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Abstract

In many auctions, matching between the bidder and seller raises the value of the

contract for both parties although information about the matching may be incomplete.

We consider the case in which each bidder observes the quality of his match with the

seller but the seller does not observe the quality of the matches. Our objective is

to determine whether it is in the seller’s interest to (1) account for matching in his

allocation decision and (2) observe the matches prior to the auction.

It is shown that irrespective of how important matching may be to the seller, the

optimal mechanism can be implemented without using matching as a factor. If the

seller has commitment power, he can raise his expected utility further by observing the

matches ex ante. However, if the seller cannot commit, his value for the information

may be negative: the seller’s knowledge of the matches generates an asymmetry across

bidders which depresses bids. The more matching matters, the greater the penalty

associated with observing the matches in advance.
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discussions and to Atila Abdulkadiroğlu, Dirk Bergemann, Yongmin Chen, Avraham Ebenstein, Emel Filiz,
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1 Introduction

The real value of a contract lies beyond its financial components: the degree to which the

parties are compatible also matters. According to a KPMG study, “83% of all mergers and

acquisitions (M&As) failed to produce any benefit for the shareholders and over half actually

destroyed value.” Interviews of over 100 senior executives revealed that the overwhelming

cause of failure “is the people and the cultural differences” (Gitelson et al., 2001).

Compatibility between a buyer and seller matters for more than just mergers and ac-

quisitions. It is an issue in publishing and team sports as well: a good match between an

author and his editor may generate a better book, and an athletic team is more likely to

win games if the players have compatible skills. Given the impact of matching on contract

value, it is not surprising that we observe sellers using matching as a factor in their choice of

buyer. During the 2002 auction for the rights to his second novel, Charles Frazier, author of

Cold Mountain, asserted that “money was not the only consideration and that he was keen

to choose the right editor to help him shape the book from the beginning” (Gumbel, 2002).

Venezuela’s state-owned oil company, Petróleos de Venezuela (PDVSA), accounted for tech-

nological compatibility when it selected private partners for the development of marginal

fields in the early 1990s (Chalot, 1996).

The purpose of this paper is to develop a theory of auctions in which matching raises the

value of the contract for both the seller and bidder but information about the matching is
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incomplete. We assume each bidder is better informed about his match with the seller than

the seller is. Our objective is twofold: we first examine whether it is in the seller’s interest

to use matching as a factor in his allocation decision and then determine the extent to which

obtaining information about the quality of the matches before the auction is of value to the

seller.

We pay special attention to the role of commitment. A seller is said to have commitment

power if he can allocate the contract in accordance with the allocation rule announced at

the outset of the auction even when he prefers a different allocation after observing the bids.

In contrast, a seller without commitment power cannot refrain from allocating the contract

to the bidder whose combination of bid payment and expected match maximizes the seller’s

expected utility.

Our results indicate that the seller need not consider matching as a factor in his allocation

decision. That is, the optimal mechanism can be implemented without using matching

irrespective of how important matching may be to the seller. We also show that if the seller

has commitment power, his value for observing the matches before the auction is positive.

However, without commitment, his value for the information may be negative. Moreover,

the more matching matters, the greater the penalty associated with observing the matches

in advance.

We develop a model in which a single seller seeks to contract with one of several bidders.

Each pairing of seller and bidder is characterized by a match. The better the match, the

more each party values the contract. Each bidder observes his match with the seller (but
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not the matches of his opponents with the seller). In contrast, the seller does not observe

his matches with the bidders.

The reader will note that the notion of matching advanced here is different from the

notion advanced in the two-sided matching literature.1 While the latter use the term to

refer to the pairing of agents in a two-sided market, our paper uses the term to refer to

the compatibility between a bidder and seller. Since this compatibility induces a positive

correlation between the valuations of the bidder and seller, our notion of matching is more

closely related to the literatures on affiliated values (e.g., Milgrom and Weber, 1982a) and

interdependent valuations (e.g., Jehiel and Moldovanu, 2001), but while these literatures

are more concerned with linking the bidders’ valuations, our paper focuses on linking the

valuations of the bidder and seller.

We solve for the optimal mechanism and find that it can be implemented via a standard

first-price auction with an appropriate choice of reserve price. Since a better match implies a

higher contract value, well matched bidders face a higher opportunity cost of not raising their

bids. As a result, bids increase in match. By awarding the contract to the highest bidder,

the seller finds himself automatically contracting with the best matched bidder. Since a first-

price auction does not (directly) account for matching, we conclude that the seller need not

consider matching as a factor in his allocation decision – no matter how important matching

may be to the seller.

1See Gale and Shapley (1962), Shapley and Shubik (1972), Crawford and Knoer (1981), Kelso and
Crawford (1982), Kamecke (1998), Hatfield and Milgrom (2005), and Bulow and Levin (forthcoming).
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Implementing the first-price auction may require commitment power. Since the seller’s

utility is determined by both price and match, the seller may prefer a lower price and higher

match to a higher price and lower match. Hence, if after observing the bids the seller believes

the winning bidder is a poor match, he may be inclined to deviate from the “high bid wins”

rule and offer the contract to another bidder instead.

The question naturally arises: can the optimal mechanism be implemented without com-

mitment? In order to answer this question, we examine a first-score auction, in which each

bidder bids on price alone but the seller selects the bidder whose combination of price and

expected match maximizes his expected utility.2 Since this allocation rule reflects the seller’s

true preferences, there should be no incentive for the seller to deviate from the rule ex post.

We find that the equilibrium bidding strategies in the first-score auction are identical

to those in the first-price auction. In a first-score auction, well matched bidders have an

incentive to convey their information to the seller in order to raise their probability of

winning. Since well matched bidders have a higher value for the contract, they can credibly

signal their favorable matches by raising their bids beyond the point at which it is profitable

for poorly matched bidders to mimic them.3 Given that higher bids signal better matches,

2Che (1993), Branco (1997), Zheng (2000), and Asker and Cantillon (2004) analyze a similar auction
format in which the winning bidder is selected on the basis of price and quality. Our mechanism differs in
that bidders bid only on price and the seller is left to estimate match on his own. Our mechanism is more
closely linked to the biased procurement problem studied by Rezende (2004), in which bidders bid only on
price but the allocation rule incorporates a bias determined by the seller. Our environment differs in that
the bias is linked to the bidder’s private information about his match.

3Bikhchandani and Huang (1989), Katzman and Rhodes-Kropf (2002), Das Varma (2003), Goeree (2003),
Haile (2003), and Molnár and Virág (2004) examine signaling in auctions, but these papers are concerned
with bidders signaling their private information to other bidders so as to affect future strategic interactions.
In contrast, the signaling behavior in our paper is motivated by the structure of the auction game itself:
bidders are interested in signaling their private information to the seller in order to influence the seller’s
choice of winner. In this sense, our paper is more similar to Avery (1998), which addresses the use of jump
bids to signal a high valuation and encourage competing bidders to withdraw.
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the contract goes to the bidder submitting the highest bid – which is precisely the allocation

rule in a first-price auction.

Although the absence of commitment power does not change the equilibrium bidding

strategies, it may affect the feasibility of adhering to the prescribed reserve price. Burguet

and Sákovics (1996), McAfee and Vincent (1997), and Skreta (2004) examine auctions in

which the seller can commit to a reserve price in the current period but cannot commit not

to resell the object in a future period. In this environment, the seller minimizes his losses

by holding the initial auction with an elevated reserve and reducing the reserve with every

subsequent auction.4

In contrast, we find that a seller without commitment power can sustain an elevated

reserve price provided that the quality of the match is sufficiently important to him. If the

seller associates bids which fall below the reserve with a poor match and the adverse effect

of a poor match is sufficiently large, then the seller will prefer retaining the contract to

accepting a bid which does not meet the reserve. We conclude that if matching is important,

the optimal mechanism can be implemented without commitment.

In sum, we find that the seller need not account for matching in his allocation decision

since the optimal outcome can be achieved via a first-price auction. If matching is suffi-

ciently important to the seller, commitment power is not required to implement the optimal

mechanism. However, if the seller’s utility does not vary enough with the quality of the

match, commitment is needed in order to adhere to the prescribed reserve price.

4Menezes and Ryan (2005) also address the seller’s inability to adhere to a reserve price, but rather than
characterizing the path of reserve prices, they establish an equivalence between commitment and bargaining
power.
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We then introduce an opportunity for the seller to observe the matches before the auction.

Under commitment, the value of the information is positive since the seller can extract the

entire surplus by making a take-it-or-leave-it offer to the best-matched bidder. However, in

the absence of commitment, the seller is unable to appropriate all the rent because he cannot

reject offers which exceed his reservation value but are unaffordable for any other bidder.

Moreover, when the seller lacks commitment power, his knowledge of the matches may

depress bids. If the seller has observed the matches prior to the submission of bids, a well

matched bidder knows that the auction is biased in his favor irrespective of the offer he

makes. As a result, he need not bid as aggressively to win. In fact, the bias permits a well

matched bidder to bid less than a poorly matched counterpart and still win the auction.

Thus, there is an incentive for well matched bidders to capitalize on their advantage by

reducing their bids. We call this effect the asymmetry effect.5

Since the asymmetry effect reduces bids, the value of the information under no commit-

ment is not only lower than it is under commitment but may actually be negative. The

greater the effect of matching on the seller’s utility, the greater the advantage enjoyed by

a well matched bidder and the greater the incentive to reduce his bid. Therefore, we find

5There is a vast literature on the negative effect of asymmetries on price competition, the majority of
which addresses asymmetries in the distributions from which valuations are drawn (see Milgrom (1981),
Myerson (1981), Milgrom and Weber (1982b), Graham and Marshall (1987), McAfee and McMillan (1987),
Bulow and Roberts (1989), McAfee and McMillan (1989), Mailath and Zemsky (1991), McAfee and McMillan
(1992), Marshall, Meurer, Richard, and Stromquist (1994), Tschantz, Crooke, and Froeb (1997), Waehrer
(1999), Dalkir, Logan, and Mason (2000), Kaplan and Zamir (2002), Waehrer and Perry (2003), Cantillon
(2005), and Bulow and Levin (forthcoming)). The nature of the asymmetry in our paper is more closely
related to that in Che (1993) and Rezende (2004), where the source of asymmetry is the seller’s use of factors
other than price to determine the auction winner.
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that the more the seller cares about matching, the stronger his incentive not to observe the

matches in advance.

This result lies in stark contrast to the conventional wisdom that bidders derive their

profits from their private information (see Milgrom (1981), Milgrom and Weber (1982a),

Milgrom and Weber (1982b), and McAfee and McMillan (1987)). The difference arises from

the two modifications made to the standard independent private values model: relaxing

the assumption that the seller has commitment power and augmenting the seller’s utility

function to account for matching. In this framework, well matched bidders can only gain

from (verifiably) disclosing their private information: the lack of commitment power prevents

the seller from driving the price above the competitive level, and the bias in favor of well

matched bidders dampens price competition even further.6

The remainder of this paper is organized as follows. Section 2 introduces the model. In

Section 3, we solve for the optimal mechanism and identify which allocation rules implement

the optimal mechanism in the commitment and no commitment case, respectively. We also

derive a set of conditions under which the optimal outcome can be achieved in the absence

of commitment. Section 4 examines the extent to which obtaining information about the

matches ex ante is of value to the seller. Special attention is paid to the no commitment case

and the role of the asymmetry effect in reducing bids. Conclusions are offered in Section 5.

All proofs are relegated to the Appendix.

6Benôıt and Dubra (forthcoming) offer another exception: they modify the standard common values
model by allowing bidders to verifiably disclose their private information to other bidders. They find that if
bidders lack commitment power, they always disclose their private information even when doing so is harmful
ex ante. Consequently, they prefer not to have any private information so as to avoid the compulsion to
disclose it.
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2 The Model

A seller is to auction off a contract to one of n risk-neutral bidders (n ≥ 2).7 Every potential

pairing of seller and bidder has an associated match. We denote the match between the

seller and bidder i by θi ∈
[
θ, θ

] ⊂ R, where θi > θj indicates that bidder i has a better

match than bidder j does. We assume the θi’s are independently and identically distributed

according to a commonly known cumulative distribution function (cdf) F with F (θ) = 0

and F
(
θ
)

= 1.

Assumption 1 F is continuous over
[
θ, θ

]
and has positive density f .

Bidder i’s utility from contracting with the seller is

θi − bi,

where θi is bidder i’s value for the contract and bi ∈ R is the bid submitted by bidder i.

Bidder i’s utility is zero if he does not win the contract.

The seller derives utility from both the bid payment and his match with the winning

bidder. We assume the seller’s utility from contracting with bidder i is

V (θi) + bi,

where V (θi) represents the seller’s value for his match with bidder i. The following assump-

tion captures the notion that a good match raises the value of the contract for both the seller

and the bidder:

7We employ the term “auction” throughout, but the model is general enough to accommodate both
auction and procurement settings.
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Assumption 2 V :
[
θ, θ

] → R is continuous and strictly increasing over
[
θ, θ

]
.

The seller’s utility is zero if he does not contract with any bidder.8

The following assumption is imposed so as not to rule out the possibility of a mutually

beneficial trade:

Assumption 3 (participation condition) V
(
θ
)

+ θ is positive.

Additionally, we impose the following regularity condition:

Assumption 4 (regularity condition) The function

V (θi) + θi − 1− F (θi)

f (θi)

is strictly increasing over
[
θ, θ

]
.9

We assume bidder i is better informed about his match than the seller is. Bidder i

observes his match θi but not the matches of his opponents.10 The seller does not observe

the matches directly, and therefore, his beliefs about the matches are determined by the

prior, F , and the observed bids.

3 The Optimal Mechanism

Intuition suggests that if matching affects the seller’s expected utility, the seller should

account for matching in his allocation decision. In fact, we observe this behavior in a number

8When V (θi) = vθi, where v is a positive constant, our model can be mapped to the interdependent
valuations framework outlined in Section 5 of Jehiel and Moldovanu (2001): simply let the agents be indexed
by i ∈ {0, 1, 2, ..., n}, where agent i is the seller if i = 0 and bidder i otherwise; let pi

k be the probability the
contract is awarded to agent i in alternative k; and let s0 = 0, si = θi, ai

k0 = vpi
k, ai

ki = pi
k, and aj

ki = 0 for
all j 6= i.

9Note that Assumption 4 is less restrictive than the monotone hazard rate condition.
10Bidder i’s beliefs about θj , j 6= i, are determined by the prior, F .
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of environments. For example, PDVSA accounted for technological complementarities in its

selection of partners for the development of marginal oil fields while novelist Charles Frazier

accounted for his compatibility with the editor in his choice of a publisher.

In this section, we ask whether the seller should account for matching in allocating the

contract. Our approach will be to solve for the optimal mechanism and then identify which

allocation rules implement it.

Special attention is paid to the role played by the seller’s ability to commit. Under

commitment, the seller can credibly announce any allocation rule before the auction. That

is, the seller is committed to allocating the contract in accordance with the announced rule

even if he prefers a different selection ex post. In contrast, when the seller lacks commitment

power, the contract is simply allocated to the bidder whose combination of bid payment and

expected match maximizes the seller’s expected utility.

3.1 Implementation under Commitment

We begin by assuming the seller can commit to any allocation rule and deriving the optimal

mechanism. By appealing to the revelation principle (Myerson, 1981), we restrict attention

to direct revelation mechanisms {p(·), t(·)}, where pi :
[
θ, θ

]n → [0, 1] is the probability that

bidder i is awarded the contract and ti :
[
θ, θ

]n → R is the expected transfer from bidder i

to the seller.

If bidder i observes his type θi but announces that his type is x, his expected utility from

the mechanism {p(·), t(·)} is

Ui (x, θi) ≡ Eθ−i
[θipi (x, θ−i)− ti (x, θ−i)] . (3.1)
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Similarly, the seller’s expected utility from the mechanism is

U0 ≡ Eθ

[
n∑

i=1

V (θi) pi(θ) +
n∑

i=1

ti(θ)

]
. (3.2)

The mechanism is optimal if it maximizes U0 subject to

Incentive compatibility (IC): Ui (θi, θi) ≥ Ui (x, θi) ∀i, ∀θi,∀x;

Individual rationality (IR): Ui (θi, θi) ≥ 0 ∀i, ∀θi;

and

pi(θ) ≥ 0 and
∑n

i=1 pi(θ) ≤ 1 ∀i,∀θ.

Proposition 1 The optimal mechanism satisfies

pi(θ) =

{
1 if θi ≥ θj ∀j and θi ≥ θ∗
0 otherwise

and

Eθ−i
[ti (θi, θ−i)] =

{
θiF

n−1 (θi)−
∫ θi

θ∗
F n−1(x)dx if θi ≥ θ∗

0 otherwise

where

θ∗ =

{ {
x ∈ (

θ, θ
)

: V (x) + x− 1−F (x)
f(x)

= 0
}

if V (θ) + θ − 1
f(θ)

< 0

θ otherwise.

Proof: See Appendix. 2

The proof develops a relaxed optimization program by reducing the number of choice vari-

ables from two to one. It then identifies the unique solution of the relaxed program, and

demonstrates that it satisfies the constraints of the original program. The regularity condi-

tion plays a key role.

Note that the mechanism outlined in Proposition 1 can be implemented via a standard

first-price sealed-bid auction with an appropriate choice of reserve price. Since a higher
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match implies that the bidder has a higher value for the contract, well matched bidders can

afford to bid more than poorly matched bidders. Hence, a rule that allocates the contract

to the highest bidder also allocates the contract to the bidder with the best match.

Since the allocation rule in a first-price auction does not (directly) incorporate matching,

we conclude that the seller can maximize his expected utility without using matching as a

factor in his allocation decision – no matter how important matching may be to the seller.

However, implementing a first-price auction may require commitment power. Since

V (θ∗) + θ∗ > 0, there exists a mutually beneficial trade between the seller and a bidder

with type θ∗. As a result, we encounter the usual problem associated with an elevated

reserve price: when the high bid falls just short of θ∗, the seller may prefer awarding the

contract to retaining it.

The fact that the seller’s utility is a function of both price and match generates an

additional problem. In the absence of commitment, the seller is not bound by the “first

price wins” rule announced at the auction’s outset. Consequently, if the seller believes

the quality of the winning bidder’s match is sufficiently poor, he may elect to award the

contract to another bidder, whose price offer is lower but whose match is believed to be

higher. Hence, if the seller’s inability to commit is common knowledge, bidders select their

strategies assuming the contract goes to the bidder whose combination of price and expected

match maximizes the seller’s expected utility.

In the following section, we address these issues in investigating whether the optimal

mechanism can be implemented without commitment.
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3.2 Implementation under No Commitment

Consider the following auction game:

1. Each bidder submits a bid independently and simultaneously.

2. The seller contracts with the bidder whose offer maximizes the seller’s expected utility

provided that the offer is not less than the seller’s reservation utility of zero. That is,

bidder i wins the contract if

E [V (θi) | bi] + bi ≥ 0

and

E [V (θi) | bi] + bi > E [V (θj) | bj] + bj ∀j 6= i.

Ties are resolved by a random draw with equal probability.

3. Once the contract is allocated to bidder i, θi is revealed. The seller’s payoff is V (θi)+bi,

bidder i’s payoff is θi − bi, and all other bidders get zero. The auction game is then

over.

We call this auction game a first-score auction, where the term “score” refers to the com-

bination of bid and expected match. For instance, bidder i’s score is given by E [V (θi) | bi]+bi.

As indicated in the timeline above, the contract is allocated to the bidder with the highest

score provided that that score is nonnegative.

The first-score auction is much like a first-price auction in that the winning bidder pays

his bid. However, unlike a first-price auction, the winner is the bidder who offers the most
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attractive combination of bid and expected match. This allocation rule allows the seller to

reject an offer made by the highest bidder and allocate the contract to another bidder whose

pairing of bid and expected match is more attractive than the pairing offered by the highest

bidder. Moreover, the first-score auction does not require an elevated reserve price: the seller

retains the contract only when every offer falls short of the seller’s reservation utility. Since

the allocation rule of the first-score auction reflects the seller’s true preferences, there is no

incentive for the seller to deviate from it after observing the bids.

Our use of a first-score auction to represent the seller’s lack of commitment is consistent

with the literature. Che (1993) states that in the absence of commitment “the only feasible

scoring rule is one that reflects the seller’s [true] preference ordering,” and Rezende (2004)

allows a seller without commitment power to renege on the announced allocation rule and

select the auction winner arbitrarily. Our representation is also consistent with the principal-

agent model in Bester and Strausz (2000): they define imperfect commitment in terms of a

two-stage game, in which agents select messages in the first stage and the principal updates

his beliefs and selects an allocation in the second stage.

Our approach will be to investigate the perfect Bayesian equilibria of the first-score

auction to see whether the optimal mechanism outlined in Proposition 1 can be implemented

in the absence of commitment.

Let Pi(b) represent bidder i’s probability of winning with a bid of b. Since the seller

observes only the bids offered and not the vector of types, each bidder’s probability of

winning the auction is a function of his bid but not of his type. Let Bi : R × [θ, θ] → [0, 1]
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represent bidder i’s equilibrium bidding strategy (possibly a mixed strategy), where Bi(b, θi)

is the cdf from which bidder i draws a bid of b when his type is θi. Let βi be the density

function associated with Bi.

Lemma 1 Suppose there exist θi ∈
[
θ, θ

)
and some b in the support of βi(·, θi) such that

Pi(b) > 0. Then for all θ̂i > θi and all b̂ in the support of βi(·, θ̂i), it is the case that Pi(b̂) > 0.

Proof: See Appendix. 2

Lemma 1 indicates that if the equilibrium strategies are such that bidder i’s probability

of winning is positive when he draws type θi, then it is also positive when he draws any type

greater than θi. It establishes that for each bidder, there exists a threshold, θ̃i, such that if

the type drawn exceeds this threshold, the bidder’s probability of winning is positive but if

the type drawn is below this threshold, the bidder’s probability of winning is zero.

In the following lemma, we show that in any separating equilibrium, bids are strictly

increasing in type when θi exceeds θ̃i.

Lemma 2 Let Bi be a separating equilibrium bidding strategy. Suppose there exist θi ∈
[
θ, θ

)

and some b in the support of βi(·, θi) such that Pi(b) > 0. If θ̂i > θi and b̂ is in the support

of βi(·, θ̂i), then b̂ > b.

Proof: See Appendix. 2

In a separating equilibrium, the seller can perfectly infer types from bids. Lemma 2

indicates that for each bidder, a higher bid signals a better match. Since a better match

implies a higher value for the contract, the return on raising one’s bid increases with the
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level of matching. As a result, bidders can credibly signal their better matches by offering

higher bids.

The optimal mechanism requires that if a contract is awarded, it is awarded to the bidder

with the best match. Lemma 2 implies that this condition is satisfied for any symmetric

separating equilibrium. Therefore, we will proceed by solving for the symmetric separating

equilibria of the first-score auction game.

Lemma 3 Let B be a symmetric separating equilibrium bidding strategy. If θ ∈ [
θ, θ

]
and

there exists some b in the support of β(·, θ) such that P (b) > 0, then B(·, θ) is a pure strategy.

Proof: See Appendix. 2

Let

θ̃ ≡ inf
{
x ∈ [

θ, θ
]

: P (b) > 0 for some b in the support of β(·, x)
}

. (3.3)

Lemma 3 indicates that the bidding strategy is pure when the bidder’s type exceeds θ̃. There-

fore, the equilibrium bidding strategy of any bidder with type θ ∈ (θ̃, θ] can be represented

by b : (θ̃, θ] → R, where

b(θ) ≡ {b : B(x, θ) = 0 ∀x < b and B(x, θ) = 1 ∀x ≥ b}. (3.4)

The following two lemmas determine the functional form of b for an arbitrary θ̃.

Lemma 4 In any symmetric separating equilibrium, the bidding strategy b : (θ̃, θ] → R is

continuous.

Proof: See Appendix. 2
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Lemma 5 In any symmetric separating equlibrium, the bidding strategy is

b(θ) = θ −
∫ θ

θ̃
F n−1(x)dx

F n−1(θ)

for θ ∈ (θ̃, θ].

Proof: See Appendix. 2

An interesting feature of the bidding function specified by Lemma 5 is that the seller’s

value for the match, V (·), drops out. In general, one would expect V to appear in the

function since it enters into the allocation rule and, therefore, affects the bidder’s probability

of winning. However, since b and V are strictly increasing, each bidder’s score,

V (b−1[b(θ)]) + b(θ), (3.5)

increases in his type, θ. As a result, his probability of winning reduces to F n−1(θ). Note

that the functional form of V is not relevant; all that is required is that V be nondecreasing.

Furthermore, the bidding function specified by Lemma 5 is identical to the bidding func-

tion in a first-price auction with a reserve price of θ̃. The equivalency follows from the fact

that a higher bid signals a higher type, which, in turn, generates a higher V and a higher

score. Consequently, the contract goes to the bidder submitting the highest bid – which is

precisely the allocation rule in a first-price auction.

Although the absence of commitment power does not change the form of the bidding

function, it may affect the feasibility of adhering to a reserve price of θ∗. Let θ0 be the lowest

type for which there exists a mutually beneficial trade; that is, let

θ0 ≡
{ {

x ∈ (
θ, θ

)
: V (x) + x = 0

}
if V (θ) + θ < 0

θ otherwise.
(3.6)
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Suppose V (θ)+θ < 0. In this case, V (θ0)+θ0 = 0 and V (θ∗)+θ∗ > 0. Since V is increasing,

θ0 < θ∗. Now consider a scenario in which the seller announces a reserve price of θ∗ but a

bidder with type θ ∈ (θ0, θ∗) has the highest type and bids his valuation, θ. In the absence of

commitment, the seller will contract with this bidder unless the bid θ is off the equilibrium

path and the seller’s off-equilibrium-path beliefs are sufficiently punishing. In particular, the

difference between V (θ) and V (θ) must be large enough.

Let µ : R × [θ, θ] → [0, 1] represent the seller’s posterior beliefs, where µ(θ | b) is the

probability the seller assigns to the event that a bidder’s type is in [θ, θ] when he offers a bid

of b.

Proposition 2 Let θ∗ be defined as in Proposition 1. Suppose the seller’s off-equilibrium-

path beliefs are such that µ(θ | b) = 1 for all θ ∈ [θ, θ] when b < θ∗.11 If

V (θ∗)− V (θ) ≥ 1− F (θ∗)
f(θ∗)

,

then there exists a symmetric separating equilibrium in which bidders bid according to

b(θ) = θ −
R θ

θ∗ F n−1(x)dx

F n−1(θ)
if θ ∈ [

θ∗, θ
]

b(θ) < −V (θ∗) otherwise.

Proof: See Appendix. 2

Proposition 2 indicates that if matching is sufficiently important to the seller (i.e., the

range of V is sufficiently large), the optimal mechanism can be implemented in the absence of

commitment. Hence, when matching is important, there is no loss associated with a lack of

11This equilibrium satisfies the Intuitive Criterion of Cho and Kreps (1987).

19



commitment power. This may explain why we observe agents, such as PDVSA, who are able

to commit to a different allocation mechanism, simply implementing a first-score auction.

In the next section, we consider the value of information about the matches and ask

whether the seller can do better if he observes the matches ex-ante.

4 The Value of Information

Suppose the seller could observe the vector of matches before selecting a mechanism for

allocating the contract. Would it be in the seller’s interest to do so? How does the seller’s

value for the information vary with his ability to commit to an allocation rule?

Under commitment, the seller can clearly do better by observing the matches in advance.

With the information in hand, he simply makes a take-it-or-leave-it offer to the bidder with

the best match in the amount of that bidder’s valuation. Since the outcome is efficient

and the seller extracts all the surplus, he necessarily improves upon the mechanism outlined

in Proposition 1. Therefore, a seller with commitment power has a positive value for the

information.

Suppose the seller cannot commit. In this case, the seller will not be able to capture the

entire surplus. At best, the seller can extract the value-match combination, V (θ) + θ, of the

bidder with the second-highest match since any package of greater value offered by the best-

matched bidder goes uncontested by the other bidders. This suggests that the seller’s value

for the information is lower under the no commitment paradigm than under the commitment

paradigm.
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Our approach will be to revisit the first-score auction outlined in Section 3.2 under the

assumption that the seller observes the matches in advance and compare equilibrium bids

across the two information structures. In doing so, we will identify how the seller’s ex ante

knowledge of the matches alters the bidders’ incentives.

In the first-score auction game with an informed seller, bidder i selects an equilibrium

bidding strategy Bi : R× [
θ, θ

] → [0, 1] such that for any type θi ∈
[
θ, θ

]
and any bid bi in

the support of βi(·, θi), the following two conditions are satisfied:

(θi − bi)Pi(bi, θi) ≥ (θi − b)Pi(b, θi) ∀b ∈ R (4.1)

and

(θi − bi)Pi(bi, θi) ≥ 0, (4.2)

where Pi(b, θi) represents bidder i’s probability of winning the contract with a bid of b given

that his type is θi. Note that because the seller observes the matches ex ante, each bidder’s

probability of winning is a function of both his bid and his type.

We proceed by reformulating the bidder’s problem using bidder i’s score as the choice

variable. This reformulation permits us to directly apply the standard independent private

values results. Let

si ≡ V (θi) + bi (4.3)

denote the score offered by bidder i. Note that since both bidder i and the seller observe

θi ex ante, bidder i’s choice of bid unambiguously determines his score. Furthermore, let

Qi(s) represent bidder i’s probability of winning with a score of s. Since a first-score auction
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allocates the contract to the bidder offering the highest score, provided that score is not less

than zero, Qi(s) is simply the probability that s is the highest score offered if s ≥ 0 and zero

otherwise. Finally, let Σi : R× [θ, θ] → [0, 1] represent bidder i’s equilibrium score strategy

(possibly a mixed strategy), where Σi(s, θi) is the cdf from which bidder i draws a score of

s when his type is θi, and let σi be the density function associated with Σi.

Using this notation, we can now reformulate the bidder’s problem. Bidder i selects an

equilibrium score strategy Σi such that for any type θi ∈
[
θ, θ

]
and any score si in the

support of σi(·, θi), the following two conditions are satisfied:

[V (θi) + θi − si] Qi(si) ≥ [V (θi) + θi − s] Qi(s) ∀s ∈ R (4.4)

and

[V (θi) + θi − si] Qi(si) ≥ 0. (4.5)

Note that by interpreting V (θi) + θi as the bidder’s type, si as the bidder’s bid, and

zero as the seller’s reserve price, we can map this formulation into the standard independent

private values framework.12 Therefore, we can invoke Maskin and Riley (1986) and Riley

and Samuelson (1981) to obtain the following result:

Lemma 6 Let θ0 be defined by equation (3.6). There exists a unique equilibrium of the

first-score auction game in which any bidder with type θ ∈ [θ0, θ] offers a score of

s(θ) = V (θ) + θ −
∫ θ

θ0
F n−1(x)dx

F n−1(θ)
−

∫ θ

θ0
V ′(x)F n−1(x)dx

F n−1(θ)

and any bidder with type θ ∈ [θ, θ0) offers a score less than zero.

12This technique is similar to that used in Asker and Cantillon (2004). In their terminology, V (θi) + θi is
bidder i’s “pseudotype.”
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Lemma 6 indicates that for all θ > θ0, higher types offer higher scores. However, this

result does not imply that higher types offer higher bids. Using Lemma 6 and the fact that

in equilibrium s(θ) = V (θ) + b(θ), we derive the equilibrium bidding function specified in

the following proposition.

Proposition 3 Let θ0 be defined by equation (3.6). There exists a unique equilibrium of the

first-score auction game in which any bidder with type θ ∈ [θ0, θ] bids according to

b(θ) = θ −
∫ θ

θ0
F n−1(x)dx

F n−1(θ)
−

∫ θ

θ0
V ′(x)F n−1(x)dx

F n−1(θ)

and any bidder with type θ ∈ [θ, θ0) bids

b(θ) < −V (θ).13

The first two terms of the bidding function are identical to the bidding function outlined

in Proposition 2 with the exception of the lowest participating type, θ0. The third term,

however, is a novel addition. The seller’s value for matching enters the bidding function and

depresses bids. The greater the importance of matching, V ′, the lower the bids. As a result,

the bidding function need not be well behaved. In fact, for θ sufficiently close to θ0, bids

decrease in type.

Two conflicting effects are at play:

The value effect: A well matched bidder has a higher value for the contract, and therefore,

the opportunity cost of not increasing his bid is higher;

13Despite the multiplicity of bids satisfying the condition b(θ) < −V (θ), we assert that the equilibrium is
unique in the sense that these bids can be classified as “non-participating”: any bid satisfying this condition
maps to a score less than the seller’s reservation utility.
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The asymmetry effect: A well matched bidder is preferred by the seller, and therefore,

he need not bid as aggressively to win.14

The value effect induces bids to increase with match. It is the reason we observe

monotonicity in bids in both the standard first-price auction and the first-score auction

with an uninformed seller. It follows that the value effect is represented by the first two

terms of the bidding function outlined in Proposition 3.

The asymmetry effect is represented by the third term. Since the seller’s utility increases

with match and the matches are known to the seller, well matched bidders have an advantage

over poorly matched bidders: a bidder with a high match can bid less than a bidder with a

low match and still win the contract. In other words, the asymmetry across bidders tends

to dampen price competition. The greater the importance of matching, V ′, the greater the

asymmetry and the lower the bids.

If the lowest participating type is fixed across information structures (i.e., if θ∗ = θ0 = θ),

then bids are lower when the seller observes the matches in advance. In this case, the seller

is clearly better off when he remains uninformed. But what if the lowest participating type

differs across the two auctions (i.e., if θ∗ > θ0)?
15 In this case, the seller is still better off

remaining uninformed since θ∗ is the optimal reserve price. This observation delivers the

following result:

14The asymmetry effect is similar to “the competition effect” in Rezende (2004).
15When the matches are observed, the lowest participating type must be θ0 since the seller is unable to

commit to excluding bidders with higher types and there is no mutually beneficial trade between the seller
and a bidder whose type is less than θ0. However, when the matches are not observed in advance, the seller
may be able to exclude bidders with types greater than θ0 if he believes their types are sufficiently low.
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Corollary 1 In a first-score auction, the seller can raise his expected utility by choosing not

to observe the matches in advance.

Therefore, the seller’s value for information about the matches is not only lower in the

absence of commitment but may actually be negative.

We conclude this section by offering a more intuitive interpretation of the first-score

auction with an informed seller. Without commitment, the seller is not able to reject an

offer which exceeds his reservation value but cannot be matched by any other bidder. That

is, if Bertrand competition drives offers up to s, the seller requires commitment power to

reject any offer which exceeds s. Therefore, the best the seller can do is allocate the contract

to the bidder with the best match, who, in turn, delivers a score equal to V (θ2) + θ2, where

θ2 is the second-highest match. The selling price is given by

p = θ2 − [V (θ1)− V (θ2)] , (4.6)

where θ1 is the highest match.16

This is precisely the outcome in a second-score auction. In a second-score auction, the

object is allocated to the bidder offering the highest score but that bidder is required to

deliver only the second-highest score. By invoking the revenue equivalence results in Riley

and Samuelson (1981), we assert that the seller’s expected utility in the second-score auction

is the same as it is in the first-score auction.

16Vartiainen (2005) is the only paper we are aware of that examines the complete absence of commitment:
at any point in the game, the seller can alter the allocation rule, and the bidders can renege on their offers
and exit the game. Vartiainen (2005) finds that the English auction is the only feasible trading procedure in
this environment. This result offers support to Bulow and Klemperer (1996), in which the no commitment
paradigm is an English auction with no reserve price.
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The second-score formulation yields a convenient interpretation of the asymmetry effect.

In equation (4.6), the selling price p is less than the price offered by the bidder with the

second-highest match, θ2. The reduction is driven by the difference in the seller’s values

for the two matches, V (θ1) − V (θ2). This term represents the advantage enjoyed by the

best-matched bidder, or rather, the asymmetry effect. Once again, we see that the greater

the importance of matching, V ′, the greater the asymmetry and the lower the selling price.

5 Conclusion

For a wide range of commercial arrangements, a good match between the buyer and seller

raises the value of the contract for both parties. However, at the time the terms of the

contract are set, the parties may not be fully informed about the degree to which they

match. In this paper, we have addressed the case in which the quality of the match is the

private information of the bidder.

The paper opened by asking whether the seller should account for matching in his allo-

cation decision. It is shown that no matter how important matching is to the seller, he need

not consider matching as a factor in order to implement the optimal mechanism. Since the

bidder’s value for the contract increases with match, allocating the contract to the highest

bidder is equivalent to selecting the bidder with the best match.

However, it is also shown that if the seller cannot commit to allocating the contract on

the basis of price alone, he can still implement the optimal mechanism. Since well matched

bidders have a higher value for the contract, higher bids signal higher matches; as a result,

the seller finds that he has no incentive to contract with anyone other than the highest
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bidder. Moreover, if matching is sufficiently important, the seller can credibly commit to the

prescribed reserve price by associating bids which fall below the reserve with a poor match.

This paper has also provided answers to the natural questions regarding the effects of

information asymmetry, namely (1) What is the seller’s value for the bidder’s information?

and (2) How would the equilibrium behavior of the bidders change if the seller were to

observe the matches in advance? The answers to these questions hinge on whether the seller

can credibly commit to an allocation rule ex ante which he would prefer to violate ex post.

We find that if the seller can commit, observing the matches in advance allows him to

appropriate all the rent. Therefore, the value of the information is positive. However, if the

seller cannot commit, observing the matches introduces an asymmetry across bidders that

depresses bids. Consequently, the seller’s value for the information may be negative.

This result is surprising for two reasons. First, we observe that the bidders capture less

rent when their information is private. This follows from the fact that the seller’s knowledge

of the matches eliminates the need for well matched bidders to signal their favorable matches

through higher bids. Well matched bidders can, instead, capitalize on their preferred status,

bid less than their poorly matched counterparts, and still win the auction. Second, we

observe that the more the seller cares about matching, the less it pays for him to observe

the matches in advance. The intuition is that the more matching matters, the greater the

advantage enjoyed by a well-matched bidder, and the larger the margin by which he can

reduce his bid and still win.
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We conclude with a brief discussion of the relationship between our results and the Coase

conjecture. In his seminal paper, Coase (1972) argued that if a durable-good monopolist

cannot refrain from lowering his price in future periods and buyers are sufficiently patient,

the monopoly price will converge to marginal cost almost instantaneously.17 Our results are

consistent with the conjecture when the seller observes the matches: under commitment, the

seller captures the entire surplus, but under no commitment, the selling price falls to the

competitive level. However, our results conflict with the conjecture when the seller does not

observe the matches: if the quality of the match is sufficiently important to the seller, he

can obtain the same outcome with or without commitment power.

Although a full treatment is outside the scope of this paper, the models we have presented

appear to represent a class of environments for which the Coase conjecture does not hold.

By introducing a factor the seller cares about but cannot directly observe, we have expanded

the set of beliefs which can be used to sustain the monopoly outcome. Developing this idea

further would be an interesting direction for future research.

A Appendix: Proofs

Proof of Proposition 1: The proof proceeds in four parts. We first show that if the

mechanism {p(·), t(·)} is optimal, then Ui(θ, θ) = 0. We then develop a relaxed optimization

program and find its solution. After noting that the solution of the relaxed program coincides

17This argument is developed more formally in Stokey (1981), Bulow (1982), Gul, Sonnenschein, andWilson
(1986), and Hart and Tirole (1988). McAfee and Vincent (1997) and Variainen (2005) develop analogous
arguments in an auction setting.
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with the mechanism outlined in Proposition 1, we demonstrate that the mechanism satisfies

the constraints of the original program.

Suppose the mechanism {p(·), t(·)} satisfies the IC and IR constraints for all θi ∈
[
θ, θ

]
but

that Ui(θ, θ) = ε > 0. Now consider a different mechanism
{
p(·), t̂(·)}, where t̂i(·) ≡ ti(·)+ ε.

The mechanism
{
p(·), t̂(·)} satisfies the IR constraint for all θi ∈

[
θ, θ

]
since

Ûi (θi, θi) = Eθ−i

[
θipi (θi, θ−i)− t̂i (θi, θ−i)

]
= Eθ−i

[θipi (θi, θ−i)− ti (θi, θ−i)]− ε
≥ Eθ−i

[θipi (θ, θ−i)− ti (θ, θ−i)]− ε
≥ Eθ−i

[θpi (θ, θ−i)− ti (θ, θ−i)]− ε
= 0.

(A.1)

The first inequality holds because {p(·), t(·)} satisfies the IC constraint; the second inequality

holds because pi ∈ [0, 1]. The mechanism
{
p(·), t̂(·)} also satisfies the IC constraint for all

θi ∈
[
θ, θ

]
since

Ûi (θi, θi) = Eθ−i
[θipi (θi, θ−i)− ti (θi, θ−i)]− ε

≥ Eθ−i
[θipi (x, θ−i)− ti (x, θ−i)]− ε

= Ûi (x, θi)

(A.2)

for all x ∈ [
θ, θ

]
. The inequality follows from the fact that {p(·), t(·)} satisfies the IC

constraint. Since ε > 0 and t̂i(·) ≡ ti(·) + ε, the seller’s expected utility is strictly greater

under
{
p(·), t̂(·)} than it is under {p(·), t(·)}. Therefore, the original mechanism {p(·), t(·)}

cannot be optimal – a contradiction.

Having established that Ui(θ, θ) = 0, we turn our attention to developing a relaxed

optimization program. Our approach is to modify the original program so as to reduce the

number of choice variables from two, p(·) and t(·), to one, p(·). From equation (3.1), we have

Eθ−i
[ti (θi, θ−i)] = Eθ−i

[θipi (θi, θ−i)]− Ui (θi, θi) , (A.3)
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and after substituting for Eθ−i
[ti (θi, θ−i)] in equation (3.2), we obtain

U0 = Eθ

[
n∑

i=1

(V (θi) + θi) pi(θ)

]
−

n∑
i=1

Eθi
[Ui (θi, θi)] . (A.4)

It remains to develop an expression for Eθi
[Ui (θi, θi)] in terms of pi(θ).

Incentive compatibility requires that Ui (θi, θi) ≥ Ui (x, θi) for all θi ∈
[
θ, θ

]
and all

x ∈ [
θ, θ

]
. Subtracting Ui(x, x) from both sides and applying equation (3.1) yields

Ui (θi, θi)− Ui (x, x) ≥ (θi − x) Eθ−i
[pi (x, θ−i)] . (A.5)

Since this inequality holds for all θi ∈
[
θ, θ

]
and all x ∈ [

θ, θ
]
, it must be the case that

(θi − x) Ri(x) ≤ Ũi (θi)− Ũi (x) ≤ (θi − x) Ri(θi), (A.6)

where Ri(x) ≡ Eθ−i
[pi (x, θ−i)] and Ũi(x) ≡ Ui (x, x).

Suppose θi > x and let δ ≡ θi − x. Then inequality (A.6) can be rewritten as follows:

Ri(x) ≤ Ũi (x + δ)− Ũi (x)

δ
≤ Ri(x + δ). (A.7)

Since Ri(·) is nondecreasing, it is Riemann integrable. Hence,

∫ θi

θ

Ri (x) dx = Ũi (θi)− Ũi (θ) . (A.8)

After substituting for Ri(x), Ũi (θi), and Ũi (θ) and applying our earlier result, Ui(θ, θ) = 0,

we obtain

Ui (θi, θi) =

∫ θi

θ

Eθ−i
[pi (x, θ−i)] dx. (A.9)

Taking the expectation of Ui (θi, θi) and integrating by parts yields the expression we seek:

Eθi
[Ui (θi, θi)] = Eθ

[
1− F (θi)

f (θi)
pi(θ)

]
. (A.10)
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Using equation (A.10), we substitute for Eθi
[Ui (θi, θi)] in equation (A.4) and obtain an

expression for U0 in terms of p(·). The resulting relaxed program is as follows:

max
{p(·)}

Eθ

[
n∑

i=1

(
V (θi) + θi − 1− F (θi)

f (θi)

)
pi(θ)

]

subject to

pi(θ) ≥ 0 and
∑n

i=1 pi(θ) ≤ 1 ∀i,∀θ.

Since V (θi) + θi − 1−F (θi)
f(θi)

is strictly increasing by Assumption 4, the unique solution of the

relaxed program is

pi(θ) =

{
1 if θi ≥ θj ∀j and V (θi) + θi − 1−F (θi)

f(θi)
≥ 0

0 otherwise.

Note that the expression above coincides with the pi(θ) outlined in Proposition 1. We

proceed by deriving the associated t(·) and verifying that it too coincides with Proposition

1. From equation (A.3) we have

Eθ−i
[ti (θi, θ−i)] = θiEθ−i

[pi (θi, θ−i)]− Ui (θi, θi) . (A.11)

After substituting for Ui (θi, θi) using equation (A.9) and replacing pi (θi, θ−i) with the solu-

tion of the relaxed program, we obtain

Eθ−i
[ti (θi, θ−i)] =

{
θiF

n−1 (θi)−
∫ θi

θ∗
F n−1(x)dx if V (θi) + θi − 1−F (θi)

f(θi)
≥ 0

0 otherwise

which clearly coincides with the corresponding expression in Proposition 1.

It remains to show that the mechanism {p(·), t(·)} satisfies the constraints of the original

program. The IR constraint, pi(θ) ≥ 0, and
∑n

i=1 pi(θ) ≤ 1 are satisfied trivially. To verify

that the IC constraint holds, we must show that

Ui (θi, θi) ≥ Ui (x, θi) (A.12)
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for all θi ∈
[
θ, θ

]
and all x ∈ [

θ, θ
]
. Subtracting Ui(x, x) from both sides and applying

equation (3.1) yields

Ui (θi, θi)− Ui (x, x) ≥ (θi − x) Eθ−i
[pi (x, θ−i)] . (A.13)

If θi and x are less than θ∗, the inequality is trivially satisfied. If θi < θ∗ and x ≥ θ∗, the

left-hand side is

Ui (θi, θi)− Ui (x, x) = − ∫ x

θ∗
F n−1(y)dy

≥ − (x− θ∗) F n−1(x)
≥ − (x− θi) F n−1(x)
= (θi − x) Eθ−i

[pi (x, θ−i)]

(A.14)

and the inequality is again satisfied. If θi ≥ θ∗ and x < θ∗, the inequality reduces to

∫ θi

θ∗
F n−1(y)dy ≥ 0, which is trivially satisfied. If θi ≥ x ≥ θ∗,

Ui (θi, θi)− Ui(x, x) =
∫ θi

x
F n−1(y)dy

≥ (θi − x) F n−1(x)
= (θi − x) Eθ−i

[pi (x, θ−i)]

(A.15)

An analogous argument can be used to verify that the inequality holds if x ≥ θi ≥ θ∗. 2

Proof of Lemma 1: Suppose b̂ is in the support of βi(·, θ̂i) and b is in the support of

βi(·, θi). If θ̂i > θi and Pi(b) > 0, then by definition of equilibrium

(θ̂i − b̂)Pi(b̂) ≥ (θ̂i − b)Pi(b)
> (θi − b)Pi(b)
≥ 0.

(A.16)

The first inequality follows from incentive compatibility while the third inequality follows

from individual rationality. Since (θ̂i − b̂)Pi(b̂) > 0, it must be the case that Pi(b̂) > 0. 2

Proof of Lemma 2: Since we are constraining ourselves to separating equilibria, θi 6= θ̂i

implies b 6= b̂. Hence, it is sufficient to show that θ̂i > θi implies b̂ ≥ b.
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By definition of equilibrium,

(θi − b)Pi(b) ≥ (θi − b̂)Pi(b̂) (A.17)

and

(θ̂i − b̂)Pi(b̂) ≥ (θ̂i − b)Pi(b). (A.18)

Combining inequalities (A.17) and (A.18),

θi

[
Pi(b)− Pi(b̂)

]
≥ bPi(b)− b̂Pi(b̂)

≥ θ̂i

[
Pi(b)− Pi(b̂)

]
.

(A.19)

Since θ̂i > θi, it must be the case that Pi(b̂) ≥ Pi(b) > 0. Given this, inequality (A.17) can

be rewritten as

b̂− b ≥ (θi − b)
Pi(b̂)− Pi(b)

Pi(b̂)
. (A.20)

The right-hand side of the inequality above is nonnegative since by definition of equilibrium,

(θi − b)Pi(b) ≥ 0. Therefore, it must be the case that b̂ ≥ b. 2

Proof of Lemma 3: By Lemma 1, there exists θ̃ ∈ [
θ, θ

]
such that bidders with types

in (θ̃, θ] win the auction with positive probability, while bidders with types in [θ, θ̃) win with

probability zero.

We begin by addressing the case in which a bidder with type θ̃ wins the auction with

positive probability.

Consider a bidder with type θ ∈ [θ̃, θ]. Given our definition of θ̃, this bidder beats any

bidder whose type is in [θ, θ̃). Moreover, this bidder also beats any bidder with type θ̂ ∈ [θ̃, θ)

since by Lemma 2, bids are strictly increasing in type and by Assumption 2, V (θ) > V (θ̂).
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By combining these two results, we find that a bidder with type θ ∈ [θ̃, θ] wins the auction

if the type of every other bidder is strictly less than θ and loses the auction if there exists a

bidder whose type is strictly greater than θ; that is, a bidder with type θ ∈ [θ̃, θ] wins the

auction with probability F n−1(θ).

Suppose a bidder with type θ plays the bidding strategy B(·, θ) in equilibrium. Suppose

further that B(·, θ) is a mixed strategy and that the support of β(·, θ) includes the bids b

and b′, where b 6= b′. Since the bidder should be indifferent among bids in the support of

β(·, θ),

(θ − b)F n−1(θ) = (θ − b′)F n−1(θ). (A.21)

Since θ ≥ θ̃, F n−1(θ) must be positive, which in turn implies that b and b′ are equal – a

contradiction. Hence, the bidding strategy B(·, θ) must be a pure strategy.

An analogous argument can be used to prove the lemma for the case in which a bidder

with type θ̃ wins the auction with probability zero. 2

Proof of Lemma 4: Suppose b : (θ̃, θ] → R is not continuous at some θ ∈ (θ̃, θ]. Then, for

some ε > 0, there is no δ > 0 such that

θ̂ ∈ (θ̃, θ] and
∣∣∣θ̂ − θ

∣∣∣ < δ ⇒
∣∣∣b(θ̂)− b(θ)

∣∣∣ < ε. (A.22)

By Lemma 2, b is strictly increasing on (θ̃, θ]. Therefore, we can restate the discontinuity

condition as follows: there exists ε > 0 such that either

b(θ)− b(θ̂) ≥ ε, ∀θ̂ ∈ (θ̃, θ) (A.23)
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or

b(θ̂)− b(θ) ≥ ε, ∀θ̂ ∈ (
θ, θ

]
. (A.24)

Incentive compatibility for the type θ bidder requires that

[θ − b(θ)]F n−1(θ) ≥ [θ − b(θ̂)]F n−1(θ̂) (A.25)

for all θ̂ ∈ (θ̃, θ]. If condition (A.23) holds, then

[
θ − b(θ̂)

] [
F n−1(θ)− F n−1(θ̂)

]
≥ εF n−1(θ) (A.26)

for all θ̂ ∈ (θ̃, θ). Since θ ∈ (θ̂, θ] and ε > 0 are fixed, εF n−1(θ) is both positive and fixed.

However, since F is continuous on
[
θ, θ

]
, F n−1 is also continuous, which implies that for all

ε′ > 0, there exists δ′ > 0 such that

θ̂ ∈ (θ̃, θ) and θ − θ̂ < δ′ ⇒ F n−1(θ)− F n−1(θ̂) < ε′;

that is, F n−1(θ)−F n−1(θ̂) can be brought arbitrarily close to zero by selecting a θ̂ sufficiently

close to θ. Moreover, Lemma 2 indicates that b is increasing over (θ̃, θ], and since θ is fixed,

θ − b(θ̂) is decreasing as θ̂ approaches θ. Therefore, inequality (A.26) is violated for θ̂

sufficiently close to θ, and condition (A.23) cannot hold.

An analogous argument using incentive compatibility for the type θ̂ bidder can be used

to show that condition (A.24) cannot hold either. 2

Proof of Lemma 5: Our approach will be to first establish a boundary condition by

showing that

lim
θ→θ̃+

b(θ) = θ̃
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and then use this condition to derive the bid function.

By Lemma 4, b is continuous, and hence, the limit exists. Suppose limθ→θ̃+ b(θ) 6= θ̃.

Then there exists a ε > 0 such that either

lim
θ→θ̃+

b(θ) = θ̃ + ε (A.27)

or

lim
θ→θ̃+

b(θ) = θ̃ − ε. (A.28)

Suppose condition (A.27) holds and consider a bidder with type θ ∈ (θ̃, θ̃+ε). By Lemma

2, the bidding function b is strictly increasing for all θ > θ̃, and hence, the bidder submits a

bid b(θ) > θ̃+ε. Furthermore, since θ > θ̃, the bidder’s probability of winning is F n−1(θ) > 0.

As a result, the bidder’s expected utility is

[θ − b(θ)] F n−1(θ) < 0, (A.29)

which violates individual rationality.

Now suppose condition (A.28) holds and consider a bidder with type θ ∈ (θ̃− ε, θ̃). Since

θ < θ̃, the bidder does not win the auction and earns utility of zero. By Lemmas 2 and 4, b is

continuous and strictly increasing. Therefore, there exists a x > θ̃ such that b(x) ∈ (θ̃− ε, θ).

If the bidder deviates to b(x), his expected utility is

[θ − b(x)] F n−1(x) > 0, (A.30)

a profitable deviation.

Having shown that limθ→θ̃+ b(θ) = θ̃, we proceed with our derivation of the bidding

function, b(·).
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Consider a bidder with type θ ∈ (θ̃, θ]. If the bidder offers a bid of b(x), where x ∈ (θ̃, θ],

then the bidder’s expected utility is

U(x, θ) ≡ [θ − b(x)] F n−1(x). (A.31)

In equilibrium, b(·) must satisfy

Global IC : U(θ, θ) ≥ U(x, θ), ∀θ ∈ (θ̃, θ],∀x ∈ (θ̃, θ].

Since b and F are continuous, Global IC implies that b(·) satisfies

Local IC : Ux(θ, θ) = 0 ∀θ ∈ (θ̃, θ).

Taking the derivative of U(x, θ) with respect to x, substituting θ for x, and setting the

resulting expression equal to zero yields

db(θ)

dθ
F n−1(θ) + b(θ)

dF n−1(θ)

dθ
= θ

dF n−1(θ)

dθ
. (A.32)

After integrating both sides, evaluating the integrals from θ̃ to θ, applying the boundary

condition (limθ→θ̃+
b(θ) = θ̃), and solving for b(θ), we obtain the bidding function

b(θ) = θ −
∫ θ

θ̃
F n−1(x)dx

F n−1(θ)
(A.33)

for θ ∈ (θ̃, θ). Since b(·) is continuous over (θ̃, θ], the bidding function specified gives the

equilibrium bid for type θ as well. 2

Proof of Proposition 2: Our approach will be to derive the equilibrium expected utility

for a bidder with type θ ∈ [
θ, θ

]
and then show that there is no profitable deviation available

to that bidder.

37



Consider a bidder with type θ ∈ [θ, θ∗). Since the equilibrium is separating, the seller

can infer θ from b(θ), and the bidder’s score is given by

V (θ) + b(θ) < V (θ∗)− V (θ∗)
= 0.

(A.34)

Since the seller’s reservation utility is zero, the bidder will not be awarded the contract.

Hence, any bidder with type θ ∈ [θ, θ∗) earns utility of zero in equilibrium.

Consider a bidder with type θ ∈ [θ∗, θ]. In this case, the bidder’s score is given by

V (θ) + θ −
∫ θ

θ∗
F n−1(x)dx

F n−1(θ)
. (A.35)

Since the score is strictly increasing in θ, the bidder’s probability of winning the contract is

F n−1(θ). Hence, in equilibrium, any bidder with type θ ∈ [θ∗, θ] earns expected utility of

[θ − b(θ)] F n−1(θ). (A.36)

We now show that no bidder has an incentive to deviate to another bid on the equilibrium

path. Suppose a bidder has type θ ∈ [θ, θ]. If this bidder deviates to a bid b(x), where

x ∈ [θ, θ∗), then his resulting utility is zero, which does not improve upon his equilibrium

expected utility. Similarly, if the bidder deviates to a bid b(x), where x ∈ [θ∗, θ], then his

expected utility is

[θ − b(x)] F n−1(x). (A.37)

Substituting for b(x) yields

(θ − x)F n−1(x) +

∫ x

θ∗
F n−1(y)dy, (A.38)
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which is increasing in x for x < θ and decreasing in x for x > θ. Therefore, if θ ∈ [θ∗, θ],

bidding b(x) delivers lower expected utility than bidding b(θ). Furthermore, if θ ∈ [θ, θ∗),

then θ is strictly less than b(x), and b(x) cannot be a profitable deviation.

Finally, we show that no bidder has an incentive to deviate to a bid off the equilibrium

path. Consider the deviating bid b > b(θ). If the bidder’s type, θ, is less than b, then

the expected utility associated with b must be nonpositive, and b cannot be a profitable

deviation. If, instead, θ ≥ b, then the expected utility associated with b is at best θ − b,

which is strictly less than the expected utility associated with bidding b(θ). Since b(θ) is not

a profitable deviation for the bidder, then b is not a profitable deviation either.

Now consider the deviating bid b < θ∗. The score associated with b is given by

V (θ) + b < V (θ) + θ∗

= 1−F (θ∗)
f(θ∗)

− [V (θ∗)− V (θ)]

≤ 0.

(A.39)

Since the seller’s reservation utility is zero, the contract is never awarded to a bidder offering

a bid of b, and b cannot be a profitable deviation. 2
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