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Abstract

While there is a large literature both on the spatial impacts of taxation and com-
peting land uses in a dualcentric city, the two topics have yet to be analyzed under
a common framework. This paper describes the optimal choice of a differential land
tax across competing land uses in the framework of a dualcentric city model. The key
results of the analysis indicate that higher levels of spatial competition lead to smaller
tax differentials. These differentials are also sensitive to the relative size of the tax
bases and the slopes of the bid rent functions at the respective land-use boundaries.
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1 Introduction

Differential taxes are a powerful policy instrument for state and local governments, as tax

levels contribute to the composition as well as land use outcomes within jurisdictions. These

taxes may vary across residential uses or according to residential/commercial designation.

In the most common formulations, residents receive a discount either through a lower tax

rate or assessment ratio. An example of this may be seen in Michigan where owner-occupied

dwellings of residents are taxed at a rate of up to 18 mills less than vacation homes, rental

properties, or commercial usage types. In Arizona, assessment ratios are based on property

type - 25% for commercial and industrial and 10% for owner-occupied residential property.

While discounting strategies may differ, many states and localities take advantage of these

tools, the impacts of which may result in land market distortions. In spite of the prevalence

of these within jurisdiction tax rate differences, the subject has received little attention in

the literature.

The dualcentric city model provides a convenient framework to examine this issue. Tradi-

tionally, analysis of the dualcentric city has focused on the decisions of firms and households

who locate endogenously as a result of spatially defined productivity or consumption con-

siderations. Whatever the agent motivation, the incorporation of a land market over a set

of possible locational choices defines the resulting spatial equilibrium. However, the analysis

of the impact and choice of tax rates within this framework has, to the author’s knowledge,

been left unexplored. Enabling the jurisdiction to set differential taxes in this framework

captures the desired composition and land market distortions which affect the optimal choice

of tax instruments. The key results of this paper are that higher levels of spatial competition

lead to smaller tax differentials - the exact levels of which are determined by the relative

size of the tax bases and the slopes of the bid rent curves at the usage boundaries. While

the focus of this paper is on the rent revenue maximizing jurisdiction, the results also serve
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to illustrate the impact of state imposed differentials on different jurisdiction types.

2 Background

The literature on the spatial decisions of firms and households in a dualcentric city has

focused on two main areas; one in which households purchase goods from firms, and the other

where there is a link between workers and employment centers. The endogenous formation

of this city type was first examined in the framework of Fujita and Thisse (1986), where the

Hotelling (1929) linear market model was combined with land consumption in the tradition of

VonThunen (1826) and Alonso (1964). In this model, household location decisions are based

on firm locations, and spatial competition is examined when the households simultaneously

choose their consumption levels of land as well as the firm’s output. In this early work, it

was assumed households have constant population densities over locations. In a similar line

of research, Fujita and Thisse (1991) relax this constant population density assumption to

enable the identification of differing types of land use outcomes. Here two different firms

choose their locations under the assumption of a spatial duopoly. After the firms choose

their best locations, households are free to locate within the jurisdiction 1. By relaxing this

fixed population density constraint, the authors are able to characterize three different land

use outcomes in this spatial duopoly model: i) a monocentric city in which firms locate at

the center - occurs in small land areas, ii) a dualcentric city where firms locate separately

and residents directly compete for land, and finally iii) a city where firms and residential

patterns are completely separated - occurs in jurisdictions with large areas. These differing

land use outcomes are used in the evaluation of the tax structure examined in this paper.

1A key assumption in these models is that households are making their choice in an open city framework.
Therefore, the jurisdiction may be thought of as being located in a system of cities, which results in a
fixed level of household utility, exogenously defined within the system. Therefore, at any chosen location,
the household will be indifferent between the current choice and other choices which satisfy the utility
constraint.
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A second source of endogeneity in the locational choice of households is through spatially

delineated labor markets. Examples of this are described in Smith (1997), Gabszewicz and

Thisse (1986), and Fujita et al. (1997). Whatever the modeling strategy used, the existence

of the endogenous formation of multiple centers in a city has been extensively explored in

the literature. In the current paper, the location of the city centers are taken as given, and

the choice of the optimal land tax under differing land use assumptions is examined.

The analysis of taxation in a spatial framework has been extensively studied in the mono-

centric city framework, with differing assumptions regarding the disposal of tax revenues and

the closed vs. open nature of the city. These models are traditionally based on the spatial,

monocentric city model of Wheaton (1974). This analysis shows how composition, the ur-

ban boundary, and lot sizes change in response to perturbations in exogenous variables such

as income, reservation utility, location, and travel cost. Wheaton makes the assumption of

a utility function which requires only the numerarie and housing goods to be normal, with

positive income effects. The utility function lends itself to a comparative static analysis,

generalizable to a large set of functional form assumptions. This generalized functional form

is used in the current paper. Fujita (1989) describes a similar mechanism in the monocentric

city with inclusion of property tax rates which are passed on to an absentee landowner. In

these spatial taxation models, tax revenue may be either be freely disposed of, returned as

income, or used for the provision of public goods. Grieson (1974), LeRoy (1976) and Carlton

(1981) assume the free disposal of tax revenue and examine the effects of the spatial distri-

bution of residents. Brueckner (2003) adopts this approach in his study of the relationship

between property taxation and urban sprawl. Polinsky and Rubinfeld (1978) examine the

long-run effects of residential property taxes and local public services in an open city ur-

ban spatial model. They allow for the adjustment of wages and land prices in response to

changes in the local fiscal structure. In this model, the jurisdiction does not have to have

a balanced budget, but faces a fixed public good expenditure level. Tax revenues above or
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below this level are simply given away to neighboring jurisdictions. The effects of sales and

property taxes on land rents, city size, and housing consumption are examined by Pasha

and Ghaus (1995) under the assumption of a closed city model. Following the assumption

of Polinsky and Rubinfeld, they assume an exogenously fixed level of public good provision.

Spatial analysis of the effects of the property tax is also considered in Haurin (1980), how-

ever the tax revenue is returned as income transfers. This is done in the context of an open

city, which allows for population migration in response to fiscal changes. The current paper

uses the assumptions of a fixed tax revenue constraint, and an open city model in which

agent utilities are fixed. However, the assumption of a monocentric city is relaxed, and a

dualcentric city is examined.

3 The Model

The framework for the model is an open, dualcentric city. The purpose of the model is

to identify the optimal choice of ad valorem land tax rates under differing levels of spatial

competition and tax revenue constraints. In this model, the Solow bid rent function is used to

describe agents willingness to pay for land within a jurisdiction. In the simplest framework,

freely mobile agents are homogeneous and share a common utility level. The components of

the model are the bid rent function ψ(r, uh), the quantity of land consumed xh, the amount

of the numeraire zh consumed by residents at each location, the distance from the city center

r, increasing travel cost to location r, T h(r), and the fixed utility level uh. For the purpose

of the dual centric city model, the city centers are defined as city center one and city center

two with differeing land uses associated with each center. It is assumed that the planner can

differentiate between the land use associated with either of these types.
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The bid rent function for agents associated with city center one is expressed as

ψ(r, uh) = max
zh,xh

{
yh − Th(r)− zh

xh
|U(zh, xh) = uh

}
(1)

This is the traditional bid rent construction for a monocentric city with a city center located

at r = 0.2 It is costly to travel to the city center, so the bid rent function is a decreasing

function of the distance from r = 0.

∂ψ

∂r
< 0 (2)

The distance between city center one and city center two is normalized to one (r ∈ [0, 1])

without loss of generality.

The bid rent function for city center two agents may then be defined as

φ(r, us) = maxzs,xs

{
ys − Ts(1− r)− zs

xs
|U(zs, xs) = us

}
. (3)

The travel cost for a city center two agent at location r is T (1− r).

∂φ

∂r
> 0 (4)

Rents are increasing as the distance to city center two is decreased. In the tradition of

vonThunen, the price floor of land is the agricultural rent, denoted here by Ra. Agricultural

land use may be present in the jurisdiction if all land is not occupied by either of the city

center land use types.

It is assumed that the two agent types are homogeneous within group and heterogeneous

across groups, so that the values of z, x, y and U for the two types are not necessarily identical.

Heterogeneity across groups allows for differing bid rent curves between city center one and

2Following the assumptions of Wheaton (1974), utility is strictly quasiconcave and both goods x and z
have positive income effects and are assumed to be normal goods
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Figure 1: Tax Constraints and Land Use
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city center two populations, a fact which will influence the choice of the optimal levels of the

tax instruments.

In the model, absentee landowners bear the full incidence of the ad valorem land tax,

given by τh for city center one and τ s for city center two, where (τh, τ s) ≥ 0. 3 Therefore, the

net rent received at any location for the city center one land use type is (1− τh)ψ(r)4 , net

rent from city center two is (1− τ s)φ(r), and rent from agricultural land is Ra (agricultural

taxes are set to 0). However, the landowner can only rent to one type at each location, and

chooses to rent to the type with the highest bid rent net of taxes. This condition is described

by the upper envelope of the bid rent functions given by:

R(r) = max{(1− τh)ψ(r), Ra, (1− τ s)φ(r)}

There are four different types of land use outcomes and corresponding optimal tax regimes

in the model. These are a function of a fixed tax revenue constraint and are shown graphically

in Figure 1.

For relatively low levels of fixed tax revenue, the jurisidtion is in the tax regime denoted as

Case I, defined as the land use outcome where city center one and city center two usage types

outbid agricultural use at all locations. In this land use outcome, there is direct competition

for land between the two types at their borders. Therefore, the city center one/city center

3This is, of course, a substantial assumption, as changes in the tax incidence would have significant
impacts on the results that follow. For a survey on the determinants of tax incidence see Wildasin (1986).

4For notational simplicity, φ(r, us) and ψ(r, uh) will be represented as φ(r) and ψ(r).

7



two border net rents are described as

(1− τh)ψ(rc) = (1− τ s)φ(rc) (5)

Where rc is the common boundary shared by the two types. Additionally, at the boundary,

the difference between the city center one and city center two bid rent functions is

∆Rhs =
τ s − τh

1− τ s

This outcome is presented graphically in the left panel of Figure 2 where the boundary is

denoted rc.

At π̄ = π(I), the increased level of tax revenue required by the jurisdiciton causes a

discrete tax policy change to Case II, which describes a spatial structure where the usage

types from city center one and city center two net boundary rents are equal to agricultural

rent, but no agricultural land exists in the jurisdiction. The main difference associated with

Case II is that the price floor for the two usage types at the boundary is constrained by

agricultural land, which changes the optimal tax choice of the planner.

If the tax constraint is increased to π(II), then the jurisidiction faces another regime

switch into Case III. Here, agricultural use outbids land use one and land use two types over

some portion of the jurisdiction, and therefore there is not direct competition between the

respective city center boudaries. This results in two boundaries; city center one/agricultural

(rh) and agricultural/city center two (rs). In order for the absentee landowner to be indif-

ferent between land use types the border conditions for Case III requires that:

Ra = (1− τh)ψ(rh) (6)

Ra = (1− τ s)φ(rs) (7)
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The gross rent differential between city center one and agricultural land is

∆Rha = τhψ(rh)

Similarly, the gross border rent differential between agricultural land and city center two is

∆Ras = τ sφ(rs)

This equilibrium type is presented graphically in the right panel of Figure 2. The City center

one land use type occupies the land between r = 0 and r = rh, agricultural land is located

between rh and rs, and city center two occupies the land from rs to 1. So, for Case III, it is

necessary that rs > rh

These cases differ both in their level of land competition and tax revenue constraints

which in turn define the optimal tax differential.

Finally, π(III), occurs when one of the land use types reaches a corner solution, as a

result of the Laffer effect 5. Case IV then simply solves the case where tax revenues for one

type have been maximized, and the second tax rate is simply set by substituting the corner

solution tax rate into the tax revenue constraint. π(max) describes the case where both

types are at the corner solution. This is the maximum amount of tax revenue which may be

raised by the jurisdiction. The following analysis will focus on Cases I-III, as the results for

the Case IV restrict the planner’s choice of tax instruments, and are simply corner solutions.

The goal of the central planner is to maximize net rent revenue (NR) subject to a tax

revenue constraint, π̄. The differing sets of the binding constraints on the tax revenue

constraint affect the planner’s choice of tax levels. It is assumed that the central planner

has full control over the ad valorem land taxes levied on the city center one and city center

5This effect is discussed in Appendix C
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two land use types. The maximization problem is described as

maxτh,τs NR = (1− τh)

rh(τh,τs)∫
0

ψ(r)dr +

rs(τh,τs)∫
rh(τh,τs)

Radr + (1− τ s)

1∫
rs(τh,τs)

φ(r)dr

s.t. π̄ = τh
rh(τh,τs)∫

0

ψ(r)dr + τ s
1∫

rs(τh,τs)

φ(r)dr (8)

(1− τh)ψ(rh) = (1− τ s)φ(rs) (9)

Ra ≤ (1− τh)ψ(rh) (10)

Ra ≤ (1− τ s)φ(rs) (11)

rh ≤ rs (12)

0 ≤ τh ≤ 1 (13)

0 ≤ τ s ≤ 1 (14)

The set of binding constraints in the maximization problem define the possible tax and land

use regimes. Case I describes a state in which there is not any agricultural land in the

jurisdiction, and the city center populations directly compete for land at their respective

boundaries, therefore, constraint (12) holds with equality, constraints (10) and (11) do

not hold, and rh = rs = rc. For the planner, a spatial structure with this outcome will be

the best option, as net rents under these assumptions will dominate any other tax regime.

However, it may be the case that the tax revenue constraint is too high and this outcome is

unattainable, then the planner’s next best option is to set taxes at the level which defines the

land use type as Case II, where constraints (10), (11) and (12) are all binding. If this tax

regime still does not fulfill the revenue requirement, then the tax regime which defines Case

III occurs. Here, (12) is not binding as the two types do not share a common border, but

(10) and (11) are binding, and net boundary rents for each type are equal to agricultural

rents.
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Figure 2: Land Use for Case I and Case III
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In the three sections that follow, the optimal tax structure under each of these three

cases is described. The relative net rent revenue maximizing levels of τh and τ s are shown

to be dependent upon the size of the relative tax bases, slopes of the bid rent functions at

the boundary and the level of land competition.

4 Rent Maximization for Case I

If the tax revenue constraint can be filled in Case I, then this is the best tax regime6.

In the following analysis, it is shown that the optimal taxation scheme under direct land

competition between the two usage types incorporates identical tax rates for both. For the

intuition behind this result, consider a case where tax rates are equal and then city center

one tax rates are increased a marginal amount. In order for the tax revenue constraint to

hold, city center two tax rates must be decreased. This change causes land use to switch

from usage one to usage two at the border, an effect which will strictly decrease rent revenue.

This is first shown analytically and then graphically below.

6This can be seen by examining the upper envelope of the bid rent functions over each of the three possible
spatial formations
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Net rent revenues for the Case I are defined as

NR = (1− τh)

rc(τh,τs)∫
0

ψ(r)dr + (1− τ s)

1∫
rc(τh,τs)

φ(r)dr (15)

Where (12) is the only binding constraint. The net revenue maximizing condition is then:7

 1∫
rc(τh,τs)

φ(r)dr
∂rc

∂τh
−

rc(τh,τs)∫
0

ψ(r)dr
∂rc

∂τ s

 (
τhψ(rc)− τ sφ(rc)

)
= 0 (16)

Proposition 4.1. In Case I, the optimal tax rates are such that τ ∗h = τ ∗s .

Proof. Let the solution, (τ ∗h , τ
∗
s ), satisfy the tax revenue constraint. In order for (16) to hold,

at least one of the two left hand terms must equal zero.

Step 1: Show that the first term in (16)
(∫ 1

rc(τh,τs)
φ(r)dr ∂r

c

∂τh
−

∫ rc(τh,τs)

0
ψ(r)dr ∂r

c

∂τs

)
6= 0.

First note that from the boundary constraint (9).

∂rc

∂τh
=

ψ(rc)

(1− τh)∂ψ
∂r
− (1− τ s)∂φ

∂r

(17)

∂rc

∂τ s
= − φ(rc)

(1− τh)∂ψ
∂r
− (1− τ s)∂φ

∂r

(18)

Substituting (17) and (18) into the first term of (16) and setting this equal to 0 yields:

∫ 1

rc(τh,τs)
φ(r)dr∫ rc(τh,τs)

0
ψ(r)dr

= −φ(rc)

ψ(rc)

Which cannot hold if {
∫ 1

rc(τh,τs)
φ(r)dr,

∫ rc(τh,τs)

0
ψ(r)dr, ψ(rc), φ(rc)} > 0.

Thus, for the first order condition to hold, τhψ(rc)−τ sφ(rc) must equal 0. This condition

is satisfied when τ ∗h = τ ∗s . Therefore, under Case I, the rent revenue maximizing tax pair

7Derivation is shown in Appendix A
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Figure 3: Case I: Tax Pairs

R

10

aR

)r(Ã )r(Á

)
s
¿ = 

h
¿ (

c
r

B

)
s
¿ < 

h
¿ (

c
r

(τ ∗h , τ
∗
s ) is such that τ ∗h = τ ∗s .

The intuition of this result is clear from Figure 3. Any differential between the tax rates

shifts the boundary relative to the case where τh = τ s and results in an unambiguous loss

in rent revenue, shown as Area B in the figure (for the case τ s > τh). The distortionary

aspect of this differential tax on the spatial distribution of differing land use types causes

a decrease in the rent envelope. This equilibrium type corresponds to a jurisdiction with

relatively high rents and population densities, where land is valued significantly higher than

agricultural use over all locations. In this case, the uniform tax rates used to generate the

tax revenues do not cause any distortions in the land market. This is not the result in the

Case II or Case III land distribution types, as interactions with agricultural land cause the

planner to implement a differential tax between types which will distort land use outcomes.

The upper bound on tax revenue that can be raised in Case I is denoted as π̄1, and defines
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the transition between Cases I and II. This is described as:

π̄1 = max

τ ∗ rc(τh,τs)∫
0

ψ(r)dr + τ ∗
1∫

rc(τh,τs)

φ(r)dr)


Subject to

rh = rs = rc

ψ(rc) = φ(rc)

τh = τ s = τ ∗

In cases where π̄ > π̄1, the planner is forced to set tax rates higher than is possible under

equal tax rates. The analysis of these possible tax regimes is described next.

5 Rent Maximization for Case II

In Case II, the planner sets the relative tax rates so that there is still not any agricultural

land in the jurisdiction, but the net rents for each usage type equal the agricultural rents

at the unique boundary. The transition from Case I to Case II occurs as the tax revenue

requirement increases to the point where the tax rates make the landowners indifferent

between agricultural and other usage types at the boundary.

The landowners then receive total net rent revenue equal to

NR = (1− τh)

rc(τh,τs)∫
0

ψ(r)dr + (1− τ s)

1∫
rc(τh,τs)

φ(r)dr (19)

Where constraints (10), (11), and (12) are binding. The tax revenue constraint is described

by:
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π̄ = τh
rc(τh,τs)∫

0

ψ(r)dr + τ s
1∫

rc(τh,τs)

φ(r)dr (20)

The solution to the planner’s problem is then 8.

∫ 1

rc(τh,τs)
φ(r)dr

− φ(rc)

(1−τs) ∂φ
∂r

=

∫ rc(τh,τs)

0
ψ(r)dr

ψ(rc)

(1−τh) ∂ψ
∂r

(21)

At the optimal tax solution (τ ∗h , τ
∗
s ), the marginal cost in terms of rent revenue of increas-

ing tax revenues from either usage must be equal. Here, the absolute loss in rent revenue

from increasing τ s is given by − φ(rc)

(1−τs) ∂φ
∂r

< 0, and the loss from increasing τh is φ(rc)

(1−τh) ∂ψ
∂r

< 0.

These loses represent the effect of land use switching between land use type one and two.

Under most specifications of the total rents and bid rent slopes, this will lead to a case where

the optimal tax differential is τh 6= τ s.

In order to examine this result in more detail, the optimal tax pairs under differing

assumptions on the relative bid rent slopes at the land use borders (∂ψ
∂r
, ∂φ
∂r

), as well as relative

gross rents for each type (
∫ rc(τh,τs)

0
ψ(r)dr,

∫ 1

rc(τh,τs)
φ(r)dr) are next presented analytically.

The graphical interpretation and intuition are discussed in more detail for Case III.

Proposition 5.1. In Case II when the slopes of the rent curves are equal at the boundaries

under equal tax rates, but the size of the tax bases differ, the optimal tax differential is

defined at some (τ ∗h , τ
∗
s ) pair where τ ∗s > τ ∗h if

∫ 1

rc(τh,τs)
φ(r)dr >

∫ rc(τh,τs)

0
ψ(r)dr and τ ∗h > τ ∗s

if
∫ rc(τh,τs)

0
ψ(r)dr >

∫ 1

rc(τh,τs)
φ(r)dr.

Proof. Let gross rents be represented by
∫ 1

rc(τh,τs)
φ(r)dr 6=

∫ rc(τh,τs)

0
ψ(r)dr, the slopes of

the rent curves at the boundary by ∂φ
∂r

= −∂ψ
∂r

= m̄ > 0, and the optimal tax pair (τ ∗h , τ
∗
s )

satisfies the tax revenue constraint, Substituting m̄ into (21) yields:

8The derivation of this is shown in Appendix B
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∫ 1

rc(τh,τs)
φ(r)dr∫ rc(τh,τs)

0
ψ(r)dr

=
− φ(rc)

(1−τs)m̄
ψ(rc)

(1−τh)m̄

(22)

Step 1: Prove by contradiction that τ ∗h 6= τ ∗s at the optimum.

Assume τh = τ s, then (22) becomes

Reducing this expression yields

∫ 1

rc(τh,τs)
φ(r)dr∫ rc(τh,τs)

0
ψ(r)dr

= 1

However, since

∫ 1
rc(τh,τs)

φ(r)dr∫ rc(τh,τs)
0 ψ(r)dr

6= 1, this equality does not hold.

Step 2: Show that if
∫ 1

rc(τh,τs)
φ(r)dr >

∫ rc(τh,τs)

0
ψ(r)dr then τ ∗s > τ ∗h

Rewrite (22) as

(1− τh)

ψ(rc)

 rh(τh)∫
0

ψ(r)dr

− (1− τ s)

φ(rc)

 1∫
rs(τs)

φ(r)dr

 = 0 (23)

However, if τh = τ s,

(1− τh)

ψ(rc)

 rh(τh)∫
0

ψ(r)dr

− (1− τ s)

φ(rc)

 1∫
rs(τs)

φ(r)dr

 < 0 (24)

Therefore, it is necessary to change the relative tax rates in order for (24) to hold. In

order for a rise in τ s to move toward the rent maximum, the first term must be increasing

in τ s and the second term must be decreasing.

Starting with the second term, let g(τ s) = (1 − τ s) then ∂g(τs)
∂τs

< 0. Additionally,

∂φ(rc)−1

∂τs
< 0 Since

∂φ(rc)−1

∂τ s
= −φ(rc)−2∂φ

∂r

∂rc

∂τ s
< 0
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as ∂φ
∂r
> 0 and ∂rc

∂τs
> 0. Finally,

∂
∫ 1
rs(τs) φ(r)dr

∂τs
= −φ(rs)

(
∂rs

∂τs

)
< 0. Therefore, the right side

of this term in decreasing in τ s.

Next, for the first term, let g(τh(τ s)) = (1− τh) and ∂g
∂τs

> 0 since dτh

dτs
< 0 9.

Additionally, ∂ψ−1

∂τs
= −ψ(rc)−2 ∂ψ

∂r
∂rc

∂τh
dτh

dτs
> 0 since ∂ψ

∂r
< 0, ∂r

c

∂τh
< 0, dτ

h

dτs
< 0. Finally, the

term
∂

∫ rc(τh,τs)
0 ψ(r)dr

∂τs
= ψ(rh)

(
∂rc

∂τh
dτh

dτs

)
> 0, so the left hand side is increasing in τ s, and the

condition for the optimal pair of (τ ∗s , τ
∗
h) is τ ∗s > τ ∗h .

Step 3: If
∫ rc(τh,τs)

0
ψ(r)dr >

∫ 1

rc(τh,τs)
φ(r)dr then τ ∗h > τ ∗s

Follows from Step 2.

Thus, in general under Case II, the optimal tax strategy involves shifting the tax burden

toward the larger tax base. Next, I consider a case where, under equal tax rates, the size of

the tax bases are equal but the slope of the rent curves at the boundary differ.

Proposition 5.2. In Case II, when the slopes of the rent curves differ at the boundaries but

the tax bases are the equal (
∫ 1

rc(τh,τs)
φ(r)dr =

∫ rc(τh,τs)

0
ψ(r)dr, ∂φ

∂r
6= −∂ψ

∂r
) under equal tax

rates, the optimal tax differential between types is dependent upon the relative magnitude of

the slopes. The optimal tax pair is defined as (τ ∗h , τ
∗
s ) where τ ∗s > τ ∗h if ∂φ

∂r
> −∂ψ

∂r
and τ ∗h > τ ∗s

if ∂φ
∂r
< −∂ψ

∂r
.

Let
∫ 1

rc(τh,τs)
φ(r)dr =

∫ rc(τh,τs)

0
ψ(r)dr = k̄ > 0

Proof. Step 1: Prove by contradiction that τ ∗h 6= τ ∗s .

Assume that τh = τ s. Then (21) becomes

−∂ψ
∂r

=
∂φ

∂r

However, since ∂ψ
∂r

6= −∂φ
∂r

, τ ∗s = τ ∗h cannot be the solution.

9The sign of dτh

dτs is found by totally differentiating the tax revenue constraint, and showing that this sign
may only be negative at the rent revenue maximizing levels of (τ∗h , τ

∗
s , see Appendix C for a proof
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Step 2: Prove that if ∂φ
∂r
> −∂ψ

∂r
then τ ∗s > τ ∗h .

Let m̄ = ∂φ
∂r
> −∂ψ

∂r
= −βm̄ where β ∈ (0, 1).

Substituting these conditions into 21 yields:

(1− τ s)

φ(rc)
− β(1− τh)

ψ(rc)
= 0

Using the identities for Case II with differing total rents, the condition for that optimal

pair, (τ ∗s , τ
∗
h) is τ ∗s > τ ∗h .

Step 3: If −∂ψ
∂r
> ∂φ

∂r
then τ ∗h > τ ∗s .

The proof of this result follows Step 2.

Thus, in general under Case II, the optimal tax strategy involves shifting the tax burden

toward the usage type with the steeper bid rent curve.

Again, the choice of (τ ∗h , τ
∗
s ) is dependent upon generating enough tax revenue to satisfy

the tax revenue constraint. In Case II, the maximum amount of tax revenue which can be

generated is given by π̄2.

π̄2 = max

τ ∗h
rc(τh,τs)∫

0

ψ(r)dr + τ ∗s

1∫
rc(τh,τs)

φ(r)dr)


Subject to

rh = rs = rc

(1− τ ∗h)ψ(rc) = (1− τ ∗s )φ(rc)

(τ ∗h , τ
∗
s ) satisfies

∫ 1

rc(τh,τs)
φ(r)dr∫ rc(τh,τs)

0
ψ(r)dr

=

φ(rc)
(1−τs)m̄
ψ(rc)

(1−τh)m̄

18



6 Rent Maximization for Case III

If the planner is still not able to generate enough revenue, then tax rates must be set a such

a level that induces a land use type defined by Case III. Here, there is not direct competition

for land between the city center one and city center two land usage types. As a result, the

only connection between the two types is through the tax revenue constraint. For a simple

example of this, consider a case where, starting from identical tax rates that meet the tax

revenue constraint, the city center one tax is increased a marginal amount. This increase in

the tax rate causes a strict decrease in net rents at all locations covered by the city center one

land-use type. This drop results in land use switching as agricultural outbids the city center

one land use at the city center one/agricultural border. The increase in tax revenues allows

for a corresponding decrease in city center two tax rates, thereby expanding city center two.

This results in impacts on net rent revenues which are not obvious, as the gain in rents

from the expansion of city center two may or may not equal the loss in revenues from the

contraction of city center one. The analysis that follows highlights the effects of this linkage.

Landowners receive total net rent revenue equal to

NR = (1− τh)

rh(τh)∫
0

ψ(r)dr +

rs(τs)∫
rh(τh)

Ra + (1− τ s)

1∫
rs(τs)

φ(r)dr (25)

subject to the boundary constraints rh < rs, (1 − τh)ψ(rh) = Ra and (1 − τ s)φ(rs) = Ra.

The tax revenue constraint is described by:

π̄ = τh
rh(τh)∫
0

ψ(r)dr + τ s
1∫

rs(τs)

φ(r)dr (26)
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The solution to the planner’s problem is then 10.

∫ 1

rs(τs)
φ(r)dr

−τ sφ(rs) ∂r
s

∂τs

=

∫ rh(τh)

0
ψ(r)dr

τhψ(rh) ∂r
h

∂τh

= (27)

∂rh

∂τh
is found by differentiating Equation 10 and using the result that ∂ψ

∂r
< 0 from (2). So,

∂rh

∂τh
=

ψ(rh)
∂ψ
∂r

(1− τh)
< 0 (28)

Therefore, an increase in τh will cause the city center one border to contract toward r = 0.

From Equations (7) and (4) the relationship between the city center two boundary and τ s

is:

∂rs

∂τ s
=

φ(rs)
∂φ
∂r

(1− τ s)
> 0 (29)

Here, increasing τ s will contract the city center two border toward r = 1.

Substituting these identities into (27) yields the following optimization condition:

∫ 1

rs(τs)
φ(r)dr

− τsφ(rs)2

(1−τs) ∂φ
∂r

=

∫ rh(τh)

0
ψ(r)dr

τhψ(rh)2

(1−τh) ∂ψ
∂r

(30)

In this case, just as in Case II, the marginal cost in terms of rent revenues of generating

additional tax revenue from the two land uses must be equal under the optimal tax solution.

However, the presence of agricultural land makes the cost effect even more pronounced, as

the boundary effects are magnified by land use switching to agricultural land at the borders,

rather than from the land use one to land use two types. Again, the optimal tax differential

is non-zero, under most assumptions. The analytical results for Case III follow those of Case

II quite closely and are included in Appendix D. Here, I focus on an intuitive discussion of

the analytical results, shown graphically in the following analysis.

10The derivation of this result is shown in Appendix D
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Figure 4: Optimal Tax Differential for Case III with Symmetric Bid Rent Functions

Under Case III, the optimal tax policy for symmetric bid rent functions when the tax

rates are equal is (τ ∗h = τ ∗s ). This result is shown graphically in Figure 311. Any movement

away from this tax combination results in strictly lower rent revenues, since, from the figure,

the gain from A is outweighed by the loss in B.

If the bid rent curves are not symmetric when the tax rates are equal, then the optimal

tax differentials will, in general, be non zero. The case of having differing total rents rents

under equal tax rates, but the same slope at the boundary is described next.

This case shows that it is in the interest of the planner to tax the usage type with the

higher tax base under equal tax rates at a higher tax rate. The intuition for this result can

be seen in Figure 5 for the case where
∫ 1

rs(τs)
φ(r)dr >

∫ rh(τh)

0
ψ(r)dr, starting from the equal

tax solution. The analytical results show that the gain in A from decreasing τh is larger

than the loss in B from increasing τ s. This result is driven by the fact that relatively small

increase in τ s will cause a larger relative decrease in τh. Therefore, the boundary of the city

center one agents will shift out at a greater magnitude than the boundary of city center two

contracts, which results in net rent revenue gains relative to a uniform tax rate.

11While the model describes outcomes for marginal changes in τh and τ s, the Figures represent discrete
changes. However, the intuitions from the Figures are consistent with the marginal results. Additionally,
the use of the linear bid rent curves in the graphical analysis is assumed for its simplicity
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Figure 6: Case III: Tax Pairs in Non-Symmetric boundary bid-rent curves (∂φ
∂r
> −∂ψ

∂r
)

The final analysis for Case III is where, under equal tax rates, the slope of city center

one and city center two rent curves differ at the boundary, but the total gross rents from

each side are equal. Again, a differential tax is preferred by the planner. The intuition for

the case where ∂φ
∂r

> −∂ψ
∂r

under equal tax rates can be seen in Figure 6. Although the

gross rents from both sides are the same at τh = τ s, an increase in τ s which results in a

corresponding decrease in τh will raise net rents since the return to a decrease in τh (shown

by Area A), is greater than the loss from the increase in τ s (Area B). This condition is again,

verified by the analytical results.
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Results from Case III show that in general the only time it is efficient to set τh = τ s

is under the assumption of completely symmetric bid rent curves under equal tax rates.

Otherwise, the usage type with either the steeper bid-rent curve at the boundary or larger

tax base under equal tax rates should be taxed at a higher rate. Therefore, the ability to

set tax rates differentially will increase net rent revenues.

Under this final regime, the maximum amount of tax revenue which may be raised is:

π̄3 = max

τ ∗h
rh(τh)∫
0

ψ(r)dr + τ ∗s

1∫
rs(τs)

φ(r)dr)


Subject to

rh < rs

(1− τ ∗h)ψ(rc) = (1− τ ∗s )φ(rc)

(τ ∗h , τ
∗
s ) satisfies

∫ 1

rs(τs)
φ(r)dr

− τsφ(rs)2

(1−τs) ∂φ
∂r

=

∫ rh(τh)

0
ψ(r)dr

τhψ(rh)2

(1−τh) ∂ψ
∂r

7 Conclusion

This analysis shows how spatial land competition in a dualcentric city affects the optimal

choice of an advalorem land tax pair, a subject which up to this point has been left unex-

amined in the literature. Because there may be differing land use outcomes and tax revenue

constraints in the dualcentric city, it is shown that there is heterogeneity in the optimal tax

differential. The determination of the level of these tax rates depends upon the price floor

of the jurisdiction - represented by agricultural land, the amount of tax revenue required in

the jurisdiction, and the relative size and slope of the respective land use bid rent functions.

The results have several policy implications. In highly dense, urban areas where the price

floor is not a constraint, it is best to tax all land uses at an equal rate, since any movements
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away from this tax regime will cause an unambiguous loss in rent revenues. In less densely

developed areas, where the price floor is binding, the use of differential tax will give the

policy maker the ability to increase revenues. Therefore, if a local jurisdiction has complete

control over the tax rates, land use must be a consideration in the decision of how much to

tax. In cases where taxes are set at the state level, it is shown that the implementation of

a forced tax differential will serve to lower total rents in urban areas, with ambiguous but

identifiable results for less densely populated jurisdictions.
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A Case I: Revenue Maximization

Write the Lagrangian as

L = (1− τh)

rc(τh,τs)∫
0

ψ(r)dr + (1− τ s)

1∫
rc(τh,τs)

φ(r)dr + λ

τh rc(τh,τs)∫
0

ψ(r)dr + τ s
1∫

rc(τh,τs)

φ(r)dr


(31)

The first order conditions for the Lagrangian are

∂L

∂τh
= −

rc(τh,τs)∫
0

ψ(r)dr + (1− τh)ψ(rc)
∂rc

∂τh
− (1− τ s)φ(rc)

∂rc

∂τh

+ λ

 rc(τh,τs)∫
0

ψ(r)dr + τhψ(rc)
drc

dτ s
− τ sφ(rc)

∂rc

∂τh

 = 0

∂L

∂τ s
= −

1∫
rc(τh,τs)

φ(r)dr + (1− τh)φ(rc)
∂rc

∂τ s
− (1− τ s)φ(rc)

∂rc

∂τ s

+ λ

τhφ(rc)
∂rc

∂τ s
+

1∫
rc(τh,τs)

φ(r)dr − τ sφ(rc)
∂rc

∂τ s

 = 0

Using the boundary condition identity that (1−τh)ψ(rc) = (1−τ s)φ(rc), the FOCs can be reduced
to

∂L

∂τh
= −

rc(τh,τs)∫
0

ψ(r)dr + λ

 rc(τh,τs)∫
0

ψ(r)dr + τhψ(rc)
drc

dτ s
− τ sφ(rc)

∂rc

∂τh

 = 0

∂L

∂τ s
= −

1∫
rc(τh,τs)

φ(r)dr + λ

τhφ(rc)
∂rc

∂τ s
+

1∫
rc(τh,τs)

φ(r)dr − τ sφ(rc)
∂rc

∂τ s

 = 0
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Combining the FOCs yields:∫ rc(τh,τs)
0 ψ(r)dr +

(
τhψ(rc)− τ sφ(rc)

)
∂rc

∂τh∫ 1
rc(τh,τs) φ(r)dr + (τhψ(rc)− τ sφ(rc)) ∂rc∂τs

=

∫ rc(τh,τs)
0 ψ(r)dr∫ 1
rc(τh,τs) φ(r)dr

Rearranging terms yields: 1∫
rc(τh,τs)

φ(r)dr
∂rc

∂τh
−

rc(τh,τs)∫
0

ψ(r)dr
∂rc

∂τ s

 (
τhψ(rc)− τ sφ(rc)

)
= 0

B Case II: Revenue Maximization

Write the maximization problem as

L = (1− τh)

rc(τh,τs)∫
0

ψ(r)dr + (1− τ s)

1∫
rc(τh,τs)

φ(r)dr + λ

τh rc(τh,τs)∫
0

ψ(r)dr + τ s
1∫

rc(τh,τs)

φ(r)dr


∂L

∂τh
= ψ(rc)

∂rc

∂τh
− φ(rc)

∂rc

∂τh
+ λ1

 rc(τh,τs)∫
0

ψ(r)dr + τhψ(rc)
∂rc

∂τh
− τ sφ(rc)

∂rc

∂τh

 = 0

∂L

∂τ s
= ψ(rc)

∂rc

∂τ s
− φ(rc)

∂rc

∂τ s
+ λ1

 1∫
rc(τh,τs)

φ(r)dr + τ sψ(rc)
∂rc

∂τ s
− τ sφ(rc)

∂rc

∂τ s

 = 0

Solving these First Order conditions yields:∫ 1
rc(τh,τs) φ(r)dr∫ rc(τh,τs)
0 ψ(r)dr

=
∂rc

∂τs

∂rc

∂τh

(32)

Since the constraints (10), (11) are binding, the right hand side of this is described as

∂rc

∂τh
=

ψ(rc)

−(1− τh)∂ψ∂r
∂rc

∂τ s
=

φ(rc)

(1− τ s)∂φ∂r

Substituting these conditions into (32) gives the condition for τ∗h , τ
∗
s .

∫ 1
rc(τh,τs) φ(r)dr∫ rc(τh,τs)
0 ψ(r)dr

=

φ(rc)

(1−τs) ∂φ
∂r

− ψ(rc)

(1−τh) ∂ψ
∂r

(33)
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C Case II: dτh

dτs

The relationship between τh and τ s can be seen by totally differentiating the tax revenue constraint,
given as

τh
rc(τh,τs)∫

0

ψ(r)dr + τ s
1∫

rc(τh,τs)

φ(r)dr = π̄ (34)

and

dτh
rc(τh,τs)∫

0

ψ(r)dr + τh
∂rc

∂τh
ψ(rc)dτh + dτ s

1∫
rc(τh,τs)

φ(r)dr − τ s
∂rc

∂τ s
φ(rh) = 0 (35)

Solving for dτh

dτs yields:

dτh

dτ s
= −

−τ s ∂rc∂τsφ(rc) +
∫ 1
rc(τh,τs) φ(r)dr

τh ∂r
c

∂τh
ψ(rc) +

∫ rc(τh,τs)
0 ψ(r)dr

(36)

Proposition C.1. At the rent revenue maximizing levels of (τ∗h , τ
∗
s ), dτh

dτs < 0

Proof. Proof by contradiction.
Step 1: Assume that dτh

dτs > 0. There are two cases where this may hold . The first case where
the numerator of (36) is positive and the denominator is negative. The second case is simply the
contrapositive of the first.

These conditions are defined as

−τ s ∂r
c

∂τ s
φ(rc) +

1∫
rc(τh,τs)

φ(r)dr > 0

τh
∂rc

∂τh
ψ(rc) +

rc(τh,τs)∫
0

ψ(r)dr < 0

Rearranging terms and combining these conditions yields∫ rc(τh,τs)
0 ψ(r)dr

−τh ∂rc
∂τh

ψ(rc)
< 1 <

∫ 1
rc(τh,τs) φ(r)dr

τ s ∂r
c

∂τsφ(rc)

However, from the solution to the maximization problem,∫ rc(τh,τs)
0 ψ(r)dr

−τh ∂rc
∂τh

ψ(rc)
=

∫ 1
rc(τh,τs) φ(r)dr

τ s ∂r
c

∂τsφ(rc)

The same result applies to the contrapositive, and therefore dτh

dτs > 0 does not exist at the maximum.
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Step 2: Assume that dτh

dτs = 0 Then

τ s
∂rc

∂τ s
φ(rc) =

1∫
rc(τh,τs)

φ(r)dr

Then, from the maximization results, the following condition must hold:

−τh ∂r
c

∂τh
ψ(rc) =

rc(τh,τs)∫
0

ψ(r)dr

However, if this is true, then the denominator of dτh

dτs = 0, and the solution is undefined.

So, if dτh

dτs must be less than zero, there still remain two possible (τh, τ s) pairs which satisfy,
which correspond to the the possible equilibrium points, that in which the both the denominator
and numerator share the same sign, as a result of a Laffer-type curve. In the first case (τhl , τ

s
l ), the

numerator and denominator are positive, then an increase in τh or τ s will cause tax revenues to
increase, which corresponds to being on the left hand side of the Laffer curve. However, if both are
negative (τhr , τ

s
r ), then we are to the right of the Laffer curve. In the case when both are negative,

the planner may increase both tax and rent revenues by decreasing the either of the tax rates.
Therefore, it is clear that if τhl < τhr , and τ sl < τ sr then

NR(τhl , τ
s
l ) > NR(τhr , τ

s
r ) (37)

since

∂NR

∂τh
= −

rc(τh,τs)∫
0

ψ(r)dr + (1− τh)ψ(rc)
∂rc

∂τh
< 0

∂NR

∂τ s
= −

1∫
rc(τh,τs)

φ(r)dr − (1− τ s)φ(rc)
∂rc

∂τ s
< 0

D Case III: Revenue Maximization

The planner’s problem is

max
τh,τs

(1− τh)

rh(τh)∫
0

ψ(r)dr +

rs(τs)∫
rh(τh)

Radr + (1− τ s)

1∫
rs(τs)

φ(r)dr

s.t. τh
rh(τh)∫
0

ψ(r)dr + τ s
1∫

rs(τs)

φ(r)dr = π̄
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The Lagrangian is then defined as

L = (1−τh)
rh(τh)∫
0

ψ(r)dr+

rs(τs)∫
rh(τh)

Radr+(1−τ s)
1∫

rs(τs)

φ(r)dr+λ

τh rh(τh)∫
0

ψ(r)dr + τ s
1∫

rs(τs)

φ(r)dr


7 The first order conditions are then

∂L

∂τh
= (1− τh)ψ(rh)

∂rh

∂τh
−

rh(τh)∫
0

ψ(r)dr −Ra
∂rh

∂τh
+ λ

τhψ(rh)
∂rh

∂τh
+

rh(τh)∫
0

ψ(r)dr

 = 0 (38)

∂L

∂τ s
= Ra

∂rs

∂τ s
− (1− τ s)φ(rs)

∂rs

∂τ s
−

1∫
rs(τs)

φ(r)dr + λ

−τ sφ(rs)
∂rs

∂τ s
+

1∫
rs(τs)

φ(r)dr

 = 0 (39)

Combining (38) and (39) yields

ψ(rh)
∂rh

∂τh
τ sφ(rs)

∂rs

∂τ s
− ψ(rh)

∂rh

∂τh

1∫
rs(τs)

φ(r)dr −Ra
∂rh

∂τh
τ sφ(rs)

∂rs

∂τ s

+Ra
∂rh

∂τh

1∫
rs(τs)

φ(r)dr +Raτhψ(rh)
∂rh

∂τh
∂rs

∂τ s
+Ra

∂rs

∂τ s

rh(τh)∫
0

ψ(r)dr

− τhψ(rh)
∂rh

∂τh
φ(rs)

∂rs

∂τ s
− φ(rs)

∂rs

∂τ s

rh(τh)∫
0

ψ(r)dr = 0

Rearranging terms yields

∂rh

∂τh
∂rs

∂τ s

(
ψ(rh)τ sφ(rs)−Raτ sφ(rs) +Raτhψ(rh)− τhψ(rh)φ(rs)

)
(40)

+
∂rh

∂τh

Ra 1∫
rs(τs)

φ(r)dr − ψ(rh)

1∫
rs(τs)

φ(r)dr

 (41)

+
∂rs

∂τ s

Ra rh(τh)∫
0

ψ(r)dr − φ(rs)

rh(τh)∫
0

ψ(r)dr

 = 0 (42)

Step 1: Show that ψ(rh)τ sφ(rs)−Raτ sφ(rs) +Raτhψ(rh)− τhψ(rh)φ(rs) = 0
Rewrite (40) as

τ sφ(rs)(ψ(rh)−Ra) + τhψ(rh)(Ra − φ(rs)) (43)
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From the city center one boundary condition - (1− τh)ψ(rh) = Ra

ψ(rh)−Ra =
τhRa

(1− τh)

and from the city center two boundary condition - (1− τ s)φ(rs) = Ra

Ra − φ(rs) = − τ sRa

(1− τ s)

Substituting these identities into 43 yields

τ sτhφ(rs)Ra

(1− τh)
− τhτ sψRa

(1− τ s)
= τhτ sRa

(
φ(rs)

(1− τh)
− ψ(rh)

(1− τ s)

)
(44)

And, since Ra = (1 − τh)ψ(rh) = (1 − τ s)φ(rs), The interior of this expression is zero, and term
(40) is zero.

Step 2:
Now, from (41) and (42)

∂rh

∂τh

Ra 1∫
rs(τs)

φ(r)dr − ψ(rh)

1∫
rs(τs)

φ(r)dr

 +
∂rs

∂τ s

Ra rh(τh)∫
0

ψ(r)dr − φ(rs)

rh(τh)∫
0

ψ(r)dr

 = 0

And
∂rh

∂τh

∫ 1
rs(τs) φ(r)dr

(
Ra − ψ(rh)

)
∂rs

∂τs

∫ rh(τh)
0 ψ(r)dr (Ra − φ(rs))

= −1 (45)

Again, from the boundary conditions:

Ra − ψ(rh) = −τhψ(rh)
Ra − φ(rs) = −τ sφ(rs)

Substitute the results into (45) to get

τhψ(rh) ∂r
h

∂τh

∫ 1
rs(τs) φ(r)dr

τ sφ(rs) ∂rs∂τs

∫ rh(τh)
0 ψ(r)dr

= −1

E Case III: Tax differentials

The following analysis describes the optimal tax pair under differing assumptions on the relative
bid rent slopes at the land use borders (∂ψ∂r ,

∂φ
∂r ), as well as relative gross rents for each type

(
∫ rh(τh)
0 ψ(r)dr,

∫ 1
rs(τs) φ(r)dr).

Proposition E.1. In Case III, when both the city center one and city center two bid rent curves
are symmetric at the boundary and the tax bases are equal when the tax rates are equal, the optimal
tax differential is defined at the (τ∗h , τ

∗
s ) pair where τ∗h − τ∗s = 0.
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Proof. Let gross rents under equal tax rates to the tax revenue constraint be represented by∫ 1
rs(τs) φ(r)dr =

∫ rh(τh)
0 ψ(r)dr = k̄ > 0, the slopes of the rent curves at the boundary by ∂φ

∂r =

−∂ψ
∂r = m̄ > 0, and the optimal tax pair (τ∗h , τ

∗
s ) satisfy the tax revenue constraint.

Substituting in m̄ and k̄ into 30 yields

−(1−τh)m̄
τhψ2

[
k̄
]

(1−τs)m̄
τsφ2

[
k̄
] = −1

Rearranging terms yields

k̄m̄

(
(1− τh)
τhψ2

− (1− τ s)
τ sφ2

)
= 0 (46)

If τh > τ s and k̄m̄ > 0, then (46) < 0 since τhψ2 > τ sφ2 and (1− τh) < (1− τ s). Conversely, for
τ s > τh (46) > 0. Therefore, the maximum can only occur when τ∗h = τ∗s , since this is the only

pair which satisfies (1−τh)
τhψ2 = (1−τs)

τsφ2 .

Proposition E.2. In Case III, when the slopes of the rent curves are symmetric at the boundaries
under equal tax rates, but the tax bases differ, the optimal tax differential is defined at some (τ∗h , τ

∗
s )

pair where τ∗s > τ∗h if
∫ 1
rs(τs) φ(r)dr >

∫ rh(τh)
0 ψ(r)dr and τ∗h > τ∗s if

∫ rh(τh)
0 ψ(r)dr >

∫ 1
rs(τs) φ(r)dr.

Proof. Let gross rents be represented by
∫ 1
rs(τs) φ(r)dr 6=

∫ rh(τh)
0 ψ(r)dr, the slopes of the rent

curves at the boundary by ∂φ
∂r = −∂ψ

∂r = m̄ > 0, and the optimal tax pair (τ∗h , τ
∗
s ) satisfies the tax

revenue constraint,
Step 1: Prove by contradiction that τ∗h 6= τ∗s at the optimum.
Assume τh = τ s, then (30) becomes

−m̄
[∫ rh(τh)

0 ψ(r)dr
]

m̄
[∫ 1
rs(τs) φ(r)dr

] = −1

Rearranging terms yields

m̄

 rh(τh)∫
0

ψ(r)dr −
1∫

rs(τs)

φ(r)dr

 = 0 (47)

However, since
∫ 1
rs(τs) φ(r)dr 6=

∫ rh(τh)
0 ψ(r)dr and m̄ > 0, this equality does not hold .

Step 2: If
∫ 1
rs(τs) φ(r)dr >

∫ rh(τh)
0 ψ(r)dr then τ∗s > τ∗h

Rewrite (30) as

(1− τh)
τhψ(rh)2

 rh(τh)∫
0

ψ(r)dr

− (1− τ s)
τ sφ(rs)2

 1∫
rs(τs)

φ(r)dr

 = 0 (48)

If τh = τ s,
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(1− τh)
τhψ(rh)2

 rh(τh)∫
0

ψ(r)dr

− (1− τ s)
τ sφ(rs)2

 1∫
rs(τs)

φ(r)dr

 < 0 (49)

Therefore, it is necessary to change the relative tax rates in order for (48) to hold. In order for
a rise in τ s to move toward the rent maximum, the first term must be increasing in and the second
term must be decreasing in τ s.

Starting with the second term, let g(τ s) = (1−τs)
τs then ∂g(τs)

∂τs < 0. Additionally, ∂φ(rs)−2

∂τs < 0
Since

∂φ(rs)−2

∂τ s
= −2φ(rs)

∂φ

∂r

∂rs

∂τ s
< 0

as ∂φ
∂r > 0 and ∂rs

∂τs > 0. Finally,
∂

∫ 1
rs(τs) φ(r)dr

∂τs = −φ(rs)
(
∂rs

∂τs

)
< 0. Therefore, the right side of this

term in decreasing in τ s.
Next, for the first term, let g(τh(τ s)) = (1−τh)

τh
> 0 since dτh

dτs < 0 12.

Additionally, ∂ψ
−2

∂τs = −2ψ(rh)
(
∂ψ
∂r

(
∂rh

∂τh
dτh

dτs + ∂rh

∂τs

))
> 0 since ∂ψ

∂r < 0, ∂r
h

∂τh
< 0, dτ

h

dτs < 0, and ∂rh

∂τs >

0. Finally, the term ∂
∫ rh(τh)
0 ψ(r)dr

∂τs = ψ(rh)
(
∂rh

∂τh
dτh

dτs

)
> 0, so the left hand side is increasing in τ s,

and the condition for the optimal pair of (τ∗s , τ
∗
h) is τ∗s > τ∗h .

Step 3: If
∫ rh(τh)
0 ψ(r)dr >

∫ 1
rs(τs) φ(r)dr then τ∗h > τ∗s Follows from Step 2.

Proposition E.3. In Case III, when the slopes of the rent curves differ at the boundaries but the
tax bases are equal (

∫ 1
rs(τs) φ(r)dr =

∫ rh(τh)
0 ψ(r)dr, ∂φ∂r 6= −∂ψ

∂r ) under equal tax rates, the optimal
tax differential between types is dependent upon the relative magnitude of the slopes. Then the
optimal tax pair is defined as (τ∗h , τ

∗
s ) where τ∗s > τ∗h if ∂φ

∂r > −∂ψ
∂r and τ∗h > τ∗s if ∂φ

∂r < −∂ψ
∂r .

Let (
∫ 1
rs(τs) φ(r)dr =

∫ rh(τh)
0 ψ(r)dr = k̄ > 0)

Proof. Step 1: Prove by contradiction that τ∗h 6= τ∗s .
Assume that τh = τ s. Then (30) becomes

∂ψ
∂r (k̄)
∂φ
∂r (k̄)

= −1

Rearranging terms yields

k̄

(
∂ψ

∂r
+
∂φ

∂r

)
= 0

However, since ∂ψ
∂r 6= −∂φ

∂r and k̄ > 0, τ∗s = τ∗h cannot be the solution.
Step 2: Prove that if ∂φ

∂r > −∂ψ
∂r then τ∗s > τ∗h .

Let m = ∂φ
∂r > −∂ψ

∂r = −βm where β ∈ (0, 1).

12The proof of dτh

dτs < 0 follows the same logic as from the touching case
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Substituting these conditions into 30 yields:

− (1−τh)βm
τhψ(rh)2

k̄

(1−τs)m
τsφ(rs)2

k̄
= −1

And therefore:

mk̄

(
(1− τ s)
τ sφ2

− (1− τh)
τhψ2

β

)
= 0

Using the identities for the Case III with differing tax bases, the condition for that optimal pair,
(τ∗s , τ

∗
h) is τ∗s > τ∗h .

Step 3: If −∂ψ
∂r >

∂φ
∂r then τ∗h > τ∗s . The proof of this result follows Step 2.
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