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ABSTRACT

This paper examines the implications of Goodman’s Identity for estimation and inference in

linear regression. Its empirical implementation requires the assumption of random coefficients or

measurement error. Under the former, regression can be surprisingly potent but is typically

misused. With one application of Goodman’s Identity, regression can test the neighborhood

model, aggregation bias and effects of covariates. Models with more than two groups are

completely identified and yield more powerful tests. However, most implementations unwit-

tingly impose the neighborhood model, weight incorrectly and offer meaningless R2 values as

“validation”. Moreover, regression is essentially useless for most models requiring two applica-

tions of Goodman’s Identity, including those of voting with unknown group-specific turnout

rates.
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Goodman (1953) asserts that the parameters in problems of ecological inference are related by an

identity. He proposes that, under appropriate conditions, regression analysis can recover them.

This proposal has subsequently been the basis of countless regression-based applications.

However, many implications of Goodman’s identity for these applications have not previously

been explored.

This paper demonstrates that regression techniques are both much more and much less

powerful than is generally understood. The literature has concluded that empirical techniques

cannot distinguish between the neighborhood model and Goodman’s identity as the underlying

source of observed data. It has also concluded that the form of aggregation bias, if present, is not

identifiable in linear specifications. Lastly, it tends to ignore many plausible covariates of the

behavior at issue. 

This paper demonstrates that, in a generalized linear specification of Goodman’s regression

with feasible corrections for heteroskedasticity, valid tests of aggregation bias, the neighborhood

hypothesis and the presence of covariates are possible. With more than two groups in the

population, linear aggregation bias is identifiable. However, these properties hold only where a

single application of Goodman’s identity is sufficient to describe the behavior at issue.

At least one important application, the comparison of voting choices across groups, usually

requires two applications of Goodman’s identity. The first addresses the unobserved turnout

rates within groups. The second addresses their unobserved vote choices. In this context,

regression-based estimators have expected values that depend on multiple parameters, usually in

nonlinear combinations. Identification is possible, if at all, only in models that are considerably

more restricted or considerably more complex than those that typically appear in the literature.



1 Throughout, square brackets contain quantities that are the objects of explicit algebraic
operations. Parentheses contain arguments to functions.
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[ ]y x xi i i i i≡ + −β β1 2 1 , (1)

Section I presents the general behavioral model that underlies Goodman’s regression in the

context of a single application of Goodman’s identity. Section II discusses the neighborhood

model, aggregation bias, heteroskedasticity and weighting in the context of this model, under the

assumption that measurement error is absent. Section III extends this model to the R×C case, in

which more than two groups are present in the population and more than one characteristic or

choice is at issue. Section IV explores the difficulties of regression-based inference when the

behavioral model requires two applications of Goodman’s identity. Section V concludes.

I. The behavioral model for Goodman’s regression

Goodman’s identity (Goodman, 1959, 612) relates the proportion of a population with a

particular characteristic or making a particular choice to the proportions of the population

comprised by its two constituent groups. Let

xi = the proportion of the population in area i that belongs to group 1,

1!xi = the proportion of the population in area i that belongs to group 2, and

yi = the proportion of the population in area i with the characteristic or choice at

issue.

The relationship between these three quantities in area i is the identity1

where



2 This is the “two-party, no abstention” case of Achen and Shively (1995, 30) and the “basic
model” in King (1997, chapter 6). The “ecological inference problem” is often stated as the challenge of
recovering parameters governing individual behavior from aggregate data (Robinson (1950, 352),
Goodman (1953, 663) and King (1997, 7), as examples). However, the parameters of Goodman’s identity
describe behavior at the aggregate level, here the “area”. Achen and Shively (1995) discuss the problem
of deriving macrorelations from microfoundations (pages 23-25) and present behavioral models in which
the aggregate parameters in Goodman’s identity become explicit functions of individual-level parameters
(chapters 2 and 4). King (1997, 119-122) discusses some difficulties with this approach.
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$1i = the proportion of group 1 in area i with the characteristic or making the choice,

and 

$2i = the proportion of group 2 in area i with the characteristic or making the choice,

are the two unknown parameters of interest.2

Equation 1 can be rewritten as

[ ]y xi i i i i≡ + −β β β2 1 2 . (2)

Equation 2 demonstrates that the proportion of the population with the characteristic or making

the choice can be represented as a linear function of the share of group 1 in the population. This

suggests an apparent analogy between equation 2 and the conventional representation of the

linear regression model.

Accordingly, Goodman (1953, 664 and 1959, 612) suggests that the parameters in this

behavioral identity can be estimated by an Ordinary Least Squares (OLS) regression of yi on xi,

with observations on n different areas displaying a variety of values for xi. In this example,

“Goodman’s regression” is

y b b x ei i i= + +0 1 . (3)

Goodman asserts that, under appropriate conditions, this regression yields b0 and b1 as unbiased



3 This analogy is common in subsequent literature. Kousser (2001, equation 13) is an example.
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estimators of $2i and $1i!$2i (1953, 664 and 1959, 612).3

However, the behavioral model that underlies OLS regression specifies that the dependent

variable is only partially determined by the explanatory variable. It also depends upon a random

component that is additive and orthogonal to the explanatory variable (Greene (2003, 10-11)).

The properties of this random variable allow the conventional empirical OLS model to yield

unbiased estimators.

In contrast, Goodman’s identity is exact. In the example of equation 2, the value of yi is

completely determined by the value of xi. Consequently, the analogy between Goodman’s

regression and the conventional linear regression model is superficial. The true properties of

estimators from Goodman’s regression must be derived analytically from the implications of the

identities upon which they are based, rather than by analogy from those of conventional OLS

estimators.

As written, the parameters of Goodman’s identity are not identifiable. In the example of

equation 2, a different identity holds for each area. Each area requires two unique parameters,

but provides only one observation (Achen and Shively (1995, 12), King (1997, 39)).

Under equation 2, the empirical regression of yi on xi given in equation 3 would be meaning-

less. The expected value of the slope coefficient would be
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4 Similarly, the area-specific parameters of equations 1 or 2 could be identified for area i if the
parameters $1i and $2i were constant over time, xi and yi were observed twice, and the group share xi was
different for the two observations. In this case, yi would necessarily also vary across the two, again
providing an exact solution. The regression of equation 3 would still yield the incomprehensible results of
equation 4. Regressions using only repeated observations for a single area would achieve a perfect fit.
Although many empirical examples, such as that of voting behavior, offer repeated observations within
area, only Lewis (2004) and Quinn (2004) appear to have explored this identification strategy.
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Here, the second equality replaces E(yi) with yi as a consequence of equation 2, and then replaces

yi with its equivalent in terms of xi, as given there. Without further assumptions, the two ratios to

the right of the second equality in equation 4 cannot be simplified. Consequently, the estimated

slope coefficient is not interpretable. It is certainly not an unbiased estimator of the difference

$1i!$2i for any value of i.

Clearly, Goodman’s identity requires assumptions that reduce the number of underlying

parameters in order to be empirically useful. However, this is not sufficient. If, in the example of

equation 2, the behavioral parameters $1i and $2i were assumed to be constant across all areas,

the identity would be the same for each area: $1i=$1 and $2i=$2 for all i. It could be rewritten

without the i subscripts in terms of only two unknown parameters:

[ ]y x xi i i≡ + −β β1 2 1 . (5)

Data on yi and xi from only two areas would be sufficient to determine these parameters

exactly, because equation 5 is exact. An empirical regression of yi on xi would be unnecessary.

Were it undertaken, the slope coefficient would be identically $1!$2 and the intercept would be

identically $2. The prediction errors for each observation would be identically zero and R2 would

be identically one.4

These last two characteristics are entirely absent from the literature. This implies that the

assumption of parameter constancy across observations, alone, is not sufficient to endow



5 This is a general form for the model of “deterministic heterogeneous transition rates” in Achen
and Shively (1995, 39-45).

6 “The assumption that the coefficients are independent of the regressors is the critical problem in
ecological inference.” (Rivers (1998, 442)). King (1997, 40) states that this assumption is “wrong” and
Achen and Shively (1995, 13) characterize it as “always dubious” (page 13). Both assert, correctly, that if
this assumption is false, typical specifications of Goodman’s regression are biased. The latter add, again
correctly, that the bias cannot be corrected through weighting (page 51, footnote 19).
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Goodman’s identity with empirical relevance. Moreover, the literature universally ignores the

implication of exact solutions embodied in equations 2 or 5 in favor of statistical formulations

such as equation 3. This implies that the collective intuition expects some random element in the

behaviors at issue.

In sum, sensible interpretations of Goodman’s regression in equation 3 require two types of

elaborations in Goodman’s identity. First, an assumption must be adopted to reduce the number

of parameters in equation 1. Second, an assumption must endow it with random components.

The first requirement can only be satisfied by specifying that the parameters for each area are

fixed functions of a limited number of variables:

( ) ( )β β1 1 1 2 2 2i i i i i if x z and f x z= =, , . (6)

This reduces the number of parameters to that necessary to characterize f1 and f2.5

In addition, equation 6 is the only formulation that preserves Goodman’s identity while

expanding it to include covariates of yi other than xi. In particular, it is the only formulation that

can explicitly incorporate “aggregation bias”, the possibility that the proportion of a group with

the characteristic at issue depends on that group’s share in the area’s population. Equation 6

admits this through the explicit presence of xi in f1 and f2.6 The vectors z1i and z2i contain any

other determinants of the proportions of the two groups with the characteristic at issue.



7 Goodman (1953) refers to the constants in his identity as both “parameters” and “average
probabilities” (pages 664 and 663, respectively). This apparent ambiguity may have been an early
anticipation of the random coefficients model.

8 The “sophisticated Goodman model” of Achen and Shively (1995, 51) sets f1 and f2 constant in
equation 7. These functions can presumably be more complicated in their “extended sophisticated
Goodman model” (page 68).

9 Chapter 3 of Achen and Shively (1995) is essentially an exposition of the substantial challenges
that measurement error presents in the context of Goodman’s regression. Lichtman (1974, 422) also
identifies measurement error as an important concern in ecological regression. Irwin and Lichtman (1976,
415-416) point out that aggregation may create correlations between xi and the unobserved component of
yi, as well. Equation 8 reverses the conventional notation, in which the superscript asterisk identifies the
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The second requirement cannot be satisfied by simply adding a random component directly

to the right side of equation 1. As should be obvious, this tactic fails because it invalidates

Goodman’s identity. However, random components can be embedded in all of the quantities

already present in that identity.

First, the parameters can contain random as well as deterministic components. This “random

coefficients” formulation is nearly explicit in Goodman (1959, 612), where he asserts that

parameters will vary across areas but share the same expected value.7 It is absent from most of

the subsequent literature, but is central to Achen and Shively (1995) and King (1997). Here, it

implies that equation 6 be augmented as

( ) ( )β ε β ε1 1 1 1 1 2 2 2i i i i i i i if x z and f x z= + = +, , , (7)

where E(,1i)=E(,2i)=0, ,1i and ,2i are orthogonal to xi, z1i and z2i.8

Second, the population share xi may be measured with error. If xi is the true value, the

measured value xi
* would differ from it by an additive random error:

x xi i i
* ,= + ν (8)

where E(<i)=0 and <i is orthogonal to xi.9 For example, analyses of voting behavior often



true value (Greene (2003, 84)). This is convenient below, where measurement error is disregarded.
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compare votes in an election from one year with population proportions from a census in

another. If these proportions  can change, the measured proportion may not accurately reflect the

relevant electorate.

Together, equations 1, 7 and 8 yield a general restatement of Goodman’s identity:

( )[ ][ ] ( )[ ] [ ][ ]y f x z x f x z xi i i i i i i i i i i i i≡ − + − + − + − −1 1 1 2 2 2 1* * * *, , ,ν ε ν ν ε ν
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( ) ( ) ( )[ ]
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(9)

Equation 9 demonstrates that this generalization is still an identity. Nevertheless, it has the

statistical character that is absent in equation 2 but present in equation 3. The two deterministic

terms to the right of the identity in equation 2 have their counterparts in the first two terms to the

right of the identity in equation 9. However, equation 9 contains a third term to the right of the

identity, which consists of all of the random elements introduced through the assumptions of

random coefficients in equation 7 and measurement error in equation 8.

Equation 9 demonstrates that appropriate estimation of Goodman’s identity, under this

complete generalization, presents substantial challenges. First, the measurement error <i appears

both among the explanatory variables and the unobserved component of yi. This ensures that the



10 Goodman (1959, 612-3) identifies this problem. It reappears in, as examples, Hanushek,
Jackson and Kain (1974), Lichtman (1974) and Kousser (2001, 108).

11 Achen and Shively (1995, 75) conclude that "(l)ogically impossible estimates in ecological
regression ... are encountered perhaps half the time, and more often as the statistical fit improves.
Ecological regression fails, not occasionally, but chronically." King (1997, 57) states that failures occur
“often”. In contrast, Kousser (2001, 117-8) asserts that impossible estimates are relatively infrequent.

12 For example, Achen and Shively (1995, 35, footnote 5) note that, in the study of consecutive
elections, attrition and accession to the electorate will ordinarily generate measurement error in the
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OLS formulas for b0 and b1 will yield inconsistent estimators (Greene (2003, 85)). Second, for

most choices of interest, zi could plausibly contain many elements, perhaps in nonlinear

combinations. OLS estimators will generally suffer from bias if the specifications of f1 or f2 are

incorrect.10

These challenges also represent generic sources for any unsatisfactory results that may arise

from estimations of equation 3. For example, these estimates can yield values for b0 and b1!b0

that are outside the logical bounds of zero and one.11 Achen and Shively (1995) suggest that this

problem could arise if f1 and f2 are incorrectly assumed to be constant (page 15), or if measure-

ment error is present (chapter 3). More generally, inconsistency or specification bias are inherent

threats to estimates of Goodman’s regression. Either or both could be responsible for almost any

inadequacy observed in actual examples.

II. Goodman’s regression in the absence of measurement error

Empirical implementation of equation 9 requires some response to its challenges. The most

severe problem, measurement error, may be remediable through instrumental-variables tech-

niques. However, these techniques do not appear to have been attempted in the ecological

regression literature.12 The rest of this paper therefore defers discussion of this issue, and



explanatory variable. However, they conclude that “(t)hese fine points are always ignored in practice.”
Judge, Miller and Cho (2004) offer an attempt to confront them.
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( ) ( ) ( )[ ] [ ][ ]y f x z f x z f x z x x xi i i i i i i i i i i i= + − + + −2 2 1 1 2 2 1 2 1, , , .ε ε (10)

assumes that xi is measured without error.

In the absence of measurement error, the assumption of random coefficients is necessary to

endow Goodman’s identity with any random component, as well as to allow for explicit

representation of aggregation bias and other covariates. Its presence in the literature since at least

Goodman (1959) indicates that it has intuitive appeal as well. It therefore represents the most

pragmatic strategy for interpreting Goodman’s regression. Without measurement error, equation

9 becomes

The expected value of the residual term in equation 10 is zero. This term is also uncorrelated

with the deterministic component of yi. Therefore, OLS estimates of the functions f1 and f2 will

be unbiased if the empirical equation represents them correctly (Greene (2003, 44)). In particu-

lar, aggregation “bias” will not bias OLS estimators if the regression equation correctly specifies

the form in which xi enters f1 and f2.

Equation 10 reveals an important principle of specification. The first term to the right of the

equality indicates that f2 appears in the expanded Goodman’s identity without transformation.

However, the second term to the right of the equality indicates that the difference f1!f2 is

interacted with xi. Therefore, a general empirical specification requires that these interactions

appear in the estimated equation.
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A. Goodman’s regression and the “neighborhood model”

These interactions provide a test for a very controversial assumption. The “neighborhood model”

(Freedman, et al. (1991) and Klein, Sacks and Freedman (1991) ) assumes that, within any area,

the proportions of each group with the characteristic or making the choice at issue are identical.

Variation in yi across areas arises from variations in the determinants of that characteristic or

choice, rather than from variations in characteristics or choice proportions across groups coupled

with variations in population composition across areas.

This assumption requires that, at a minimum, the deterministic components of the choices for

each group within an area are the same. In other words, the neighborhood model is nested in the

model of equation 10, where it imposes the restriction that f1=f2=f. With this restriction, equation

10 becomes

( ) [ ][ ]y f x z x xi i i i i i i= + + −, .ε ε1 2 1 (11)

If, as in Freedman, et al. (1991), f is linear in xi and does not depend on zi, then equation 11

is linear in xi. In this case, it has the same form as equation 3. This similarity has suggested that

empirical evidence regarding the relationship between yi and xi cannot distinguish between the

neighborhood model and Goodman’s identity ((Freedman, et al. (1991, 682), Klein, Sacks and

Freedman (1991), Lichtman (1991, 787), Achen and Shively (1995, 14), King (1997, 41-44) and

Kousser (2001, 105-7), as examples).

However, equation 10 demonstrates that, if f1…f2 but both are still linear functions of xi alone,

the correct empirical specification in this example appends a quadratic term in xi to equation 3.

The neighborhood model implies that the coefficient on this term equals zero. This implication is



13 This test is implicit, though unacknowledged, in King (1997, 41-4). The previous literature
does not offer a precise general specification of the neighborhood model. Equation 10 demonstrates that
the specification in the text is the “weak form” of this model. The “strong form” would also require ,1i=
,2i. This imposes the restriction of homoskedasticity on the empirical error terms, which can presumably
also be tested. The heteroskedasticity in the unrestricted form of equation 10 is discussed below.

14 The more restrictive neighborhood model, in which f is a constant, is also testable. It asserts
that yi does not depend on xi. Equation 3 tests this restriction, which would be rejected if b1 were
statistically significant. Freedman, et al. (1991, 682) suggest the “nonlinear” neighborhood model as an
alternative in which $1i=$2i=yi. Mechanically, this is a tautology rather than a model, because it reduces
Goodman’s Identity in equation 1 to yi/yi. It is simply a restricted version of the “model” represented by
King’s tomography plots (1997, figure 6.3, as an example). These plots demonstrate that, algebraically,
an infinite number of pairs of values for $1i and $2i satisfy Goodman’s Identity, as reformulated in King’s
equation 6.27, for each area. For each area, the nonlinear neighborhood model simply chooses the single
pair that satisfies the restriction $1i=$2i. It is not evident that this pair has any greater claim to validity than
any other on the same tomography line. Any “model” consisting of one pair of values from each of these
lines will “fit” the data perfectly, by absorbing all degrees of freedom. At the same time, any procedure of
this type will have no predictive value because it is “nihilistic” (Kousser (2001, 105): It implicitly asserts
that scientific analysis is not applicable because voting behaviors across areas have nothing in common. If
this assertion is unacceptable, than all procedures of this type, including the nonlinear neighborhood
model, are irrelevant.

15 In fact, Achen and Shively (1995, 13 and 73, footnote 14) assert that "(j)ust one technique for
handling ecological data has been widely adopted in practice: the linear (unextended) version of
Goodman ecological regression". This is the model of equation 10, in which f1 and f2 are both constants.
In the terms of equation 12, this model assumes that $1j=$2j=0 for all j.
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testable, and the model itself is therefore falsifiable.13 With more general specifications for f1 and

f2, the neighborhood model’s implication that [f1!f2]xi=0 should be similarly testable.14

This point can be illustrated in a general linear multivariate model of f1 and f2. This model

includes virtually all empirical examples of Goodman’s regression as special cases.15 It specifies

that the arguments of f1 and f2 are the same: z1i=z2i=zi. In addition, f1 and f2 are linear in all

arguments:

[ ]
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16  Achen and Shively (1995, 40, footnote 8) also note that the complete multivariate linear
specification of Goodman’s identity requires interaction terms.

17 According to Achen and Shively (1995, 58) and King (1997, 32-3), linear combinations of the
area-specific parameters are often of interest. Kousser (2001, 107) suggests them as specification checks.

18 Equation 12 specifies f2 as a function of the group 2 proportion [1!xi] for consistency with the
analysis of Goodman’s regression when the population contains more than two groups, in section III
below. With only two groups, f2 could be specified as a function of the group 1 proportion xi instead. This
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where zi is a vector, k represents the number of covariates in zi and zij represents the jth covariate

in zi.

Under equation 12, equation 10 becomes

[ ] [ ] [ ] [ ]
[ ][ ]

y x z x z x

x x

i i j ij
j

k

i j j ij i
j

k

i i i i

= + + − − + + + + −

+ + −

= =
∑ ∑β β β β β β β β β β

ε ε

2 20 1 2 20 2
1

10 20
2

1 2
1

1 2

2

1 .
(13)

Each of the elements of zi appears linearly and interacted with xi.16 The latter variable appears in

both linear and quadratic terms.

Consequently, the appropriate estimating equation would be

y a bx c z dx h z x ei i j ij
j

k

i j ij i
j

k

i= + + + + +
= =
∑ ∑

1

2

1
, (14)

where ei represents the empirical residual term. The estimated coefficients a, b, cj, d and hj would

be unbiased estimators of $2+$20, $1!$2!2$20, $2j, $10+$20 and $1j!$2j, respectively. The

difference hj!cj would be an unbiased estimator of $1j. Linear combinations of all identified

parameters would be estimated without bias by the same linear combinations of the correspond-

ing estimators.17 $1, $10, $2 and $20 would not be individually identified.18



specification allows the additional identification of $2. However, this identification does not alter any of
the substantive results described here.

19 The power of this test may be limited. Even if evidence supports the assertion that $1j=$2j for all
j, it is still possible that $1…$2 and the neighborhood hypothesis is false. The difference $1!$2 is not
identified in equation 13, and therefore cannot be tested in equation 14. However, it may be identifiable if
additional restrictions apply to equation 12. For example, if f2 is free of aggregation bias, $20=0 and $10, $1
and $2 are identified.

20 Rivers (1998, 443) asserts that this model is unidentified. King (1997, section 3.2) and Voss
(2004, 72-73) provide simple examples. Achen and Shively (1995, chapters 5 and 6) discuss identifying
strategies in otherwise underidentified ecological regression models which could be effective here, if
behaviorally appropriate. In this case, for example, the assumption that $1=0 is sufficient to identify $2,
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In terms of equation 13, the neighborhood model imposes the restrictions that $1=$2 and

$1j=$2j for all j. The former restriction is not testable, but the latter implies that all of the hj

should be statistically indistinguishable from zero. The F-test of this joint null hypothesis is

therefore a strong test of the neighborhood model. If the null hypothesis is rejected, the neigh-

borhood hypothesis is clearly false.19

This section demonstrates that the linear specification of equation 11, in which the function f

is not interacted with xi, imposes the neighborhood model as a maintained hypothesis. This

specification is nearly universal, but the concomitant adoption of the neighborhood model is

almost surely inadvertent. Kousser (2001), who is explicitly hostile to this model (pages 105-7,

110) is a particularly ironic example (pages 110-5). Even partisans of the neighborhood model

should be obligated to include the interaction terms, in order to test its implications.

B. Goodman’s regression, aggregation bias and covariates

The model of equation 13 and its empirical implementation in equation 14 address two other

issues that are central to ecological investigations, and previously taken to be intractable. First,

aggregation bias is present in equation 13 and its components, $10 and $20, are not identified.20



$10 and $20.

21 This test does not restrict the treatment of zi in f1 and f2. It requires only that these functions be
linear in xi. More complicated functions of xi would probably suggest analogous tests. Although rejection
would definitively establish the presence of aggregation bias, this test again has limited power. Even if d
is statistically indistinguishable from zero, it is possible that $10=!$20…0. In this case, aggregation bias
would be undetectable, but still present.
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However, equation 14 provides a strong test for the absence of aggregation bias.

This bias is present if either $10 or $20 is nonzero. Therefore, its absence requires $10=$20=0.

This implies the restriction $10+$20=0 as a necessary condition. The coefficient on xi
2, d,

identifies this sum. Accordingly, if the corresponding t-statistic rejects the the hypothesis that

d=0, it also rejects the null hypothesis of no aggregation bias.21

Second, even in the presence of unidentified aggregation bias, equation 14 identifies the

behavioral determinants of the proportions of the two groups making the choice at issue. The

coefficients of zi for groups 1 and 2 are identified by the estimated coefficients fj!cj and cj,

respectively. In other words, appropriate controls for aggregation bias allow unbiased estimates

of the behavioral determinants of characteristic or choice proportions, even if they do identify

the form of the aggregation bias, itself.

C. Heteroskedasticity and weighting in Goodman’s regression

The tests for the neighborhood model and the absence of aggregation bias described in the

previous subsections are well-defined only if the estimator of the coefficient variance-covariance

matrix has appropriate statistical properties. Similarly, individual parameter estimates identify

relevant behavioral determinants only if they can be distinguished statistically from zero. Lastly,

linear combinations of parameters are only meaningful when associated with valid confidence



22  Heteroskedasticity is inherent in random coefficient models (Greene (2003, 318-9). Achen and
Shively (1995, 47-8) and Lewis (2001, 177) note that OLS estimates of equation 14 are unbiased where f1
and f2 are constants. In fact, heteroskedasticity does not impose bias on OLS estimators regardless of the
forms of f1 and f2, if those forms are specified correctly (Greene (2003, 193-5)). King (1997, 65-8) asserts
that heteroskedasticity can severely distort inference in ecological regression models. The empirical
heteroskedasticity that he discusses may be partially attributable to incomplete specifications of f1 and f2,
which would incorrectly allocate some of the deterministic component of yi to the residual. In contrast,
Achen and Shively (1995, 47-50 and 128) claim that heteroskedasticity is empirically unimportant.
However, they are essentially uninterested in inference (page 58).

23 As an example, Bourke, DeBats and Phelan (2001, 132)) claim that OLS regressions on
aggregate data with f1 and f2 specified as constants yield results that appear to be similar to known values
based on the underlying microdata. However, their standard errors are wrong because they are not
corrected for heteroskedasticity. If the true standard errors were small, the estimates might reject the null
hypothesis of the known values. If they were large, the estimates might be statistically “close” to many
other values that are substantively quite different from the known values. In other words, the numerical
comparison between estimated and true values is uninformative unless scaled by accurate standard errors.

24 These discussions assume that ,1i and ,2i are uncorrelated with the disturbances for other areas,
,1j and ,2j. Autocorrelation (Cho (1998, 145-6)) would introduce additional terms in the residual and
require additional corrections to standard errors. Inexplicably, Cho reports OLS standard errors for what
is apparently equation 3, without any indication that they have been appropriately corrected.
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intervals.

However, the residual term in equation 10 is heteroskedastic (Goodman (1959, 612)).22 This

must be addressed in order to construct any valid test of statistical significance.23 Achen and

Shively (1995, 47-8) and Lewis (2001, 177) discuss feasible strategies in the context of ecological

regression.24  In addition, White heteroskedasticity-consistent standard errors (Greene (2003, 219-

220)) can be employed to provide valid tests of hypotheses regarding parameters, without

estimating the structural components of the theoretical residual variances.

Unfortunately, these strategies are rarely employed. Instead, “weighting” is the typical

response. Weighting corrects for heteroskedasticity only if the weights for each observation are

proportional to the inverse of the residual-specific standard deviation (Greene (2003, 225)). The

standard deviations relevant to equation 10 are conveniently invariant to the specification of f1



25 King (1997, 61-5) and Achen and Shively (1995, 57-61) are critical of weighting by the inverse
square root of population. In contrast, Kousser (2001) asserts without proof that it corrects for
heteroskedasticity (page 112) and that it yields meaningful changes in the values of ecological regression
estimators (page 110). Achen and Shively (1995, 58-9) extend this latter argument. Both are wrong. With
the correct deterministic specification, weighted least squares estimators are unbiased and consistent for
the behavioral parameters with any weighting scheme that is not correlated with the true residuals,
including the equal weights of OLS (Greene (2003, 192-5)). In other words, the incorrect population
weights may alter point estimates somewhat, but have no effect on their expected values and distort their
standard errors. Kousser (2001) is an example of incorrect standard errors afflicted with both the
heteroskedasticity of equation 10 and that imposed by inverse square root of population weights.
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and f2,, because neither appears in its residual. They require only estimates of the variances of ,1i

and ,2i and their covariance, in addition to the known value of xi.

However, the “conventional weight” in ecological regression practice is the reciprocal of the

square root of areal population (Kousser (2001, footnote 23)). This weighting is unrelated to the

heteroskedasticity evident in equation 10. It will almost surely compound it.25

Instead, the R2 value from estimates of equation 3 is occasionally offered as evidence of

statistical significance (Grofman, Migalski and Noviello (1985, 206)) or, more casually, model

performance (Kousser (2001, 111-2)). If this value is from a regression that does not correct for

heteroskedasticity, its relationship to the statistical tests of interest – the validity of the neighbor-

hood model, the absence of aggregation bias, and the importance of behavioral determinants – is

unknown.

If the R2 value is from a weighted regression, it is almost surely meaningless, whether or not

the weights correct for heteroskedasticity,. Unless the weight is the inverse of a variable that

occurs linearly in the original specification, the weighted regression will have no constant term

(Greene (2003, 226)). In this case, the R2 value is not bounded between zero and one and does not

represent the proportion of variance in the dependent variable attributable to the explanatory

variables (Greene (2003, 36-7)).



26 These simulations restrict f1 and f2 to be constants. Within that context, they also demonstrate
both the unbiasedness of OLS and the consistency of ecological inference.
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D. Summary

This section demonstrates that, in the case of a single application of Goodman’s identity,

Goodman both over- and under-estimates the efficacy of OLS. He conjectures (1959, 612) that

“standard methods of linear regression can be used to estimate” the parameters of this identity.

While this method can yield unbiased estimates of these parameters, it cannot, without important

modifications, subject them to the necessary significance tests.

With these modifications, however, OLS can provide convincing tests of the neighborhood

hypothesis, for the absence of aggregation bias and for the presence of covariates. It can also

generate the necessary confidence intervals for parameters and parameter combinations. While

there may be formulations of the neighborhood model and aggregation bias that are not contained

in the relatively general model analyzed explicitly here, it is likely that appropriate extensions of

this analysis will preserve the general conclusions.

With these properties, OLS should be an attractive technique for empirical implementations of

a single Goodman’s Identity. Ecological inference (King (1997)) is comparable in that it yields

consistent estimates and valid hypothesis tests. It is superior in that it is more efficient: It

explicitly incorporates the restrictions that 0#$1i#1 and 0#$2i#1. Consequently, its estimates are

guaranteed to be feasible and should be more precise. This additional precision is apparent in the

simulations of Silva de Mattos and Veiga (2004).26

However, OLS restricts the number of covariates in zi only to the extent that degrees of

freedom must be sufficient to allow estimation. In contrast, the treatment of covariates in



27 King (1997, page 170) suggests that covariates might be addressed by estimating $1i and $2i
with ecological inference under the assumption that f1 and f2 are constants, and then regressing these
estimates on covariates. Redding and James (2001) is an example. This strategy implicitly acknowledges
that these covariates should have appeared in the initial specification of f1 and f2. The consequences of
this misspecification are, predictably, difficult to ascertain (Adolph and King (2003), Adolph, King,
Herron and Shotts (2003) and Herron and Shotts (2003a, 2003b)).

28 Achen and Shively (1995, 34-38 and 129-131) provide a brief discussion of Goodman’s
identity and regression in the context of transition matrices with more than two electoral choices.
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ecological inference is computationally burdensome (King (2003, page 49)).27 Given the

interaction terms that must appear in the unrestricted model of equation 10, specifications of f1

and f2 with multiple covariates may not be tractable within this method. If so, tests of the

neighborhood hypothesis and aggregation bias may be infeasible.

Other estimation techniques should be unambiguously less attractive than OLS for most

purposes. As examples, estimates from the model of King, Rosen and Tanner (1999) may be

biased (Silva de Mattos and Veiga (2004)), are difficult to calculate, and appear to be substan-

tially more burdensome in the presence of covariates. Again, tests of the neighborhood hypothesis

and aggregation bias may be infeasible. The three estimators proposed in Grofman and Merrill

(2004) have no known relationships to the underlying parameters, no significance measures and

no known extensions to covariates. The neighborhood hypothesis, aggregation bias and covariates

cannot be specified in the contexts of their models, much less tested.

III. Goodman’s regression with multiple groups and characteristics

Both the positive and negative aspects of Goodman’s regression are exaggerated when the

number of groups in the population is greater than two.28 All parameters in the linear multivariate

model analogous to that of equation 12 are identified, and the test for aggregation bias has much
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greater power than in the two-group case. However, heteroskedasticity is more complicated.

The case with three groups illustrates these points. Augment the notation of section I as

follows:

x1i = the proportion of the population in area i that belongs to group 1,

x2i = the proportion of the population in area i that belongs to group 2,

x3i=1!x1i!x2i = the proportion of the population in area i that belongs to group 3, and

$3i = the proportion of group 3 in area i with the characteristic or making the

choice at issue.

The analogues to the identities in equations 1 and 2 are then

[ ]
[ ] [ ]

y x x x x

x x
i i i i i i i i

i i i i i i i

≡ + + − −

≡ + − + −

β β β

β β β β β
1 1 2 2 3 1 2

3 1 3 1 2 3 2

1

.
(15)

In this case, the analogue to the linear multivariate model of equations 7 and 12 is

( )β ε β β β εri r ri ij ri r r li rj ij
j

k

rif x z x z= + = + + +
=
∑, ,0

1
(16)

where r=1,...,3 identifies the group. The substitution of equation 16 into equation 15 yields

[ ] [ ] [ ]
[ ] [ ]

[ ] [ ]
[ ][ ]

y x x

z x x x x

z x z x

x x x x

i i i

j ij
j

k

i i i i

j j ij i
j

k

j j ij i
j

k

i i i i i i i

= + + − − + − −

+ + + + + +

+ − + −

+ + + − −

=

= =

∑

∑ ∑

β β β β β β β β

β β β β β β

β β β β

ε ε ε

3 30 1 3 30 1 2 3 30 2

3
1

10 30 1
2

20 30 2
2

30 1 2

1 3 1
1

2 3 2
1

1 1 2 2 3 1 2

2 2

2

1 .

(17)



29 The coefficients on zij identify $3j. With these results, the coefficients on zijx1i and zijx2i
identify $1j and $2j, respectively. The coefficient on x1ix2i identifies $30. With this result, the
coefficients on x1i

2 and x2i
2 identify $10 and $20, respectively and the constant identifies $3. With

this last result and the identification of $30, the coefficients on x1i and x2i identify $1 and $2,
respectively.
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The model of equations 15 and 16 contains 2+k parameters in addition to those in equation 13,

for a total of 3[2+k] parameters. However, the regression of equation 17 estimates 3+k coeffi-

cients in addition to those in equation 14. The additional coefficient is attributable to the

interaction term in x1ix2i, which conventional practice would be ordinarily, if incorrectly, omit.

As a consequence of this interaction term, the number of coefficients in the three-group

regression of equation 17 equals the number of underlying parameters. All are therefore identi-

fied, in contrast to the two-group regression of equation 13.29 As in equation 13, significance tests

on the estimated values for $1j, $2j and $3j indicate whether covariates are important.

Equation 17 also provides complete tests for the neighborhood model and for the presence of

aggregation bias. The neighborhood model implies 2k+4 restrictions on the regression of equation

17. The requirements that $1=$2=$3 and $10=$20=$30 imply four restrictions: the absolute values of

the coefficients on x1i, x2i, x1i
2, x2i

2 and x1ix2i should be identical. The requirement that $1j=$2j=$3j

implies 2k restrictions: the coefficients on zijx1i and zijx2i should all equal zero. The failure of any

of these restrictions would invalidate the neighborhood model.

Aggregation bias is present if $10…0, $20…0 or $30…0. The null hypothesis that it is absent,

$10=$20=$30=0, implies three restrictions: The coefficients on x1i
2, x2i

2 and x1ix2i should all be equal

to zero. The failure of any of these restrictions indicates that aggregation bias is present.

This test is more powerful than that in the case of two groups because the three restrictions

can be simultaneously satisfied if and only if aggregation bias is truly absent, $10=$20=$30=0. For



30 Proofs of these claims and those in the remainder of this section are available from the author.
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example, if $20=!$30…0, the second restriction would hold but the third would fail. Therefore, the

failure of any one of these restrictions indicates unambiguously that aggregation bias is present.

At the same time, the last line of equation 17 demonstrates that the residual in this regression

contains three random components, rather than the two of equation 13. The variance of the

random component for each area therefore depends on the population proportions of all three

groups in that area, the variances of the three group-specific random components and the three

unique covariances among them. Regression estimates must correct for the consequent

heteroskedasticity in order to test any of the restrictions implied by the neighborhood hypothesis

or the hypothesis of aggregation bias.

As the number of groups increases beyond three, the number of interaction terms between xki

and xmj proliferates more rapidly than the number of underlying parameters. Consequently,

models with R>3 groups are actually overidentified: They are based on 2+k parameters for each

group, or R[2+k] parameters in all. However, they estimate R[2+k]+½R[R!3] coefficients.

Therefore, ½R[R!3] restrictions are necessary in order to ensure that the estimates are consistent

with the underlying model. The effect of these restrictions on the explanatory power of the

regression provides a test of the underlying specification of Goodman’s Identity.30

The number of alternative characteristics or choices has many fewer implications for

Goodman-based estimation than does the number of groups in the population. The identities of

equations 1 and 15 do not depend on this number, and are therefore valid regardless of its value.

Consequently, the estimations of equations 13 and 17 do not depend on the number of

alternatives.
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Analogous identities and estimating equations would apply to any additional alternatives.

However, they would ordinarily be based on parameters that were specific to these alternatives.

Identification in each would be based on the results above. Multiple characteristics or choices

would provide additional leverage for identification across equations only if the underlying

behavioral theory indicated that equations for different alternatives shared common parameters.

In any case, with random coefficient specifications that are linear in the same variables for all

groups and all C alternatives, the number of informative equations is always C!1. All equations

are constrained by the requirements that the proportions of the population possessing each

characteristic or making each choice must sum to one, as must the corresponding proportions

within each group. Consequently, the last equation is always implied by the first C!1equations.

An election with two candidates provides an example: The fraction of a group in the elector-

ate that chooses to cast its votes for one candidate chooses not to cast its votes for the other. If yi

represents the proportion of votes cast for the first candidate, 1!yi represents the proportion of

votes cast for the second. Equation 13, with both sides multiplied by !1 and augmented by one,

expresses the relationship between the vote share of the second candidate and the explanatory

variables.

As is evident, estimation of this equation would be uninformative. It depends on the same set

of parameters as in equation 13. Moreover, neither this transformation of equation 13 nor its

combination with the original version are sufficient to identify $1, $10, $2 and $20.

Ecological estimation with more than two groups and more than two choices is known

generically as the “R×C model”. This section demonstrates that once again, OLS, properly

specified, should be a relatively attractive estimation technique for this model. Estimates are



31 King (1997, chapter 15) suggests a simplification relying on iterative applications of
the bivariate truncated normal distribution. This strategy may be subject to biases (Ferree
(2004)).

-24-

unbiased and valid standard errors are available. With more than two groups, identification is

complete and may imply testable restrictions. Tests of the neighborhood hypothesis and aggrega-

tion bias are straightforward.

Only two other estimation techniques are available for the R×C problem: ecological inference

(King (1997, chapter 15)) and the binomial-beta hierarchical model (Rosen, Jiang, King and

Tanner (2001)). Both are computationally burdensome when fr is constant for all r.31 More

complicated specifications of fr would compound the difficulties. The questions of how the

restrictions implied by the neighborhood model or the absence of aggregation bias would be

imposed in these techniques are, as of now, not only unanswered, but unasked.

IV. Goodman’s regression with two Goodman’s identities

Kousser (2001, 110) asserts that the estimation of transition matrices relating partisan voting

patterns in two successive elections and the comparison of voting patterns across two different

racial or ethnic groups in the same election have been the two principle applications of Good-

man’s regression. These two applications have dramatically different statistical characters.

The transition matrix problem is described adequately by a single application of Goodman’s

identity. The electorate in the first election is exhaustively divided into groups of known size

voting for each of the available alternatives, and a residual group of known size choosing

abstention. The dependent variables measure the known proportions of the electorate in each

group in the second election. The results of the previous sections apply to the question of how



32 This is obvious in a simple example. If all of the group 1 electorate votes and 70% of its
members choose candidate 2, only 30% prefer candidate 1. The same share prefers candidate 1 if 50% of
the group 1 electorate abstains and only 20% choose candidate 2. In either case, $1i would be .3.
However, group 1 voters would prefer candidate 2 in the first case and candidate 1 in the second.
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electoral choices in the first election are related to choices in the second.

In contrast, a single application of equation 1 is usually insufficient to compare the voting

patterns of two groups defined by some characteristic other than their previous electoral behavior.

In the unusual circumstance where the allocation of actual voters across racial or ethnic groups is

known, equation 1 applies directly, with xi defined as the proportion of all voters constituted by

members of group 1 and yi defined as the proportion of votes received by a candidate. In this case,

$1i and $2i would represent the shares of group 1 and group 2 voters choosing that candidate.

These shares would be interpreted as indicating the preferences of voters within each group.

However, in most circumstances, the composition of the electorate is known rather than that

of the voters. With xi defined as the proportion of the electorate constituted by members of group

1, $1i would represent the share of the group 1 electorate that chooses the candidate in question. In

this case, it would incorporate the group 1 abstention rate, as well as the rate at which group 1

members who vote choose that  candidate. Either of these rates may be parameters of interest, but

their combination is not, of itself.32

The essential distinction here is that the parameters of interest refer to the behavior of a subset

of the population whose composition is unknown. In this case, the application of Goodman’s

approach to aggregate data requires the separate identification of turnout propensities and choices

made by actual voters. This requires two applications of Goodman’s identity (King (1997, 68-



33 Grofman, Migalski and Noviello (1985, 204) and Grofman, Handley and Niemi (1992, 86) are
examples of work in which this distinction, and its consequences discussed below, are ignored. The
approach here treats voting choice as conditional on turnout choice. This distinction is somewhat
artificial. A formulation such as that of Sanders (1998), in which abstention is an intermediate “voting”
choice when voters are approximately indifferent between candidates, is more natural. However, Sanders
(1998) implements this formulation with microdata, and does not explore its aggregation properties. As of
now, Goodman’s identity is the only available basis for the interpretation of aggregate voting data.
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71)).33

The turnout parameters appear in the identity

[ ]T x xi i i i i≡ + −β β1 2 1 , (18)

where

Ti = the observed turnout rate in area i, the ratio of the number of votes cast to the
number of potential voters,

$1i = the unobserved turnout rate among group 1 voters in area i, the ratio of the number
of votes cast by group 1 voters to the number of potential group 1 voters, and

$2i = the unobserved turnout rate among group 2 voters in area i, the ratio of the number
of votes cast by group 2 voters to the number of potential group 2 voters.

$1i and $2i can be estimated through Goodman’s regression as described in section II.

The choices made by actual voters from the two groups appear in the second identity

y w wi i i i i1 1 1 2 2≡ +λ λ , (19)

where

y1i = the observed ratio of the number of votes received by candidate 1 to the size of the
electorate in precinct i.

w1i = the unobserved ratio of votes cast by group 1 voters to the size of the electorate in
area i,

w2i = the unobserved ratio of votes cast by group 2 voters to the size of the electorate in
area i,



34 $1i, $2i, 81i and 82i, here correspond to $i
b,  $i

w, 8i
b and 8i

w in King (1997).
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81i = the unobserved ratio of votes cast by group 1 voters for candidate 1 to the number
of votes cast by group 1 voters in area i, and

82i = the unobserved ratio of votes cast by group 2 voters for candidate 1 to the number
of votes cast by group 2 voters in area i.34

The regression analogue to equation 19 is not in the form of Goodman’s regression because it

requires two explanatory variables, w1i and w2i. Regardless, it cannot estimate 81i and 82i directly

because both of these variables are unobserved.

However, by the above definitions wi=$1ixi and 1!wi=$2ixi. Therefore, equation 19 becomes

[ ]y x xi i i i i i i1 1 1 2 2 1≡ + −λ β λ β . (20)

Equation 20 establishes the identity between the observed shares of group 1 and group 2 members

in the electorate and the observed ratio of candidate 1 votes to the size of the electorate. It

combines the two identities of equations 18 and 19.

As in section I, this identity requires the random coefficients assumption in order to introduce

random components and a parameterization of the variations across areas in the determinants of

group-specific vote choices. This assumption for 81i and 82i is analogous to that for $1i and $2i in

equation 7,

( ) ( )λ ν λ ν1 1 1 1 2 2 2 2i i i i i i i ig x z and g x z= + = +, , . (21)

Again, <1i and <2i have expected values equal to zero and are uncorrelated with xi, z1i and z2i.

Incorporating equations 7 and 21, and dropping function arguments for clarity, equation 20

becomes

[ ][ ] [ ][ ][ ]y g f x g f xi ii i i i i i1 1 1 1 2 2 2 2 1≡ + + + + + −ν ε ν ε , (22)
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or

[ ]
[ ] [ ][ ][ ]

[ ][ ]

y g f g f g f x

x g f x g f

x x

i i

i i i i i i

i i i i i i

1 2 2 1 1 2 2

1 1 1 1 2 2 2 2

1 1 2 2

1

1

≡ + −

+ + + − +

+ + −

ε ν ε ν

ε ν ε ν .

(23)

The comparison between equations 10 and 23 demonstrates two radical differences. First,  f1,

g1, f2, and g2, the deterministic components of y1i, enter equation 23 only nonlinearly. Therefore,

individual parameters appear only in products. 

Second, y1i in equation 23 depends on four disturbances, rather than two as in the case of a

single Goodman’s identity, or one as in conventional regression analysis. The residual terms in

the second line of equation 23 are linear combinations of random components with expected

values equal to zero, as in equation 10. However, the third line of equation 23 contains two

nonlinear combinations of random components. Their expected values are

( ) [ ]( ) [ ]E x x and E x xi i i i i i i iε ν σ ε ν σεν εν1 1 1 2 2 21 1= − = − , (24)

where F1,< and F2,< are the covariances between ,1i and <1i and between ,1i and <1i, respectively.

These covariances enter into the expected value of the dependent variable,

( ) [ ] [ ]E y g f g f g f x x xi i i i1 2 2 1 1 2 2 1 21≡ + − + + −σ σεν εν . (25)

Unobserved characteristics of an area that affect turnout for a group within that area are likely

to be related to voting preferences for that group, and vice versa. For example, if members of a

group have an idiosyncratically strong preference for a particular candidate, this preference may

stimulate an idiosyncratically high turnout. Therefore, the covariances in equations 24 and 25



35 The discussion here assumes that f1, g1, f2 and g2 are correctly specified. Any variables
incorrectly omitted from these functions will be incorporated in the residuals. Nonzero empirical
covariances will also result if variables omitted from different functions are correlated with each other.

36 Conversely, empirical implementations of equation 3 in contexts where the composition of the
population at issue is unknown can only be understood as either imposing the assumptions underlying
equation 26, or imposing the neighborhood model with one of g2 or f2 constant and the other linear in xi
alone.

37 Proofs of this and all subsequent statements in this section are available from the author.
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between the random components of turnout and vote share will ordinarily be non-zero.35

In consequence, identification is much more difficult in contexts that require two rather than

one application of Goodman’s identity. It is impossible in all common cases. This includes the

specification that is almost universal in the analysis of voting choices by two different racial or

ethnic groups in a single election.

This specification requires all deterministic components to be constants: f1=$1, g1=81, f2=$2

and g2=82 (see footnote 15). The deterministic component of equation 23 is then

[ ] [ ]g f g f g f x xi i2 2 1 1 2 2 2 2 1 1 2 2+ − = + −β λ β λ β λ . (26)

The expression to the right of the last equality in equation 25 contains only two terms, a constant

and a linear term in xi. Therefore, equation 3 would be the corresponding estimating equation.36

However, the expected values of the estimated coefficients are37

( )E b0 2 2 2= +β λ σ εν (27)

and

( ) [ ] [ ]E b1 1 1 1 2 2 2= + − +β λ σ β λ σεν εν . (28)

Obviously, the two estimated coefficients are insufficient to identify the six parameters upon



38 Zax (2005) demonstrates that “double regression”, a common prescription for this problem,
fails utterly to resolve it.
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which they are based. In other words, the typical application of Goodman’s regression to the

analysis of voting choices by two different demographic groups is fatally unidentified.38

The same is true for other simple specifications. The most parsimonious specification

allowing for aggregation bias defines f1, g1, f2 and g2 as linear in xi alone:

f x g x
f x and g x

i i

i i

1 1 10 1 1 10

2 2 20 2 2 20

= + = +
= + = +
β β λ λ
β β λ λ

, ,
.

The deterministic component of equation 23 would then be

[ ] [ ]
[ ]
[ ]

g f g f g f x x

x

x

i i

i

i

2 2 1 1 2 2 2 2 2 20 20 2 1 1 2 2

20 20 1 10 10 1 2 20 20 2
2

10 10 20 20
3

+ − = + + + −

+ + + − −

+ −

β λ β λ β λ β λ β λ

β λ β λ β λ β λ β λ

β λ β λ .

The corresponding OLS equation is

y b b x b x b xi i i i1 0 1 2
2

3
3= + + + ,

with only four coefficients. Their expected values are

( )E b0 2 2 2= +β λ σ εν , (29)

( ) [ ] [ ]E b1 2 20 20 2 1 1 1 2 2 2= + + + − +β λ β λ β λ σ β λ σεν εν , (30)

( )E b3 20 20 1 10 10 1 2 20 20 2= + + − −β λ β λ β λ β λ β λ , (31)
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and

( )E b3 10 10 20 20= −β λ β λ . (32)

These four terms contain ten parameters. Again, none are identified.

Similarly, the simplest specification allowing for covariates would specify f1, g1, f2 and g2 as

linear in a single covariate zi:

f z g z
f z and g z

i i

i i

1 1 11 1 1 11

2 2 21 2 2 21

= + = +
= + = +
β β λ λ
β β λ λ

, ,
.

(33)

The deterministic component of equation 23 would then be

[ ] [ ] [ ]
[ ] [ ]

g f g f g f x x z z

z x z x
i i i i

i i i i

2 2 1 1 2 2 2 2 1 1 2 2 21 2 2 21 21 21
2

11 1 1 11 21 2 2 21 11 11 21 21
2

+ − = + − + − +

+ + − − + −

β λ β λ β λ β λ β λ β λ

β λ β λ β λ β λ β λ β λ .

OLS would estimate six terms, a constant and coefficients attached to the variables xi, zi, zi
2,  zixi

and zi
2xi. However, their expected values contain ten parameters: the four intercepts and four

slopes in equation 33 and the two covariances in equation 24. Again, none of the parameters are

identified.

Identification here is possible, if at all, either in more restricted or more complicated models.

As examples of the first option, the three models already discussed could be identified with

sufficient a priori restrictions on parameter values. Of course, this would be an empty achieve-

ment unless these restrictions were consistent with a convincing behavioral model.

As an example of the second option, a general linear specification would define f1 and f2 as in

equation 12 and g1 and g2 analogously:
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g x z x z and g x z x zi i i j ij
j

k

i i i j ij
j

k

1 1 10 1
1
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∑ ∑λ λ λ λ λ λ

With the two covariance terms of equation 24, this specification contains 4[k+2]+2 parameters.

The deterministic component of equation 23 would contain contain [k+2]2 discrete terms.

Accordingly, OLS would estimate one constant and  [k+2]2!1 slopes.

Identification is therefore impossible with two or fewer covariates, k#2. If k$3, the number of

estimates exceeds the number of parameters. This is a necessary condition for identification. It is

not sufficient, because, as in the examples of equations 27 through 32, parameters occur in

nonlinear combinations in the expected values of empirical estimates. However, in fortuitous

circumstances these models may even be over-identified, suggesting the possibility of specifica-

tion tests. 

In principle, it may be possible to identify a wider class of models through careful treatment

of the heteroskedasticity evident in equation 23. In contrast to the case of a single application of

Goodman’s Identity, the residual here depends on all parameters in the deterministic component

of y1i. Therefore, empirical heteroskedasticity may be informative about their values.

Unfortunately, the variances of the residual terms also depend on the four disturbance-specific

variances and the six unique covariances in the variance-covariance matrix of the disturbances ,1i,

<1i, ,2i and <2i. Moreover, they contain terms in the variances and covariances of products of

disturbances, such as xi
2V(,1i<1i) and xi[1!xi]COV(,1i<1i, ,2i<2i). These additional terms depend on

higher-order parameters of the four-dimensional disturbance distribution that are not contained in

the disturbance variance-covariance matrix.

These considerations suggest that the strategy of identification through heteroskedasticity is
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not promising. However, heteroskedasticity must still be addressed in order to perform the

inference  necessary to validate and interpret any model. For most applications, White

heteroskedasticity-consistent standard errors (Greene (2003, 219-220)) will probably prove to be

more practical than structural estimation of the components in the theoretical residual variances.

In sum, the only contexts in which OLS regression has any hope of recovering the underlying

behavioral parameters from two applications of Goodman’s identity are in models that are heavily

restricted or relatively rich, specifying at least several covariate determinants of the behavior at

issue. As in the case of a single applications of Goodman’s identity, these covariates must be

interacted with the population proportion xi in order to avoid the inadvertent imposition of the

neighborhood model. Moreover, if covariates affect both the propensity of group r members to

select into the subpopulation for which the behavior of interest is relevant, gr, and the propensity

of group members to choose that behavior, fr, they must be appropriately interacted with each

other, as well.

Models that fulfill these requirements appeared to be absent from the literature of the social

sciences. The unfortunate corollary is that most, if not all extant regression statistics for contexts

involving two applications of Goodman’s Identity are worthless: They have no known relation-

ships to the parameters they purport to estimate. The optimistic response is that, with appropriate

construction, these contexts may invite the estimation of empirical models that are much more

ambitious and intriguing than previously attempted.

For the moment, only ecological inference (King (1997)) correctly specifies equation 22.

Consequently, it is the only technique available that identifies the parameters in g1, f1, g2 and f2.

However, computational limitations currently restrict the specifications of these functions. While
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these restrictions are likely to be relaxed as computational power and techniques improve,

dramatic improvements will be necessary in order to accommodate truly flexible specifications.

Parallel efforts to construct plausible models that are correctly-specified and identifiable in

regression may therefore be worthwhile.

V. Conclusion

This paper demonstrates that regression-based applications of Goodman’s identity can be much

more effective than previously understood. In contexts where a single application of Goodman’s

identity is sufficient to characterize the behavior at issue, OLS estimates of the generalized

Goodman’s regression in equation 13 are unbiased. They are also heteroskedastic, but corrections

are feasible.

With these corrections, OLS estimators provide valid statistical tests for the neighborhood

model, aggregation bias, and the significance of covariates. Moreover, identification in these

models improves as the number of groups in the population increases. These results, coupled with

the flexibility and tractability of OLS, suggest that correctly specified models should be valuable

tools in the analysis of single applications of Goodman’s regression, notwithstanding the risk of

estimates outside the bounds of zero and one, and the ingenuity embodied in recent attempts to

provide improved estimators (King (1997), King, Rosen and Tanner (1999) and Lewis (2004) as

examples).

Contexts where the proportions of groups that engage in the behavior at issue are unknown

require two applications of Goodman’s identity. In these contexts, individual estimates from

Goodman’s regression do not identify individual behavioral parameters. Identification may be



-35-

possible if models contain sufficiently numerous restrictions or explanatory variables, but these

options have not been explored. With, again, appropriate corrections for heteroskedasticity, valid

tests may be available for the neighborhood model, aggregation bias and the significance of

covariates.

This paper also demonstrates that current practice in the application of Goodman’s regression

typically fails to achieve any of these results. Most empirical exercises specify the implied

empirical models incorrectly, ignore heteroskedasticity and offer neither hypothesis tests nor

confidence intervals, valid or otherwise. Instead, they are contaminated with arbitrary weights

that exacerbate heteroskedasticity, and justified with R2 values that are meaningless. Clearly,

more than 50 years after it was first promulgated, Goodman’s Identity has yet to be fully

appreciated.
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