, unobserved variables that remain.

5.1 Cross-section models

Table 3 reports results from cross-section models for 1990 and 2000, with a specification

with and without Census tract fixed effects in each year. A comparison of the exposure

coefficients in models with and without fixed effects highlights the importance of controlling

for the unobserved heterogeneity between neighborhoods. However, how well these fixed

effects control for unobserved variables remains an open question.

Despite their limitations, cross-section models are useful here to see if the two years yield

different parameter estimates. If implicit prices change over time, then coefficients for the

1990 and 2000 cross-section models should differ. My results are consistent with the notion

that the per-unit value for air quality has decreased as its supply increased: each additional

TRI facility decreases average house prices by 1.4%, or $3,207 for the average-priced home in

1990, but the marginal effect in 2000 is only equal to 0.1% and is statistically insignificant.
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Table 3: Regression results: cross-section models for 1990 and 2000

1990 2000
With FEs Without FEs With FEs Without FEs

Variable Coeff Std Err Coeff Std Err Coeff Std Err Coeff Std Err
# TRI facilities -0.014∗∗ 0.007 -0.001 0.005 0.001 0.006 0.021∗∗ 0.008
ln(Lot size) 0.140∗∗∗ 0.024 -0.084∗∗∗ 0.02 0.162∗∗∗ 0.011 -0.109∗∗∗ 0.018
ln(House size) 0.797∗∗∗ 0.07 1.367∗∗∗ 0.069 0.741∗∗∗ 0.036 1.342∗∗∗ 0.059
Bathrooms -0.001 0.036 0.283∗∗∗ 0.036 0.050∗∗∗ 0.018 0.317∗∗∗ 0.021
Bedrooms -0.033 0.024 -0.156∗∗∗ 0.024 0.012 0.012 -0.131∗∗∗ 0.022
Year built 0.006∗∗∗ 0.002 -0.014∗∗∗ 0.001 0.001∗ 0.001 -0.016∗∗∗ 0.001
Q2 0.048 0.047 0.01 0.055 0.035 0.025 0.08 0.055
Q3 0.115∗∗ 0.047 0.121∗∗ 0.055 0.059∗∗ 0.025 0.079 0.053
Q4 0.028 0.047 0.005 0.055 0.071∗∗∗ 0.026 -0.007 0.056
Intercept -7.639∗∗ 3.067 31.075∗∗∗ 1.748 2.884∗∗ 1.398 34.030∗∗∗ 1.384

R2=0.30 R2=0.59 R2=0.33 R2=0.66
n=1,206 n=1,206

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
* Both models included fixed effects at the census tract level.

The coefficients on the number of TRI facilities in 1990 and 2000 are significantly different

from one another in both specifications. F-tests of the equality of coefficients equalled

4.74 (p=0.0295) for the model with Census tract fixed effects and 4.50 (p=0.0341) for the

model without Census tract fixed effects. Including fixed effects has the largest effect on the

coefficients for the number of TRI facilities, lot size, year built, and lot size. This indicates

that these variables are correlated with unobservable characteristics at the census block

level, which may include attributes such as access to employment centers, school quality,

and proximity to industrial areas. By including tract fixed effects, I reduce the area over

which the variation in price is estimated, thereby reducing the heterogeneity in unobserved

attributes.

Considering only the specifications with fixed effects, the parameter estimates are consis-

tent between the two years for all variables but the number of TRI facilities, the number of

bedrooms, and the intercept. Even without controlling for unobserved differences between

neighborhoods, which I accomplish in the next section by using first differences at the census

block level, I see that the implicit price has changed between the two years, corresponding
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with a large decrease in pollution levels (see Figure 3)

5.2 First difference models

The cross-section results support my hypothesis of changing implicit prices, but the specifi-

cation does not allow me to disentangle the effects on house prices attributable to changes

in pollution versus changes in implicit prices. To separately identify changes in house price

associated with changes in both pollution levels and implicit prices, I need to use the speci-

fication presented in Equation 5.

Tables 4 and 5 show results from two sets of first difference models - a standard first

difference estimation (assuming constant implicit prices) and a corrected first difference

specification that controls for the possibility of varying implicit prices. Table 4 presents

models with Census tract fixed effects; Table 5 presents the models without fixed effects. In

all models I regress the difference in log of mean sale price on the difference in covariates.

House and lot size are included in log form to allow for nonlinear effects on house price as lot

or house size increase; all other variables are included in level form. In the first row for each

variable, the coefficients represent β1 from Equation 4, so they capture the implicit price of

the covariate in 2000. The second row for each variable shows the change in the implicit

price for the covariate from 1990 to 2000, or 4β from Equation 4. This is not recoverable

in the standard first differences approach. Using the Oaxaca decomposition, I estimate the

implicit exposure price in 1990 and 2000, with the price for 2000 equal to the coefficient on

the change in the number of TRI facilities (γ1 in Equation 5) and the price for 1990 equal

to (γ1 − (γ1 − γ0)).

In the first differences model, each additional TRI facility is predicted to reduce house

prices by 0.6%, although the coefficient is not statistically different from zero.

The corrected first difference model tells a different story. In this specification, the change

in house price is estimated as the sum of two separate components. The first component
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Table 4: Regression results: first differences and “corrected” first differences with Census
tract fixed effects

First Differences Corrected First Differences
Variable Coefficient Std. Err. Coefficient Std. Err.
4 # of TRI facilities -0.006 0.01 0.025 0.018
4 price for # of TRI facilities 0.025∗ 0.013
4 ln(Lot size) 0.150∗∗∗ 0.025 0.165∗∗∗ 0.028
4 price for ln(Lot size) 0.032 0.03
4 ln(House size) 0.734∗∗∗ 0.065 0.704∗∗∗ 0.083
4 price for ln(House size) -0.062 0.096
4 Bathrooms 0.01 0.029 0.026 0.039
4 price for Bathrooms 0.036 0.051
4 Bedrooms 0.004 0.022 0.029 0.028
4 price for Bedrooms 0.038 0.033
4 Year built 0.002 0.001 0 0.002
4 price for Year built -0.005∗∗ 0.002
4 Q2 -0.002 0.038 -0.016 0.056
4 price for Q2 -0.03 0.074
4 Q3 0.033 0.037 -0.028 0.054
4 price for Q3 -0.12 0.074
4 Q4 0.022 0.038 0.023 0.058
4 price for Q4 0.004 0.076
Implicit exposure price, 1990 -0.0008 0.010
Implicit exposure price, 2000 0.025 0.018
R2 0.28 0.30
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
n=1,206

of house price change is the value of the change in pollution exposure, measured using the

implicit value of pollution in 2000 (coefficient reported in the first row of Table 4). The

second component of the house price change is driven by the change in the implicit price for

pollution (coefficient reported in the second row of Table 4). From Equation 4, this is the

coefficient associated with baseline attribute levels, 4β. Because the change in the implicit

price of pollution is estimated as the marginal effect of baseline pollution on the change in

house price, the model predicts that as baseline pollution increases, the change in house

price increases. Changes in house prices attributable to air pollution in Census blocks with
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Table 5: Regression results: first differences and “corrected” first differences without Census
tract fixed effects

First Differences Corrected First Differences
Variable Coefficient Std. Err. Coefficient Std. Err.
4 # of TRI facilities -0.020∗∗∗ 0.007 0.017 0.013
4 price for # of TRI facilities 0.021∗∗ 0.009
4 ln(Lot size) 0.117∗∗∗ 0.024 0.072∗∗∗ 0.026
4 price for ln(Lot size) -0.084∗∗∗ 0.02
4 ln(House size) 0.760∗∗∗ 0.061 0.900∗∗∗ 0.07
4 price for ln(House size) 0.262∗∗∗ 0.073
4 Bathrooms 0.057∗∗ 0.022 -0.01 0.024
4 price for Bathrooms -0.093∗∗∗ 0.035
4 Bedrooms -0.007 0.022 0.027 0.026
4 price for Bedrooms 0.072∗∗∗ 0.025
4 Year built -0.003∗∗ 0.001 -0.003∗∗ 0.001
4 price for Year built -0.004∗∗∗ 0.001
4 Q2 0.024 0.038 -0.045 0.056
4 price for Q2 -0.132∗ 0.074
4 Q3 0 0.037 -0.045 0.053
4 price for Q3 -0.105 0.073
4 Q4 -0.032 0.038 -0.071 0.056
4 price for Q4 -0.104 0.074
Implicit exposure price, 1990 -0.0034 0.007
Implicit exposure price, 2000 0.017 0.013
R2 0.30 0.34
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
n=1,206

no TRI facilities in 1990 could only occur if new facilities started emitting in 2000 near that

Census block. In other words, the change in implicit price for air pollution only affects the

price of houses that were exposed in 1990.

In this specification I find that the effect on house price from the change in number of TRI

facilities is not statistically significant (p=0.17), but it is positive. However, it appears that

the more important effect related to pollution exposure comes from the change in implicit

prices. The results presented here imply that the implicit price for pollution exposure has

increased by 2.5% since 1990; because the estimated implicit price in 1990 was negative, this
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result suggests that pollution exposure decreased prices in 1990, but had little effect in 2000.

These findings are consistent with the results from the simple cross-section models presented

in Table 3.

All other covariates I included had the expected sign, with blocks with larger average

lot size and larger average house size having higher average sale prices. The number of

bedrooms nor bathrooms has no effect on sale price. I find no significant difference in the

timing of sales throughout the year. These findings are robust regardless of whether fixed

effects are included, with a relatively small change in magnitude and the same statistical

significance. I find no significant changes in implicit price between years, supporting my

conclusion from the summary statistics that the mean attribute values between years has

not changed, indicating that the distribution of attributes for houses sold in each year has

remained relatively consistent. This supports my construction of price and attribute indices

at the Census block level as a means of approximating repeat sales data: the attributes that

do not vary over time in repeat sales data are also consistent here.

In Table 5, the pattern in coefficient values between the first differences and corrected

first differences is consistent with the results in Table 4, despite its omission of tract fixed

effects. The biggest difference between the fixed effect and non-fixed effect model is the

statistical significance of the covariates. From these robust estimates I conclude that dif-

ferencing over time, within Census blocks, appears to eliminate much of the unobserved

time-invariant, spatially-correlated heterogeneity across the study area. Relatively little un-

observed heterogeneity remains within each Census tract after differencing at the Census

block level.

The change in the implicit price for exposure to a facility can be explained by the increased

supply of homes with relatively high air quality, and associated smaller premium for these

high air quality homes. However, this change in price could also be explained by a change in

the amount of actual pollution exposure at each facility. In 1990, reporting facilities emitted
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an average of 43,828 pounds of chemicals. In 2000, there were far fewer facilities, and the

facilities remaining emitted an average of 14,378 pounds. Both possible reasons for the

change in implicit price have interesting policy implications, but I leave the disentanglement

of the exact reason for the price change for future research.

5.3 Inferring overall price changes

These results suggest that the implicit price for pollution exposure increased between 1990

and 2000 in southern California, thereby decreasing the price premium for air quality. This

shift was likely in response to lower TRI emissions throughout the study area which increased

the supply of properties with high air quality. In this section I evaluate the conditions

under which the change in implicit prices exceeds the change in pollution, causing an overall

decrease in prices.

Figure 4 presents the predicted percentage point change in house price over the observed

range of baseline pollution levels, relative to a house with no pollution exposure in 1990. In

other words, the vertical axis shows how much house prices change for exposed houses versus

unexposed houses in 1990. These were calculated using the expression in Equation 5, where

4ln(saleprice) = γ1(4P ) + (4γP0). In this section I only consider changes in house price

attributable to changes in pollution, keeping house attributes constant.

The red line shows the predicted change in price when 1 additional facility is added to

the 1/2 mile buffer surrounding a block; the green line shows the predicted price change

when there is one less facility in the block’s buffer. The blue line shows the predicted change

in price at the mean change in exposure for the sample: 0.38 facilities per buffer. The star is

located at the mean baseline TRI exposure (0.65), and shows the average predicted change

in house price. Finally, for reference, the orange line shows the predicted price change when

a Census block’s pollution level does not change over time; the change in house price along

this line is attributable entirely to its baseline pollution level.
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Figure 4: Changes in price for different baseline and changes in exposure, relative to houses
with no baseline pollution.

The slope of the lines in Figure 4 is equal to4γ. Because the implicit price of air pollution

increased, the change in house price increases as baseline pollution levels increase. Relative

to the houses with the least baseline pollution, houses with the most baseline pollution are

predicted to experience greater gains from decreased pollution. The intercept, or the change

in house price for houses with no pollution in 1990, is equal to γ1. Because γ1 is positive,

more facilities shifts the line up, reflecting a larger price increase. Therefore, given two

houses with identical baseline exposure, the house that added a nearby facility between 1990

and 2000 would have a greater price increase. A Census block with the average change in

TRI exposure (0.38 fewer facilities within its buffer) and baseline exposure of 0.37 facilities

or fewer would experience reduced house price.

An improvement in air quality would reduce the change in house prices, possibly resulting

in negative changes in house prices for some houses. If a Census block had low initial exposure
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(or cleaner air quality), then improvements in air quality can reduce the home’s price because

the value per unit of air quality decreased. As air quality over the whole study area improves,

the line is shifted down, and the range of baseline pollution levels over which improved air

quality begets a lower house price expands.

In Table 6 I estimate the mean change in the value of houses in the five-county region

between 1990 and 2000 that was attributable to the change in TRI exposure for the four

model specifications: corrected and uncorrected first differences and the 1990 and 2000 cross-

section estimates. I use parameter estimates from the models that included Census tract

fixed effects. For each model I calculate the average of the predicted change in house price

for all Census blocks and blocks with and without exposure in 1990.

Table 6: Estimated capitalization of the change in TRI exposure from 1990 to 2000.
Corrected F.D. Uncorrected F.D. Cross-section 1990a Cross-section 2000a

Mean 4 value, all blocks $1,553 $520 $1,304 $83b

Mean 4 value, exposed
blocks

$5,015 $1,988 $4,987 -$319b

Mean 4 value, non-
exposed blocks

$210 -$49 -$124 $8b

a Cross-section estimates predicted using mean change (0.38) from 1990 to 2000
b Not significantly different from zero.

Because the change in the predicted implicit price of TRI exposure exceeds the pre-

dicted implicit price in 1990, the corrected first differences specification predicts a larger

per-household capitalization from pollution than the uncorrected first differences specifica-

tion. In the 1990 cross-section model, reducing pollution is predicted to increase house prices

substantially. However, in 2000, reducing pollution has nearly zero effect on house price. The

predicted per-household capitalization in the 1990 cross-section specification is lower than

the corrected first differences specification likely because it does not take into account the

effect of exposure in 1990. As Figure 4 shows, houses with higher baseline pollution tend to

see larger increases in sale price.

The predicted capitalization for Census blocks that had at least one facility within 1/2
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mile in 1990 is dramatically higher than blocks with no facilities within 1/2 mile. The

change in price for non-exposed blocks reflects the fact that these blocks experienced a small

(0.04) average increase in nearby facilities over the study period. These results illustrate the

potential for large bias when the supply of a public good changes drastically, and this change

in supply affects many households in the study area.

6 Conclusions

These results demonstrate that price responses to toxic air pollution in these southern Cali-

fornia counties are largely attributable to changes in implicit prices for reduced air pollution,

not from changes in the air pollution itself. As this time period coincided with a dramatic de-

crease in mean exposure to toxic air emissions, this change in implicit price for TRI exposure

is potentially due to the large increase in the supply of homes with high air quality, which

reduced the premium households were willing to pay for high air quality. The net effect on

house price depends on both the baseline TRI exposure and the change from baseline. For

the houses with the highest initial air quality, I find that home prices can actually decrease

when air quality improves because value per unit of air quality decreases. The observed

reduction in TRI exposure is worth $1,553 per household across all Census blocks in the

study area.

These findings highlight the particular importance of allowing for varying implicit prices

in the case of public goods, as changes in their levels are more likely to affect a much larger

portion of the population than changes in private goods, which tend to occur on a smaller

scale.

While this evidence supports the hypothesis that the observed change in implicit price

is attributable to changes in the supply of the public good, in other applications the price

change could arise for other reasons. For example, household preferences may change in
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response to a public education campaign, or the demographic composition of households

may change within a neighborhood.

These findings illustrate the importance of using first differences methods with caution,

as the assumption of constant implicit prices between time periods is not trivial. I find that

parameter estimates for TRI facilities change dramatically when implicit prices are allowed

to change between years, demonstrating that the traditional first differences result is biased

in the presence of underlying change in coefficient values. First differences and panel data

methods are commonly held as an ideal approach to control for unobserved variable bias, but

the results presented here demonstrate that these methods are susceptible to misspecification

as well. Researchers should be particularly concerned when there have been non-marginal

changes in the supply of the public good or sale prices over time.
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