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The Evolution of Contracts and Property Rights

Abstract

I apply stochastic stability (Kandori, Mailath and Rob, Econometrica 1993, and Young
Econometrica 1993) to a contracting game. There are three stages to this game. In
the first, a surplus sharing transfer is made. This is followed by a relationship spe-
cific investment, and finally bargaining over the gross surplus from investment. In the
stochastically stable outcome, the investing party gets (almost) all of the surplus in the
final stage, and makes the efficient investment. However, the transfer is set so that
over half of the net surplus goes to the party who does not make an investment. That
is, while hold up does not occur, it’s possibility increases the surplus received by the
noninvesting party.



1 Introduction

Conventions, accepted behavior when multiple agents are involved, are present in many
aspects of life, including contracting. Some conventions, in contracting and more gener-
ally, are explicit, while other are implicit.! Almost by definition, conventions regarding
incomplete contracts must be both. They must be explicit in the portion of the re-
lationship which is guided by the written contract, and implicit in the portion of the
relationship which is not. Explicit and implicit contractual conventions have been stud-
ied, but only in isolation from each other. This paper investigates the simultaneous
evolution of explicit and implicit conventions in a fairly standard incomplete contract-
ing problem. The evolutionary process is modeled via stochastic stability.?

Young (1998) studies a contracting game in which a pair of agents each name a
contract, and enter into it if they name the same contract. Young’s main result is that
the stochastically stable convention splits the surplus equally.? Because these contracts
are enforcible, Young’s result is a statement about explicit conventions. Ellingsen and
Robles (2001) (see also Troger (2000) and Dawid and MacLeod (2000)) study a game
in which one agent makes a relationship specific investment, after which he and another

agent bargain over the surplus. Ellingsen and Robles (2001) find that evolution leads to

Young (1998) contains examples. For one, employment contracts are generally explicit concerning
wages, but not concerning bonuses. Consequently, conventions concerning wages are explicit, while
those concerning bonuses are implicit.

?Kandori, Mailath and Rob (1993), Young (1993) and Noldeke and Samuelson (1993).

3 Approximately by the Kalai-Smordinsky (1975) solution, which in the linear context considered
here, is an even split.



a convention with an implicit assignment of efficient property rights and, consequently,
efficient investment. This paper studies the evolution of conventions in a contracting
game which includes relationship specific investment, implicit post investment property
rights, and ezplicit sharing of surplus.

The contracting game is between a buyer and a seller. It consists of a monetary
transfer, a (seller specific) investment by the buyer, and a price at which the good is
sold. The only portion of the game which is contractible is the transfer. The game begins
with the two agents suggesting a transfer. If they suggest different transfers, then there
is no contract, and the game ends. Otherwise, the transfer is made, and the agents
enter into a relationship. The buyer then makes an observable, but noncontractible,
investment. Finally, the two agents bargain over the price of the good.

The evolutionary model consists of two populations: one of buyers and one of sellers.
Each period, agents from the two populations meet and play the contracting game.
Over time, agents come to choose optimal responses to the actions taken in the other
population. There are many outcomes of the contracting game such that if all agents
in both populations play according to that outcome, then no agent in either population
has an incentive to change his actions. Such outcomes are conventions. Agents also
change their actions by 'mutating.” A mutating agent chooses his actions at random.
Mutations are taken to be quite rare, so that the two populations spend most of the

time in a convention. In fact, the presence of mutations implies that the populations



spend most of the time in a very specific set of conventions. These are the stochastically
stable conventions.

A simple composite of the results in Young (1998) and Ellingsen and Robles (2001)
would suggest: efficient implicit post investment property rights, efficient investment,
and a transfer that shares surplus evenly. The logic of such a composite result requires
first letting property rights and investment evolve, and only then applying evolution to
the determination of the transfer. A more proper approach must study the simultaneous
determination of transfer, investment and post investment bargaining. Interestingly,
property rights and investment evolve much more quickly than the division of surplus.
Hence, stochastic stability in the contracting game does imply efficient property rights
and investment.

However, while stochastic stability precludes hold up, the possibility of hold up
drives the selection of the stochastically stable transfer. Stochastic stability is, at least
partially, a statement about the number of mutants who must play contrary to a con-
vention in order to change the optimal choices of other agents. With this in mind,
consider a convention with efficient investment and property rights. Suppose some sell-
ers mutate to suggest the same transfer, but demand a higher price. This attempted
hold up makes the contract less attractive to the buyers, and if enough sellers demand
a higher price, then the convention dissolves. Of course, the larger the transfer, the

more a buyer has to loose from being held up. Hence, hold up decreases the stability of



contracts which give too much of the surplus to the sellers. On the other hand, starting
from the same candidate convention, the buyers might mutate to suggest a different
transfer. If sellers anticipate the ability to hold up buyers following this new transfer,
then this new transfer will look very attractive to them. Consequently, for a contract
to be stable against these mutations, it must give a large share of the surplus to sellers.
It turns out that this second issue is much more important. In a stochastically stable
convention the (non-investing) sellers receive a larger share of the net surplus than the
(investing) buyers. Further, the larger the perceived benefits to the sellers of hold up,
the larger the share of the surplus which they receive.

The rest of the paper is organized as follows. The contracting game is defined in
Section 2. Section 3 presents the evolutionary dynamic and some preliminary results.
Section 4 states and discusses the main results and some Corollaries. Proofs are relegated

to the Appendix.

2 The Contracting Game

There are two players, the buyer (B) and the seller (S,) who play a three stage game.
In stage one, each player suggests a transfer T;, (i = B, S) to divide surplus given the
anticipated continuation. If the agents suggest different transfers, then the game ends.
If Tg = Ts, then the buyer gives this transfer to the seller, and the game proceeds. In

stage two, the buyer makes an investment specific to the seller’s product. There are two



levels of investment: I° and I* with I* > I°. An investment I creates a surplus of V(I),
with V* = V(I*) and V0 = V(I?). I* is the efficient investment; V*—TI* > V0—J1° Both
the seller’s cost of production, and the inefficient investment level, I°, are normalized
to zero. In the third stage, players bargain, via the Nash demand game, over the price

P. Let P; be the price demanded by player i. The buyer’s payoff is

0 ifTg #Ts
8= V(I)—I—Pg—T ifTg=Ts=T and Pg > Ps (1)
—I1-T otherwise
The seller’s payoff is
0 if Tg #Ts
Ts =14 Ps+T ifTg=Ts=T and Pg > Ps (2)
T otherwise

A pure strategy for a buyer is a triplet (T, I, Pg). A pure strategy for a seller is a pair
(Ts, P(I)), where P(I) maps investments by the buyer into the set of possible prices.
For the sake of the evolutionary analysis to follow, it is assumed that for any investment
level I, the only possible demands are P(I) = {A, 1V (I),V(I) — A}. While restrictive,
P(I) allows a standard form of hold up (P = fV(I),) and an efficient assignment of

property rights (P = A.)



Assumption 1 4) 2A < min{V%, I*, (V* - I* — V')}

BV —I" <VO-A

Part (A) of the assumption, is an assumption that A is small, relative to both efficient
investment and the gains from efficient investment. Part (B) is weaker than %V* -I" <
%VO, which is required for there to a hold up problem, if, for example, P is determined
through bargaining a la Rubinstein (1982).

Let Ts = V* —I* — A and T = —(V* — A). If a player i suggests Tj, then
the lowest payoff he can receive is zero. The grid of allowable transfers is 7 (¢) =
{Tg,Tg + ¢,....,Ts — ,Ts}. It is assumed here, as in Young (1998), that agents choose
only strictly individually rational strategy. That is, if a buyer (resp. seller) plays
(T,1,P) (resp. (T,P(-)) then V(I) —I — Pg — T > 0 (resp. max;{T + P(I)} > 0.)
Clearly, then a buyer will choose only T' < T, and a seller will only choose T' > Tp.

Our objective is to predict an outcome in the contracting game. Let us consider
then, the outcomes which are possible. If a buyer and seller suggest different transfers
T;, then the outcome is ([ITB,Ts]). If they suggest Tp = Ts = T, demand different
prices P;, and the buyer invests I, then the outcome is denoted (7, I,[Pg, Ps]). If the
previous case is modified so that Pg = Pg = P, then the outcome is denoted (7', 1, P).
An outcome (T,1,P) is a convention, if there are off path beliefs which make it self

enforcing.* This requires: P+7 >0, V(I) ~I—P—-T >0and V(I) - I — P > A.

4A convention is supportable as the outcome from a subgame perfect equilibrium.



Observe that it is possible for a seller to receive a payoff of zero in a convention. This

possibility can lead to complications, which we avoid with the following assumption.’

Assumption 2 If P € P(I*) and T € T(¢), then P+ T # 0.

3 Evolution

The contracting game has multiple pure strategy subgame perfect equilibria, many of
which suggest a self enforcing convention. The objective of an evolutionary analysis
is to establish the convention most likely to arise endogenously. This convention is
found using a stochastic evolutionary dynamic as introduced by Young (1993) and
Kandori, Mailath and Rob (1993). Noldeke and Samuelson (1993) provide the extension
to extensive form games which is used here.

There is a population of agents, which is split into two subpopulations, one of buyers,
and one of sellers. Each subpopulation is of size N. Each period every agent is matched
with each agent in the opposite subpopulation to play the contracting game. In any
given period, an agent is characterized by a pure strategy, and her beliefs. Agents are
required neither to hold beliefs which are correct, nor to always choose best responses
to their beliefs. However, agents are restricted to play only strictly individually rational

strategies, even after mutation.

5See Footnote 16 in the Appendix.



There are two types of histories after which a buyer must have beliefs: () (the null
history) and (7, I) for some agreed upon transfer 7' and investment level I. A seller
must have beliefs following these histories, and also following 7" for any agreed upon
transfer T. Let v(-|0) specify a buyer’s belief over the transfers suggested by sellers,
and v(-|(T,I)) specify a buyer’s belief over the price demanded by sellers following
(T,I). Let o(-|0) and o(-|(T, I)) be beliefs for sellers which are defined analogously. Let
o(:|T) be a seller’s belief over the investment levels to follow an agreed upon transfer 7.
Both o and v are probability distributions over actions taken by agents in the opposite
subpopulation, which are dependent upon the history to that point. We say that an
agent ezpects an action following some history if she assigns probability one to that
action. For example, a buyer expects P following (T I) if v(P|(T,I)) = 1.

A state 6 specifies how many agents in each subpopulation have each possible com-
bination of belief and strategy. The set of possible states, denoted ©, is finite.> With
each state there is an associated probability distribution over terminal nodes.

Beliefs and strategies evolve in two manners: by adaptation to the current environ-
ment, and by random mutation. Adaptation occurs in the following manner. Every
period each agent has an i.i.d chance of updating his beliefs and strategy. An updating

agent observes the distribution on terminal nodes in that period, updates his beliefs

8Since there are a finite number of agents, each with a finite set of strategies, there are but a finite
number of possible strategy profiles within each population. The set of beliefs are restricted to those
which reflect these profiles.



based upon this information (beliefs following unreached decision nodes are unchanged)
and chooses a best response to his new beliefs. Updating works on behavioral strategies;
if an agent is already playing a best (behavioral) response following some node, then
she continues to do so. If not, she chooses one of the available best responses, each with
positive probability. Agents’ beliefs and strategies are also subject to mutation. Every
period, each agent has an i.i.d. probability € of mutating. When an agent mutates, his
beliefs and strategy are chosen from an exogenously specified distribution which gives
full support to all of that agent’s possible belief/strategy combinations. The updating
draw and mutation together form a Markov chain over the state space © in which every
transition has positive probability. Hence there is an ergodic distribution p(e).
Stochastic stability is used as the solution concept. The set of stochastically stable
states, denoted ©F, are those assigned positive probability by the limit distribution
p* = lime,op(e). Characterization of the stochastically stable states is facilitated
through the use of two weaker concepts: locally stable sets, and absorbing sets. A set
@ is absorbing (w.r.t. updating) if: it is impossible for the population to depart @
without mutations, and for any two states in (), it is possible for the population to
move between these states without mutation. If an absorbing set is a singleton, then

it’s unique element is an equilibrium.

Proposition 1 All absorbing sets of the contracting game are singletons.

Because of Proposition 1, we may speak of equilibria, rather than absorbing sets. Let



T be the set of equilibria. While useful, the restriction to equilibria is not sufficient; an
equilibrium may have multiple outcomes, and so does not necessarily yield a convention.

Local stability is sufficient to restrict attention to conventions. For § € O, let
€°(#) C T be the set of equilibria, which can be reached from 6 through updating
alone.” For [ > 0 let ¢!(0) be the elements in T which can be reached from some
element of ¢/71(#) with updating and no more than a single mutation. If 8 € £(0),
then a sequence of / transitions between equilibria, each of which required only one
mutation, can move the population from 6 to 6. £(6) = U;>¢€!(6) is the set of equilibria

which can be reached from 6 with a sequence of single mutation transitions.
Definition 1 A set of states Y is locally stable if VO € Y, £(0) =Y.

A locally stable set is impossible to escape with a single mutation, and does not contain
any proper subset with this property. Locally stable sets contain only equilibria.

We now turn to the relationship between conventions and locally stable sets. Let
p(0) denote the unique outcome within 6.8 For an outcome p, the p-component is the
set {0 € T|p(0) = p}.

Recall that a convention is an outcome (T, I, P) such that P+ T > 0, V(I) — I —
P—-T>0and V(I)—I—P > A. An outcome is an efficient convention if in addition

there is efficient investment, I = I'*, and efficient assignment of property rights, P = A.

6, € 50(92), then 85 is in the basin of attraction of 6;.
81f there are multiple outcomes within 8, then p(6) is undefined.

10



Clearly, in an efficient convention, —A < T..

Proposition 2 FEvery locally stable set contains the p-component for an efficient con-

vention p.

Proposition 2 follows from essentially the same arguments as Proposition 3 from
Ellingsen and Robles (2001). In particular, if we pretend that the transfer is fixed,
then the contracting game is the same game as that in Ellingsen and Robles except for
a constant offset in payoffs. As there, single mutation transitions suffice to arrive at
efficient property rights and investment.

Proposition 2 does not quite say that if p is an efficient convention, then the p-
component is locally stable.? However, it is sufficient for our purposes. Local stability
(and hence stochastic stability) must treat with entire p-components.'® This allows us
to focus the remaining analysis on conventions. Hence, to say that a convention p is e.g.
stochastically stable is to say that the p-component is in the stochastically stable set.
Further, we may determine the stochastically stable set by considering only transitions

between different efficient p-components.

9And in fact, this is not quite true. Efficient p-components which do not give almost all of the surplus
to either buyer or seller are locally stable.

10 A5 shown in Samuelson (1994), one state in a locally stable set is stochastically stable if and only
if every other element of the locally stable set is stochastically stable.

11



4 Main Result

From Proposition 2 it is but a small step to know that stochastic stability yields a
convention with efficient property rights and investment.'! The one remaining question
then is, what share of the surplus does each player receive? Before answering this

question, it is useful to define some expressions.
H=V*+V?-2A. (3)

H represent the desirability of hold up for sellers: V* — A is the highest price a seller
can charge in the final stage. The individual rationality of buyers implies that (in the
limit as ¢ — 0) the highest transfer after which sellers might hope to charge V* — A is
VO — A.'2 Hence H, the sum of these two terms, is the highest payoff that sellers can
hope to receive from holding up a buyer.

It is easiest to characterize the stochastically stable convention in two separate cases.
We say that efficient investment is small if

I'-A _ (V-1 @
Vi—I* = H+ (V- I

" There might in fact be two stochastically stable conventions. However, if so, then they will differ
only in that one has a transfer which is ¢ higher.

120f course, buyers can always expect P = V* — A following any transfer which is not currently
agreed upon. However, the relevant issue is, does this make a difference when calculating how hard it
is to replace one efficient convention with another. What makes H important is that such beliefs are
only relevant for transfers less than V° — A. Proposition 3 in Appendix C.

12



Otherwise efficient investment is large. Some feeling for Inequality 4 might be found
rewriting H as (V04 I*) 4+ (V* —I*) —2A. Written so, we can see that either decreasing
V0, or increasing V*—I* makes the inequality easier to satisfy. With this in mind, we can
read Inequality 4 as, I* is small relative to the net benefit of investment (V* — I* — V)
and the net value of the relationship (V* — I*.)

Results are stated in terms of the share of surplus received by the seller. In the case

of small efficient investment, F} approximates the seller’s share.

Fy

Il
—~

<t
~—

H+ (V*—1I¥)

Note that % < F < %

Theorem 1 Let (T,I*, A) denote a stochastically stable convention. Let Ag = %
denote the (non investing) seller’s share of net surplus in the stochastically stable out-
come. For any level of approzimation A > 0, if ¢ is sufficiently small, and N is suffi-

ciently large, then:

If investment is small (Inequality 4 holds,) then |As — F1| < A.

For the sake of understanding Theorem 1 let us presume that while agents may
choose the transfer to suggest, any agreed upon transfer must be followed by (I*,A).

In this case, individual rationality implies that 7g =T+ A > 0 and 7 = V* — I* —

13



(T+A)>0orthat —A <T < V*—TI*—A.!? To displace a convention (T, I*,A) with
a convention (1", I*, A), requires that a sufficient number of buyers or sellers mutate to
play (T7",I*,A). If it is sellers who mutate, then the proportion that much mutate is
7% such that r(V* —I* — (T' + A)) = (1 — r¥)(V* — I* — (T + A)). This expression
indicates that buyers would be willing to play T"'. Clearly, r° is increasing in T". Given
the constraint of individual rationality, 7° is minimized when 77 = —A. When 7" = —A,
5 satisfies r°(V* —I*) = (1—r°)(V* — I* — (T + A)). This value for r° can be thought
of as a the stability of (T, I*,A) to buyer optimism. We see the prize which draws
optimistic buyers is V* — I'*, the net value of the relationship. Because buyers make the
investment, they can not try to hold up sellers. Hence, even when investment and price
are not fixed at (I*,A) it remains the case that optimistic buyers hope for no more than
Ve —TI.

Sellers, on the other hand, do not make the investment and can hope to hold up
buyers. As stated above, when buyers mutate to a new transfer, the most that sellers
can hope to receive from holding up buyers is H = V* + V0 — 2A. They are always
incorrect in this hope, but this is nonetheless the prize they chase. Hence, the value of
rB which can thought of as the stability against seller optimism of (T, I*, A) satisfies

rBH = (1 — rB)(T + A). Now if H and V* — I* were equal, then 7% and r® would be

13Strict individual rationality requires strict inequalities. However, Theorem 1 is most easily under-
stood with an appeal to the limit as ¢ — 0. Hence, throughout this discussion, it is this case which is
considered.

14



symmetric, and the most stable transfer would be T = $(V* — I*) — A which would
split the net surplus equally. However, since H is always greater than (V* — I*), the
seller gets over half of the net surplus. Further, the seller’s share is larger, the greater
his hoped for payoff from holding up the seller.

. . *_ *_ T .
We now turn to the case when investment is large, ‘5* _?* > HKV*I_ 7+~ In this case,

the best that can be found is a pair of bounds on the seller’s share, which the following

two fractions provide.
H
Fo=— —
2T H4+ (Vr—A)

- H
PTH+GWVr+1)-A)

|
—
-
~

Observe that % <F,<Fy< %

Theorem 2 Let (T,I*, A) denote a stochastically stable convention. Let Ag = %
denote the (non investing) seller’s share of net surplus in the stochastically stable out-
come. For any level of approximation X\ > 0, if ¢ is sufficiently small, and N is suffi-

ciently large, then:

If investment is large, then Fo — A\ < Ag < Fg + \.

Whether investment is large or small, that which moves sellers is their desire for
H, the prize for a successful hold up. Hence, H enters F, and Fy in the same way it
entered F;. However, when investment is large, there is a force operating on the the

buyers which is stronger than their desire to grab the entire surplus, V* — I'*. Rather,

15



what moves buyers in this case, is their desire to avoid being held up. If a seller attempts
to hold up an unsuspecting buyer, then there is disagreement at the the price setting
stage. This leaves the buyer with a loss of —(7'+ I'*). When efficient investment is large,

avoiding this loss can be much more important than chasing after V* — I*.

Because
this loss depends upon the transfer, we can not write down it’s exact strength as an
incentive. However, since individual rationality implies 7' < V* — I'* — A, we can be
sure that the strength of this incentive is less than V* — A, the term which appears
in Fy. On the other hand, the loss from being held up decrease as T' decreases. For
T < 4(V* — I*) — A the incentive to avoid being held up becomes too weak to matter.
Adding I* to this transfer yields the term in Fy.

In order to better understand how different parameters determine the distribution

of surplus, I present two limiting results.

Corollary 1 As I* — 0, Ag — %'
AsV =T — V950 and I* -0, Ag — 2.

AsV0—>OandI*—>O,A5—>%.

As I* becomes vanishingly small, V° comes to represent the seller’s ability to hold up
the buyer. Adding V* —I*—V? — 0, we might think that the whole issue of investment
become irrelevant, so that Young (1998) would suggest an even split. However, we
see just the opposite. While investment makes no difference in the surplus from the

relationship, it is in this case that the seller has strongest incentive to hold up the buyer.

16



On the other hand, adding V° — 0, all of the surplus is generated from investment.
However, the buyer really has no hold up ability, and so receives only half of the surplus.
We turn next to the opposite extreme, when the magnitude of I* dwarfs the other

parameters.

Corollary 2 Holding V* — I* constant, as V* and I* — 0o, Ag — %

In this case, as I* dominates, an absolute cap is put on the power gained from the sellers
ability to hold up the buyer. While the seller will still attempt hold up, hold up is so

costly to the buyers that his attempts to avoid it leave the agents with an even split.

A Proofs of Propositions 1 and 2

Proof of Proposition 1Al communication classes are singletons.

From Ellingsen and Robles (2001, Lemma 2) if the transfer were fixed at 7' = 0, then all
communication classes would be singletons. The only difference between fixed transfers
T = 0 and T" # 0 is a constant offset in payoffs, which leaves incentives unchanged.
Hence, a nonsingleton communication classes must involve multiple transfers. Consider
a nonsingleton communication class in which different transfers, including T are sug-
gested. Since agents are switching between transfers, if there is a buyer who invests I*

following T, then there must be a state within the communication class in which only

17



one buyer suggests T followed by I* and at least one seller suggests T'. In this state, let
all sellers update, this will lead them all to choose the same price following T, I*. In the
next state in which T, I* is played, let all buyers update, this will lead them to all choose
the same price following T, I*. These steps are irreversible and can also be applied if I°
follows T'. Hence, all agents in both populations suggest the same price following any
T, I which occur in the communication class. Hence for any transfer T" which is played,
and for both I, the payoff which is expected following (7', 1) is fixed for every buyer.
Hence, for every transfer which is played, either only one investment is played following
that transfer, or both investments lead to the same payoff for buyers. Hence, for buy-
ers, the payoff expected for agreement on a transfer is constant, and strictly positive
by individual rationality. Since the communication class is nonsingleton, there must be
some state in which a particular transfer is most attractive to the sellers. In this state
let all sellers update. Follow this by allowing all buyers to update. Since all sellers are
suggesting the same transfer, the buyers will all switch to suggesting that transfer as
well. Now if the sellers receive a nonnegative payoff in this state, then no agent has an
incentive to change his strategy. If the sellers receive a negative payoff in this state,
then let them all update, they will never suggest this transfer again. Either of these
possibilities contradicts the presumption of a nonsingleton communication class. &
The proof of Proposition 2 is more involved, and will be accomplished through a

series of lematta.

18



Lemma 1 Let 0 be an equilibrium. In 6:

1) All agents receive a nonnegative payoff.

2) all agents in the same subpopulation receive the same payoff.

3) If T is sometimes agreed upon, I always follows T, and at least one seller demands
P following (T,I) then T + P > 0.

Further, if payoffs for both populations are strictly greater than zero, then:

4) the same set of transfers are suggested by the two subpopulations.

5)The same set of prices are demanded by both subpopulations following any (T, I) which

occurs in 0.

Proof:(1) Otherwise an agent would suggest T; which guarantees him a zero payoff. (2)
If not, then an agent receiving a lower payoff would imitate one who was receiving a
higher one. (3) Observe that sellers get some average of zero (when different transfers are
suggested), T' when the transfer is agreed upon, but prices demanded are incompatible,
and T + P otherwise. Hence if this last quantity is less than zero, then the payoff
conditional on T is less than zero, which we know is not possible. (4) Suggesting a
transfer which the other population does not suggest guarantees a zero payoff, which is
avoided by assumption. (5) From Ellingsen and Robles (2001, Lemma 1) this is true if
the transfer is fixed at 7" = 0. In an equilibrium, it is always the same buyers (resp.
sellers) playing T, I (resp. T') so that in an equilibrium of the contracting game it is

as if agents suggesting T' are playing the investment/demand game within a smaller
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population, with payoffs offset by a constant of 7', from which the result follows. &
For 6 € ©, let H(#) denote the set of outcomes which occur in 0. Let p? = ([Ts, T5))
be the disagreement outcome. Let T = {0 € Y|H(0) = {(T,I,P)} or {p”}}. Call the

elements of T conventional states.

Lemma 2 Let 61 be an equilibrium, with T, I, P' and T,I,P" (P' # P") both elements

of H(0). Then 305 € £(01) N'Y such that p(f2) = (T, 1, P) € H(0y).

Proof: Denote by P’ the lowest price demanded by either population following (T, )
and by P" the highest. Let one buyer who was suggesting the transfer T' and demanding
P’ following T, I mutate, and change his play only in that he now demands P” following
(T,I). This makes (T, I,P") the only best response for sellers. Let all sellers update
to play T,I,P". Then let all buyers update; this leaves us at an equilibrium with the

unique outcome of (7,1, P"). &

Lemma 3 Let 0, be an equilibrium in which the transfer Ty is sometimes agreed upon. If
a unique investment level and price follow the transfer Ty (i.e. (T1,I', P"),(T1,I", P") €

H(0y) implies that I' = I" and P' = P",) then 305 € £(61)N Y.

Proof: Of course if only the transfer T' is suggested, then 6; is a conventional state,
and the proof is completed. Assume that this is not so. Denote by (73,1, P;) the
outcome which occurs when T} is agreed upon, and by (T», I5.P2) some other outcome

which occurs in ;. We know that V(I1) — I —T1 — P; > 0, or buyers would never

20



play so. Let one seller who was suggesting 75 mutate to suggest 17 and follow I; with
P;. This increases the probability of being matched with a seller suggesting 77, which
makes playing (771, I1, P;) the unique best response for buyers. Let them all update, and
switch accordingly. If 77 + P, > 0, then as soon as sellers update, they will all switch
to playing 77 with P; following I7, since only T} yields a payoff greater than zero. If,
on the other hand, 77 + P; = 0, then the population is already at an equilibrium, since
all transfers net sellers a payoff of zero. From this equilibrium, let a single seller mutate
to play (T1, P(I;) = Pp). This increases every buyer’s payoff, and leaves every seller’s
payoff unchanged. Hence this is another equilibrium. By repeating this process, the

population arrives at a conventional state with outcome (71,11, P;). &

Lemma 4 If 61 is an equilibrium with a unique price demanded following any transfer

and investment (i.e. T,I,[Pg, Ps|) € H(61) implies that Pg = Ps,) then 305 € £(61)NY.

Proof: If there exists a transfer which is sometime agreed upon, and then followed
by a unique investment level, then an application of Lemma 3 completes the proof.
Assume this is not so. There are two cases to consider. Let us first presume that
AT, I, P1),(T, I, P,) € H(0) such that Po,+7T < P;+T. This implies that 0 < P, +T.
Let a single buyer mutate from playing (7', Iz, P») to playing (7', I, P;). This make
playing T', and following (I;) with P; a requirement of any best response by a seller.

Let all sellers update. Now allow all buyers to update, and we are left at a convention
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with outcome (7', I, P;). If on the other hand, P, + T = P; + T, then again let a single
buyer mutate from playing (7', I, P») to playing (7,11, P;). This changes no agent’s
payoffs, and so again we are at an equilibrium. Proceeding in this manner, a sequence
of single mutation transitions lead to an equilibrium in which 7' is sometimes agreed
upon, and only (I, P;) ever follows 7. One may now apply Lemma 3 to complete the

proof. &

Lemma 5 For all @ € Y, £(0) N Y is nonempty.

Proof: Simply a collection of Lemmas 2, 3, and 4. &.

Lemma 6 Let 61 and 6, be two conventional states, with p(61) = p(02). £(61) = £(62)

Proof: Let p denote the common outcome, then in both #; and 6>, agents must have off
path beliefs which support play of p. Hence, one by one, agents might have their beliefs
in 0 replaced through mutation by those in 5. The reverse is true, so that 8; € £(62)

and vice versa. &

Lemma 7 Let 0, be a convention in which the agreed upon transfer is T.
1) If T < —A then then 30y € £(01) such that p(6;) = pP.

2) If T > —A then 305 € £(61) such that p(62) = (T, I*, P*)

Proof: Let p(61) = (T,11,P1). Let Iy # I; be the other investment level. Let us

first observe that if 7> V? — A, then (I;, P;) = (I*, A) since otherwise V(I1) — I —
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P, —T) <0. Of course if (I;,P) = (I*,A), then the proof is done so assume that
this is not so. For the remainder of the proof, observe that if (I, P;) # (I*,A), then
V(I3)—Iy—A > V(I3)—I; — P;. Hence 36', not necessarily an equilibrium, which can be
reached from 6; through some single mutation transitions, such that p(¢') = (T, I, A).
To accomplish this, first let all sellers drift to expect A to follow (7', I3). Then allow a
single buyer to mutate to play (T, I, A). Allow all buyers to update, and the population
has arrived at the state §'. If T < —A, then T+ A < 0, and #' is not an equilibrium.
Let all sellers update to Tg, and we are at an equilibrium in which every action yields a
payoff of zero. From here, let each of the buyers mutate one by one to choose T, and we
have arrived at a disagreement convention through a series of one mutation transitions.
If T > —A and I, = I*, then we are done. If T' > —A and I, = I°, then we can apply

the above argument to get from 6’ to the desired 6y with p(62) = (T,1*,A). &

Lemma 8 If p(61) = p” and —A < T < V* —I* — A, then 305 € £(01) such that

p(b2) = (T,I",A).

Proof: For a transfer T' satisfying the requirements of the lemma, let all sellers drift
to expect A to follow (7', I*). Allow single buyer mutate to play (T, I*,A). Let sellers
update, they will all switch to playing (7, P(I*) = A). Allow the remaining buyers to
update, and we have arrived at the desired 65. &

Proof of Proposition 2FEvery locally stable set contains the p-component for an effi-

cient convention p
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Every locally stable set contains at least one equilibrium. From Propositions 7 and 8
we know that if 0 is an equilibrium, then 36’ € £(6) with p(6') an efficient convention.
Hence, every locally set contains at least one equilibrium ' with p(6') an efficient conven-

tion, and by Lemma 6, the locally stable set must contains the entire p(#’)-component.

&

B A Theorem on Stochastic Stability

For 6 € T, a 6-tree is a collection of directed edges (8" — 6") (6',6" € Y) such that
V6" € T \ {0}, there is a unique directed path of edges from #' to 6. For ¢',6" € T, and
(0" — 0") an edge, let C((#; — 63)) be the smallest number of mutations required for
a transition from 6’ to 8”. C(FE) is the cost of the edge E. The cost of a 6-tree is the
sum of the costs of the edges. The stochastic potential of 8 € T, is the minimum cost

over all f-trees. The following Theorem is due to Young (1993, Theorem 4).

Theorem 3 An equilibrium 6 is stochastically stable if and only if no other equilibrium

has lower stochastic potential.

We do not directly use Theorem 3, but rather a consequence of it. L C T is a mutation
connected set if V6 € L, L C £(#). Let £ be a collection of disjoint mutation connected
sets, such that for every locally stable set L, there is L' € £ such that I/ C L. For

L',IL" € L, an L-edge from L' to L", is a collection of directed edges between equilibria,
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B = {(6L — 63),(62 — 63)...(0k_1 — 0O;)} such that 6, € L' and L" C £(6;). Under
these circumstances, we define an (L, £)-tree, as a collection of L-edges, such that
VL' € £\ {L} there is a unique directed path of L-edges from L' to L. We do not
define a cost for L-edges, but directly define the cost of L-trees. Let n be an L-tree,
and let E(n) = {E = (0" — 0")|308 € n with E € g}. The L-cost of an L-tree 7 is

> ren@n)(C(E) —1). The L-potential of L € £ is the minimum cost over (L, £)-trees.

Theorem 4 Let L be a collection of disjoint mutation connected subsets of T, such that
for every locally stable set L, AL’ € L with L' C L. 6 € Y is stochastically stable, if and

only if 6 € £(0%) for 0* € L* and L* is an element of L with lowest L-potential.

Proof: Let L* have lowest L-potential, 8* € L*, and let n be an (L*, £)-tree which
achieves this lowest potential. Let £y = {L*}, and for i > 0, let £; be the elements L € £
such that 7 contains an £-edge from L to some L’ € £;_1. For G a collection of edges, let
B(G) = {00 = 0* or (0 — 0') € G}. Define £ 71(A) = {0 € T|30' € A with &' € £1(0)}
as the inverse image of ¢1(-). We now construct a 6*-tree 5 which I claim has lowest
stochastic potential. Let ng = E(n). Let £; = {0|0 € L € L;}. Construct 7 so that
VO € [€71(L; N B(n:))] \ B(mi), 340 — 0') € ). Further, choose this 8’ € £; N B(m;)
and such that C(6 — 6') = 1. Include no other edges in 7{. We define two sets of
edges, ﬁzj and ng (for j # 0,) simultaneously. Define ﬁ{ = U (Uizlnf). Construct 77{
so that VO € [¢~1(B(n/ "))\ B(7i)~"), 36" such that (6 — ') € n/~'. Further, choose

this 0" € B(nzj_l) and such that C(f — 6') = 1. Include no other edges in nf For
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1> 0, let n, = Ujﬁzj_l. Finally, let 7 = U;n;. We observe that 79 is a collection of
edges which provide escape from every locally stable set but L*. 79 is empty. Hence,
B(nd) = {6*}. n} consists of all edges (6§ — 6*) which are single mutation transitions
and depart from equilibria from which an edge does not already depart in 79. 71 then
results from repeatedly adding edges for single mutation transitions which eventual lead
to 6*. Hence n; has all of the edges in 7y, plus an edge for a single mutation transition
departing from every 6 such that 8* € £(f). Proceeding from here, we see that 7;
consist of all the edges in 7;,—1 plus single mutation transition from every € such that
01(8) € £(0), where (61(8) — 02(0)) is the first edge in 3, the L edge departing some set
L € L; 1. Further, for every 6 € B(n;) N L;_1, there is a sequence of edges which lead
from 6 to 8*. Since O is finite, this process then eventually yields a 8*-tree. We observe,
that every equilibrium but one must have an edge departing from it for any #-tree. Each
of these edges must have a cost of at least one. Let M denote the cardinality of Y. By
construction, 7 minimizes ;g (C(E) —1) = (X peg C(E)) — (M —1) for any collection
of edges G which provides an escape from all but one of the locally stable sets. Since
any tree must do this, and M is a constant, * has lowest stochastic T potential, and is
stochastically stable. From Samuelson (1994) we know that 6* is in a locally stable set,

and that the stochastically stable set must include that entire locally stable set, £(6*).

&
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Theorem 4 and Proposition 2 indicate that it is possible to find the stochastically

stable set through trees with edges which include the efficient conventions.

C Resistances between Conventions

To apply Theorem 4 we must determine the number of mutations required to replace an
efficient convention with another. What is required is to move the population to a state
from which a sequence of single mutation transitions suffices to reach another efficient
convention. From Lemmas 7 and 8 we know that it suffices to move the population to a
convention with a different transfer. Because positive payoffs are always decreased with
disagreement, there is always a convention which looks more attractive than an equi-
librium with multiple outcomes. Hence, it suffices to consider only transitions between
conventions.

Unlike the transitions discussed in Appendix A, the number of mutations required
to upset an efficient convention will in general depend upon the population size N.
However, there is an r € (0,1), such that if any proportion greater than r of, e.g.,
the buyers mutate appropriately, then the sellers will all want to change their strategy
and choose the newly suggested transfer. The number of mutations needed to make

this transition, is then the smallest integer strictly larger than rN.'* Clearly, for large

“For a single mutation transition, this proportion is zero.

27



enough N, we can work with the proportions r which I term resistances.'®

There are broadly speaking, two types of transitions between conventions which
bear consideration: direct and indirect. Consider a transition between two efficient
conventions (7, I*,A) and (7", I*, A). Let 61 be the first equilibrium on the path of this
transition such that p(6;) # (T, I*,A). If 3(1, P) such that p(61) = (T",I, P), then it is
a direct transition. If 3(I, P) such that p(6,) = (T, I, P) then it is an indirect transition.
We focus first on direct transitions.

There are two possible means of affecting a direct transition. A new transfer might
be made attractive if agents mutate to suggest it, or the current transfer might be made
unattractive by changing behavior following it. Clearly this second is accomplished by
changing the price. The worst price that sellers (resp. buyers) can demand is V(I) — A
(resp. A.) Since the price is already A in an efficient convention, there is no point to
having buyers mutate in this manner. The buyer’s payoff is linear in the number of
sellers choosing different strategies. Hence, there is no point in considering transitions
which involve both types of mutations: either mutations which decrease the payoff for
the old transfer are more effective, or mutations which increase the payoff for the new

transfer are more effective. These observations are collected in Lemma 9.

Lemma 9 Consider a minimal mutation direct transition from an efficient convention

with transfer T1 which results in a convention with transfer Ty # T.

'5This applies to Theorem 4 since —7ras N = co.

rN—-1
N
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If mutations are to buyers, then all the mutants suggest the transfer Ts.
If the mutation is to sellers, then either all of the sellers suggest the transfer Ty, or all

of the sellers demand a price of V* — A following the current transfer and investment.

Lemma 9 identifies three different types of direct transition. Let us focus first on a
transition from (7,I*,A), to a convention with transfer 7" # T, which is affected by
mutating buyers who suggest the transfer 7. Clearly the sellers can’t know what payoff
will result from a match in which 7" is agreed upon. But they do have beliefs. What
concerns us is the nature of these beliefs in a minimum resistance transition. Presume
that sellers hold such beliefs, and define ug(T") such that T" + ug(T") is the payoff that
sellers expect from a match in which 7" is agreed upon. That is, the resistance for this
transition is 7 such that (1 — 7)(T + A) = r(T" + ug(T')). To make r small, ug(T")
should be as large as possible. Of course, one can alway suppose that sellers expect
(I*,V* — A) following T". However, it does not follow that if such beliefs are used to
define ug(T"), and hence r, that a proportion r of mutants would be sufficient to cause
the desired transition. A problem might arise because individual rationality constrains
the mutating buyers choice of strategy. This might imply that when buyers switch to
a strategy which suggests T”, their beliefs might be contradicted in such a manner that
they end up switching back to their previous strategy. So ug(T") is as large as possible
while avoiding this problem. We consider also a transition caused by sellers mutating

to suggest T". Let up(T") be defined so that ug(T') — T" is the payoff buyers expect
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in such a transition of minimum resistance. That is, the minimum resistance of such a

transition should be r such that (1 —r)(V* —I* — A —T) = r(ug(T") — T").16

Proposition 3 Consider a minimum resistance transition from an efficient convention
(T, I*, A) to a convention with transfer T' # T. Define ug(T"), and up(T") as above.
If sellers mutate to suggest T' then up(T') = V* — I* — min{P € P(I*)} such that
ug(T") =T < V* —TI*.

If buyers mutate to suggest T' < VO — A, then us(T') = V* — A.

If buyers mutate to suggest T' > VO — A, then ug(T') = V* — I* — A.

Proof: Transitions which change the transfer from T by suggesting a new transfer T"
follows three steps. (1) A proportion r of one subpopulation (the leaders) mutates to
a new transfer 77. (2) The agents in the other subpopulation expect a higher payoff
following 7", and so all switch to T". (3) The remaining agents in the leader population
who did not mutate in step one switch to playing T”. With this in mind, we first show
that the suggested values of u;(T") are feasible, and then show that no larger value is
feasible. Consider first ug(T). Let P’ = min{P € P(I*)|[V* —I* — P' —T' <V* —I*}.
Note that ug(T') = V* — I* — P’ is the value suggested by the Proposition, and that

T'+P' > 0. Let all buyers drift to expect P’ following (T”, I'*). Let sellers mutate to play

16 Tt is in the statement of Proposition 3 that Assumption 2 plays a role. If P/ +T = 0, then we might
wonder if demanding P’ following (T, I*) is individually rational for sellers. This depends upon what
they play following (T, I°). The best (from their perspective) this could be would be P(I°) = V° — A.
Because V° — A — 1V* may be either positive or negative, we can’t know the individual rationality of
-T = %V* = P’ for the sellers. Assumption 2 allows the statement of Proposition 3 without reference
to this issue.
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(T', P(I*) = P'). If a sufficient proportion of sellers have mutated, the buyers update
to play (T",I*,P'). At this point updating by the sellers completes the transition. This
demonstrates that the suggested value for ug(7T') is feasible. By assumption ug(T)—T" =
V*—TI* is not feasible, so we ask is it possible that ug(T)—T" > V*—TI*. The only way for
buyers to receive above V* —I* is for sellers to receive a negative payoff. In this case, the
non-mutating sellers would not imitate the mutants and the mutants would eventually
imitate the nonmutants. Hence if the buyers needed a draw of ug(T) —T' > V* — I*
to switch strategies, then they will eventually switch back, and ug(T) — T' > V* — I*
is not feasible. Now consider ug(T"). If T < V? — A, then the mutating buyers play
(T',1° A), while the sellers expect (I*,V* — A) following 7" and correctly expect A
following (7",1°). All the sellers update as soon as they see T’. Then all the buyers
update before the sellers can switch back. This leaves the population at an equilibrium
with outcome (T7,1°, A). Hence up(T') = V* — A is feasible. It is obviously the highest
possible value. If 7" > V% — A, then the mutating buyers play (7”,I*,A), while the
sellers expect (I, V0 — A) following 7" and correctly expect A following (7", 1*). All
the sellers update as soon as they see T'. Then all the buyers update before the sellers
can switch back. This leaves the population at an equilibrium with outcome (7", I*, A).
The only way that ug(T") could be larger is if the sellers expected I* to follow T". If
T' > V% — A, then individual rationality assures that I° will not be played following T".

Hence the only way that ug(T") could be greater is if the sellers correctly anticipated I*
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following T", but then they would have to be incorrect concerning the price. Hence, there
would be disagreement concerning the price following 7', I*. At this point, if the sellers
update, not getting the payoff they expected, they will return to the starting convention.
Further, nothing could make the mutated buyers demand a high enough price to change
this fact, so that eventually the sellers will return to the previous convention. Hence if
T' > V0 — A, then up(T') > V® — A is not possible. &

I now wish to define three important transfers: TV = min{T € T(¢)|T > —A},
T° = max{T € T(¢)|T < V® — A} and TH = T — ¢. The lowest and highest transfers
within efficient conventions are TF and TH respectively. The highest transfer to which
a buyer who intended to invest I® would agree is T°. Let pM = (TM, I*, PM) where
T™ PM ¢ argmin{TM + PM|TM + PM > 0,T™ € T(¢),PM € P(I*)}. pM is the
convention which maximizes buyer’s payoff. Let 6™ =TM + PM_ §0 =y0 _ A —T0,
and 6" = —A —T". Clearly 0 < 6 < ¢ for j = L, M, 0.

Let RB(T,T") denote the resistance for a transition from (7', I*,A) to a convention
with transfer 77 when buyers mutate to suggest 7'. RB(T,T') = r such that r(T" +
ug(T")) = (1 — r)(T + A) which solves to RB(T,T') = m. To minimize
this expression, we must maximize 7" + up(7'). There are two possibilities: 7' =
T = VO - A —§and ug(T®) = V* - A, oo T' = TH = V* - I* — A — ¢ and
up(TH) = VO — A. Obviously, the first possibility results in a lower resistance. Let

RB(T) = ming RE(T, T").
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Proposition 4 RE(T,T") = m.

If T #T°, then RP(T) = RB(T,T°) = 1= Ttp .

0_50
RB(TO) - RB(TO,TO _ ¢) = V*+2(‘§'/0—g—50)—¢‘

Similarly, let R%(T,T') denote the resistance for a transition from (T, I*,A) to a con-

vention with transfer 77 when sellers mutate to suggest 7'. R(T,T') = r such

that 7(=T' + ug(T")) = (1 — r)(V* — I* — A — T), which solves to R5(T,T') =

V*—I*—A-T
V*—I*-A-T-T'"+up

T By assumption, this expression is minimized when T/ = TM

and ug(TM) —TM = V* — I* — 6M. Let R%(T) = ming RS (T, T").

Proposition 5 R%(T,T") = oo A 79 famm)

IfT #T™, then RS(T) = RS(T,TM) = 5 Y 2loal o

There remains one type of direct transition. This last occurs when, starting from
an efficient convention (7, T*,A), buyers drift to expect P = V? — A following (T, I°),
after which sellers mutate to play (7, P(I) = V(I) — A). That is, they continue to
make the same transfer, but demand all but A of the post investment surplus. If
T > A, then the buyers’ individual rationality rules out playing (7', I,V (I) — A) for
both values of I. Hence, given their beliefs, they will never switch to playing (T, I°, P)
for any P € P(I°). This assures that if 7 > A, and sellers mutate as described,
then the only way for buyers to escape a negative payoff is to change their transfer to
one which is not currently suggested. This will net them a payoff of zero. Let R¥(T)

represent the resistance for upsetting a convention in this manner. R%(T) is r such that
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(1—7)(V*—=A)—I*—T = 0. This expression follows because the payofl for suggesting
a different transfer is zero, and the buyers only get V* — A when they are matched with
non-mutants, but must pay the investment and transfer in all matchings. Of course,
the buyers can guarantee themselves a payoff of A — T by playing (T,1°, A). Hence
if T < A, then this form of transition is not possible. This case is denoted with a

resistance of co.

Proposition 6 If T > A, then RY(T) = %

IfT < A, then RY(T) = co.

We now turn to indirect transitions. Starting from an efficient convention p =
(T, I*, A) an indirect transition would first arrive at a convention p; = (T, I;, P;) with the
same transfer. Then from the convention p;, the populations move to some convention
p' = (T',I',P,). The only purpose in the transition from p to p; is to make the final
transition to p’ easier. This requires that the subpopulation which is not mutating
in the transition from p; to p’ has a lower payoff in p; than in p. This implies that
sellers mutate in this final transition. Therefore there is no increase in resistance from
presuming that p' = p™. This final transition is caused by having sellers mutate to
either a new convention, or to an attempt to grab all of the surplus. In the first case, we
have already established that p' = pM offers the biggest draw to buyers. In the second
case, any convention with a different transfer is equally good, they all offer a zero payoff

to the buyers.
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Proposition 7 A least resistance indirect transfer can be constructed to end at p™.

There are nonetheless many different types of indirect transfers. However, it happens
that only transitions beginning at conventions with a transfer T > 1(V* — I*) — A are
relevant. The following Proposition restricts attention to only one one type of indirect

transition.

Proposition 8 If T > %(V* —I*) — A, and P # A, then (T,I,P) is not strictly
individually rational for buyers. The resistance of any transition to such a convention

is infinite.

Proof: By assumption 2A < min{I*, (V* — I* — V%)}. Hence if T > 1(V* — I*) — A,
and P > 1V(I), then V(I) - I —P—-T < V() + A — T — J(V* — I*) < 0 since
VO A<I(V —I*) ((fI=1°) and A < 3T* (if I =TI*.) &

Let us then consider an indirect transfer which starts at (7', 1*,A), passes through
(T,1°,A) and then moves on to p™. We presume that buyers correctly expect A to
follow (T, 1°). In this circumstance, the resistance r, to change (T, I*,A) to (T,1°, A)
satisfies (1 —r)(V* —A) = I* =T =V? — A — T. Of course, if V0 — A — T < 0, then
buyers will not play I° following 7', making such a transition impossible. The resistance
r for the second part of this indirect transition, from (T, 1%, A) to pM satisfies either
(1=r)(VO-A-T) = r(V*~I*—M) or (1—7)(V—A)—T = 0. Algebra reveals that the

first expression yields a smaller r. Let R%(T) denote the resistance for the transition
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from (T,I*,A) to (T,I1°, A) and let R%“(T) be the resistance of the transition from

(T,1° A) to pM.

Proposition 9 If V0 — A > T then RY(T) = Y=LV,

If VO — A <T then RY(T) = oo.

0O_A_
ROL (T) = V* ,I*K‘/O,AT(;M T

We let R*(T) denote the summed resistances for the two legs of an indirect transition.

Proposition 10 If T > 3(V* —I*) — A, then R{(T) = R%(T) + R*(T).

D Construction of the £-Tree

We now attempt to find which of the resistances is lowest for different conventions, and
which efficient convention is most difficult to upset. The first question we ask is, when
is RYT) < R%(T)? Since both expressions have the same numerator, we can see that

RYT) < RS(T) ifand only if T — A+ 6M > V* — A — 21"
Proposition 11 RY(T) < R%(T) if and only if T + I* + 6™ > V* — I*.

This expression has some nice intuition. The bigger the investment or the transfer, the
the fewer sellers must attempt hold up in order to upset an efficient convention. The
expression approximately says that if the cost of hold up (7 + I*) is greater than the

value of the relationship (V* — I*,) then it is easy for sellers to cause disagreement.
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Conversely, if the value of the relationship is greater than the cost of hold up, then it is

easier for sellers to suggest a new agreement.
Proposition 12 If min{V? 3(V* —TI*)} < T+ A then RY(T) > min{R*(T), R (T)}.

Proof: If V0 — A < T, then RY(T) = co. So assume V° > T+ A > 3(V* — I*). Fix

T, and set X = T + A. Note that if I* + T + &7 > VO, then R(T) > V702X

Consequently R (T) — RYT) > (V*V_*I_*)A_X — (V;I_*)A_X = 0. On the other hand, if

I+ T+ 6M < VO, then R(T) > +-"f?=2 5. Consequently, R'(T) — RS(T) >

(V*-11)-X _ (vr-I)-X . . 7 0
V*—I*+VO0_X_§M Q(V*—I*)—X—(SM > ( since 1% I > %4 *

Evidently RP(T) is increasing in T' while both R4(T) and R%(T) are decreasing
in T. Let RE(T) = limy,0 R®(T), and R§(T) = limy ,o R¥(T). Define 7 such that
RF(r) = min{Rf(7), R%(r)} and 7 = argmaxpcr(4){min{RE(T), RS (T), R*(T)}}.}"
Clearly limg |7 — 7| = 0. As one might suspect, the transfer 7 is very important.
Given Proposition 12, if ¢ is sufficiently small, and 7 > %(V* — I*) — A, then the
convention (7,I*,A) is the most difficult convention to upset. Furthermore, it is almost
possible to construct a (7,I1*,A) tree using only the easiest transition out of every
efficient convention. It is now to demonstrate that 7 > Z(V* — I*) — A.

Let X, = 7+ A. Let Xs be defined such that R¥(Xs — A) = R§(Xs — A), and

let X4 be defined such that R¥(X; — A) = RY(Xy — A). Clearly, X, = min{Xg, X }.

"For ease of exposition I presume that there is only one argmax. Observe that if there are two, then
they adjacent to each other, and still quite close to 7.
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Recall that H =V* + V0 — 2A.

Proposition 13 Xg¢ = (V* — I*)m‘f{ﬁ

It is not so easy to find an expression for X , because the solution is quadratic. However,
we know that there is an « € (0,1) such that X; = a(V* — I'*). This allows us to write

an expression, which while not in closed form, is nonetheless informative.

Proposition 14 X; = (V* —I*¥)

H
H+(aV*+(1—a)I*—A)"

_ X
Here o = iy € (3,1).

Proof: Algebra yields Xy = (V* - I') = = (V" = I') =5 =

(V* = TI%) H+(aV*+g—a)I*—A)' We observe that X, is decreasing in a. Setting o = 1,
yields Xy = (V* — I') gi—x > 5(V* — I*), while setting o = 0, yields Xy = (V* —

* * * _ X,
I)H+II£7A<V — TI*. Hencea:(v—*_dl—*)e(%,l)_ &

Note that X, = min{Xy,Xs} > X = (V* — I*)m Let R(T) =

min{R%(T), RB(T), R*(T), R(T)}. From the above, we can see that (for ¢ sufficiently

small) R(7) = RP(1) > R{(X — A) = o vy 35

Proposition 15 For ¢ sufficiently small, if 7 > V° — A then RB(T°, TF) < R(¥)

Proof: Xs > 7+ A > V% or VO < (V* - I*)V*+“//Bt‘2/2f‘ﬁ_l*. Hence RB(T°,T1) =

VO VI VeI _ pB(y _ -
VA < ATV T < vrvi—sarve—roa = B (X —A) <R(7). &

Proposition 16 As ¢ — 0, RB(TL, TH) — 0.
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. pB(pL HY _ TI4A _ o . L
Proof: R®(T",T") = TV T VO A g~ Vo T ivo 28 g7or with §" < ¢. &

Proposition 17 If efficient investment is small, then VT*JQAI* =5

If efficient investment is large, then Fp < % <F

Proof: We know that 7+ A = X, = min{Xg, X}, hence the Proposition follows from
the demonstration that Xg < X, if and only if I* is small and the observations that:
Xg = (V* = I*)Fy, and (V* — I*)Fy, < X4 < (V* — I*)F,. The second observation
follows because if a € (3,1) then V* > (1—a)I* + aV* > $(V*+1I*). Both R§(T) and

RY(T) are decreasing in T, and R§ (T') > R4(T) if and only if T > V* — 2I*. Therefore,

either Xg < Xg < V*—-2I"+ A or Xg > Xg > V*—2I"+ A. Hence, X, = Xg

if and only if X5 = gy < (V= I*) = (I* = A) or 1= =8 > i or

e > I*—A

v 2 vV Which is to say, that X, = Xg if and only if efficient investment is

small. &

Proof of Theorems 1 and 2

We proceed by using Theorem 4 and constructing an £-tree which we then argue must
have lowest £ potential. Let L consist of the p-components for either p an efficient
convention or p = p™. From Proposition 2 this set £ satisfies the conditions of Theorem
4. For z € {B, S,1,d}, let T, consist of the transfers {T" € T(¢)|—-A < T < V*—I*—A}
such that R(T) = R*(T). We observe the following facts about these regions: there is a
TY, TH > T! > 7, such that Ty = {T € T(¢)|T' < T <TH} and Tg = {T € T(¢)|7 <
T < T'}. Also there are T2, T3 with Tt < T? < T3 < min{r,T°} such that 7; C {T €
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T(¢)|T? < T < T3}, while {T € T(¢)|A <T <7}\T; C Tp. First presume that 7 >
TO. Let us construct an £ graph as follows: if T' € T;UTg, then include (T, I*, A) — pM.
If T € Ty, then include (T,I*,A) — (7,I*,A). Include (T°,I*,A) — (T° — ¢, I*,A)
and for T € Tp \ {T°}, include (T,I*,A) — (T° I*,A). If there is convention with
multiple L-edges departing from it, then arbitrarily delete all but one. This graph
has a lowest resistance transition leaving from every efficient p-component. From here,
delete the transition leaving (7,I*,A), and replace the transitions leaving (7, 1%, A),
and (T, I*, A) with (T°,1*,A) — (T*,I*,A) and (TL,I*,A) — (TH,I*,A). Finally,
if pM # (TF,I*,A), then add p™ — (7,I*,A). This results in an (7, L£)-tree and
By Propositions 15 and 16, this tree has lower L-cost than any L-tree which is not
rooted at (7,I*,A). Hence (7,1*,A) has lowest £ potential, and since RB((F,I*,A))
is bounded away from zero, it follows that the (7, I*, A)-component is locally stable for
sufficiently large N. Hence the (7, I*, A)-component is the stochastically stable set. If
instead 7 < T9, then the transition (T°,I*,A) — pM is the least resistance transition
out of (T° I*,A). Here essentially the same tree construction as above will yield a
(7, L)-tree with lower L-cost than any L-tree which is not rooted at (7,I*,A). The
difference is that if p™ # (T%,I*,A), then this tree has (T°,I*,A) — pM instead of
(T°,1*,A) — (T*,I*,A). Hence, the same conclusions follow. Theorems 1 and 2 now

follow from Proposition 17. &
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