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Abstract

We investigate the relationship between polity formation and the level of
economic activity. We posit a dynamic search environment in which opportu-
nities for mutually beneficial trade may be hampered by theft. Agents search
for potential trading partners and, if matched, optimally choose whether to
attempt to trade or to steal from each other. The excludability of goods — in
the form of respected property rights — is endogenously determined as a result.
We compare the equilibria of this game under anarchy to those of an iden-

tical environment in which there is a “government” in the minimal sense of an
agency that protects property rights. In exchange for protection, agents pay a
certain amount to enter the market. We find that agents’ willingness to pay for
these services — i.e., to be taxed — is increasing in potential gains from trade,
and this result is robust to corruption in government.
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1 Introduction

Much has been written regarding the beneficial effects of government on the level of

economic activity (see Shleifer (1998), Besley (1995) inter alia). There is a consensus

that a necessary condition to modern growth is the existence of an incentive system

that benefits those who incur the costs of productive endeavor. In particular, a pre-

condition for the voluntary exchange of goods and services in a non-autarkic economy

of non-altruistic agents is the existence of enforced property rights, such that agents

may reap the benefits of costs that they incur. For example, if levels of theft are

high, agents will not have an incentive to produce translatable goods, and will find it

optimal to revert to autarky or subsistence.

The conventional rationale for government to arise in an autarkic anarchy is the

presence of returns to scale in the protection technology. For instance, in Gross-

man (2002), a government centralizes protection activities with the aim of decreasing

the probability that a good belonging to an individual is expropriated by another.

Centralizing protection, therefore, can eliminate the over-investment of productive re-

sources in an “arms race” that would otherwise obtain in a decentralized (“anarchic”)

society, as in Skaperdas (1992).

The focus of our paper is different. Instead, we examine the potential role of

government as arbiter. Agents in our environment do not enjoy the good they produce

and possess. Rather, the value that they attach to goods reflects the possibility of

exchanging them in the marketplace for goods they can beneficially consume. In this

context, the protection of property rights amounts to assuring that traders can leave

the “negotiation table” possessing goods of the same or greater private value than

those they began with. The focus is thus fully on the nature, and institutions, of

exchange.

We begin with anarchy in the sense of Hirshleifer (1995):

[...] anarchy is a social arrangement in which contenders struggle to
conquer and defend durable resources, without effective regulation by ei-
ther higher authorities or social pressures (Hirshleifer (1995), p. 27).

We then follow Nozick (1974) in defining a role for government in such an envi-

ronment. In “Anarchy, State, and Utopia” (ASU), Nozick suggests that an agency
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that enforces property rights can arise through market-like mechanisms. In ASU,

agents are willing to pay for the services of a “protection agency” (or a “minimal

government”) which adjudicates in disputes and protects property rights. We adopt

a simple environment in which disputes are clear-cut in that they only arise in the

case of overt theft, and derive demand for such an entity from economic primitives.1

Unlike Nozick, we do not envision any notion of entitlements beyond institutions, and

explicitly derive the conditions under which both property and, indeed, trade itself,

may emerge.2 We ignore the possibility that government may serve other functions

in order to focus on its role protecting property rights.

The model addresses some fundamental issues regarding the nature of goods and

exchange. The extent of rivalry and excludability in goods is at the basis of many

lines of thinking in the economics of externalities, from public choice to technological

change. Rivalry and excludability are traditionally taken as given in discussions

of private goods. However, as Romer (1990) insightfully points out, rivalry is a

technological (or “physical”) property whereas excludability is both technological

and institutional in nature. In the present framework, the extent of excludability is

endogenously determined by the interaction between institutional and technological

constraints vis a vis agents’ equilibrium strategies.

To simplify the exposition, we assume an exchange economy with indivisible goods.

Both goods and preferences are heterogeneous,3 so that a meeting of two agents will

not necessarily generate opportunities for trade. In the case of a Smithian “double

coincidence of wants,” potential traders may swap goods quid pro quo, which benefits

them both symmetrically. And so they do, we assume, if both decide to “trade

fairly” — or, equivalently, to respect a notion of property rights. However, they may

independently decide not to, instead, choosing to obtain the desired good without

“paying” for it with their own produce. The value of property, therefore, depends

critically on the probability of meeting a robber in the market place.

It is worth underlining that agents do not differ in their attitudes towards “criminal

1Bös and Kolmar (2000) adopts a related approach, studying “rules of voluntary redistribution
that Pareto-improve an anarchic initial situation”.

2Institutions “transform possession into property.” We thank Serge-Christophe Kolm for this
concise formulation.

3The model admits an interpretation in terms of specialization and the division of labor. We
thank Yang Yoon for this insight.
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activity,”4 so that the decision to trade or thieve is purely “rational.” Institutions that

decrease this probability enhance the value of tradeable goods, potentially generating

a willingness to pay for access to a safer marketplace. The demand for a “minimal

government” that can provide such a marketplace then arises naturally. Our main

result is that the demand for protection increases with the “gains from trade,” the

immediate enjoyment from consumption of the good produced by the successfully

matched trading partner.

The remainder of the paper is organized as follows. We describe the trade en-

vironment and its equilibria under anarchy in Section 2. The minimal government

is introduced and its influence on equilibrium structure addressed in Section 3. The

following section, 4, extends the model to allow for corruption in government. We find

that the model is robust to this extension. In Section 5, we consider an environment

in which agents return repeatedly to the market, and derive welfare implications. We

then discuss possible extensions. Section 7 concludes.

2 Model Economy

2.1 Basic Setup

The model is a simple discrete-time matching setting similar to that found in, for

example, Kiyotaki and Wright (1993).5 There is a continuum of infinitely-lived house-

holds distributed evenly on a circumference, henceforth referred to as Farmland.

Agents are characterized by their “type” i ∈ [0, 1]. In any given period, agent
i ∈ [0, 1] may also produce a translatable good i. It does not yield her any utility; she
is, however, willing to consume some of the translatables produced by other agents.

In particular, she is equally happy to consume any item j from the interval

j ∈
·µ

i+
1− β

2

¶
mod 1,

µ
i+

1 + β

2

¶
mod 1

¸
(1)

4In this sense our approach departs from the literature on crime prevention that builds on the
assumption that agents are born with different “tolerance[s] for engaging in illegal transactions” —
see Boadway et al. (2000) among others.

5An interesting extension might involve a monetary environment such as theirs.
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for β ∈ (0, 1). Thus, each agent seeks a proportion β of the goods produced by the

others. Note that, if agent i likes the good produced by agent j, the converse also

holds. Therefore, if two agents are anonymously matched pairwise, the conditional

probability of a “double coincidence of wants” is β. This setup is represented in

Figure 1.

Farmland

β

i

Figure 1: Preferred goods of agent i

Agents earn utility G from consuming a desired good. Goods are indivisible and

durable; they do not depreciate until they are consumed, and agents can carry at most

one unit of them. Farmers are risk-neutral, discounting the future using a common

factor δ ∈ (0, 1).
In order to find goods that they desire, agents must locate other farmers and

obtain their goods — via trade or otherwise. We henceforth refer to the parameter G

as “potential gains from trade”.

There exists an additional location, which we denote “Market town.” This is

the locus of a matching technology that each period randomly pairs any agents who

locate there. Once matched, agents can observe each other’s good before they decide

to interact. Having verified the coincidence of wants, they independently attempt to

either trade or rob, where robbery is interpreted as the appropriation of another’s

good for nothing in exchange. This interaction will be referred to as the exchange-

theft game.

In what follows we will assume that a positive fraction of agents is always present

in the Market town.6 The assumptions are such that agents who do not have a good

6No matter what institutions are in place, there is always a “Ghost Town” equilibrium, in which
nobody trades, because there are no traders in the Market town in the first place.
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to exchange have no purpose in staying in Market town since, lacking a good, nobody

will approach them close enough for any interaction. Theft, being their only option,

has no opportunity to materialize.

We also assume that agents’ histories are unobservable, and that the probability

of meeting the same agent twice is zero. We also focus on stationary equilibria, in

which agents do not adopt strategies that are contingent upon their own histories.7 As

there is a continuum of agents in the Market Town, we restrict attention to strategies

involving pure actions, in order to avoid “measurability” problems.8

Conditional on a match, an agent expects her counterpart to be fair trader (as

opposed to a thief) with probability γ ∈ [0, 1], which she takes as given. γ is an

equilibrium, if it describes a fraction of fair traders in a stationary subgame perfect

equilibrium of the exchange-theft game. Observe that equilibrium value of γ, as well

as being a fraction of fair traders, may be interpreted as the (endogenous) extent of

excludability of the goods that the agents produce in this economy. Agents’ payoffs,

and therefore the equilibria, will depend on the institutions in place. The exact nature

of this relationship is examined in the following sections.

First, we consider an environment in which agents travel to Market town only

once. They view the value of their possession as the expected stream of utility that

they can exchange it for in the marketplace. We demonstrate that this value increases

in the presence of the minimal state, and that the increase is rising with the “gains

from trade”, G. Section (5) closes the model by adding production and considering

the “lifetime value of being a farmer” with and without government; similar results

are found to hold. All proofs are either in the Appendix, or available upon request.

2.2 Anarchy

Let “anarchy” denote the basic environment devoid of institutions. Under anarchy,

meetings are observed only by the affected parties. Assume that there is a double

coincidence of wants among matched agents. Suppose an agent decides to trade fairly.

In case the partner is also a fair trader, she obtains a payoff of G > 0 and leaves the

7These assumptions rule out decentralized punishments, which might support certain “norms of
behavior” — say, trading fairly. See section 7.

8See Judd (1985), Hammond and Sun (2000) among others.
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market. If the partner has chosen to rob, she looses her good and leaves empty handed.

Thus, the instantaneous expected payoff conditional on a match is ua (trade) ≡ γG.If,

instead, the agent decides to rob, she deprives her partner of his good and consumes it

for a payoff of G. In this case she remains in the marketplace, maintaining possession

of her own produce for a continuation payoff V a in the following period. Denote

by V a the value attached to a tradeable good under anarchy. Thus, the encounter

yields W a ≡ G+ δV a.9 If, however, the partners simultaneously attempt to rob, each

succeeds with probability one half. In this case, the payoff conditional on the match

is ua (rob) ≡ γW a + (1− γ) 1
2
W a. Hence, in equilibrium,

V a = βmax {ua (trade) , ua (rob)}+ (1− β) δV a. (2)

It is straightforward to demonstrate that

Lemma 1 The only equilibrium under anarchy is γ = 0.

The Market town becomes a “Den of Thieves”: farmers bring their produce to

market only to be robbed or to steal from others. They use their good, like a “bait,”

to attract partners with desired goods. Having verified the “double coincidence of

wants”, they struggle over each other’s possessions. Under anarchy, being a fair trader

eliminates the chance of consuming the desired goods altogether.

3 Minimal State

Consider now an environment identical to that above, except that there is an agency

(the minimal government) that covertly observes any given match with probability

ω ∈ (0, 1). If a robbery is observed, the agency is capable of inflicting a cost c > 0

upon the robber, and reinstating the good to the victim.10 11 This cost can be

9W is for “win”: combat against fair traders is always successful.
10Although we do not restrict the severity of punishment, we recognize that most “civilized”

punishments are bounded, as is the claim against future earnings.
11Assume for now that a detected robber and a government agent can not collude. We relax this

assumption later.
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thought of as a physical punishment, ignominy, or as a claim towards a stream of

goods to be produced in the future.12

Now, when a the fair trader meets a robber with a desired good, with probability

ω she can continue trading in the next period, which yields ωδV g, where V g is the

expected value of a good in the marketplace under the minimal government. If she

meets a fair trader, her payoff is G as before. Thus, the expected value of an encounter

with the owner of a desired good is ug (trade) = γG + (1− γ)ωδV g. In the presence

of a protection agency, a robber who is matched with a fair trader may be observed

and punished. If detected — which occurs with probability ω — she is afflicted with c,

returns the stolen good to its “owner”, and awaits another match.

On the other hand, if the robbery goes undetected, she consumes the good of her

partner and remains in the marketplace, as under anarchy. Thus her payoff (denoted

W g (ω, c) for “win”, as before) is W g (ω, c) ≡ G(1− ω)− cω+ δV g. This value differs

from that under anarchy, as it depends on the probability of being observed, ω, and

the severity of the punishment, c.

If both agents attempt to rob and this is observed, only the successful robber is

punished and the other’s good is reinstated. The presumption is that it is impossible

to verify an unsuccessful robbery attempt (or an “intent” to rob).13 Thus, in case

a robber meets another robber with the desired good she can either win the fight

and get W g (ω, c) , or else fail, which, in the presence of government, may still yield

a positive continuation value, for the interaction can be observed (with probability

12Punishment c is neither history-dependent nor modeled as a term of imprisonment. Immediate,
history-independent punishments characterize most past cultures and judicial systems, except where
slavery was used for purposes of retribution or redress. For example, in Europe, jurisprudence ignored
individual characteristics (save for political power) until the 18th Century. Deeper in history, the
punishment for theft in the Code of Hammurabi of the 20th Century BC is a fine — or death if
payment is beyond the ability of the perpetrator. Again, punishment is not history-dependent —
except in the trivial case in which the perpetrator is incapable of fulfilling the punishment. See
Jastrow (1980). Jewish and Islamic criminal codes are similar to — and, indeed, have roots in — the
Babylonian codes.
As for imprisonment, according to Foucault (1975) in Europe, a term of service and fines were

the usual common forms of punishment through the early Middle Ages, being replaced by a system
of corporeal and capital punishment later on. Imprisonment as punishment did not appear until the
17th Century, and was the lot of few until the early 19th Century, when an elaborate prison system
developed. See also Kirchheimer and Rusche (1939).
13This assumption stacks the deck against the minimal state yielding any welfare improvements,

as not all attempted robberies are detected.
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ω) and her good re-instated, thus, enabling her to stay in the marketplace yielding

ωδV g. The expected value of an appropriate match for the robber is then ug (rob) =

γW g (ω, c) + (1− γ)
£
1
2
W g (ω, c) + 1

2
ωδV g

¤
.

The value traders attach to the good they bring to market is

V g = βmax {ug (trade) , ug (rob)}+ (1− β) δV g (3)

Recall that an equilibrium is a fraction of fair traders γ consistent with the optimal

behavior of all potential traders. In a stationary equilibrium, an agent will choose

either one action (to rob or to trade) “forever”, or she will be indifferent between

the two. We are interested in understanding what equilibria can be “induced” by a

protection agency using punishment c and intensity ω of observing trades.

We start with two simple observations.14 First, if c is high enough, it is an

equilibrium for everybody to trade fairly. Second, in spite of the minimal state, the

“Den of Thieves” equilibrium exists, if detection and retribution are lenient. Indeed,

both “corner” equilibria exist for some range of punishments c.

In addition, there are ‘interior’ equilibria in which fair traders and robbers are

present in the Market Town. To find these, we look at the difference F (γ; c) between

the value of tradeable goods for perpetual fair traders V g
t and that of chronic robbers

V g
r .
15 16

Figure 2 plots F (γ; c) for three different values of c, keeping other parameters

fixed.17 Any roots of F in (0, 1) correspond to interior equilibria.

Figure 2 suggests that there are values of c that potentially generate two interior

equilibria. Higher values of c are associated with only one interior equilibrium, while

γ = 1 is also an equilibrium since F (1, c) > 0. On the other hand, punishments may

also be so low that γ = 0 is the only equilibrium. According to the Figure 2, this “no

trade” equilibrium is also present in the two cases mentioned above, since F (0, c) < 0

in all the cases depicted.

Finally, it is not surprising that, if c is high enough, γ = 1 is the unique equilib-

14See lemmata 14, 15 in Appendix A.2.
15See Appendix A.2 for the validity of this approach.
16More precisely, we use a function F (γ; c) that has the same sign as this difference. See the

detailed definitions in Appendix A.1.
17Parameter values in this example are ω = 0.5, G = 1, β = 0.5, and δ = 0.9.
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Figure 2: The lower line corresponds to c = 1/4, the middle one is for c = 9/16 and
the upper line is for c = 3/4.

rium. Increasing punishment hurts thieves ,while leaving traders indifferent except

via the equilibrium effect on γ, so that it is possible to completely deter robbery by

imposing very severe punishments. Formally,

Proposition 2 If βδ + δ ≤ 1, then the set of equilibria Γ (c) can be described as

follows:

Γ (c) =


{0} if c < c (ω)

{0, γL (c) , 1} if c ∈ [c (ω) , c̄ (ω)]
{1} if c > c̄ (ω)

(4)

If, on the other hand, βδ + δ > 1, then the set of equilibria becomes:

Γ (c) =


{0} if c < c (ω)

{0, γL (c) , γH (c)} if c ∈ [c (ω) , c (ω))
{0, γL (c) , 1} if c ∈ [c (ω) , c̄ (ω)]
{1} if c > c̄ (ω)

(5)

where γL (c) , γH (c) ∈ (0, 1) and γL (c) < γH (c).

Moreover, γL (c) is decreasing in the severity of punishment c, while γH (c) is

increasing in c.
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Corollary 3 If ω ≥ βδ
1−δ+βδ , then γ = 1 (full trade) is an equilibrium even if c = 0.

By corollary 3, if the detection rate is high, there is no need to inflict direct

cost c on the observed robbers to prevent robbery altogether. The fact that the

government reinstates the stolen item to the owner obliges the thieves to wait for a

future opportunity before stealing or trading, which is a sufficient deterrent in itself.

If agents are impatient or meetings are rare, this effect is exacerbated.

The relation between the equilibrium values of γ and punishment c can be con-

veniently represented graphically. Figure 3 depicts an example of an environment

described in the second part of Proposition 2. Observe that γL (c) approaches zero as

c approaches c (ω), and that γL (c) and γH (c) converge as c decreases towards c (ω).

21.510.50

1.5

1.25

1

0.75

0.5

0.25

0

c, punishment

gamma

c, punishment

gamma

Figure 3: Here ω = .5, G = 1, β = .5, δ = .9, as in the previous example. Note
that it implies βδ + δ > 1. In this case c = .0.523, c = 0.636, c̄ = 1. Note also that
γL (depicted as a thin line) is decreasing in c and γH (depicted as a thick line) is
increasing in c.

Figure 4, in turn, illustrates the first part of Proposition 2. Here the “upper”

equilibrium is always unity. This case also illustrates Corollary 3, in which theft is

not a dominant strategy even without punishment (c = 0). Note the contrast with

the anarchic Market Town, where theft leads to higher payoffs regardless of γ.
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1.5

1.25

1

0.75

0.5

0.25

0

c, punishment

gamma

c, punishment

gamma

Figure 4: Here all the parameters are the same as before apart from β = .1. Note
that it implies βδ+ δ < 1. In this case c = −5. 263 2×10−2 < 0, c̄ = 1. Note also that
γL (depicted as green line connecting the two corner equilibria) is decreasing in c .

3.1 Discussion

3.1.1 Crime and Punishment

Interestingly, there is a sense in which the severity of punishment and the rate of theft

in the population may be positively related. Recall that γL(c) and c are negatively

related, so that harsher punishments are associated with higher robbery rates for this

class of equilibria. However, it is also true that this type of equilibrium is unstable,

in the sense that small perturbations to the punishment c lead agents to equilibria

that are not in a neighborhood of γL(c). This is not the case for equilibria in which

γ = 0, γ = γH(c) or γ = 1. See Claim 19 in Appendix A.2 for details.

Although it is reasonable to consider the intensity of observing trades, ω, to reflect

a technological constraint, the severity of punishment c is, at least to some extent,

under control of protection agencies (see footnote (12)). Such an argument suggests

that it is appropriate to focus on the “good” stable equilibrium γH (c) ≤ 1, which is
positively related to punishment. If, by setting c at a certain level the outcome is γL,

the agency could slightly increase punishment and switch to a “higher” equilibrium

with γ = γH (c) .Moreover, as we will see in what follows, the demand for a protection

agency is higher, if the marketplace it provides is safer. Hence, it will be in the interest

of the protection agency to induce the equilibrium with larger fraction of fair traders,

if it can do so.
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In addition observe that more severe punishments are needed to discourage rob-

bery in “patient” societies. The reason is related to Corollary 3. A high discount rate

means that the component of the disincentive to trade that hinges on consumption

deferral (due to ω > 0) is less severe. This, on the margin, favors theft. Indeed, the

lowest punishment (c) that can support the all-trade equilibrium (γ = 1) is increasing

in both the probability of a successful match (β) and the discount rate of an agent (δ) .

Thus, it is not surprising that “patient enough” societies with good enough probabil-

ity of meeting a trading partner with the desired good (βδ + δ > 1) can deter some

— but not all — theft, while the same punishment is sufficient to discourage robbery

completely in less patient societies (at least in one of the equilibria).

3.2 Demand for Protection

Do agents benefit vis-a-vis an anarchic situation — and, if so, how much would they

be willing to pay for an alternative?

To determine this quantity, suppose that agents can enforce anarchic payoffs if it

is in their interest. This will occur, for example, if there is an alternative, anarchic

locus for the matching technology, where farmers may enforce the “Den of Thieves”

equilibrium derived in Lemma (1). An additional interpretation is that agents may

overthrow the Minimal State.

Let us define the demand for protection, D (γ,G) , as the difference between the

value of a tradeable good in a “protected” marketplace and that in an “anarchic”

market. In other words, this demand corresponds to the willingness to pay of a

trader, who has a tradeable good, to enter the protected marketplace, the amount

he can be charged “at the gate” of the Market Town. As one would expect, this

amount depends on the safety of the marketplace, or the fraction of the fair traders

in it, γ. Moreover, it varies with the “gains from trade”, G, or with the magnitude

of his desire to consume the good of another trader. We will focus on stable trading

equilibria.

Proposition 4 The demand for protection arises whenever γ > γ, where γ ∈ (0, 1).
Moreover, in this case the demand increases in the gains from trade, G, provided that

the safety of the marketplace, γ, is kept constant.

13



Proposition (4) states that the inhabitants of Farmland are ready to pay for the

access to the Market Town, if the induced proportion of fair traders is above a certain

threshold, in other words, if the marketplace is safe enough. It is also easy to check

that the demand grows with γ. What is striking though is that agent’s willingness to

pay for the government that protects her property rights is increasing in her valuation

of the good produced and owned by other traders (”gains from trade”, G). This

creates an additional “niche” for the State quite distinct from those described in the

literature, where the willingness to pay for protection depends on the utility from

consumption of one’s own goods.

Comparing across “stable” equilibria, so long as c > c (ω), an increase in G implies

that the willingness to pay increases also — at least locally — since γ = 1 will remain

an equilibrium for sufficiently small perturbations of G. However, for γ = 1 to be an

equilibrium, the severity of punishment must exceed c (ω) and, for γ = 1 to be the

only equilibrium, the condition is that c > c̄ (ω) . Both thresholds increase in G,18 so

that it becomes harder to induce the equilibrium in which everybody trades fairly as

the “stakes” become high.

More broadly, therefore, the protection agency may have to adjust punishments

to keep the safety of the marketplace constant. Indeed, as the desirability of goods

produced by other traders increases for a given agent, the temptation to thieve may

become strong enough to lure them into robbing, if the punishment remains un-

changed. This will be necessary, even locally, if G and c are such that the equilibrium

prevailing in the Market Town is initially 0 < γH (c) < 1.

Lemma 5 Assume βδ + δ > 1 and c ∈ ¡c (ω) , c (ω)¤ . Then, as the gains from trade

G increase, in order to preserve the safety of the marketplace (γH) , the severity of

punishment c must increase.19

To summarize, as the gains from trade increase, so will the demand for the State

18The former does if ω < βδ
1−δ+βδ .

19An alternative formulation of lemma 5 is as follows. Define a correspondence K (x) on the
interval [0, 1]:

K (x) = {(c,G) : γH (c;G) = x} (6)

K (γ) is an “isoklept”, the locus of punishment-gain combinations that lead to a constant level of
theft. It can be shown that the isoklept curves are single-valued and positively sloped under the
assumptions of the lemma.
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that enforces property rights. In some cases the Minimal State, viewed as a unit, may

be motivated to increase the severity of punishment as the gains from trade increase,

if it is capable of capturing part of the additional willingness to pay for protection

that arises as a result (so long as they are not constrained by the mores of the cultural

environment, or by technology).20

In the next section we relax the assumption that prevented collusion between the

observed robbers and protection agents. We, thus, extend the main result of the

paper to the case of a corrupt government.

4 Should the observers be trusted?

The answer is: no, not always. However, the results of the previous section do not

qualitatively change, as the following analysis shows.

Clearly, protection agents may be tempted to accept bribes from detected robbers.

The highest bribe that a protection agent can expect is G+c, which is what the robber

foregoes, when caught. Assume that if a bribe is accepted, the robber can keep her

own good and continue operating in Market town in the following period.21

If the robbers know that the protection agency is corrupt, they will always be

interested in bribing.22 If all robbers bribe, the good is never re-instated to the owner

— this reduces the gains from fair trading given γ. The instantaneous payoff from

doing so becomes the same as under anarchy, apart from the fact that in equilibrium

20There is another sense in which increasing punishment may be necessary to preserve the “safety
of the marketplace”. Consider a non-stationary extension in which G increases at an exponential
rate g. If c increases at the same rate, this is equivalent to the current framework (net of a change
of variables) so long as egδ < 1: there would be a “balanced growth path” with a constant level of
theft. If c were not to increase at this rate, we conjecture that γt → 0.
21Clearly, if the good is still re-installed to the owner and it is the punishment (−c) that can be

avoided by bribing, the payoff structure for the fair traders will not change. In case the protection
agent can extort the maximal bribe, the value function of a robber will not change either. Hence,
the equilibrium should be the same as before (i.e., under non-corrupt minimal state). If the bribe is
smaller, so that the robber gets some benefit from the deal with the protection agent, the effective
punishment of the former is thus decreased. This, in turn, will reduce the equilibrium γ and, hence,
the demand for government. It would be interesting to see the degree of corruption that would be
fostered by a ”rational” protection agency.
22We assume this is true, even if the protection agents take away all the surplus from the deal,

i.e., leave them indifferent between paying to the agent and being punished. This ”tie-breaking rule”
simplifies our exposition.
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γ may be different from zero. We denote this ucg (trade) = γG, where the superscript

cg refers to “corrupt government”.

As for robbers, the value of their good decreases as well. In case of an unsuccessful

theft (which occurs with probability 1
2
conditional on meeting another robber), they

leave the marketplace empty handed. Thus,

ucg (rob) = γW g (ω, c) + (1− γ)
1

2
W g (ω, c) (7)

where W g (ω, c) = G+ δV gc − ω (c+G) = (1− ω)G− ωc+ δV gc.

4.1 Robustness

Assuming that government agents take bribes changes the equilibria of the model.

However, their structure remains identical to those under a non-corrupt minimal state.

Proposition 6 Assume protection agents can receive maximal bribe, c+G. If βδ +

δ ≤ 1, then the set of equilibria Γcg (c) can be described as follows:

Γcg (c) =


{0} if c < c (ω)

{0, γcgL (c) , 1} if c ∈ [c (ω) , c̄ (ω)]
{1} if c > c̄ (ω)

(8)

If βδ + δ > 1, then the set of equilibria Γcg (c) can be described as follows:

Γcg (c) =


{0} if c < ccg (ω)

{0, γcgL (c) , γcgH (c)} if c ∈ [ccg (ω) , c (ω))
{0, γcgL (c) , 1} if c ∈ [c (ω) , c̄ (ω)]
{1} if c > c̄ (ω)

(9)

with γcgL (c) , γ
cg
H (c) ∈ (0, 1) , γcgL (c) < γcgH (c) .

The lower bound c (ω) on γ = 1 equilibria does not vary, regardless of whether

or not there is corruption, so nothing can be said in this range about the effects

that corruption may have on equilibrium existence. However, when βδ + δ > 1, the

ranges [c (ω) , c (ω)) and [ccg (ω) , c (ω)) do provide such an opportunity. Interestingly,
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corruption introduces the possibility of a minimal state for punishments that were

previously too low.

Proposition 7 Assume βδ + δ > 1. Then ccg (ω) < c (ω). Moreover, if c ∈£
c (ω) , c (ω)

¢
. Then, γcgL (c) < γL (c) , and γcgH (c) > γH (c) .

Corollary 8 Suppose that c ∈ £ccg (ω) , c (ω)¢. Trade can be supported in equilibrium
under corruption, whereas it cannot in its absence.

That corrupt government leads to there being less theft in a stable equilibrium

(i.e., that γcgH (c) > γH (c)) may appear surprising. For a given γ, however, thieves are

always better off when government is corrupt. Hence, for payoffs to be equal across

strategies, γ must be higher, to “encourage” the fair traders.23

In spite of corruption, the government continues to play a role that agents are

willing to pay for. Let Dcg (γ,G) be the willingness to pay for a government in the

case of the maximal bribe c + G. This demand for government is defined as the

difference between the value of a tradeable good in the protected marketplace and

that under anarchy, as in the previous section. This demand is still increasing in the

gains from trade, provided the safety of the marketplace (γ) is kept constant.

Proposition 9 Assume βδ + δ > 1; c ∈ £c (ω) , c (ω)¢ and γcgH (G, c) > γcg, where

1 > γcg > γ > 0. Then,

1. Dcg (γ,G) > 0;

2. Dcg (γ,G) is increasing in G keeping γ constant;

3. γcgH (G, c) is decreasing in G and increasing in c.

Here, again, in order for the government to capture the increasing willingness to

pay for its services, the punishment may have to be more severe as the gains from

trade increase, in the same sense as before.

23Clearly, robbers also prefer environments in which traders are numerous; it can be shown,
however, that the increase in the payoff of a fair trader is higher than that of the robber when γ
increases, provided γ is high enough to start with.
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4.2 Payoffs from Corruption

An interesting question is whether protection agents will engage in corruption, if they

are availed of the choice. We modify the model to address this question by simply

assuming that the agency is a revenue-maximizing agent.24 The agent is able to either

charge a lump-sum tax τ , or to appropriate a fraction ' of demand D in return for

its services. We focus on stable equilibria with trade.

First, if c ∈ [c (ω) , c̄ (ω)] , the only stable trading equilibrium is γ = 1, both in

corrupt and in non-corrupt environments. Therefore payoffs, demand for government

and government revenue are identical, since no bribes will be paid. A more interesting

case is where βδ + δ > 1, c ∈ £c (ω) , c (ω)¢ so that, in both environments, there are
stable trading equilibria, in which theft is not completely deterred. On one hand, the

proceeds from corruption amount for (1− γcg) (c+G)ω > 0 of the agency’s surplus.

On the other hand, the demand for its services falls in the presence of corruption (see

lemma 22.)

Proposition 10 Suppose that βδ + δ > 1, c ∈ £c (ω) , c (ω)¢ and γH > γcg. Com-

paring across stable equilibria, the protection agency’s return is higher in a corrupt

environment regardless of ' or τ , provided ', τ > 0.

If robbers can retain some gains from the deal with corrupt protection agents,

the payoff from being a robber is greater than in the case analyzed above. We

conjecture that the structure of equilibria will remain the same, but the decision

about whether or not to accept the bribes will not be as clear cut as in case of

maximal bribes. In the extreme, if robbers keep all the surplus, the analysis falls

back to the case of anarchy — in which there is no advantage to being a fair trader

— and so government is not sustainable: there is no demand for a protection agency

that neither re-instates property nor punishes robbers. A precondition for there to

be a demand for government, when this government is corrupt, is then that it be

“sufficiently corrupt” as to allow indicted thieves little bargaining power, according

to our conjecture.

24For a fixed intensity of observing trades, ω, (increasing which may be costly), maximizing revenue
amounts to maximizing profits.
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5 Welfare Implications

In this section, we close the model by extending it to an environment with repeated

production. Although the value function does not have as clear an interpretation as

before25; however, this environment is better suited to addressing the welfare implica-

tions of introducing the minimal state. In the extended “economy” we can determine

the quantity produced and consumed in a steady state and thus, compare this quan-

tity across equilibria with and without the government. As will be shown below, the

Minimal State, by protecting property rights, induces more production and consump-

tion (per a time period), thus increasing well-being of the farmers.

Additional goods produced with enforced property rights can be thought of as a

“real” source of the willingness to pay for the government.

5.1 Production Economy

We now turn to a more detailed analysis. Instead of a one-off trading opportunity,

farmers may travel between locations at their discretion. When in Farmland, they

may choose to produce the translatable good and, if they leave Market town, they

are free to return to Farmland to obtain more of the translatable good. Hence, in any

trading equilibrium, value functions represent the expected value not only of holding

one good but to being a farmer for the indefinite future, namely, producing a good

in a Farmland and selling it in the Market town. Travel between locations takes one

period, and is otherwise costless. If they choose to remain in Farmland, they earn

utility ψ — which is set to zero for now.

Normalize the total mass of agents to unity. The fraction of people in Market

town at time t is denoted by nt. Let x
t
in be the fraction of people entering Market

town, and xtout be the fraction of people leaving the market place at time t. The

evolution of the population in Market town nt is then

nt+1 = nt + xtin − xtout (10)

The exact values of these flows will depend on institutions, and on the actions of

25Recall that the value function introduced above has the interpretation of the discounted expected
value of holding a particular unit of the translatable good.
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agents.

Farmland

Market town

Xin

Xout

Figure 5: Geography of the Environment

The structure of equilibria in this closed model (economy with production) resem-

bles that in the pure exchange economy.

Proposition 11 In the “closed” environment, the set of equilibria Γcm(c) is:

Γcm (c) =


{0} if c ≤ ccm (ω)

{0, γcmL (c) , 1} if c ∈ (ccm (ω) , c̄cm (ω))
{1} if c ≥ c̄ (ω)

(11)

where γcmL (c) ∈ [0, 1] and ccm (ω) < c (ω) .

There are no longer stable equilibria in which γH (c) < 1. Observe that c
cm (ω) <

c (ω). This suggests an explanation: the future value of returning to Market town

increases the incentive to trade over robbing in perpetuity, as the delay in consumption

that robbers experience when caught affects not only their current presence in Market

town but also all future opportunities upon which they might return.

5.2 Aggregate Welfare

We now compare aggregate welfare across steady state equilibria.
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Suppose that a protection agency is present. It stands at the gate, and charges a

tax τ on all agents attempting to enter Market town. So long as the charge is below

the willingness to pay, producers come to trade in the Market town. We assume for

now that τ is a constant, and later discuss the factors that underlie tax determination.

So long as agents can profit from being there, the population of Market town nt

at time t evolves as

nt+1 = 1− β

2

£
2γ (1− γ) (1− ω) + 2γ2 + (1− γ)2 (1− ω)

¤
nt (12)

In equation (12), the flow into Market town is composed of the agents who receive

production opportunities 1 − nt; adding to these the agents that were already there

(nt) leaves 1 (= nt + xtin) . The flow out is a more complicated object. If the number of

agents in Market town is nt, the mass of active matches is
1
2
βnt. Conditional on such a

match, agents who leave Market town are, first, unsuccessful robbers who were victims

of an unobserved robbery; these matches are proportion (1− γ)2 (1− ω), and they

each release one agent. Second are fair traders who met fair traders, (their fraction

is γ2), each such match releasing two agents. Finally, there are fair traders who met

robbers and were victims of an unobserved robbery (fraction 2γ (1− γ) (1− ω)), a

match that releases one agent.

In a steady state, nt = n∗ (γ). The inflow is equal to the outflow at a steady state,

so that the fraction of the people in the Market Town at any given period is

n∗ (γ) =
2

(β − βω + βγ2 + βγ2ω + 2)
(13)

It is immediate that n∗ (γ) is decreasing in γ. Consequently, the fraction of people

producing (1− n∗ (γ)) in a stationary equilibrium is increasing with γ. As all the

goods produced are also consumed, we conclude that aggregating over individuals

consumption per period is increasing as well. Clearly, this implies that the agents are

better off (on average) in the presence of government that protects property rights

by inducing γ > 0 in the Market Town.

Potential punishment for being a robber reduces the value of time invested in

staying in the marketplace in an attempt to rob, and makes the alternative, producing,

more attractive in relative terms. The higher quantity of goods produced in the
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economy provides a “real” basis for the willingness to pay for the protection agency,

on top of the redistributive effects of deterring theft.

One could argue that punishment — however interpreted — is a burden upon ex-

ante identical agents. To evaluate improvements brought about by the government in

this case, we can not avoid introducing an explicit form of a social welfare function.

For demonstration purposes only we pick the traditional utilitarian form; sceptical

readers are invited to skip the rest of this subsection.

The aggregate per-period value of consumption is W (γ) = G (1− n∗ (γ)) . Incor-

porating punishment, the welfare measure is then

W c (γ) = G(1− n∗ (γ))− βcω (1− γ)n∗ (γ) (14)

The welfare criterion is formulated in terms of the well-being of an “average citizen”

who may decide to rob and can be caught and suffer punishment.

Proposition 12 Assume c ∈ [ccm (ω) , ccm (ω)]. Both W and W c are increasing in

γ.

Proposition (12) shows that the Minimal state always improves upon anarchy,

even if the cost of punishment is taken into account.

5.3 Taxation

Naturally, if the protection agency is a monopolist, it will set the highest possible

entrance fees to the Market town. This will be the same value as in the “non-closed”

model, D(γ,G). The reason for this is that D (γ,G) represents the expected value

of a particular good, which is the maximum the agency could voluntarily extract at

the gate; anything more would deter agents from leaving Farmland in the first place.

If we interpret arrival at the Market town as an attempt to participate in the formal

market, the most the government can extract voluntarily is the expected value of the

goods that agents produce and bring to formality.

However, it could be that there exist other potential Market towns. If agents

are fully informed, n∗ represents the aggregate mass of traders across all competing

Market towns in a steady state equilibrium, so long as γ is the same in all of them.
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Depending on market structure26, the portion of the surplus that farmers obtain

should be in the [0, D (γ,G)] interval, and farmers would be ex-ante strictly better

off under the minimal state (except in the case of monopoly).

6 Possible Further Extensions

It is appropriate at this juncture to discuss the robustness of the model to further

extensions. For example, suppose that there is a per-period utility flow ψ > 0 that

accrues to agents that remain in Farmland. This may be interpreted as an autarkic

payoff, or else as the payoff from less productive or limited trades that farmers may

carry out among members of their household or village, so that they do not need

a government to keep track of transactions but the quality or variety of goods is

different. Then, Proposition (11) holds subject to the restriction that, in each case,

the value of going to market town V g exceeds ψ
1−δ . The set of equilibria is censored

by the opportunity cost of going to Market town. Moreover, introducing tastes for

variety, allows to formulate the decision of a farmer about where to sell his good as

a trade-off between exposure to a wider range of available goods on the “formal”

market (with property rights enforced by the state) versus the taxes that are charged

by the state for participating in such a market. The same is the case for a travel cost

ξ, as they both represent opportunity costs of going to Market town. Interestingly,

this suggests that a high opportunity cost of going to Market town may be another

determinant of equilibrium selection, since agents will be unwilling to make the trip

unless they expect a relatively benign trading environment. For simplicity we have

concentrated on the case in which ψ = ξ = 0. Relaxing this assumption would also

have an impact on the magnitude of taxes that the minimal state can raise, as higher

values of ψ reduce the surplus agents can generate through the market.

More generally, ψ could be interpreted as a payoff an agent receives in an “in-

formal” sector, in which any economic activity is not subject to the “third party”

protection of property rights. The extra surplus generated by a well-functioning for-

mal market
¡
V g − ψ

1−δ
¢
is naturally smaller if the informal economy functions well.

26Bertrand competition suggests that a plurality of competitors is sufficient for farmers to avail
themselves of all the surplus.
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Hence, in environments with strong non-market systems of production and exchange

or with strong social networks — each of which can be interpreted as high levels of ψ

— the welfare-improving role of a Minimal State is diminished.

It is important to stress that the role of the “state” in this model does not nec-

essarily have to be played by the official government. The only implication that we

can draw from the analysis in this respect is that the emergence of trade (market

economy) gives rise to the institution of property rights. If protection is not (ade-

quately) provided by official organizations, it may emerge in other forms (as a part

of a “shadow” economy, mafia, etc.), as the demand for this service is not met. This

scenario can arise in countries in transition that move away from old institutions to a

market economy. One of the factors that strengthens the role of a mafia in that case is

the need to provide the missing “protection”. For instance, this may partially explain

Russia becoming a “criminal state”.27 Clearly, to better understand the workings of

the shadow economy within our framework, one should introduce “competition” be-

tween the protection agencies that could result in the rise of a “dominant protection

agency,” — as suggested in Nozick (1974).

7 Conclusions

We develop an environment in which the excludability of rival goods is endogenously

determined. Within such an environment, we show that the existence of potential

gains from excludable trade can generate a “niche” for a protection agency, analogous

to the Nozickian Minimal State. Individuals may be willing to be taxed in return for

a safer trading environment.

In contrast to the previous work, governmentally induced welfare improvements

are not due to the saved costs from centralizing protection, nor do they stem from the

re-allocation of resources previously wasted in an arms race. We focus on the ability

of the state to resolve a Prisoner’s Dilemma that arises under anarchy: robbing

is a dominant strategy, although everybody would prefer to be surrounded by fair

traders. Government’s role in this model is simple: it can observe some interactions,

27..organized crime presently controls about 40 percent of the Russian gross domestic product..
”Economic Crime and the Security of Citizens, Society, and the State.” (1995) Bisnes i bezopas-

nosti v Rossii, No. 1.
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punish detected robbers and re-instate property to its owners. By so doing it imposes

direct or indirect costs on the robbers, thus encouraging more agents to trade fairly.

Mutually beneficial trades occur more often, and more is produced and consumed.

The Invisible Hand requires a Visible Fist.

We find that the willingness to pay grows with gains from trade, even if protection

agents are corrupt. Hence, even if the “protection technology” is fixed, high enough

gains from trade may generate sufficient demand for a protection agency to arise.

We do not model the “supply” of protection in detail: whether it is provided by a

benevolent or exploitative agency is not the focus of our analysis.28

It is true that introducing a “third party” (observer) is not the only solution to

the Prisoner’s Dilemma that lies at the core of the market transactions. Aside from

various monitoring and punishment systems, certain rituals or social relations may be

the mechanisms whereby a socioeconomic entity resolves this problem, and different

systems will go some way towards improving aggregate welfare beyond that resulting

simply from repetition of the Nash outcome at every meeting. Even in a repeated

random matching environment, as Kandori (1995) shows, decentralized punishments

may sustain cooperation in “large” economies. Their effectiveness is technologically

limited, though. First, agents are required to display a summary of their past behavior

before a new encounter, so that there is a need for a truthful “book-keeping” agency.

Second, the discount factor restricts the severity of punishment that a community

can impose on any deviators and, consequently, the level of cooperation that will be

achieved. We show that “impatient societies” or those that can not afford or trust

the “book-keepers” may yet benefit from a central “protection” agency. We leave the

potentially interesting interaction between social pressures and a central authority for

future work.

Although it is beyond the scope of this paper, it could also be interesting to in-

vestigate corruption considering an explicit model of government organization and

the corresponding relationship between government composition and behavior.29 An-

other interesting possibility is investigate how separate institutional structures over

28The latter interpretation may shed a light on formation of hierarchies in the underground
economies.
29See, for example, Jean Hindriks and Muthoo (1999) for the analysis of corruption related to

income tax reports.
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which agents have an option may influence each other.

Finally, the framework is suitable for the analysis of other trade-related govern-

ment functions, for example, the introduction of trade-related public goods.

A Appendix

Proof of lemma 1. Recall that a payoff to an agent is

V a = βmax {ua (trade) , ua (rob)}+ (1− β) δV a. (15)

But

γG = ua (trade) < ua (rob) =
1

2
(γ + 1) (G+ δV a) , (16)

for any γ ∈ [0, 1] , provided V a ≥ 0. The last inequality is true, since an agent can
always opt for ”trade” in every period, thus, ensuring a non-negative payoff

V a
t = β

γG

1− δ(1− β)
≥ 0

A.1 Notation

The value of a good held by a perpetual trader (trading forever) is

V g
t (γ; c) ≡ β

Gγ

1− δ + βδ − βδ (1− γ)ω
(17)

and that of a chronic robber (robbing in every period) is

V g
r (γ; c) = β

(γ + 1) (G (1− ω)− cω)

βδ (1− ω) (1− γ) + 2(1− δ)
. (18)
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Let

F (γ; c) = κ (γ) [V g
t (γ; c)− V g

r (γ; c)] ; (19)

κ (γ) ≡ (βδ (1− ω) (1− γ) + 2(1− δ)) (1− δ + βδ(1− (1− γ)ω)) .

Note that κ > 0. Therefore the sign of F (γ; c) coincides with the sign of the difference

V g
t (γ; c) − V g

r (γ; c) . Finding roots of F that lie in [0, 1] is equivalent to finding

equilibria of in which agents are indifferent between actions. Note that F can be

represented in the following way:

F (γ; c) = γ2aF (c) + γbF (c) + kF (c) , (20)

kF (c) = (cω −G(1− ω)) (βδ(1− ω) + (1− δ)) ;

bF (c) = G(1− δ) +Gω(1− δ) + cω(1− δ) + cβδω;

aF (c) = −δβ ¡G(1− ω2)− cω2
¢

Note that bF (c) is positive as long as c ≥ c̃ = (βδ − δ + 1)−1 ω−1 (ω + 1) (δ − 1)G,
where c̃ < 0.

A.2 Auxiliary Results

Lemma 13 If F (0; c) < 0 then γ = 0 is an equilibrium. If F (1; c) > 0 then γ = 1

is an equilibrium.

Proof of Lemma 13. Recall that the sign of F (γ; c) is the same as the sign of

V g
t (γ; c)− V g

r (γ; c) .

Assume the difference V g
t (0; c)− V g

r (0; c) is negative, then everybody robbing in

every period is a stationary subgame perfect Nash equilibrium. Indeed, the difference

between the value of trading once and robbing thereafter and the value of robbing all

the time is negative as well:

Ṽ g
r (0; c)− V g

r (0; c) = (21)

= β (γG+ (1− γ) [ωδV g
r ]) + (1− β) δV g

r − V g
r |γ=0 =

= V g
r (−βδ(1− ω)− (1− δ)) < 0,
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provided V g
r > 0. The last inequality stems from the fact that V g

t (0; c)−V g
r (0; c) < 0

(by assumption) and V g
t (0; c) = 0 by definition.

Clearly, if V g
t (γ; c) − V g

r (γ; c) < 0 for a range of γ : γ 6= 0, then none of the

values in the range is consistent with a stationary subgame perfect Nash equilibrium.

Similarly V g
t (1; c) − V g

r (1; c) > 0 implies γ = 1 is an equilibrium, as the one shot

deviation (rob and then trade) is unprofitable:

Ṽ g
t (1; c)− V g

t (1; c) < 0, (22)

where

Ṽ g
t (1; c) = β (G(1− ω)− cω + δV g

t (1; c)) + (1− β) δV g
t (1; c) . (23)

Indeed,

Ṽ g
t (1; c)− V g

t (1; c) = (24)

= Gβ −Gβω − cβω − V g
t (1; c) (1− δ) <

< Gβ −Gβω − cβω − V g
r (1; c) (1− δ) = 0

Lemma 14 If c ≥ c(ω), then γ = 1 is an equilibrium.

Proof. Given γ = 1, the value of trading forever is

V g
t (1; c) = β

G

1− δ + βδ
, (25)

while the value of robbing forever is

V g
r (1; c) = β

(G (1− ω)− cω)

1− δ
. (26)

Clearly, if F (1; c) = V g
t (1; c) − V g

r (1; c) = 0, then γ = 1 is an equilibrium. If

F (1; c) > 0 then γ = 1 is an equilibrium by lemma 13. But F (1; c) > 0 if and only if

c > c (ω) ≡ G (βδ(1− ω)− ω(1− δ))

ω (βδ + 1− δ)
. (27)
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Lemma 15 If c ≤ c̄(ω), then γ = 0 is an equilibrium.

Proof. The value of trading forever provided γ = 0 is zero. Thus, for F (0; c) ≤ 0,
it is sufficient to have the value of robbing forever to be positive positive, V g

r (0; c) ≥ 0,
which is equivalent to requiring

G (1− ω)− cω ≥ 0, (28)

so that

c ≤ c̄ (ω) ≡ G (1− ω)

ω
. (29)

The conclusion then follows, again, by lemma 13.

Lemma 16 If c > c̄ (ω) there is a unique equilibrium γ = 1.

Proof. If c ≥ G(1−ω2)
ω2

, then F (γ; c) > 0 for any γ ≥ 0; in particular, F (1; c) > 0,
which implies γ = 1 is an equilibrium by lemma 13. If c <

G(1−ω2)
ω2

, but c > c̄ (ω) , then

kF > 0, bF > 0, but aF < 0 in representation (20) . In this case the quadratic poly-

nomial F (γ; c) has two roots: one positive and one (strictly) negative. It is strictly

positive in between these two roots. But as c > c̄ (ω) > c (ω) = βδ(1−ω)−ω(1−δ)
(βδ−δ+1)ω G, it

must be the case that F (1; c) > 0 by lemma (14) . Hence zero and one are strictly in

between the two roots of the parabola, and F is above zero for any γ ∈ [0, 1] . Thus,
the only equilibrium in this case is γ = 1.

Corollary 17 c (ω) < c̄ (ω) : both equilibria (γ = 0, γ = 1) exist for an open set of

punishments.

Lemma 18 γH (c) is increasing in c and γL (c) is decreasing in c.

Proof. First note that F (γ, c) , is increasing in c. Second, F (γ, c) is a quadratic

polynomial in γ. For c < c (ω) the coefficient of the quadratic term is negative (as

in graph 2), so for any fixed c function F (γ, c) has a unique maximum at some γ∗.

Therefore F is decreasing in γ for γ ≥ γ∗. Since γH ≥ γ∗, γH and c should be

positively related by the Implicit Function Theorem. Similarly γL ≤ γ∗ is decreasing

in c.
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Claim 19 γL (c) is unstable and γH (c) is stable.
30

Proof. Fix c0 in the range in which γL is well defined. Assume that the fraction

of fair traders is γL (c0) . Let c1 = c0 + ε, ε > 0. Then F (γL (c0) , c1) > 0, so that the

fraction of the fair traders should increase.31 It will continue to grow till it reaches

γH (c1) as γL (c1) < γL (c0) < γH (c1) and F (γH (c1) , c1) = 0. F (γ, c1) < 0 for

γ > γH (c1) ,
32 so agents should gravitate towards γH(c1) also. If the punishment is

reduced even marginally at γL (c0) , then F (γL (c0) , c1) < 0, thus robbing becomes

more attractive. As the last inequality is satisfied for all γ < γL (c0) , the new equi-

librium will be γ = 0. Thus, slightly more punishment will increase the proportion

of fair traders “by a lot” and a small decrease in severity of punishment will elimi-

nate fair trade. In no event will the perturbed equilibrium coincide with γL (c1) . As

for the equilibrium with γ = 0, it will not change as long as c < c (ω), as in this

case F (0, c) < 0, implying that being a robber is better than being a fair trader.

Recall that the opposite is true if the punishment is high, c ≥ c (ω) , moreover, in

this case trading fair is a dominant strategy. This is independent of the fraction of

fair traders in the population: F (γ, c) > 0, if c > c (ω) for any γ. Finally, if in an

equilibrium with γH (c0) the punishment is slightly increased to c1, then as before

F (γL (c0) , c1) > 0, so it is more worthwhile to be a fair trader than a robber. As

the fraction of fair traders increases to γH (c1) ,
33 the equilibrium is restored due to

the fact that F (γH (c1) , c1) = 0 and F (γ, c1) < 0 for γ > γH (c1) . Similar argument

holds for a decrease in punishment starting from γH .

A.3 Main Results

Proof of Proposition 2. Recall, that the roots (γ) of polynomial F (γ; c) defined

in (19) correspond to the equilibria. Moreover, by lemma 13, F (1; c) > 0 indicates

30We could re-formulate this discussion in terms of small perturbations in γ, which leads to the
same conclusions. The discussion is deliberately left informal. See DeMichelis and Germano (2000)
for a formal approach that can be applied to this model.
31All that is required is a continuous dynamic that satisfies this monotonicity restriction and

vanishes at γ such that F (γ; c) = 0.
32This argument is based on the assumption that γH (c1) < 1. Clearly, if this is not the case, so

that γH (c1) ≥ 1, then the all the population will trade fairly, thus not returning to γL (c1) either.
33Recall that γH and c are positively related, so that γH (c0) < γL (c1) , c1 > c0.
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that γ = 1 is an equilibrium and F (0; c) < 0 implies γ = 0 is an equilibrium. Recall

representation (20) . Clearly, kF < 0, if

c < c̄ (ω) = G
(1− ω)

ω
, (30)

while bF > 0, and aF < 0 if

c <
G (1− ω2)

ω2
. (31)

The polynomial is maximized at γ = γ∗, where

γ∗ =
1

2

(G(1− δ) +Gω(1− δ) + cω(1− δ + βδ))

(−Gω2 +G− cω2) βδ
. (32)

If γ∗ > 1, then F (1; c) > 0, as the upper root should be above unity. Evidently γ∗

> 1 if and only if

c > c∗ ≡ (2βδ(1− ω)− (1− δ))

(βδ − δ + 2βδω + 1)

(ω + 1)G

ω
. (33)

To derive the lower bound, note that there are two possible cases that can lead the

polynomial F (γ; c) to be negative for all γ ∈ [0, 1] . The first case occurs when γ∗, at

which F is maximized, is above unity. In this case F hits zero at most once between

zero and one. Thus, if F (1; c) < 0, then it is negative for any γ ∈ [0, 1] . Secondly,
if γ∗ < 1 and F (γ∗; c) < 0, then, F (γ; c) < 0 for any γ. We will start with the first

case, as it generates a higher lower bound on c, given that γ∗ strictly increases in c

(which can be verified directly from (32)).

Lemma 20 If βδ + δ ≤ 1 and c < c (ω) , then there is a unique equilibrium γ = 0.

Proof. Note that if c < c (ω) , then F (1; c) < 0. If c > c∗, then γ∗ > 1. Therefore

if c∗ < c (ω) , then c ∈ [c∗, c (ω)] implies there is a unique equilibrium γ = 0 by the

above argument. Assume βδ + δ < 1. Then

c∗ − c (ω) = (34)

=
(βδ(1− ω) + (1− δ)) (δ + βδ − 1)
(βδ + 1− δ + 2βδω) (βδ + 1− δ)

G

ω
< 0, (35)
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as required. It is left to show that in this case if c < c∗, then the equilibrium

remains unique, γ = 0. Consider c = c∗. As c∗ < c (ω) , and γ∗ = 1, it implies

F (γ∗ (c∗) ; c∗) < 0. As γ∗ is the maximand of F, it follows that F (γ; c∗) < 0 for any

γ. Now consider c0 < c∗. It can be easily shown that F decreases in c for any γ.

Therefore, F (γ; c0) < 0. The case of equality βδ + δ = 1 is trivial. This completes

the proof of proposition (2) .

Lemma 21 If βδ + δ > 1 and c < c (ω) , then there is a unique equilibrium γ = 0.

Proof. If βδ+δ > 1 then c∗ > c (ω) , therefore, for c < c (ω) < c∗ first, F (1; c) < 0

and, second, γ∗ < 1. Therefore, the parabola F (γ; c) can cross zero twice if the

discriminant

H (c;β, δ, ω) ≡ b2F (c)− 4aF (c) kF (c) (36)

is positive. Whenever H is negative, F (γ; c) lies below zero for any γ and, in this

case, the only equilibrium is γ = 0. It remains to derive lower bound, c (ω) , on the

severity of punishment that assures that H (c; β, δ, ω) < 0. Clearly, H (c; β, δ, ω) is

quadratic in c :

H (c;β, δ, ω) = c2aH (β) + cbH (β) + kH (β) , (37)

where

kH (β) = (G−Gδ +Gω −Gδω)2 − (38)

−4Gβδ (1− ω)
¡
Gω2 −G

¢
(δ − βδ + βδω − 1) ; (39)

bH (β) = G

Ã
2 (ω − δω + βδω) (ω − δω + 1− δ) +

+4βδ (βδ(1− ω) + 1− δ)ω (2ω + 1) (1− ω)

!
; (40)

aH (β) = ω2 (δ − βδ + 2βδω − 1)2 (41)

Since aH (β) > 0, bH (β) > 0, in order to have a non-empty interval of values c that

make the polynomial H (c; β, δ, ω) negative, it has to be the case that kH (β) < 0. In
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turn, kH (β) is quadratic in β :

kH (β) = ak (δ)β
2 + bk (δ) β + kk (δ) , (42)

kk (δ) = G (1− δ + ω − δω)2 ; (43)

bk (δ) = 4G2δ (1− δ) (1− ω)
¡
ω2 − 1¢ ; (44)

ak (δ) = 4G2δ2 (1− ω)2
¡
ω2 − 1¢ , (45)

Observe that kk (δ) > 0, bk (δ) < 0, ak (δ) < 0. Thus, the polynomial kH (β) has two

roots, as long as kk (δ) , bk (δ) , ak (δ) 6= 0, . The lower root is negative, while the

upper one,

βH =
−bk (δ)−

q
(bk (δ))

2 − 4ak (δ) kk (δ)
2ak (δ)

(46)

βH = β1 (ω) ≡
(1− δ) ((ω − 1)2 −

q
2 (1− ω)3)

2δ (ω − 1)3 (47)

is positive. It is also below unity as long as

δ > δ1 (ω) ≡
p
2 (1− ω)− (1− ω)p

2 (1− ω) + (1− 2ω) (1− ω)
(48)

For δ > δ1 (ω) and β > β1 (ω) , kH (β) < 0. In this case polynomial H (c; β, δ, ω) has

two roots of opposing sign. Recall that aH (β) > 0, so that H (c; β, δ, ω) is negative

for all the values of c in between the two roots, which means F does not have real

roots (γ) and is always negative implying that the only equilibrium is γ = 0. If c is

below the lower root of H (c), quadratic polynomial F (γ) has negative roots. Thus

as long as c is below the upper (positive) root of H (c; β, δ, ω) , the only equilibrium

is γ = 0. Denote this root by c (ω) :

c (ω) ≡ −bH +
p
b2H − 4aHkH
2aH

. (49)
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Finally, assume that βδ + δ > 1 and

c (ω) < c < c (ω)

We have to show that in this case there are three equilibria: γ = 0, and a couple

γL < γH < 1. The two roots of the polynomial F (γ; c) , are

γL (c) =
−bF (c) +

p
H (c; β, δ, ω)

2aF (c)
; (50)

γH (c) =
−bF (c)−

p
H (c;β, δ, ω)

2aF (c)
, (51)

where H (c; β, δ, ω) is as defined in (36). Condition c > c assures that H (c; β, δ, ω)

is strictly positive. Therefore γL (c) , γH (c) are real. As aF (c) < 0 for c < c̄ (ω) and

kF (c) < 0, we have 0 < γL (c) < γH (c) .

Since βδ + δ > 1, c∗ > c, thus c < c∗, which implies that the maximand of F,

γ∗, is less than one. Moreover, as c < c, F (1, c) < 0, this, along with the fact that

aF (c) < 0 and that the discriminantH is positive guarantees that γH (c) < 1. Finally,

F (0, c) < 0, as kF (c) < 0, which justifies the first equilibrium (γ = 0). Lastly, the

uniqueness of γ = 1 for c > c̄ is justified by lemma (16) .

Proof of Propositions 4, 5 . Recall that there is no trade in the anarchy, γ = 0

so that V a = βG
βδ−2δ+2 . On the other hand, the agency has induced fair trade with some

probability γ > 0, so that V g = β Gγ
1−δ+βδ−βδ(1−γ)ω . We define the difference between

the two as the willingness to pay for the protective agency, or demand D (γ,G):

D (γ,G) =
δ − βδ + βδω − 1 + γ (βδ − βδω + 2− 2δ)
(βδ − βδω + βγδω + 1− δ) (βδ − 2δ + 2) Gβ (52)

The demand is positive as long as

γ > γ ≡ βδ − βδω + 1− δ

βδ − βδω + 2− 2δ . (53)

Observe that γ < 1. Moreover, provided γ > γ, the demand D (γ,G) is positively

related to the gains from trade, G, keeping γ constant, ∂D(γ,G)
∂G

> 0.

Proof of lemma 5. It is enough to show that γH (G) is decreasing in G and
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that D (γ,G) is increasing in the proportion of fair traders, γ. The latter stems from

the fact that
∂D (γ,G)

∂γ
=

Gβ (βδ − βδω + 1− δ)

(βδ − δ − βδω + βγδω + 1)2
> 0 (54)

It is left to analyze the response of equilibrium value γ to an increase in the gains

from trade, G.

Recall that condition F (γ; c) = 0 describes equilibria, provided that the values

of γ satisfying this condition lie within [0, 1] interval. We concentrate on the upper

equilibrium, γ = γH (see the discussion on page 23). It will be convenient to represent

all the variables as functions of G, which we’ll do (slightly abusing notation). By (51) ,

γH (G) = γ∗ (G) +
1

2

p
K (G), (55)

where

K (G) ≡ H (G)

|aF (G)|2
(56)

H (G) = b2F (G)− 4aF (G) kF (G) , (57)

γ∗ (G) = − bF (G)

2aF (G)
, (58)

kF (G) = (cω −G(1− ω)) (βδ(1− ω) + (1− δ)) ; (59)

bF (G) = G(1− δ) +Gω(1− δ) + cω(1− δ) + cβδω; (60)

aF (G) = −δβ ¡G(1− ω2)− cω2
¢

(61)

It is easy to check that

γ∗0 (G) =
1

2

cω (ω + 1) (δ − βδ + βδω − 1)
δβ (G(1− ω2)− cω2)2

< 0 (62)
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and

K 0 (G) =
d

dG

µ
b2F (G)

|aF (G)|2
+
4kF (G)

|aF (G)|
¶
= (63)

= 2T (G)

µ
(ω + 1)N (G)

δβ (G(1− ω2)− cω2)
+ 2 (1− ω)

¶
< 0, (64)

where

N (G) = G (1− δ) +Gω (1− δ) + cω (1− δ) + cβδω, (65)

T (G) =
cω (δ − βδ + βδω − 1)
δβ (G(1− ω2)− cω2)2

. (66)

Then

γ0H (G) = γ∗0 (G) +
K 0 (G)p
K (G)

< 0 (67)

Then
∂D (γ,G)

∂γ
γ0H (G) < 0 (68)

It has been shown that γH is increasing in c, thus the claim follows.
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B Proofs of Additional Statements

Proof of Proposition 6. First, we have to assume that c > 0. The value of trading

forever and robbing forever in this environment, correspondingly are

V cg
t (γ) = β

γG

1− δ(1− β)
(69)

V cg
r (γ; c) =

β (γ + 1) ((1− ω)G− ωc)

2 (1− δ) + βδ(1− γ)
. (70)

As before, if c > c (ω) , we have

V cg
r < 0 ≤ V cg

t , (71)

so the only equilibrium is γ = 1. Moreover, this is an equilibrium as long as V cg
t (1)−

V cg
r (1; c) ≥ 0, which is equivalent to setting, as before,

c > c (ω) =
(βδ(1− ω)− ω(1− δ))G

(βδ − δ + 1)ω
(72)

Now assume c < c (ω) = G (1− ω) /ω.

The difference between the two value from trading fairly, V cg (trade) , and that

from robbing,V cg (rob) , should be equal to zero in the equilibrium. This is equivalent

to requiring that F cg (γ, c) = 0, where

F cg (γ, c) ≡ (2 (1− δ) + βδ(1− γ)) γG− (γ + 1) ((1− ω)G− ωc) (1− δ(1− β))

(73)

Again, F cg (γ, c) is a quadratic polynomial in γ :

F cg (γ, c) = k1 + b1γ + a1γ
2, (74)

where

k1 (c) = − (G (1− ω)− cω) (1− δ (1− β)) ; (75)

b1 (c) = G (βδ − 2δ + 2)− (G (1− ω)− cω) (1− δ (1− β)) (76)

a1 = −Gβδ (77)
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k1 (c) < 0, a1 (c) < 0. If b1 (c) < 0, then F
cg (γ; c) < 0 for all γ > 0. Thus, equilibrium

is γ = 0.

If b1 (c) ≥ 0, in order to have roots, the polynomial has to satisfy Hcg (β; δ, c, ω) ≡
b21 (c)−4a1 (c) k1 (c) ≥ 0 also. This inequality is satisfied for all the relevant parameter
values. But, similar to the proof of proposition 2, Hcg (β; δ, c, ω) is quadratic in c :

Hcg (β; δ, c, ω) = acc
2 + bcc+ kc, (78)

ac = ω2 (1− δ (1− β))2 > 0; (79)

bc = 2ωG (βδ − δ + 1) (ω − δω + 2βδ + βδω + 1− δ) > 0; (80)

kc = −4G2βδ (1− ω) (1− δ (1− β)) + (81)

+ (G (βδ − 2δ + 2)−G (1− ω) (1− δ (1− β)))2 . (82)

Observe that if

c = c̃(ω) ≡ G (1− ω)

ω
−G

(βδ + 2(1− δ))

ω
(1− δ (1− β)) , (83)

then b1 (c) = 0, therefore F
cg (γ, c) < 0 for all γ, thus its discriminant Hcg (β; δ, c, ω)

is strictly negative. Therefore, it always has real roots. If c is below the lower root,

then F cg(γ; c) has negative (γ) roots. (Again, this means that the only equilibrium

is γ = 0). If c is above the upper root of H, then F cg(γ; c) has positive (γ) roots.

Moreover, if kc is positive, H can have only negative roots. If kc is negative, H has

two roots (c) of the opposite sign. Denote the upper root of H by

ccg (ω) ≡
−bc +

q
(bc)

2 − 4ackc
2ac

. (84)

It is clear that ccg (ω) > c̃(ω), so that for c > ccg (ω) coefficient b1 (c) is strictly

positive. Similarly to the parallel argument in the proof of proposition 2, ccg (ω) <

G (1− ω) /ω. To summarize, if c > ccg (ω) , F cg(γ; c) has two positive roots γL < γH

(as k1 (c) < 0, a1 (c) < 0 and b1 (c) > 0). In addition, F cg (γ; c) < 0 for γ < γL.

To have a positive fraction of traders in equilibrium we need to assure that at least

γL < 1. Similar to the case discussed in the proof of proposition (2) define γ∗cg, the
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maximizer of F cg (γ; c) ,

γ∗cg =
1

2δβG
(G−Gδ +Gω + cω(1− δ + βδ)−Gδω +Gβδω) (85)

It is easy to check that γ∗cg > 1 iff c > c∗cg, where

c∗cg =
G (2βδ + δω − βδω + δ − (1 + ω))

ω(1− δ + βδ)
(86)

Note that the difference

c∗cg − c =
(δ + βδ − 1)G
(βδ − δ + 1)ω

(87)

is negative whenever δ+βδ ≤ 1. In this case there are three equilibria, {0, γL, 1} with
γL ≤ 1 whenever c ∈ [c (ω) , c̄ (ω)], with unique equilibrium γ = 0 for c < c (ω) and

unique equilibrium γ = 1 for the values c > c̄ (ω) .

In the complementary case, δ+βδ > 1, there is a range of values, c ∈ £ccg (ω) , c (ω)¤ ,
for which the three equilibria are {0, γL, γH} , where both γL and γH are below unity:
c < c (ω) < c∗cg (ω) implies γ

∗
cg < 1 and F cg (1; c) < 1, assuring that both roots (if

real) of parabola F cg (γ; c) should be below unity. Condition c > ccg (ω) assures that

the roots are real. Finally, we have to check that ccg (ω) < c (ω) . Indeed, at c = c (ω),

expression F cg (1; c) = 0 and γ∗cg (c (ω)) < 1. Therefore, F cg
¡
γ∗cg (c (ω)) ; c (ω)

¢
>

0. Moreover, F cg (γ, c) is monotonically increasing in c. At ccg (ω) the expression

F cg (γ; c) is non-positive for any γ ∈ [0, 1] , thus F cg
¡
γ∗cg (c (ω)) ; c

cg (ω)
¢ ≤ 0. More-

over, as by (85) γ∗cg (c) is strictly increasing in c, F cg
¡
γ∗cg (c (ω)) ; c

cg (ω)
¢
< 0. It

follows that ccg (ω) < c (ω) .

Proof of Proposition 7. Assume c ∈ [max©c (ω) , ccg (ω)ª , c (ω)). Let
F x (γ, c) ≡ F cg (γ, c)− F (γ, c)

ωβδ
(88)

= (1− γ) (Gω −G+ cω +Gγω + cγω) (89)

First, F x(1, c) = 0 for any c, so that F cg (1, c) = F (1, c) = Z(c). Second, as was shown

in lemma 14, F (1, c (ω)) = 0. Third, F cg (γ, c) and F (γ, c) are both strictly increasing

in c (for γ ∈ [0, 1]), so that, ∀c < c (ω), Z(c) < 0. Note also that F x(0, c) < 0 (if

c < c̄ (ω)), so that F cg (0, c) < F (0, c). As for the second root of F x (γ, c) , denote it
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by γ̂,

γ̂ =
G

ω (G+ c)
− 1. (90)

This root, γ̂, is positive iff

c <
G (1− ω)

ω
= c̄ (ω) (91)

which is consistent with the assumptions in the statement of the proposition, as

c < c (ω) < c̄ (ω) . Observe that F cg(bγ, c) is negative if c < c (ω). Indeed,

F cg(bγ, c) = (Gω + cω −Gβδ −Gδω − cδω +Gβδω + cβδω)

(G+ c)2 ω2
(G(1− ω)− cω)G

(92)

Provided (G(1− ω)− cω) > 0, so that c < c̄ (ω) ,

F cg(bγ, c) ≤ 0 (93)

if

Gω + cω −Gβδ −Gδω − cδω +Gβδω + cβδω ≤ 0 (94)

The last inequality holds iff

c ≤ (βδ(1− ω)− ω(1− δ))G

(βδ − δ + 1)ω
= c (ω) , (95)

which is, again, consistent with the assumptions. Thus, F cg(bγ, c) is indeed negative.
To recapitulate, we know that F x (γ, c) has two positive roots (one equals 1) and that

in both cases the roots are in a region where F cg = F < 0.

There are now two possibilities. First, assume

c >
G (1− 2ω)

2ω
= ĉ (ω) . (96)

Note that ĉ (ω) < c (ω) whenever δ+ βδ > 1, which is true by assumption. So, if c >

ĉ (ω) , then by definition (90) , the two functions F and F cg cross at γ̂ less than unity.

Therefore, as the difference F x is positive between the roots, we have F cg (γ, c) >

F (γ, c) for any γ ∈ (γ̂, 1) . As, we assumed, c ∈ [max©c (ω) , ccg (ω)ª , c (ω)), both
quadratic polynomials F and F cg have two real roots strictly between zero and one.
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It follows that the lower root of F cg (γ, c) should be below the lower root of F (γ, c)

and the opposite is true for the upper root, i.e., γcgH (c) > γH (c) , which corresponds

to the claim in the proposition.

Second, consider the complementary case to (96), c ≤ ĉ (ω) . The goal is to show

that neither F nor F cg have no positive roots in this range, in other words, ĉ (ω) <

max
©
c (ω) , ccg (ω)

ª
. Indeed, take c = ĉ (ω) , then the only intersection point of F

and F cg is γ̂ = 1 :

F x (γ, ĉ) =

µ
−1
2

¶
G (γ − 1)2 . (97)

It follows that F cg (γ, ĉ) ≤ F (γ, ĉ) for any γ and the two are equal and tangent at

γ = 1.

Moreover, the polynomial

F (γ, ĉ) =
1

2
G (δ − βδ + βδω − 1) + 1

2
Gγ2 (βδω − 2βδ) + 1

2
Gγ (βδ − 3δ − 2βδω + 3)

(98)

has only negative roots, and therefore, is negative for γ ∈ [0, 1] . Indeed, its discriminant,¡
1
2
G
¢2
(δ + βδ − 1) (9δ − 7βδ + 8βδω − 9) is positive (for the relevant range of param-

eters, δ + βδ > 1) only if
7

8
≤ 9

8βδ
− 9

8β
+
7

8
≤ ω. (99)

But in this case all coefficients of F (γ, ĉ) are negative, so it can have only negative

roots. To sum up, F cg (γ, ĉ) ≤ F (γ, ĉ) < 0 for γ ∈ [0, 1] . As both F and F cg decrease

in c for γ ∈ [0, 1] , we conclude that neither F (γ; c) nor F cg (γ; c) have (γ) roots in

the interval [0, 1] if c ≤ ĉ.

Finally, we have to show that max
©
c (ω) , ccg (ω)

ª
= c (ω) . Thus, we need to

show that there is a range of punishments c for which F cg (γ; c) has (γ) roots in the

interval [0, 1] , but F (γ; c) does not. For that consider function φ (c) defined as the

first derivative of F at the point of intersection between F and F cg, γ̂ (c) ,

φ (c) ≡ F 0 (γ̂ (c) ; c) (100)

φ (c) = 2
¡−δβ ¡G(1− ω2)− cω2

¢¢µ G

ω (G+ c)
− 1
¶
+ (101)

+G(1− δ) +Gω(1− δ) + cω(1− δ) + cβδω (102)
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Clearly, φ (c) is continuous in c for c > −G. But the range of punishments we are
considering falls into this category, as ĉ = G(1−2ω)

2ω
> G, clearly. (Besides, if c+G ≤ 0,

a thief will never pay a bribe.) Moreover,

φ (c (ω)) =
(βδ − δ − βδω + 1) (δ + βδ − 1)G

(βδ − δ + 1)
> 0

φ (ĉ (ω)) =

µ
−3
2

¶
G (δ + βδ − 1) < 0

Thus, there is a cφ such that φ (cφ) = 0. (It is easy to show that this value uniquely

determined.) Similarly, define θ (c) as

θ (c) ≡ F cg0 (γ̂ (c) ; c) ; (103)

θ (c) = 2 (−Gβδ)
µ

G

ω (G+ c)
− 1
¶
+ (104)

+G (βδ − 2δ + 2)− (G (1− ω)− cω) (1− δ (1− β)) (105)

Then,

θ (c (ω)) = G (δ + βδ − 1) > 0; (106)

θ (ĉ (ω)) = φ (ĉ (ω)) =

µ
−3
2

¶
G (δ + βδ − 1) < 0, (107)

which, again, implies there is a unique cθ such that φ (cθ) = 0. Now,

θ (c)− φ (c) = ωδβ (2Gω −G+ 2cω) > 0 (108)

if c > ĉ (ω) . Therefore, θ (cφ) > 0. But then F (γ̂ (cφ) , cφ) < 0 (by (93) and definition

of γ̂). As F 0 (γ̂ (cφ) , cφ) = 0, it follows that F (γ, cφ) < 0 for any γ. It follows that

cφ < c (ω) , at which F has only one (γ) root. Moreover, it follows that at c = c (ω)

both θ
¡
c (ω)

¢
and φ

¡
c (ω)

¢
are positive, which means that the first intersection (γ̂)

between F and F cg occurs when both are increasing and F cg
¡
γ; c (ω)

¢
> F

¡
γ; c (ω)

¢
for γ ∈ (γ̂, 1) . Thus, F cg

¡
γ; c (ω)

¢
has to have two distinct roots. In other words,

c (ω) > ccg (ω) , where, recall, ccg (ω) is the value of punishment at which F cg (γ; c)

has only one root between zero and unity (i.e., its discriminant is zero).

42



Proof of Proposition 9. In this case the equilibrium demand for government

is

Dcg (γ,G) = β
Gγ

1− δ + βδ
− βG

βδ − 2δ + 2 = (109)

=
(2γ + δ − βδ − 2γδ + βγδ − 1)
(βδ − 2δ + 2) (βδ − δ + 1)

Gβ,

which is, again proportional to the gains from trade and is positive (an increasing in

G) iff

γ > γgc ≡ 1− δ + βδ

2− 2δ + βδ
. (110)

Note that the lower bound on the equilibrium γ now is higher that under non-corrupt

government (for strictly positive ω), γgc > γ.

It is also immediate from the definition of the demand (109) that it increases in

γ.

As for the last claim, similar to lemma 5, it enough to show that both γ∗cg (G)

and Hcg (G) / (a1 (G))
2 are decreasing in G, where Hcg (G) ≡ b21 (G)− 4a1 (G) k1 (G)

is the discriminant of the quadratic polynomial F cg (γ) with the coefficients

k1 (c) = − (G (1− ω)− cω) (1− δ (1− β)) ; (111)

b1 (c) = G (βδ − 2δ + 2)− (G (1− ω)− cω) (1− δ (1− β)) (112)

a1 = −Gβδ. (113)

In the view of the definition (85))

d

dG

¡
γ∗cg (G)

¢
=

µ
−1
2

¶
δ−1β−1G−2 (βδ − δ + 1) cω < 0

Next,
d

dG

¡
Hcg (G) / (a1 (G))

2¢ = (−2) (βδ − δ + 1) cω

δ2β2G3
K1 (G) < 0, (114)

where

K1 (G) = (G(1− δ)(1 + ω) + cω(1− δ) + 2Gβδ +Gβδω + cβδω) > 0. (115)
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Therefore, in the presence of corruption, again the upper equilibrium γcgH (G) is de-

creasing in G.

Lemma 22 Assume βδ + δ > 1 and c ∈ [c (ω) , c (ω)), so that the protection agency
can induce equilibrium γ = γH < 1. Assume also that protection agents extract all the

surplus from farmers. Given γ, their return is higher in a corrupt environment.

Proof. For any γ, in the willingness to pay for the government is lower under

corruption:

D (γ,G)−Dcg (γ,G) =
(1− γ)Gβ2γδω

(βδ(1− ω) + βγδω + 1− δ) (βδ + 1− δ)
> 0 (116)

In this case the above loss in the willingness to pay has to be put against the proceeds

from bribes: (1− γ) (c+G)ω.The result holds so long as

(1− γ) (c+G)ω >
(1− γ)Gβ2γδω

(βδ(1− ω) + βγδω + 1− δ) (βδ + 1− δ)
(117)

requiring

c > c# = G

µ
β2γδ

(1− δ + βδ) (βγδω + βδ (1− ω) + 1− δ)
− 1
¶

(118)

but The sign of the derivative of c# with respect to γ is the same as that of

β2δ (1− δ + βδ) (βγδω + βδ (1− ω) + 1− δ)− β2γδ (1− δ + βδ)βδω

which becomes

βδ (1− ω) + 1− δ (119)

which is positive. Hence, the expression for c# is maximized where γ = 1. Of course,

γ is endogenous, so that we plug in γ = 1 and get that

c# < G

µ
β2δ

(1− δ + βδ)2
− 1
¶

(120)

44



The derivative of the above expression with respect to δ is

β2 (1− δ + βδ)2 + 2β2δ (1− β) (1− δ + βδ)

(1− δ + βδ)4
> 0 (121)

so it is maximized when δ = 1. Hence,

c# < G

µ
β2

β2
− 1
¶
= 0 (122)

So c# has to be negative.

This implies that the threshold c# < 0. As by assumption, c ≥ c > 0, we conclude

that D (γ,G)−Dcg (γ,G) > 0.

Proof of Theorem 10. In this environment, the population of Market town is

exogenous. Normalize the population of Market town to equal one, as it will merely

operate as a multiplicative constant to the profits of the agency. Distinguish γ, the

equilibrium proportion of traders in the regular environment, from γcg, the equilib-

rium proportion in the corrupt environment. Total bribes are (1− γcg) (c+G)ω.

The relative payoff from corruption is

Π (γcg, γ) ≡ (1− γcg) (c+G)ω +' [Dcg (γcg, c)−D (γ, c)] (123)

where ' is the proportion of the demand that is captured by the protection agency.

Clearly if ' = 0 the agency is better off under corruption, so the interesting case is

' = 1. We know Π (γcg, γ) > 0 when γcg = γ from Lemma (22). However, we know

that γcgH (c) > γH (c). So long as γH > γcg > γ,

∂D (γ, c)

∂γ
> 0⇒ ∂Π (γcg, γ)

∂γ
< 0. (124)

Hence, Π (γcg, γ) > Π (γcg, γcg) > 0.

Lemma 23 Under anarchy, for all parametrizations, there exists a unique equilib-

rium in which agents go to Market town. This equilibrium is stationary and, in all

periods, γ = 0: there is no trade.

Lemma 24 Suppose c ≥ ccm(ω). Then, an equilibrium with only trade exists.
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Lemma 25 Suppose c < ccm (ω). Then, an equilibrium exists in which there is no

trade: γ = 0.

Proof of Lemma 23. Let H be the value function of being in Farmland.

H = δmax {H, V }⇒ H = max {0, δV } (125)

In the case of anarchy, in a steady state,

V a = βmax

½
γG+ δH, γW a + (1− γ)

1

2
(W a + δH)

¾
(126)

+ (1− β) δV a (127)

If the agent chooses to trade this period, her value function is defined by

V a (trade) = β (γG+ δH) + (1− β) δV a (128)

If there are any equilibria other than the ‘Ghost Town’ equilibrium, it must be that

V a ≥ 0, so that this becomes

V a (trade) = β
¡
γG+ δ2V a

¢
+ (1− β) δV a (129)

On the other hand, if she decides to rob her value function becomes

V a (rob) = β

µ
γW a + (1− γ)

1

2
(W a + δF )

¶
+ (1− β) δV a (130)

By comparing the contemporaneous terms of equations (129) and (130) ,for any in-

ternal values of the parameters, β, δ ∈ (0, 1), and regardless of continuation values
and strategies,

V a (rob) > V a (trade) (131)

so that, in equilibrium, V a = V a(rob). Finally,

V a =
βG

(2 + βδ) (1− δ)
> 0 (132)
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Proof of Lemma 24. Assuming agents are adopting an optimal strategy after

the current date that yields V g, the value functions are given by

V g (trade) = β (γG+ γδH + (1− γ) [(1− ω) δH + ωδV g]) + (133)

+ (1− β) δV g

W g (ω, c) ≡ (1− ω) [G+ δV g] + ω [−c+ δV g] (134)

V g (rob) = β

µ
γW g (ω, c) +

(1− γ)

2
[W g (ω, c) + ωδV g + (1− ω)δH]

¶
(135)

+ (1− β) δV g

Suppose γ = 1. Since it must be that it is at least as good to trade as to rob, it must

be that

V g ≤ ω (G+ c)

δ (1− δ)
(136)

Second, it must be that V g = V g (trade) :

V g =
βG

1− δ (1− β (1− δ))
(137)

V g =
βG

(1− δ) (1 + βδ)
(138)

Thus, for γ = 1, it is necessary and sufficient that

βG

(1− δ) (1− β (1− δ))
≤ ω (G+ c)

δ (1− δ)
(139)

βG

(1 + βδ)
≤ ω (G + c)

δ
(140)

which becomes

c ≥ ccm (ω) =
(βδ (1− ω)− ω)G

ω(1 + βδ)

Proof of Lemma 25. Assume γ = 0. For this to be optimal, it must be at least
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as good to steal as to trade.

V g ≥ [ωc− (1− ω)G]

δ (1− δ) (1− ω)
(141)

The value function must equal the value of stealing, so that

V g = β
[(1− ω)G− ωc]

(1− δ) [2 + δβ (1− ω)]
(142)

Thus, the corresponding parameter restriction is

β [(1− ω)G− ωc] δ (1− δ) (1− ω) ≥ (1− δ) [2 + δβ (1− ω)] [ωc− (1− ω)G] (143)

Now there are three possibilities. First, suppose that

(1− ω)G− ωc = 0 (144)

then the condition holds as is. Second, suppose that

(1− ω)G− ωc > 0 (145)

Then we have

βδ (1− ω) ≥ −1 (146)

which always holds. Third, suppose that

(1− ω)G− ωc < 0 (147)

in that case, the inequality becomes

−βδ (1− ω) ≥ 1 (148)

which never holds. Consequently, an equilibrium with γ = 0 occurs if and only if

c ≤ ccm (ω) =
(1− ω)G

ω
(149)
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Proof of Proposition 11. Suppose γ ∈ (0, 1). It must be that

V g (trade) = V g (rob) (150)

regardless of the continuation value Vg. Hence

V g =
(γ − 1 + ω + γω)G+ ω (1 + γ) c

δ (1− δ) (1 + γ + γω − ω)
(151)

Second, it must be that

V g = V g (trade) (152)

so that

V g = β
¡
γG + γδ2V + (1− γ)

£
(1− ω) δ2V + ωδV g

¤¢
+ (1− β) δV g (153)

V g =
βγG

[1 + βδ (1− ω (1− γ))] (1− δ)
(154)

Thus γ is given by the roots of to the following quadratic equation, that is given by

equating (151) and (154):

F cm(γ; c) = γ2acm(c) + γbcm(c) + kcm(c) (155)

acm(c) = βδ
£
ω2c− ¡1− ω2

¢
G
¤

(156)

bcm(c) = [(1 + ω)G+ ωc] + βδωc > 0 (157)

kcm(c) = [1 + βδ (1− ω)] [ωc− (1− ω)G] (158)

Note for a start that F cm is strictly increasing in c and without upper bound for a

given γ. Consequently, if c is large enough real roots will exist. Note that

∂F cm (γ; c)

∂γ
= 2γacm(c) + bcm(c) (159)

∂F cm (γ; c)

∂γ

¯̄̄̄
γ=0

= bcm(c) > 0 (160)

Consequently, F cm must be upward-sloping when it crosses the vertical axis. This
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leaves several possible cases of F cm. First, suppose acm (ω) > 0. Then, it must be

that

c >
(1− ω2)G

ω2
>
(1− ω)G

ω
= ccm (ω) (161)

so that necessarily an equilibrium with γ = 0 cannot exist in this range. Note that,

since ∂F cm(γ;c)
∂γ

¯̄̄
γ=0

> 0, it must be that F cm (γ; c) = 0 at most one positive value, and

this only if kcm < 0. Will such an intersection exist? If there is no γ−intercept, it
must be that

kcm(c) > 0 (162)

⇒ c >
(1− ω)G

ω
(163)

which is already implied by the fact that acm (ω) > 0. Consequently, we know that if

c >
(1− ω2)G

ω2
(164)

then there are no interior equilibria. Moreover, we know there is no theft-only equi-

librium for these parameter values.

Next, suppose that acm (c) < 0. Then,

c <
(1− ω2)G

ω2
(165)

There are two possibilities here. In the first case, kcm(c) > 0. In the second case,

kcm(c) < 0. Suppose that kcm(c) > 0, i.e.

c ∈
·
(1− ω)G

ω
,
(1− ω2)G

ω2

¸
(166)

First of all, we know that an equilibrium with γ = 0 cannot exist in this parameter

range. Second, here, we know that there is exactly one positive root of the polynomial

(since 4acm (ω) kcm (ω) is negative), which has to be less than one to represent an

equilibrium. Call it γcmL (c) (where the subscript denotes “low”). γcmL (c) ≤ 1 iff
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F cm(1; c) ≤ 0, which implies that

c ≤ βδ (1− ω)− ω

(1 + βδ)ω
G = ccm (ω) (167)

However, this contradicts the initial assumption that c ≥ c (ω) > ccm (ω). Hence this

type of equilibrium does not exist, so that if

c ∈
·
(1− ω)G

ω
,
(1− ω2)G

ω2

¸
(168)

then there is a unique equilibrium in which γ = 1 also. Our results so far are that if

c > c (ω), there is a unique equilibrium in which γ = 1.

In the second case, kcm(c) < 0 :

c <
(1− ω)G

ω
(169)

so that there does exist an equilibrium with γ = 0. In addition, we know that, gener-

ically, F cm (γ; c) will have two positive real roots or none in this region of parameter

space, since kcm(c) < 0. Let

γ∗cm = argmax
γ

F cm (γ; c) (170)

The equation for γ∗cm is

∂F cm (γ; c)

∂γ
= 2γ∗cmacm(c) + bcm(c) = 0 (171)

γ∗cm =
(1 + ω)G+ ωc+ βδωc

2βδ [(1− ω2)G− cω2]
(172)

Suppose that

F cm(1; c) > 0 (173)

This is a sufficient condition for F cm(γ∗; c) > 0. Then, since we know kcm (c) =

F cm(0; c) < 0, there must be a unique intermediate equilibrium by the intermediate

value theorem. If c > ccm (ω) then there exists γcmL (c) ∈ (0, 1) such that γcmL (c) is an
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equilibrium. How to show this? First,

F cm(1; c) = βδω2c+ ωc+ βδωc+ ωc+ βδ (1− ω)ωc (174)

−βδ ¡1− ω2
¢
G+ 2ωG− βδ (1− ω) (1− ω)G (175)

F cm(1; c) = 2 [1 + βδ (1− δ)]ωc− 2βδ (1− δ) (1− ω)G+ 2ωG (176)

F cm(1, c) is positive iff

c >
βδ (1− ω)− ω

(1 + βδ)ω
G = ccm (ω) (177)

Suppose F cm(1, c) = 0. Then it must be that

0 = βδω2c− βδ
¡
1− ω2

¢
G+ 2ωG+ 2ωc (178)

+βδωc + βδ (1− ω)ωc− βδ (1− ω) (1− ω)G (179)

ωG+ ωc+ βδωc− βδG+ βδGω = 0 (180)

c =
(βδ (1− ω)− ω)

ω (1 + βδ)
G (181)

which is exactly when c = ccm (ω). Since ∂F cm(γ,c)
∂c

> 0, decreasing c from here (into

the region in which F cm(1, c) < 0) enters a region in which there are no interior

equilibria : F cm(1, c) may have roots, but they are outside the unit interval. This,

combined with the above results, proves the proposition.

Proof of Proposition 12. We ignore τ , instead concentrating on the surplus

and assuming that taxation is low enough for farmers to get some of it.

Proof. If the appropriate measure is given by W , the proof is trivial: W is

decreasing in n∗ and ∂n∗(γ)
∂γ

< 0. Suppose instead that welfare is given by W c. Then

∂W c (γ)

∂γ
= −G∂n∗ (γ)

∂γ
− βcω (1− γ)

∂n∗ (γ)
∂γ

+ βcωγn∗ (γ)

which is positive.

52



References

T. Besley. Property Rights and Investment Incentives: Theory and Evidence from

Ghana. Journal of Political Economy, 103(5):903—937, 1995.

R. Boadway, N. Marceau, and S. Mongrain. Tax Evasion and Trust. CREFE working

paper 104, 2000.

D. Bös and M. Kolmar. Anarchy, Efficiency and Redistribution. CESifo working

paper no. 357, November 2000.

S. DeMichelis and F. Germano. On the Indices of Zeros of Nash Fields. Journal of

Economic Theory, 94:192—217, 2000.

M. Foucault. Surveiller et Punir; Naissance de la Prison. Gallimard, Paris, 1975.

H. Grossman. Make us a King: Anarchy, Predation and the State. European Journal

of Political Economy, 18(1):31—46, March 2002.

P. J. Hammond and Y. Sun. Joint Measurability and the One-way Fubini Property for

a Continuum of Independent Random Variables. Stanford University Department

of Economics Working Paper No. 00-008, 2000.

J. Hirshleifer. Anarchy and its Breakdown. Journal of Political Economy, 103(1):

26—52, 1995.

M. Jastrow. The Civilization of Babylonia and Assyria. Arno Press, New York, 1980.

M. K. Jean Hindriks and A. Muthoo. Corruption, Extortion and Evasion. Journal of

Public Economy, 74:395—430, 1999.

K. L. Judd. The Law of Large Numbers with a Continuum of I.I.D. Random Variables.

Journal of Economic Theory, 35:19—25, 1985.

M. Kandori. Social Norms and Community Enforcement. The Review of Economic

Studies, 59(1):63—80, 1995.

O. Kirchheimer and G. Rusche. Punishment and Social Structure. Columbia Univer-

sity Press, New York, 1939.

53



N. Kiyotaki and R. Wright. A Search-Theoretic Approach to Monetary Economics.

The American Economic Review, 83(1):63—77, March 1993.

R. Nozick. Anarchy, State and Utopia. Basic Books, New York, 1974.

P. M. Romer. Endogenous Technological Change. Journal of Political Economy, 98

(5):S71—S102, 1990. Part 2: The Problem of Development: A Conference of the

Institute for the Study of Free Enterprise Systems.

A. Shleifer. State versus Private Ownership. The Journal of Economic Perspectives,

12(4):133—150, 1998.

S. Skaperdas. Cooperation, Conflict, and Power in the Absence of Property Rights.

American Economic Review, 82(5):720—739, 1992.

54


