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Abstract 

 
Discoveries in basic scientific research at universities are useful in applied 

research in industry and sometimes lead to commercially valuable innovations. Many 
empirical studies have documented a positive relationship between academic research 
and innovation by firms.  However, interpreting this relationship as a causal spillover 
from academia to industry is difficult since a substantial share of academic R&D is 
funded by industry.  Proximity to industry also influences the quality of professorial 
talent at a university, and location decisions of both industry and academics may be 
correlated with other unobservables.  Given the presence of such difficult identification 
issues, this paper uses a novel empirical method to re-examine the effect of academic 
research in particular metropolitan areas on commercial innovation produced in those 
locations.  I exploit the fact that members of certain appropriations sub-committees 
within the U.S. Congress can influence the process of allocating federal research funds in 
favor of their constituents, which leads to ‘exogenous’ variation in research funding at 
particular universities that is plausibly uncorrelated with factors that affect industrial 
innovation.  

I construct a detailed panel of micro-data on patent counts, publication counts, 
doctorates granted and industry R&D expenditures at the metropolitan area/technology 
area/year level with which I find evidence that measures of academic scientific 
knowledge are positively related to industrial patenting.  Using a city-year panel dataset 
of industrial patents and academic publications, I find an elasticity of patents with respect 
to publications from universities in that metropolitan area of 1.17, but that this elasticity 
is reduced to 0.95 when relying only on variation in publications attributable to 
“congressional favors”.  This translates into an extra patent produced by industry for 
every 7 extra academic publications produced by universities located in that city owing to 
the extra research funds diverted to those universities.  An elasticity of patents with 
respect to citations to academic publications of 0.55 is also reduced in the IV set up.  
These results provide evidence of spillovers unrelated to ordinary market transactions 
between firms and universities.  Data on Ph.D. recipients from each university is used to 
examine another channel through which academia affects industry – the employment of 
students with frontier- level technical knowledge. My results show that the employment 
of new doctoral graduates in science and engineering by industry is also positively related 
to industrial patenting. 
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I  Introduction 

 

 Universities and research institutes are frequently touted as sources of knowledge 

that enhance innovation in their local economies.  To casual observers, the decision of 

high-tech firms to locate near world-class research universities is evidence of local 

economic benefits stemming from academic scientific research.  While access to talented 

new graduates is a major consideration, access to new ideas – new knowledge at the 

“frontier” – is another important benefit.  Spillovers from universities are especially 

important due to the role of academic science, which is more basic or “upstream”, in 

fostering the development of applied technology by firms.  While many studies have 

examined the linkages between academic science and industrial innovation, econometric 

identification of causal spillover effects is difficult due to unobservable factors affecting 

the co-location of faculty research talent and industry research.  This study makes use of 

the fact that members of the U.S. Congress influence the distribution of federal research 

funding, creating variation in academic science that is plausibly uncorrelated with local 

industrial innovation.         

Evidence abounds of collaboration and interaction between firms and universities: 

Intel maintains labs in Berkeley, Pittsburgh and Seattle that are staffed by faculty from 

UC Berkeley, Carnegie Mellon University, and the University of Washington, 

respectively.1  The biotech company Lucigen is one of several firms working with the 

University of Wisconsin to create biocatalysts that can convert crops into ethanol,2 and 

Dupont has a program with MIT - the Dupont-MIT Alliance - in which Dupont has a $60 

                                                 
1 www.intel.com/research/network 
2 University of Wisconsin-Madison News “Industry Partners Bring Vital Applied Knowledge to the 
GLBRC Project”, June 26, 2007 
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million commitment to MIT over the period 2000-2010.3  Indeed, over the period of 1970 

to 2000, fully 43% of academic R&D funding came from non-federal sources, with a 

large share from industry.4    

Many studies have examined academic knowledge spillovers as the geographic 

co-location of academic R&D and measures of industrial innovation.  This approach does 

not distinguish, however, between sources of knowledge external to firms, or independent 

academic research, and academic research that is essentially an extension of a firm’s own 

R&D activity.  Such a distinction is important when considering the economic benefits of 

academic research – independent research may be more aligned with the broad interests 

of society than “in-house” research, and may be used by a greater number of firms.  Yet 

examining spillover effects from independent academic research is not as simple as 

considering only federally funded research – federal grants allocated through peer-review 

go to highly talented researchers, and the presence of nearby industry may draw 

professorial talent to a university.  For example, the University of Rochester has cited its 

relationship with Kodak for the return of Henry A. Kautz, a “national leader in artificial 

intelligence”, to its faculty.5 Geographic and other unobserved factors, such as the talent 

of new graduates in science and engineering, may also influence the co-location of 

academic and industrial R&D.  Therefore, estimates of the correlation between academic 

R&D and industrial innovation are not identifying a spillover externality per se, but rather 

measuring the total role of academic R&D in applied research by industry.    

                                                 
3 MIT News Office “Dupont Backs MIT Research with Additional $25M”, May 19, 2005 
4 Calculated from the NSF’s Survey of R&D Expenditures at Universities and Colleges, available at 
webcaspar.nsf.org, for Universities sampled in this paper 
5 University of Rochester News Bulletin “New Academic-Industry Collaboration Brings Talent to 
Rochester”, October 4, 2006 
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PhD graduates in science and engineering are also sources of new knowledge for 

firms.  They spend years gaining hands-on experience with frontier-level knowledge, so 

their knowledge contribution to their future employers is different than a general 

contribution of human-capital.  Enrollment levels may depend on the presence of industry 

as well, and an analysis of a spillover effect should account for the number of new 

graduates.      

 This paper uses the political determination of federal research funding for 

academia to isolate the causal effect of basic academic research on the innovative activity 

of firms located in the same cities as those universities.  Members of Congress on certain 

appropriation sub-committees have control over the budgets of granting agencies, and 

since different agencies have different propensities to support research by location, 

research funds can be channeled to their own constituents.  This creates variation in 

research funding that is unassociated with commercial innovation and other local 

characteristics linking academic and industrial R&D, which can then be used to measure 

the knowledge spillover effect of academic R&D on local innovation.  Using a panel 

dataset of counts of industrial patents and academic scientific publications at the 

metropolitan/year level, I find a high elasticity of patents with respect to publications of 

1.17, but that this is reduced to 0.95 when only variation in publications due to 

“congressional favors” is used.  Similarly, an elasticity of patents with respect to 

academic citations of publications of 0.55 is reduced to a negative, but insignificant, 0.55.  

This suggests that in the aggregate, knowledge spillovers take place at a lower rate than 

transfer of knowledge through market transactions, but this difference varies by 

technology area.  Using data on the actual counts of new PhD graduates per 
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metropolitan/year observation, I find that separately controlling for this channel of 

influence from academia to industry does not affect the finding above, although the 

number of new PhDs is related to the level of industrial patenting.  In summary, the link 

between academic and industrial innovation is likely multi-dimensional and bi-

directional, and my empirical methodology allows me to isolate a specific component of 

this link, which is the influence of independent basic academic research on the innovation 

activities of firms located in the same cities. 

The paper is structured as follows: section II discusses prior literature in academic 

knowledge spillovers.  Section III offers a discussion of the economics of academic 

knowledge spillovers, including a rationale for local spillovers.  In section IV the 

empirical methodology and method of identification is described, while section V 

describes the data, section VI presents empirical results, and section VII concludes. 

 

II Prior Literature 
 
 

This paper follows a stream of econometric studies that measure spillovers 

indirectly, as the geographic coincidence of innovation with academic resources.  This is 

often styled as the estimation of an innovation production function in which firms use 

their own research and development (R&D) expenditures combined in some way with an 

academic input (academic R&D).  Such an innovation production function was first 

proposed for individual firms by Pakes and Griliches (1980, 1984), and later adapted to 

include academic R&D by Jaffe (1989).  Jaffe’s study estimated the relationship between 

industrial patent counts and both industrial R&D and academic R&D, at the level of state 

and year.  Recognizing that the large portion of academic R&D funded by industry would 
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bias the OLS estimate of the spillover coefficient, Jaffe used state demographics such as 

population and the number of universities as instruments for academic R&D.  The central 

findings included IV estimates of the elasticity of industrial patenting with respect to 

university R&D equal to 0.191 for drugs and medical technology, and 0.125 for 

electronics technology.   

Subsequently, many studies have looked at different aspects of academic 

knowledge spillovers.  Acs, Audretsch and Feldman (1992) criticized Jaffe’s use of 

patent counts as a measure of innovation, since the quality and novelty of innovation 

documented by each patent varies widely, and the propensity to patent also varies widely 

across industries.  The use of surveys of corporate managers and the examination of 

citations by patents became more frequently used methods than geographic analysis6; the 

urban and regional literature focused on academic spillovers as a source of agglomeration 

economies.  Although geographic econometric analysis has been employed by some 

studies, most have either ignored the confounding of academic and industrial R&D or 

used an identification method similar to Jaffe (1989); I am unaware of studies that have 

considered identification with respect to the location of faculty talent and other 

unobservables.  Two of the more important studies are discussed below.      

Anselin, Varga and Acs (1997) examined spillovers at the level of 

metropolitan/technology area, for one year.  They used similar instruments as Jaffe to 

isolate variation in academic R&D that is unrelated to industry R&D: student enrollment, 

and academic expenditures.  Their core instrumented finding was an elasticity of 

innovation with respect to academic R&D of 0.259.  Consistent with the critique of 

                                                 
6 See Appendix B for a short summary of this literature; detailed reviews are contained in Agrawal (2001) 
and Salter and Martin (2001) 
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Jaffe’s use of patent counts, their measure of innovation was a count of innovations 

constructed by the U.S. Small Business Innovation Database, for 19827.  This unique 

innovation measure was limited to that single year, which prohibited use of variation over 

time.  They were also able to investigate the effect of distance on spillovers by using 

“spatial lags” of the explanatory variables, which turn out to have less of a positive effect 

than R&D conducted near the center of an MSA.   

A more recent study is from Agrawal and Cockburn (2003).  By limiting their 

study to three narrow technological areas in electrical engineering, they were able to 

closely link publishing in those areas (creation of new knowledge) to patents in those 

areas.  They find a high degree of geographic co-location of patenting and publishing, 

and that the presence of an “anchor tenant”8 increases the degree of co-location.  While 

the above studies interpreted this co-location as evidence of a causal spillover, this study 

explicitly acknowledged the difficulties in assigning causality.  As Agrawal and 

Cockburn put it,  

“Though there are good reasons to believe that papers “cause” patents in 
the sense that downstream industrial R&D activity relies on upstream science, it is 
quite possible that causation runs in the opposite direction.  We have not specified 
a production function technology for R&D nor made any assumptions about the 
behavior of actors in this process.” (Agrawal and Cockburn, 2003, pp. 1243-45) 
 

The present study is not completely agnostic about the mechanisms for spillovers.  

Much is known about the channels of academic knowledge spillovers, and the 

applicability of an econometric approach to measure them is considered in section III.  

                                                 
7 This was a one-time assessment of innovations listed in trade journals. 
8 Agrawal and Cockburn define an “anchor tenant” as a company with both at least one patent in a 
particular narrow tech. area and at least one thousand patents in general. 
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Identification with a different approach than that of Jaffe (1989) and Anselin, Varga and 

Acs (1997) is detailed in section IV.   

 

III Discussion of Tacit Knowledge and Local Spillovers    

In the jargon of recent papers in economics and management, tacit knowledge 

refers to a “component” of knowledge that is “costly or impossible to codify” (Agrawal, 

2001, pp. 291).  This is a simplification of the original meaning of tacit knowledge, 

conceived by Polanyi (1958) as knowledge subjective to the bearer, of which the bearer 

may not even be conscious.  Cowan, David and Foray (2000) provide a detailed 

discussion of tacit knowledge in the context of economics, including a nuanced 

discussion of what it means for knowledge to be codified.  Because of the existence of 

such tacit components of knowledge, researchers have a greater ability to communicate 

their knowledge through personal interaction than through written forms, which require a 

common jargon to understand.  Academic researchers, in their unique standing at the 

frontier of knowledge, may have to be physically present in the development of new 

products to share their tacit knowledge.  Jensen and Thursby (2001, pp. 240-241) 

acknowledge this fact in their analysis of university licensing: 

“Perhaps the most striking result of the survey is that when they are 
licensed, most university inventions are little more than a ‘proof of concept.’ No 
one knows their commercial potential because they are in such an early stage of 
development.  Indeed, they are so embryonic that additional effort in development 
by the inventor is required for a reasonable chance of commercial success.”     
 

Due to travel costs, such collaboration will occur near where the researcher lives, 

and hence cause local knowledge spillovers.  But what constitutes “locality”?  If 

knowledge dissemination comes about through repeated personal interaction or requires 
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an employment relationship, a reasonable definition of locality would be commutable 

distance from a city center.  In this study, the geographic unit of observation will be 

referred to as a “metropolitan area”, which is either simply the Metropolitan Statistical 

Area (MSA) in which a university or research institute is located, or a Core-Based 

Statistical Area (CBSA) of the Census Bureau, which consist of several contiguous 

Metropolitan Statistical Areas.  In a few cases, the official MSA or CBSA was modified 

to include neighboring counties or MSA, if such counties had a population center and 

were not part of another MSA or CBSA.  This was to keep an approximate two-hour 

driving rule - one can argue that some researchers will commute further, but this 

definition captures the idea of separated, regional labor markets.  Figure 1 shows the 

MSA and CBSA in the state of Virginia used in this study in heavy dotted lines, as an 

example of these geographic definitions9.  In the upper-right corner is the Washington-

Baltimore-Northern Virginia CBSA.  Bordering to its south is the Richmond MSA, itself 

bordered by the Charlottesville and Virginia Beach-Norfolk-Newport News MSAs.  To 

the left is the Blacksburg-Christiansburg-Radford MSA combined with the Roanoke 

MSA.  In the far lower-left, the Johnson City-Kingsport-Bristol MSA contains counties in 

Virginia, but was not included in the sample because it lacked a research institution.   

Although in the following analysis production functions of industrial patents will 

be estimated, these are clearly reduced-form equations that do not estimate structural 

parameters.  Intuitively, and supported by evidence from surveys and case studies, the 

mechanisms for academic knowledge spillovers seem clear: discoverers of new 

knowledge (professors and graduate students) are hired by firms to assist with the 

                                                 
9 Map for Figure 1 from “Virginia – Core Based Statistical Areas, District of Columbia, Counties and 
Independent Cities”, U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Census 
Bureau 
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development of new products and processes.  Although some knowledge may be 

transferred through publishing, due to the tacit component of knowledge on the frontier 

of research, employment or consulting relationships must be a factor causing local 

spillovers. 

 

IV Identification and Empirical Method 

 Identification of a causal effect of academic research on industrial innovation has 

been difficult because of the complexity of the links between academic science and 

industrial R&D.  Estimates of the relationship between academic R&D and measures of 

industrial innovation confirm what is widely known: there is a high degree of 

collaboration.  More interesting, in terms of its economic implications, is isolation of an 

academic knowledge spillover effect that is independent of industry influence.  

Knowledge created independently, from federal or university funding, may be 

disseminated more broadly than knowledge supported by a single firm.  For example, a 

new technique could be licensed to many firms instead of granting an exclusive license to 

a single firm that could extract a monopolistic rent from development of the technology. 

 Ideal instrumental variables in this context would be related to the level of 

academic knowledge but would be orthogonal to variation in the error term caused by 

unobserved factors connected with both academic science and industrial innovation.  The 

instruments used by Jaffe (1989)10 and Anselin, Varga and Acs (1997)11 to isolate a 

knowledge spillover effect are clearly positively correlated with the level of academic 

                                                 
10 Jaffe’s instruments for academic R&D include the number of public and private universities per state, the 
number of federally funded R&D centers and state population. 
11 The instruments employed by Anselin, Varga and Acs for academic R&D include student enrollment and 
higher education expenditures per MSA. 
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knowledge, but reflect conditions that may be influenced by the level of industrial 

innovation.  The number of private universities in a state, for example, could be 

correlated with the quality of faculty in science and engineering in the same state, and 

hence be correlated with the quantity of federal research grants and overall academic 

R&D.  Instruments reflecting demand for education, such as population or educational 

expenditures, could also be influencing the quality distribution.  Indeed, Jaffe admitted 

this possibility, writing “Despite the attempt to control for unobserved ‘quality’ of 

universities, one cannot really interpret these results structurally, in the sense of 

predicting the resulting change in patents if research spending were exogenously 

increased. (Jaffe, 1989, pp. 968)”     

 More satisfactory instruments would be variables that are plausibly unrelated to 

the industrial funding of academic R&D, the talent of researchers in a regional labor 

market and other unobserved concomitant factors, but yet have a connection to the level 

of research performed there.  One such channel is in the allocation of federal research 

funding.  Although 95-99% of federal research funding is done through the peer review 

system12, members of Congress can “rig” the process so that more peer-reviewed funds 

are diverted to institutions in their states or districts of representation.  In an empirical 

study of the effect of congressional representation on academic R&D, Payne (2003, pp. 

326) claims that “as much as 39% of federal research funding is diverted for reasons 

associated with the representation of one’s constituents.”  Savage (1991) found that 

members of the appropriations committees are especially influential, since appropriation 

subcommittees manage the size of the budget of federal agencies.  Since certain federal 

                                                 
12 A back of the envelope calculation from dividing of Academic Earmark Grant totals reported in Savage 
(1999) by the NSF’s reported values for total research support. 
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agencies are more likely than others to fund research in particular locations, this allows 

Congress to direct research funds to agencies likely to aid institutions connected to their 

own constituents.   

The makeup of congressional appropriations sub-committees is plausibly 

unrelated to local factors influencing academic and industrial research.  Membership on 

such committees is based on the sharing of power within Congress, and many members 

retain their positions for decades.  Loss of a committee seat is usually the result of a lost 

election or a retirement, which is based on local political conditions or personal 

conditions.  Also, research funding is only a small portion of the federal budget, and 

members of congress seek seats on the appropriations committee with an eye for 

distributing the whole budget.  Given such facts, it seems unlikely that committee 

membership would be related to industrial research and local labor market conditions.  

Indeed, Aghion, Boustan, Hoxby and Vandenbussche (2005) use congressional 

representation dummy variables as instruments for federal research funding in their study 

of the effects of educational spending on state economic growth, under the premise that 

such variables are unrelated to unobservable conditions affecting state economic growth. 

Therefore, to identify an academic knowledge spillover effect, this study will 

make use of the connection between appropriations committee membership and academic 

R&D by using indicators of congressional representation as instruments for measures of 

scientific knowledge: publication counts and publications citations counts.  An additional 

instrument included is an actual measure of politically designated research funds, 

“academic earmarked grants”.  These are grants to universities and research institutes that 

are written directly into the federal budget by the members of the appropriation 
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committees, bypassing the peer-review system13.  This instrument is not as clearly 

unrelated to the unobservables as representation dummies: lobbying effort by universities 

plays a role in their distribution, and such lobbying may be influenced by industrial 

interests.  However, there is substantial arbitrariness in the distribution of academic 

earmarked grants.  Such grants tend to go to institutions with congressional 

representation, and their magnitude depends on the size of specific projects targeted by 

federal agencies.  In an analysis of earmarked grants by Savage (1999), the University of 

Hawaii, University of Pittsburgh and Iowa State University were revealed to be the 

recipients of the most earmarked dollars over the 1980-1996 period.  The University of 

West Virginia, with powerful Senator Robert Byrd as Senate Appropriations Chair for 

many of those years, came in fourth.  In contrast, MIT received a relatively small 

$21,625,000 in independent earmarks over the 1990-2003 period, $20 million of which 

was from a single defense-related grant14.  This is evidence that the pattern of academic 

earmarked grants is highly influenced by appropriation committee membership as well.  

This instrument is interesting because the quantity of federally influenced research funds 

is known; its inclusion or exclusion does not greatly affect the overall power of the 

instruments or the two-stage least squares results, as shown in Table 3.     

The discussion above is centered on the use of instrumental variables to isolate a 

causal spillover effect, but its identification also depends crucially on the measurement 

and empirical method used.  The general form of empirical model that will be estimated 

is given in equation 1: 

 

                                                 
13 The size of earmarked grants has grown considerably in the past twenty-five years: Savage (1999) 
documented an increase from $16 million in 1980 to $727 million in 1993.   
14 Data source: Chronicle of Higher Education  
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tjijijtjitjitji tXKI ,,,,,,,, *'* εγαφβ ++++=    (1) 

Here, I represents private-sector innovation, K is a measure of academic 

knowledge, and X is a vector of control variables for innovative characteristics (such as 

private sector R&D or employment of researchers) that vary by metropolitan area (i), 

technological area (j) and year (t).  The measure of private-sector innovation used is a 

count of patents assigned to U.S. corporations, while two measures of academic 

knowledge are alternatively used: academic publication counts and counts of citations to 

those publications.  The fixed effects, alpha, are included to control for differences in size 

between metro areas and technology areas, while the technology trends, gamma, are 

included to control for heterogeneity in the rate of patenting activity across technological 

areas.  Here beta is the parameter of interest: the rate of knowledge spillovers or the 

direct local marginal effect of knowledge discovery on innovation. 

This empirical model allows estimation of spillover effects at the (local) 

metropolitan level, which adheres to the logic of tacit knowledge discussed in section III.  

This is the first study to use publication counts in all fields of science and engineering as 

a measure of academic knowledge, a measure which is an observed outcome of the 

discovery process.  By using a relatively long panel dataset, it is possible to include the 

fixed effects and trends.  The fixed effects control for size differences in patenting across 

metropolitan areas that can’t be controlled for with estimates of industry R&D alone.  

Controlling for trends in patenting activity in different technological areas allows 

different technological categories to be included in the same regression.  Such trends may 

arise for reasons unrelated to R&D: the scope of patenting may change as patenting 

strategy changes within an industry, or patent protection may be extended to previously 
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unpatentable inventions.  Hall, Jaffe and Trajtenberg (2001) note that in the aggregate, 

the fields of “Computers and Communications” and “Drugs and Medical” have seen a 

rapid increase in the share of patents attributed to them in the 1990’s.  This suggests that 

in studying patenting activity across all technologies it is important to control for 

technology-specific trends. 

 

V.  Data15 

The empirical analysis makes use of a panel dataset comprising 108 metropolitan 

areas, five technological areas and years from 1977 to 1999, and an aggregate panel that 

combines the technological areas.  Since congressional appropriation committee 

representation cannot be linked to any one technological area, the instrumental-variables 

analysis was done with the aggregate panel and a separate panel for each technology area.  

The reasons for the dimensions of the panel will be made clear in the following 

descriptions of the individual variables.    

 Corporate patent counts serve as the measure of innovation and the dependent 

variable.  Data on patent counts was obtained from the NBER patent dataset, as detailed 

in Hall, Jaffe and Trajtenberg (2001)16.  Patents assigned to US businesses and indicating 

a US residence of the first inventor were used; they were distributed geographically by 

the county of the city of the first inventor, the counties being assigned uniquely to 

metropolitan areas.  Patents assigned to counties outside of any included metropolitan 

area were ignored.  Year assignments were based on application year of eventually 

                                                 
15 See appendix A for details of construction of variables 
16 The current NBER Patent data covers patents granted from 1963 to 1999, but additional data on patents 
to 2002 were available from Bronwyn Hall’s website.  Inventor location data for 2000-2002 was compiled 
by this author from the USPTO’s Cassis database and is available upon request. 



 16

granted patents, to avoid undue lag issues associated with grant dates.  Citation weighted 

patents would have been preferable to better capture the quality of innovations, but due to 

the long lag in citations and the shortness of the panel, it was not feasible.17 Patents were 

assigned to five technological areas, “Drugs and Medical”, “Chemical and Synthetic 

Materials”, “Electrical, Sensing and Computing”, “Mechanical and Transport” and 

“Agricultural, Mining, Environmental and Other”, based on their NBER assigned 

subcategory.  These technological areas were kept broad in order to facilitate matching of 

the explanatory variables.  

 A caveat is in order when using patent data to measure innovation.  Yes, patents 

vary widely in their import and generality, but limiting the set of patents to U.S. corporate 

patents in specific high-tech industries may serve to reduce this variation.  In addition, 

with a mean of 50 patents per observation in the metro/technology area/year panel and 

274 patents per observation in the aggregate metro/year panel, much of this variation in 

quality will be averaged out.  As for variation in propensity to patent by technological 

area, as mentioned above, tech-specific trend variables in the disaggregated panel should 

help mitigate this variation.  In the aggregate, a separate panel was constructed for each 

technology area, to observe differences in the spillover rate.  

Publication counts, and the counts of the number of citations received from other 

publications, serve as measures of scientific knowledge18.  This data was obtained from 

automated searches on Web of Science, using a Perl script19.  Publication counts were 

collected for 218 research universities and medical schools, 98 non-profit research 

                                                 
17 The average length from application year to year of citation is roughly eight years. 
18 Knowledge being what it is, we can not expect to quantify it exactly, nor expect a one-to-one match 
between publishing and patenting. 
19 With grateful acknowledgement of Richard Beaudoin for programming assistance. 
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institutes and 5 federally funded research and development centers, all within the U.S20.  

This set of institutions included those that had received at least $10 million in federal 

research grants in 2003.       

 Metropolitan areas were included in the sample if they contained at least one 

included institution, and it is important to note the wide geographic distribution of these 

research institutions.  Every state contains at least one university in the sample, and most 

are located in non-contiguous metropolitan areas.  Large cities, however, benefit from 

containing most independent non-profit research institutions and medical schools.  Where 

metropolitan areas are contiguous and small geographically, they are combined into 

CBSA, which should limit measurement error due to overlapping regional labor 

markets21. 

   Academic knowledge spillovers should be at best only a small factor contributing 

to industrial innovation.  Two measures were used to control for the primary factor, 

industrial research and development expenditures.  Payroll in Scientific R&D services 

was compiled from the Census Bureau’s County Business Patterns (CBP) data.  This 

measure is proportional to the level of subcontracted R&D.  While it measures a part of 

R&D expenditures accurately, that part is relatively small compared to the “in-house” 

component of R&D.  However, the “in-house” component is not available, to the best of 

my knowledge, at the establishment level due to strategic needs for secrecy.  A second 

R&D control variable, which will be called “Industry R&D (estimate)”, was constructed 

by combining information on R&D at the state level from the NSF’s Survey of Industrial 

                                                 
20 See appendix A for a correspondence between fields of science and the five technological areas used in 
the estimation. 
21 In most cases, the universities and institutes themselves were located near the geographic center of the 
metropolitan area. 
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Research and Development (SIRD) and information at the county level from the (CBP)22.  

Both the SIRD and the CBP are useful data sources as they have a time dimension – the 

CBP was accessible annually back to 1977 and the SIRD biennially to 1973.  This 

variable provides a comprehensive estimate of R&D by field, but it does so with 

significant measurement error, as the state level SIRD data is hampered by many firms 

choosing not to self-report their R&D expenditures and it relies on strong assumptions 

about the within-state and within-industry distributions of R&D.  The two proxies for 

R&D are positively correlated however, as shown in Table 1.   

Another important control variable is the number of new Ph.D. graduates.  This 

variable was constructed through licensed access to the NSF’s Survey of Earned 

Doctorates, which is an extensive survey of both the graduate education and post-

doctoral plans of all people who earn doctorates in the U.S.  Recipients were assigned to 

the same metropolitan area as the university of matriculation.  Although it is common for 

new Ph.D. recipients to take jobs outside of the regional labor market in which they 

graduated, in an analysis of the SED done by Stephan, Sumell, Black and Adams (2004, 

pp.162) it was shown that more than 40% take jobs in the same state as graduation.  This 

suggests that the count of new Ph.D. recipients will be positively correlated with the 

count of new Ph.D. recipients hired locally.  This source of human capital may 

conceivably have a different effect than researchers hired in general (i.e. not be redundant 

to the R&D measures), as new Ph.D. recipients may have been engaged in the creation of 

new knowledge at their academic departments and be themselves mechanisms for 

spillovers. 

                                                 
22 Details of construction of this variable are reported in appendix A. 
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The main instrumental variables used were indicators for whether an observation 

had congressional representation on subcommittees of the Appropriation committees, 

subcommittees that are linked to the funding of academic research.  Lists of appropriation 

committee members were compiled from volumes of the Congressional Staff Directory, 

plus information on their state and district of representation, party affiliation and status as 

chairperson or ranking minority member.  Savage (1991) found that members of the 

appropriation subcommittees for Agriculture and Defense play a significant role in 

determining where research funding is allocated, and Payne (2003) notes that certain 

subcommittees oversee the budget for the major agencies that fund research: the 

subcommittee on VA, HUD and Independent Agencies oversees the NSF and National 

Institutes of Health.  Payne (2003) also documented statistically a relationship between 

subcommittee membership and federal research funding at the university level.  For each 

of four subcommittees23, four variables created include indicators for House and Senate 

general membership, and House and Senate chair status.    Every metro area in a state 

was considered to be represented simultaneously by a Senator, while metro areas were 

considered to be represented by a House member if the district of that member either 

overlapped with or bordered that metro area. 

As a final instrumental variable, data on academic earmarked grants comes from 

two sources: the Chronicle of Higher Education, for the period 1990-2003, and James 

Savage for the period 1980-1996.  Neither source is an exhaustive list of earmarked 

grants, but the Chronicle lists 11,161 distinct appropriations, while Savage found 3,788 

for the earlier period.  In the overlapping period, 1990-1996, the listed grants are 

                                                 
23 Subcommittees included were Agriculture, Defense, “VA, HUD and Independent Agencies” and “Labor, 
Heath and Human Services and Education” 
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generally similar, with the Chronicle reporting 10-20% more per year24.  Grants were 

assigned to metropolitan and year by the location of the grantee institution, and 

metro/year aggregates were used in the following analysis25.   

 

VI. Empirical Results 

 OLS regressions measuring the general rate of collaboration at the most 

disaggregated level, that of metropolitan, technology area and year, are reported in Table 

2.  Since the congressional representation instruments do not vary by technology area, 

that analysis did not include the instrumental variables. They were used in two-stage least 

squares regressions estimated at the metro/year level and reported in Tables 4-6.  Table 3 

presents the results of the first stage of instrumental variables regression, to show the 

power of the instruments under different conditions.     

 In column 1 of Table 2 we see OLS estimates of the production function in 

equation (1), but without fixed effects or trends.  The estimate of beta shows a general 

collaborative effect of one additional corporate patent for an increase of 42.9 

publications.  At the mean levels of patenting and publishing, the elasticity of patents 

with respect to publishing is 0.13.  All of the control variables have a positive and 

statistically significant effect on patenting as well: an extra doctorate earned is associated 

with an extra 0.7 patents, the marginal effect of a million dollars of “in-house” R&D is 

0.037 patents, while that of a million dollars of subcontracted R&D is 0.14 patents.  

Inclusion of the fixed effects, in column 2, causes all of these estimated effects to be 

                                                 
24 The difference was due to different definitions of an “earmark”.  I use the Chronicle data from 1990, 
excluding appropriations not related to science and engineering.  The difference is not quantitatively 
important to the present study. 
25 An attempt was made to assign earmarked grants to technological areas.  A rough assignment was 
possible for the Chronicle data, but it was ultimately unnecessary for the analysis. 
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diminished.  Inclusion of the trend variables in column 3 serves to diminish the effect of 

the control variables, while increasing the effect of publications.  The size of the trend 

coefficients are interesting to note: relative to patenting in Drugs and Medicine, only 

patenting in the Chemical technology area declined over the period 1977-1999.  On the 

other hand, Electrical and Computing patents saw an average increase of 4.09 patents per 

metropolitan and year over the increase in Drugs and Medicine.  This is after controlling 

for industrial R&D, and so represents increased patenting for other reasons, most likely 

shifting incentives for patenting due to strategic or legal changes.  Column 4 omits the 

variable “Payroll in Scientific R&D Services”, and we see the coefficient on publications 

increase dramatically, showing that the measured spillover effect is particularly sensitive 

to this control variable. 

 The simple regression without fixed effects or trends is again estimated in column 

5, but this time with citation-weighted publication counts.  The estimated effect shows 

that an increase in citations of two thousand is associated with an increase of one patent, 

or an elasticity at the means of 0.09.  Although two thousand citations may seem like a 

lot for a one patent gain, it is not uncommon for one seminal paper in a major field of 

science to have one thousand or more citations.  This estimate explicitly shows that the 

quality of academic research matters for knowledge spillovers.  This effect disappears in 

column 6 with the inclusion of fixed effects, but re-emerges in column 7, although 

diminished, with the additional inclusion of trends.       

 The results in Table 2 confirm a connection between academic research and 

industrial innovation, which persists even after the inclusion of controls for trends and the 

quality of the research.  However, this is not evidence that the direction of the effect is 
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from academic research to industrial innovation.  Table 3 shows the results of first-stage 

regressions, with publication and publication citation counts regressed on the other 

control variables and the set of instruments26.  From the F-statistics on exclusion of the 

instrument set in the range of 5.77 to 8.08, we see that they are collectively powerful in 

predicting publications and publication citations.  The instruments associated with the 

Defense and Agriculture subcommittees are particularly powerful (the presence of a 

general member on the Agriculture subcommittee is associated with an extra 118 

publications in column 1), while chair status on the HUD and Independent Agencies 

subcommittee is associated with a decrease in publishing activity27.  This differential 

effect by subcommittee was noted, in terms of its effect on research funding, by both 

Savage (1999) and Payne (2003).  Here, it surfaces again in an effect on publishing, at the 

level of metropolitan area.  In columns 2 and 5, we see that exclusion of the “new PhD” 

variable causes the individual coefficients on the instruments to change, but does not 

highly affect their overall power.  We see that when the new PhD count is excluded, the 

earmarked grants variable is positive and statistically significant in both columns 2 and 5, 

so that an additional million dollars is associated with 6.3 extra publications.  Column 3 

is included to show that the power of the instrument set is little affected by the exclusion 

of the earmarked grants variable.  

 In Table 4, the full instrument set is used to predict the knowledge measures in 

two-stage least squares regressions.  Column 1 confirms that the basic OLS coefficients 

have the same sign and statistical significance in this aggregate panel as when using the 

disaggregated panel.  The estimated coefficient on publications in column 2 shows a 

                                                 
26 All instruments have been lagged two years to reflect the time between grant funding and publication.   
27 This negative effect was documented by Savage (1991) as an effort by “saintly” chairs to restrain pork-
barrel spending. 
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marginal effect of 0.206, or 1 patent for every 5 publications, an elasticity of 1.17.  This 

effect is much higher than the disaggregated result, and is probably due to inability to 

control for differences in patenting across technology areas as in Table 2.  After 

implementing two-stage least squares, the marginal effect is reduced to 0.168.  While the 

estimate is not precise enough to rule out the possibility that the true coefficient is the 

same as the OLS estimate, it is suggestive of a positive bias in the OLS estimate, showing 

the effect of endogeneity to be inflating the estimate of spillovers by almost 25%.   

 With citation-weighted publications, a quite different result emerges.  While the 

OLS fixed effects coefficient of 0.003 in column 6 shows that an extra 333 academic 

citations are associated with an extra patent, an elasticity at the means of 0.55, the 

identified spillover effect in column 7 is negative and marginally statistically significant.  

This spillover estimate is precise enough to rule out parity with the general effect, as the 

estimate in column 6 is not within the 95% confidence interval of the IV estimate.  

Another feature of the regression in column 7 is that the estimated effect of a new PhD 

has risen dramatically.  Since this variable may also be endogenous, column 8 shows the 

regression without the new PhD variable, and the estimated coefficient on citation-

weighed publications is now indistinguishable from zero.  Collectively, these results 

suggest that the local innovative benefit of independent academic research is less than 

academic research in general.            

 What conclusion should be drawn from this disparity in the results between 

publications and citations?  Examining the coefficients on the new PhD count, another 

potentially endogenous variable, we see that the PhD variable is positive and significant 

in columns 6 and 7, but not statistically significant in columns 2 and 3.  Publication 
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counts may be in effect measuring the same thing as the new PhD count, the “quantity” 

of new ideas.  Also we see that the estimate of the marginal effect of a new PhD increases 

dramatically when going from OLS to 2SLS (columns 2 to 3, and 6 to 7).  This 

emphasizes the idea that the knowledge measures are highly related to the new PhD 

count, as its effect is greater when only exogenous variation in publications and citations 

is used. 

 Table 5 presents regressions done with panels constructed using each 

technological area separately (i.e. the number of patents in Drugs and Medical regressed 

on publications in Drugs and Medical, etc).  Here the full set of non-technology specific 

instruments is used to predict the number of publications in a particular technological 

area.  The first thing to note is that the magnitudes of the OLS coefficients on 

publications vary markedly by technological area.  The general collaborative effect is 

largest for Chemical and Mechanical industries.  The estimated spillover effect from 

implementing two-stage least squares varies as well, with that of Chemical, and Electrical 

and Computing, actually increasing relative to the OLS.  This increase is consistent with 

Jaffe (1989), which also found an increase in the IV spillover effect for those areas, 

relative to the OLS.  It may be true that the marginal effect of independent research is 

greater than that of collaborative research for those technology areas.  Only in Drugs and 

Medical do we see any evidence of attenuation of the estimated coefficient as in the 

aggregate regression. The 2SLS coefficients in columns 8 and 10 are too imprecisely 

measured to tell the direction of the bias for those areas.       

 Table 6 again shows that the spillover effect is greatest for Chemicals.  Again for 

Drugs and Medical we see attenuation in the effect towards zero, but now this is also true 
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for Agriculture, Mining and Environmental.  For Electrical and Computing, and 

Mechanical, the 2SLS coefficient is too imprecisely measured to make an assessment of 

the bias. 

 

VII. Conclusion and Future Research 

 This study examines the link between academic science and industrial innovation, 

and isolates a causal spillover component of the general relationship with the application 

of novel instrumental variables to reduced form production functions.  Unlike previous 

studies, it uses measures of scientific knowledge that are more direct than R&D – 

publication counts and publication citation counts.  Even after implementing 

metropolitan/technology area fixed effects and technology area trends, evidence of a 

positive association between academic knowledge and industrial innovation is found.  

Using instrumental variables, I identify a spillover effect that is generally smaller than the 

general effect.  For industries involved with chemical and electrical and computing 

technologies, the measured spillover effect is larger than the general effect, suggesting 

that independent, basic research has a greater marginal effect on local patenting than 

academic research funded by industry.  For other areas of technology, especially “Drugs 

and Medical” the measured spillover effect is substantially smaller than the general 

effect, suggesting that the local innovative effect of academic research in those areas is 

largely generated by collaboration between academia and industry.  New PhD graduates 

are also shown to be positively related to local rate of innovation, although this effect is 

diminished after controlling for the number of academic publications, suggesting that the 
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number of new PhD graduates may be another measure of academic knowledge, and a 

channel for academic spillovers. 

 These results are preliminary, as further robustness checks need to be done in 

considering the results.  The identifying restriction that the effect of academic knowledge 

is limited to the metropolitan area in which it was discovered could be relaxed by 

creating publication measures at the state or census division level.  The sample could also 

be split by the population of metropolitan areas, to determine whether large urban areas 

exhibit a different relationship than smaller, isolated metros.  Non-linear effects of 

publishing could also be examined. 

 Further research needs to be done on the role of new PhD graduates as a channel 

of spillovers, as their numbers may also be endogenous to the local rate of innovation.  

Subsequent drafts of this paper may include instrumentation of the new PhD count, since 

enrollment may also respond to diversion of federal research funding.     

 A companion paper will model academic-industry collaboration and spillovers as 

a search between researchers embodying new knowledge and collaborating firms.  

Hopefully such an effort will lead to greater understanding of the channels of knowledge 

transfer and guide future empirical research in academy-industry research collaboration. 
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Table 1: Sample Statistics and Simple Correlations          
 5 tech. area panel (Used in Table 2)   Metro-year Aggregate panel (used in Table 4)  

Variable Obs Mean 
Std. 
Dev. Min Max   Obs Mean 

Std. 
Dev. Min Max  

Patent count 12190 50.00 142.67 0 4136   2462 247.54 608.99 0 8934  
Publications 12190 284.43 566.08 0 8929   2462 1408.29 2178.50 0 18763  
Publication 
Citations 12190 9197.40 24842.97 0 406502   2462 45538.72 90773.11 0 775727  
New PhD count 12190 28.80 48.94 0 556   2462 142.59 196.60 0 1305  
Industrial R&D 
(est.) 12130 159.06 857.81 0 25308.3   2462 783.66 3252.29 0 46522.56  
Payroll in 
Scientific R&D 
Services 12130 72.96 286.05 0 5882.59   2462 359.44 1420.68 0 29412.95  
               
Simple 
Correlations 

Pat. 
Count 

Pub. 
Ct. Cit.-wgt. PhDs 

Ind. 
R&D 

Sci. 
R&D 

Pat. 
Count Pub. Ct. Cit.-wgt. PhDs 

Ind. 
R&D 

Sci. 
R&D 

Patent count 1.00       1.00      
Publications 0.52 1.00      0.77 1.00     
Publication 
Citations 0.48 0.96 1.00     0.77 0.96 1.00    
New PhD count 0.54 0.85 0.79 1.00    0.70 0.86 0.84 1.00   
Industrial R&D 
(est.) 0.51 0.51 0.46 0.50 1.00   0.65 0.59 0.57 0.50 1.00  
Payroll in 
Scientific R&D 
Services 0.49 0.43 0.33 0.40 0.48 1.00 0.55 0.53 0.45 0.44 0.63 1.00 
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Table 2: OLS Regressions at level of Metropolitan Area, Technology area, Year     
Dependent Variable: Patent Counts (1) (2) (3) (4) (5) (6) (7) (8) 
Publication Count 0.0233*** 0.0165*** 0.0293*** 0.0748***     
  (0.0033) (0.0057) (0.0059) (0.0059)     
Citation-weighed Publication Count     0.0005*** -0.0001 0.0003** 0.0005*** 
      (0.0001) (0.0001) (0.0001) (0.0001) 
New PhD Count 0.7033*** 0.6609*** 0.4679*** 0.6213*** 0.7180*** 0.7949*** 0.5724*** 0.9954*** 
  (0.0379) (0.0697) (0.0723) (0.0751) (0.0338) (0.0655) (0.0703) (0.0723) 
Industrial R&D (estimate) 0.0370*** -0.0272*** -0.0266*** -0.0005 0.0370*** -0.0254*** -0.0252*** 0.0072*** 
  (0.0014) (0.0025) (0.0025) (0.0025) (0.0014) (0.0025) (0.0025) (0.0024) 
Payroll in Scientific R&D Services 0.1409*** 0.1203*** 0.1096***  0.1443*** 0.1228*** 0.1137***  
  (0.0040) (0.0036) (0.0035)  (0.0040) (0.0034) (0.0034)  

Trend: Chemical   -1.3034*** 
-
1.6797***   -1.0551*** 

-
0.9128*** 

    (0.2524) (0.2625)   (0.2474) (0.2590) 
Trend: Electrical and Computing   4.0881*** 4.9485***   4.0967*** 5.0282*** 
    (0.2298) (0.2375)   (0.2304) (0.2394) 
Trend: Mechanical   1.1528*** 1.3461***   1.2570*** 1.6210*** 
    (0.2447) (0.2547)   (0.2447) (0.2558) 
Trend: Mining, Ag. and Env. Services   1.3219*** 1.9402***   1.3403*** 1.9992*** 
    (0.2310) (0.2396)   (0.2322) (0.2421) 
Observations 12010 12010 12010 12010 12010 12010 12010 12010 
Number of Cross-Sections 530 530 530 530 530 530 530 530 
Metro/Tech. area fixed effects? No Yes Yes Yes No Yes Yes Yes 
R-squared 0.45 0.15 0.18 0.11 0.45 0.15 0.18 0.10 
Standard errors in parentheses         
* significant at 10%; ** significant at 5%; *** significant at 1%         
Note: Trends are relative to patenting in the excluded trend, 
Drugs and Medical         
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Table 3: First stage Instrumental Variables Regressions      
  (1) (2) (3) (4) (5) 

Dependent Variable: Publication Counts Citation-Weighed Publication Counts 

F-test of Excluded Instruments 6.46 5.77 6.88 6.58 8.08 
(P-value) 0.00 0.00 0.00 0.00 0.00 
       

Payroll in Scientific R&D Services 
0.1139*** 0.2646*** 0.1139*** -1.4810*** 3.9499*** 
(0.0096) (0.0122) (0.0096) (0.3698) (0.4570) 

Industrial R&D (estimate) 
0.0888*** 0.1480*** 0.0888*** 5.0493*** 7.1829*** 
(0.0094) (0.0126) (0.0094) (0.3609) (0.4718) 

New PhD Count (in Science and Engineering) 
8.9683***  8.9722*** 323.1454***  
(0.2021)  (0.1986) (7.7525)  

Academic "Earmarked Grants" 
0.0000 0.0000063***  -0.0000 0.00020*** 
(0.0000) (0.0000010)  (0.0000) (0.00004) 

Appropriations Subcommittee: 
Agriculture 

House member has district in metro/year 118.4269*** 75.0615** 118.3161*** 4,078.5128*** 2,515.9732** 
(24.2719) (32.9218) (24.2444) (930.9658) (1,228.3250) 

House subcommittee chair has district in 
metro/year 

-91.0490 11.6188 -90.9735 -4,174.5662 -475.2434 
(70.3369) (95.4289) (70.3185) (2,697.8211) (3,560.4914) 

Senate member represents State of obs. 59.5036** 88.2356** 59.3459** 2,393.8530** 3,429.1249** 
(27.8829) (37.8401) (27.8375) (1,069.4677) (1,411.8301) 

Senate subcommittee chair represents 
State of obs. 

52.1770 -20.4476 52.3380 1,203.0514 -1,413.7555 
(59.7926) (81.1365) (59.7607) (2,293.3851) (3,027.2349) 

Appropriations Subcommittee: 
Defense 

House member has district in metro/year 98.3092*** 175.8563*** 98.2937*** 2,227.7046** 5,021.8778*** 
(24.7670) (33.5368) (24.7613) (949.9550) (1,251.2698) 

House subcommittee chair has district in 
metro/year 

-17.3072 -95.2226 -17.3102 -1,600.5334 -4,407.9774** 
(44.0492) (59.7481) (44.0398) (1,689.5357) (2,229.2251) 

Senate member represents State of obs. -5.1953 110.2829*** -5.1616 936.0321 5,096.9380*** 
(23.7661) (32.0678) (23.7590) (911.5644) (1,196.4638) 

Senate subcommittee chair represents 
State of obs. 

41.1144 -38.9112 41.3107 2,720.2079 -163.2705 
(80.4910) (109.2371) (80.4528) (3,087.2876) (4,075.6788) 

Appropriations Subcommittee: 
Labor, Health and Human 
Services, and Education 

House member has district in metro/year -155.2739*** -47.6566 -155.4383*** -4,309.6065*** -431.9457 
(29.6589) (40.1264) (29.6123) (1,137.5872) (1,497.1303) 

House subcommittee chair has district in 
metro/year 

25.7736 -108.1709 25.6761 2,141.2977 -2,684.9859 
(63.9891) (86.7669) (63.9690) (2,454.3466) (3,237.3078) 

Senate member represents State of obs. 53.2722* 40.7056 53.3371* 345.4293 -107.3678 
(28.2036) (38.2837) (28.1910) (1,081.7664) (1,428.3792) 

Senate subcommittee chair represents 
State of obs. 

47.7764 -9.4449 47.8505 -1,915.6681 -3,977.4614 
(51.5536) (69.9607) (51.5379) (1,977.3714) (2,610.2628) 

Appropriations Subcommittee: 
VA, HUD and Independent 

Agencies (NSF, NIH) 

House member has district in metro/year -33.7023 7.9418 -33.9319 772.1147 2,272.6338* 
(26.0325) (35.3154) (25.9372) (998.4933) (1,317.6335) 

House subcommittee chair has district in 
metro/year 

-168.3129*** -414.3174*** -167.8339*** -16,635.2842*** -25,499.3129*** 
(57.6839) (77.9419) (57.4955) (2,212.5063) (2,908.0449) 

Senate member represents State of obs. -60.2909** -75.6371** -60.3034** -3,601.9144*** -4,154.8683*** 
(23.9096) (32.4532) (23.9042) (917.0677) (1,210.8431) 

Senate subcommittee chair represents 
State of obs. 

-109.3529* -161.1864** -109.1299* 2,496.1620 628.4956 
(58.7413) (79.7240) (58.6914) (2,253.0614) (2,974.5347) 

Observations  2462 2462 2462 2462 2462 
Number of cross-sections  108 108 108 108 108 
R-squared  0.70 0.45 0.70 0.61 0.32 
Standard errors in parentheses  * significant at 10%; ** significant at 5%; *** significant at 1%     
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Table 4: Instrumental Variables Regressions with Aggregate Panel (metro/year)    
Dependent Variable: Patent 
Counts (1) (2) (3) (4) (5) (6) (7) (8) 
 OLS OLS 2SLS 2SLS OLS OLS 2SLS 2SLS 
         

Publication Counts 0.1288*** 0.2058*** 0.1681*** 0.1531***     
(0.0087) (0.0128) (0.0624) (0.0416)     

Citation-Weighed 
Publication Counts 

    0.0028*** 0.0030*** -0.0031* 0.0009 
    (0.0002) (0.0003) (0.0018) (0.0011) 

Payroll in Scientific R&D 
Services 

0.0636*** 0.0596*** 0.0635*** 0.0735*** 0.0834*** 0.0871*** 0.0753*** 0.1104*** 
(0.0062) (0.0061) (0.0089) (0.0123) (0.0061) (0.0062) (0.0074) (0.0073) 

Industry R&D (estimate) 0.0463*** -0.0162*** -0.0130* -0.0084 0.0452*** -0.0137** 0.0168 0.0077 
(0.0029) (0.0058) (0.0078) (0.0084) (0.0028) (0.0062) (0.0108) (0.0100) 

New PhD Count 0.3311*** 0.0029 0.3398  0.4338*** 0.8699*** 2.8587***  
(0.0909) (0.1685) (0.5713)  (0.0766) (0.1706) (0.5873)  

         
Observations 2462 2462 2462 2462 2462 2462 2462 2462 
R-squared 0.71 0.37   0.72 0.32   
Fixed effects? No Yes Yes Yes No Yes Yes Yes 
Number of cross-sections 108 108 108 108 108 108 108 108 
Standard errors in parentheses        
* significant at 10%; ** significant at 5%; *** significant at 1%     
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Table 5: IV regressions on publication counts, metro/year panel, by technology category     
Dependent 
Variable: 

Patent Counts 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS 

 
Drugs and Medical Chemical 

Electrical and 
Computing Mechanical 

Agriculture, Mining 
and Environmental 

Publication 
Count 

0.0380*** 0.0087 0.9462*** 1.1004*** 0.2021*** 0.3645*** 0.3129*** -0.0659 0.0358*** 0.0442 
(0.0032) (0.0171) (0.0709) (0.3597) (0.0097) (0.0617) (0.0326) (0.2064) (0.0056) (0.0278) 

Industrial R&D 
(estimate) 

-
0.0306*** 

-
0.0288*** -0.0383** -0.0442** 0.1456*** 0.1165*** 0.0007 0.0116 0.0033 0.0013 

(0.0013) (0.0017) (0.0155) (0.0205) (0.0068) (0.0131) (0.0062) (0.0086) (0.0083) (0.0105) 
Payroll in 

Scientific R&D 
Services 

0.0077** 0.0149*** 0.2139*** 0.2019*** 
-
0.0229*** 

-
0.0442*** 0.0867*** 0.1163*** 0.0252*** 0.0230*** 

(0.0038) (0.0056) (0.0133) (0.0306) (0.0055) (0.0099) (0.0074) (0.0176) (0.0030) (0.0077) 

New PhD 
Count 0.1483*** 0.4563** 

-
1.7141*** -2.1392** 0.0368 -0.7759** 0.1064 1.5014* -0.1495 -0.1475 

(0.0533) (0.1846) (0.3823) (1.0448) (0.0728) (0.3142) (0.1972) (0.7771) (0.1259) (0.1261) 
Observations 2402 2402 2402 2402 2402 2402 2402 2402 2402 2402 
R-squared 0.25  0.30  0.61  0.25  0.11  
All regressions with metro fixed effects, 106 cross-
sections        
Standard errors in 
parentheses          
* significant at 10%; ** significant at 5%; *** significant at 1%       
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Table 6: IV regressions on citation-weighed publication counts, Metro/year panel, by technology category    
Dependent 

Variable: Patent 
Counts 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS 

 
Drugs and Medical Chemical 

Electrical and 
Computing Mechanical 

Agriculture, Mining and 
Environmental 

Citation-weighed 
Publication Count 

0.0008*** -0.0002 0.0113*** 0.0361* 0.0032*** 0.0015 -0.0091*** -0.0018 0.0007*** 0.0004 
(0.0001) (0.0004) (0.0026) (0.0212) (0.0002) (0.0012) (0.0018) (0.0121) (0.0001) (0.0006) 

Industrial R&D 
(estimate) 

-0.0315*** -0.0275*** -0.0110 -0.0306 0.1635*** 0.1733*** 0.0134** 0.0104 0.0000 0.0056 
(0.0013) (0.0021) (0.0159) (0.0231) (0.0070) (0.0097) (0.0063) (0.0079) (0.0085) (0.0135) 

Payroll in Scientific 
R&D Services 

0.0185*** 0.0167*** 0.2836*** 0.2742*** 0.0086 0.0059 0.1091*** 0.1107*** 0.0304*** 0.0324*** 
(0.0037) (0.0039) (0.0125) (0.0150) (0.0056) (0.0059) (0.0070) (0.0075) (0.0027) (0.0045) 

New PhD Count 0.1971*** 0.6177*** 0.3101 -0.9759 0.4675*** 0.7771*** 1.6291*** 1.3302** -0.1653 -0.1617 
(0.0515) (0.1797) (0.3663) (1.1505) (0.0693) (0.2205) (0.1743) (0.5190) (0.1263) (0.1266) 

Observations 2402 2402 2402 2402 2402 2402 2402 2402 2402 2402 
R-squared 0.25  0.25  0.58  0.23  0.10  
All regressions with metro fixed effects, 106 cross-sections        
Standard errors in parentheses          
* significant at 10%; ** significant at 5%; *** significant at 
1%        
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Appendix A: Data Compilation Details 

 
 Patent Data:  Patent data were compiled from the NBER U.S. Patent Citations 
Datafile (see www.nber.org).  An extension for patents granted in years 2000-02 was 
compiled with data from Bronwen Hall and inventor data from the USPTO Cassis 
database.  Varying length of time from application to grant date meant that counts for 
recent years were truncated.  Years with truncated patent counts were not kept in the 
panel, except for 1999, for which undercounting was limited to 10-15%.  Assignment of 
patents to technology areas were made according to the following table: 
 
Table A1 

NBER  
Subcategory Subcategory Name Tech Area Tech Area Name 

11 Agriculture, Food, Textiles 5 Agriculture, Mining, Env. and other 
12 Coating 2 Chemical 
13 Gas 2 Chemical 
14 Organic Compounds 2 Chemical 
15 Resins 2 Chemical 
19 Misc. Chemical 2 Chemical 
21 Communications 3 Electrical and Computing 
22 Computer Hardware & Software 3 Electrical and Computing 
23 Computer Peripherals 3 Electrical and Computing 
24 Information Storage 3 Electrical and Computing 
31 Drugs 1 Drugs and Medical 
32 Surgery & Medical Instruments 1 Drugs and Medical 
33 Biotechnology 1 Drugs and Medical 
39 Misc. Drugs and Medical 1 Drugs and Medical 
41 Electrical Devices 3 Electrical and Computing 
42 Electrical Lighting 3 Electrical and Computing 
45 Power Systems 3 Electrical and Computing 
46 Semiconductor Devices 3 Electrical and Computing 
49 Misc. Electrical 3 Electrical and Computing 
51 Materials Processing & Handling 4 Mechanical 
52 Metal Working 4 Mechanical 
53 Motors & Engines 4 Mechanical 
54 Optics 3 Electrical and Computing 
55 Transportation 4 Mechanical 
59 Misc. Mechanical 4 Mechanical 
61 Agriculture, Husbandry, Food 5 Agriculture, Mining, Env. and other 
63 Apparel and Textile 5 Agriculture, Mining, Env. and other 
64 Earth Working and Wells 5 Agriculture, Mining, Env. and other 
65 Furniture, House Fixtures 5 Agriculture, Mining, Env. and other 
66 Heating 5 Agriculture, Mining, Env. and other 
67 Pipes and Joints 4 Mechanical 
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Publication Data: Counts of academic publications, and citations to those publications, 
were constructed from automated searches of Thompson Inc.’s Web of Science using a 
Perl script.  All publications in journals tracked by Web of Science associated with 218 
U.S. universities, 98 non-profit research institutes and five federally funded R&D centers, 
from 1973-2001 were included.  Assignments of publications to fields of science were 
made using an algorithm that combined information from the “subject category” and 
“address” fields of the publication record28.  Assignment from fields of science to 
technology areas was made according to the following table: 
 
Table A2 

Field of Science and Engineering Tech. 
Area Technology Area Name 

Mathematics 3 Electrical and Computing 
Computer Science 3 Electrical and Computing 

Statistics / Biostatistics 1 Drugs and Medical 
Chemistry 2 Chemical 

Physics 3 Electrical and Computing 
Astrophysics / Astronomy 3 Electrical and Computing 

Geosciences 5 Agriculture, Mining, Env. and other 
Oceanography 5 Agriculture, Mining, Env. and other 

Biochemistry / Molecular Biology 1 Drugs and Medical 

Genetics 1,5 Drugs and Medical, Agriculture, Mining, 
Env. and other 

Neurosciences 1 Drugs and Medical 
Pharmacology 1 Drugs and Medical 

Physiology 1 Drugs and Medical 
Cellular and Development Biology 1 Drugs and Medical 

Ecology, Evolution and Behavior 5 Agriculture, Mining, Env. and other 
Aerospace Engineering 3,4 Electrical and Computing, Mechanical 

Biomedical Engineering 1 Drugs and Medical 
Chemical Engineering 2,3 Chemical, Electrical and Computing 

Civil Engineering 4 Mechanical 
Electrical Engineering 3 Electrical and Computing 
Industrial Engineering 4 Mechanical 
Materials Engineering 2 Chemical 

Mechanical Engineering 4 Mechanical 
 
         Publications (and the number of citations to them) were assigned to the institution 
of each author, so coauthored papers (and their citations) were essentially weighted by 
the number of authors. 
 

 
 
 
 

                                                 
28 See Stuen, Maskus and Mobarak, “Foreign PhD Students and Knowledge Creation: Evidence from 
Enrollment Fluctuations” Working Paper, 2007 for a precise specification of this algorithm 
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Industrial research and development control variable: A control variable for 
private-sector R&D was constructed from several data sources.  The primary source, the 
NSF’s Survey of Industrial R&D, provides estimates of aggregate corporate R&D at the 
state level, for most odd years and some even years.  See www.nsf.gov for data 
availability.  In order to create a panel variable at the level of metro/tech-area/year, 
additional sources were needed.  SIRD table 37, from 2003, provides a breakdown of 
R&D over broad (3-digit) industries.  The aggregate payroll measure from the Census 
Bureau’s County Business Patterns data was used to weight R&D of a state/industry 
group by the percent of aggregate payroll of a particular metro-area within that state.  The 
CBP data was available by 3 digit NAICS industry more recently than 1997, but by 2 
digit SIC industry for 1997 and previous years.   

The aggregate payroll measure also varied by time, unlike the R&D 
decomposition by industry.  Hence the necessary assumptions in using this variable 
include a) that the distribution of R&D among industries is roughly constant across states 
and time, and b) that R&D is positively correlated with aggregate payroll.  This second 
assumption should be helped by the fact that R&D estimates and aggregate payroll 
estimates were matched at the industry level.   Given all of these assumptions, and the 
fact that the original aggregate is itself an estimate, this variable should be treated as no 
more than a proxy for actual R&D.    

  The actual variable is created as so: 
 mitmtist DRAPDRDR &%*&%*& =  
where s indicates state, i indicates tech-area, m indicates metropolitan area and t indicates 
year. Here, iDR &%  is the percent of total corporate R&D performed in 2003 that was 
performed in industry i.  Likewise, mtAP%  is the percent of aggregate payroll in a state 
that was performed by metro m in year t.  Summing over industries in each tech-area 
creates metro/tech-area/year aggregates.  Four metro areas included areas in several states 
(New York, Philadelphia, DC-Baltimore and Kansas City), so that “states” used in the 
creation of the variable were aggregates of the states spanned by these metropolitan areas.   
 One complication in such a construction is that the industries used by the SIRD 
and the CBP do not have a direct correspondence with the broad tech-areas in the panel.  
Also, the SIRD industries sometimes refer to 4 or 5 digit classifications, with which the 
CBP 3 digit NAICS and 2 digit SIC codes will not overlap with on a one-to-one basis.  
The following table lists the industries used in the SIRD and corresponding tech-areas, 
with a rationale for the match. 
 
Table A3 

Industry NAICS SIC Technology 
Area 

Explanation 

Aerospace Products and Parts 336 372 4 (mechanical devices, 
machines) 

 

Architectural, engineering 
services 

5413 87 4   

Basic chemicals 325 28, 3087, 3861 2 (chemical) not 3254 or 283 (pharma) 
Beverage and Tobacco 

Products 
312 20,21 5 (agricultural and 

environmental 
techniques) 

 

Communications equipment 334 366 3 (electronics and 
computing) 

 

Computer systems design and 5415 737 3  
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related services 
Computers and peripheral 

equipment 
334 367, 357 3  

Construction 23 15,16,17 4  
Drugs and druggists’ sundries 4242  0 (non-science) for the sale, not 

manufacture 
Electrical equipment, 

appliances, and components 
335 36 3  

Electrical goods 4216  0 for the sale, not 
manufacture 

Fabricated Metal Products 332 34 4  
Finance, insurance, and real 

estate 
52  0  

Food (production) 11  5  
Furniture and related 

products 
337 25 5 for wood products 

Health care services 62 80 1  
Machinery 333 35 4  

Management of companies 
and enterprises 

55  0  

Medical equipment and 
supplies 

3391 384 1 (drugs and medical)  

Mining, extraction and 
support activity 

21 10, 12, 13  5 excluding non-metallic 

Motor vehicles, trailers and 
parts 

336 371,373, 379 4  

Navigational, measuring, 
electromedical, 
manufacturing 

3345 382 3  

Newspaper, periodical, book, 
and database; publishing 

514 823,735,737 3 for innovations in databases 

Nonmetallic mineral products 2123 14 2 for chemical-based mining 
processes 

Other broadcasting and 
telecommunications 

5179  0  

Other chemicals 3259 28, 30, 3861 2  
Other computer and 
electronic products 

3344 3679 3  

Other information services 519 7375 3  
Other misc. manufacturing 3399 34, 39 4  

Other professional, scientific, 
and technical services 

5419  0  

Other transportation 
equipment 

3369 3751, 3711, 
3795, 3799 

4  

Paper, printing, and support 
activities 

323 27 2  

Petroleum and coal products 324 29 2  
Pharmaceuticals and 

medicines 
3254 283 1  

Plastics and rubber products 326 26, 30 2  
Primary metals 331 33 4  

Professional and commercial 
equipment and supplies 

4234  0 for the sale, not 
manufacture 

Resin, synthetic rubber, fibers 
and filament 

3252 28 2  

Retail trade 44-45  0  
Scientific R&D services 5417 873 1,2,3,4,5 should cover all disciplines 
Semiconductor and other 

electronic components 
3344 367 3  

Software reproducing 
material 

3346 3652, 3695 3  

Telecommunications 513 48 3  
Textiles, apparel, and leather 313 22 5  

Transportation and 
warehousing 

48-49 45 4  

Utilities 22 49 3  
Wood Products 321 24 5  
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New PhD Control Variable:  Data on recipients of Doctorates in science and 
engineering from U.S. universities was compiled from the NSF’s Survey of Earned 
Doctorates under a licensing agreement.  The variable constructed is the number of 
Doctorates granted at all of the 218 universities in the sample.  PhD’s were assigned to 
metropolitan areas according to the location of their doctoral institution.  They were 
assigned to fields of science (see Table A2) based on the specialized area of their 
dissertation, and these fields assigned to broad technology categories in the same way as 
publications.  A matching of dissertation areas and fields is available upon request. 
 
 
 
 

Appendix B: Related Literature 
 

One alternate approach has been to study patterns and location of patent citations.  
Jaffe, Trajtenberg and Henderson (1993) found that academic patents cited by industrial 
patents were more likely to be cited by firms located near to the university.  Other studies 
that look at citation trails are Henderson, Jaffe and Trajtenberg (1998), Branstetter and 
Ogura (2005) and Kim, Lee and Marschke (2006). 

Yet another approach has been to use surveys and case studies to gain insight into 
the connection between academic and industrial research.  Mansfield (1995) surveyed 
corporations and found that 10% of industrial innovation can be attributed to academic 
research.  Other studies that have used surveys and case studies to document the 
mechanism of spillovers are Cohen, Nelson and Walsh (2002) and Jensen and Thursby 
(2001). 

A final approach has been to consider academic research as one source of 
agglomeration economies, leading to clustering of innovative industry near universities.  
Audretsch and Feldman (1996) use Gini coefficients of industrial production and 
innovation directly as their dependent variables, and examine the correlations between 
these measures of clustering and factors affecting agglomeration such as academic R&D.  
Other studies that have looked at the relationship between knowledge spillovers and 
agglomeration are Varga (2000) and Adams (2002). 
 
 




