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Demand Growth and Strategically Useful Idle Capacity

Abstract

This paper presents a model of an incumbent �rm and a potential entrant. If entry
occurs, then competition proceeds through cournot quantity competition. My model,
like those of (e.g.) Dixit and Ware, includes a strategic use of capacity prior to entry.
However, it di�ers in that I consider a two period model, in which second period demand
is larger than �rst period demand. I show that demand growth can result in a use for
idle capacity. This result does not require the assumption of strategic complements,
and therefore works with, e.g., linear demand.



1 Introduction

The idea that a �rm might create productive capacity for the purpose of preempting

a (potential) rival is hardly novel. Further, there is no lack of empirical evidence of

�rms maintaining a persistent stock of idle capacity.1 However, the current body of

theoretical models concerning preemptive capacity has not directly addressed the issues

in Justice Hand's decision on what has become the text book case on preemptive idle ca-

pacity, Alcoa Aluminum.2 In his decision, Justice Hand suggests that Alcoa did "always

anticipate increases in demand for ingot and be prepared to supply them." Further, he

suggests that the rational behind Alcoa's behavior was that there was "no more e�ective

exclusion than progressively to embrace each new opportunity as it opened, and to face

every newcomer with new capacity..."3 This paper investigates Justice Hand's assertion

that the maintenance of idle capacity is an e�ective method of entry deterence when

demand growth is anticipated.

While Dixit (1980) and Bulow et. al. (1985) demonstrate that capacity can be used

for entry deterence, they have tied the strategic use of idle capacity to cases in which the

output of the two �rm's are strategic complements.4 Basu and Singh (1990) have shown

1For example: Esposito and Esposito (1974), Cossuta and Grillo (1986), Rosembaum (1989). More
to the point, Mathis and Koscianski (1995), Shaanon (1997) and Hall (1990) �nd evidence that �rms
use idle capacity to prevent entry. However, Ghemawat (1984) and Gilbert and Lieberman (1987) �nd
otherwise.

2Covered in, for example, Martin (1993, pg. 98.)
3Hand (1941,1947).
4See also: Dixit (1979), Spence (1977), and Fudenberg and Tirole (1984). For elaborations see:

Barnham and Ware (1993), Eaton and Lipsey (1980, 1981), Eaton and Ware(1987), Fudenberg and
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that idle capacity might arise if capacity is only one of the entry deterence instruments

available to the incumbent.5 However, these models work with only a single period,

and so assume away the possibility of demand growth. Consequently, the relationship

between demand growth and strategically useful idle capacity suggested by Justice Hand

can not be present. In this paper, I show that in the face of growing demand, entry

deterence may necessitate the maintenance of idle capacity. This result requires neither

strategic complements, nor the presence of additional deterence instruments. Rather, it

follows from an entrant's willingness to take early losses in order to gain a foothold in a

market and make pro�ts in later stages. Knowing the value of a foothold, the incumbent

�rm recognizes that deterence requires suÆcient capacity to make both the current and

future periods unpro�table for the potential entrant. If demand is growing, then this

might require maintaining idle capacity.

Beyond the Alcoa Case, these arguments shed some light on the case of Dupont's

alleged attempts to achieve and maintain market dominance in titanium dioxide.

Dupont's advantage was based upon lower costs from learning by doing (see e.g. Gilbert

and Harris (1981).) However, part of the accusation leveled at Dupont involved the

preemption of their rival's capacity investment. In particular, Dupont built a plant

in DeLisle Mississippi "despite the acknowledgment that the completed facility might

Tirole (1983), Salop (1979), Schmalensee (1981), and Spence (1979).
5Basu and Singh (1990) use a Stackelberg perfect equilibrium to capture the commitment value of

the Incumbent's other instruments.
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have to be held in readiness for operation ... until market conditions had suÆciently

improved."6 Hence, my analysis sheds light on at least a portion of Dupont's behavior.

The formal model is a two period game with an incumbent and a potential entrant.

In both periods, �rms have an opportunity to build additional capacity, after which they

engage in Cournot quantity competition. In the �rst period, the incumbent �rm sets

capacity before the potential entrant may do so. However, the incumbent maintains this

�rst mover advantage in the second period only if there is no entry in the �rst period.

Otherwise the two �rms set second period capacity simultaneously. That is, the value of

a toehold is modeled as the negation of the incumbent's �rst mover advantage. I �nd that

a two period model behaves in many ways the same as a one period model. However, it

is possible to establish that, given suÆcient growth in demand, entry deterence requires

the presence of idle capacity. With linear demand, one can demonstrate the existence

of cases in which entry deterence with idle capacity is a subgame perfect equilibrium.

There have been previous temporal models with capacity choice. For example,

Spulber (1981) also examines a two periodmodel. However, Spulber does not distinguish

between �rst and second period capacity, and does not allow entry to occur in the

�rst period. Hence, even if Spulber's model did include demand growth, it would not

allow the type of behavior studied here. Gilbert and Harris (1984), Eaton and Lipsey

(1980) and Reynolds (1987) all examine dynamic capacity games, but assume away

6Dobsons et. al. (1994, pg. 166).
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the possibility of idle capacity. Eaton and Lipsey (1979) consider a growing spatial

market, and show that an incumbent will expand into new markets before entry occurs.7

Reynolds (1986) performs simulations of the American aluminum industry after the

Alcoa decision, and �nds that a dominant �rm model (Kydland, 1977) does the best

job of replicating the persistent idle capacity in that market.8

The remainder of the paper is organized as follows: the model is presented in Section

2, and analyzed in Section 3. Section 4 concludes. Many proofs are contained in the

appendix.

2 Model

The model presumes that an incumbent �rm has a �rst mover advantage only until the

entrant establishes a toehold in the industry. The timing of the model in period one is:

1) the incumbent (I) sets capacity. 2) The entrant (E) makes his entry decision, and

sets capacity (if he enters,) and 3) �rms in the market set output simultaneously at the

intersection of their reaction functions.9 If there is still only a single �rm in the market

at the beginning of the second period, then the timing in the second period mimics that

in the �rst. However, if there was entry in period one, then in the second period �rms

7Eaton and Lipsey suggest that there is excess capacity in this model. However, there is no idle

capacity.
8Following the decision Kaiser and Reynolds both became signi�cant players in the Aluminum

market.
9Of course the reaction functions are determined by capacity choices. It is presumed that output

has no consequence for later periods, and is set at the single period Nash equilibrium.
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set (increases) capacity simultaneously after which they simultaneously set output.

Throughout, subscripts will denote time periods, t = 1; 2, and superscripts will

denote either players i = I; E or special outcomes. For example, qit refers to �rm i's

output in period t. In period t, for an aggregate output Q, prices are determined by a

inverse demand Pt(Q). Demand in both periods is assumed to satisfy: P 0
t +P 00

t �Q > 0.

Demand growth is formalized by requiring that P2(Q) > P1(Q) and that jP 0
2j � jP 0

1j for

all aggregate outputsQ. This is satis�ed, for example, with linear demands: Pt = at�bQ

with a2 > a1. These assumptions guarantee that reaction function are downward sloping

in rival output, and shift outward between periods. Capacity, Ki
t is modeled as a

commitment on marginal costs. Hence total operating costs for �rm i in period t are

F + cKi
t + c[qit � Ki

t ]
+. Firms may not decrease their capacity so that Ki

1 � Ki
2 for

both �rms. In addition to the costs above, there is a sunk cost of �F which must be paid

upon entry into the market. It will be convenient to denote by �it(q
I
t ; q

E
t ) = (Pt � c)qit,

the �rm's 'variable' pro�ts.

Let Rt(�;K) be the reaction function in period t for a �rm in the market with

capacity K. Let Rt(�) = Rt(�; 0) and �Rt(�) = Rt(�;1). A superscript i on any of these

functions indicates that it is a �rm i reaction function.

My results depend upon Ware's (1984) analysis of a single period capacity setting

game, so let us suppress the time subscripts for the moment. Denote the (zero capac-

ity) Cournot equilibrium as the point CN = (CN I ; CNE) (throughout a superscript i
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denotes the projection onto qi) and denote the point where �RI and RE intersect as V .10

In the Dixit (1980) model, the dominant �rm sets capacity so as to make his preferred

point on RE between CN and V the Nash equilibrium of the post entry output game.

Presuming that both points are feasible, he chooses between accommodating entry at

the stackelberg point S and detering entry by committing to the limit output. Ware

(1984) modi�es Dixit's model by allowing the (potential) entrant to set capacity as well.

At this point, the entrant has the commitment opportunity, and sets his capacity to

choose a point on RI(�;KI) between the intersections with RE (point U) and �RE as

the equilibrium of the quantity setting game. In equilibrium, the entrant never uses

this ability, but its presence constrains the incumbent's capacity choice. Speci�cally,

consider the point ~S, the entrants preferred point on �RI between U and V .11 If the

incumbent sets her capacity too high, then the Entrant will prefer this point to the

intersection of RI(�;KI) and RE. Let W be the point on Re such that �E(W ) = �E( ~S).

Clearly the incumbent �rm must have higher pro�ts at W , than at S. Hence in the

Ware (1984) one period model, the incumbent �rm does not set capacity higher than

W I . Deterence is only possible if the limit output is less than W I , and a Stackelberg

leader would set her capacity to choose her preferred point on RE between CN and W .

Call this the generalized Stackelberg point, and denote it Ŝ.

10Since the model is symmetric, CNI = CNE . The distinction between �rms is made only to keep
notation standard.

11This should perhaps be spoken of as the constrained preferred point, since it incorporates the
constraint that the entrant can not commit to more output than he produces at the point U .
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3 Analysis

Equilibria can be placed within three classes based upon when entry takes place. There

are: entry equilibria, with entry in the �rst period; delayed entry equilibria with entry in

the second period; and deterence equilibria, with no entry what so ever. The analysis of

a delayed entry equilibrium adds little to Ware (1984). Further, as we shall see below,

there is never idle capacity in a delayed entry equilibrium. Consequently, I focus on

entry equilibria, and deterence equilibria.

The �rst step is to determine behavior in the second period. Second period output

is set by the intersection of the reaction functions Ri
2(�;Ki

2). Since the game ends after

the second period, no �rm will build idle capacity in the second period.12 Furthermore,

since the only purpose for idle capacity in the �rst period is to in
uence the second

period, no �rm would build capacity in the �rst period beyond what is used in the

second period. Hence in equilibrium, qi2 � Ki
2 for both �rms.

Let 
 be the intersection of the second period reaction function if capacity is left

unchanged between periods. For example, RI
2(


E ;KI
1 ) = 
I . Proposition 1 gathers

and formalizes the above observations.

Proposition 1 In any equilibrium, Ki
1 � 
i �W I

2 .

In Proposition 1, W I
2 is simply a number, which serves as a bound on both �rm's

12This follows from exactly the same logic which lies behind Dixit's (1980) results.
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capacity. In the current analysis, it is not a priori clear which �rm will set the largest

capacity. In fact, as Proposition 8 (Appendix) demonstrates, there are a continuum

of second period equilibrium continuations following �rst period entry. In particular,

consider the outcome if the incumbent (resp. entrant) has a �rst mover advantage in

the second period. If both �rms anticipate this outcome, then they are both choosing a

best response. Hence, an outcome in which either of the �rms has the ability to commit

to his second period capacity is a equilibrium when the �rms choose simultaneously.

Further there is a full range of equilibria 'in between' these two cases which might be

thought to correspond to intermediate distributions of commitment power. I make the

following assumption to avoid multiplicity of equilibria.

Assumption E In an entry equilibrium:1) qi2 = 
i for i = I; E,

2) KE
1 � qE1 .

Part 2 of Assumption E is innocuous, and merely serves to make the statement

of Propositions easier.13 Under Assumption E1, output in both periods of an entry

equilibrium is determined by the �rst period capacity choice. If both �rms have Ki
1 �

CN i
2, then CN2 is the second period output. If one �rm has Ki

1 > CN i
2, then that

�rm's �rst period capacity (and the other �rm's reaction function) determine second

period capacity. That is, second period output is chosen as if there were no second

period capacity decision.14 This re
ects the idea that capacity is a commitment device,

13See Proposition 9 in the Appendix.
14The ability to set capacity in the second still plays a role, in that it limits the incumbent's ability
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and once entry occurs, the incumbent has lost his �rst mover advantage, and hence

his commitment advantage. In Section 4, I argue that Assumption E Part 1 rules

out implausible equilibria, and captures the desirable aspects of a forward induction

argument (as in Bagwell and Ramey, 1996.)

Since adding another period to the game has not changed the fundamental role of

capacity, some aspects of equilibria should remain qualitatively unchanged. Capacity

should only be built if it has commitment value, in either the �rst or second period. The

incumbent's �rst mover advantage should, in equilibrium, leave the entrant without a

desire to use his capacity for commitment. That is, the Entrant, should he enter in the

�rst period, should build only capacity he will use in the �rst period. And �nally, the

incumbent should, at a minimum be able to guarantee himself the modi�ed Stackelberg

outcome, Ŝ1, in the �rst period.

Proposition 2 Presume Assumption E holds. In an entry equilibrium, the entrant's

�rst period capacity is equal to his �rst period output, and the incumbent's �rst period

capacity is equal to her output in either the �rst or second period.

In a deterence equilibrium, if the incumbent's �rst period capacity is greater than her

�rst period output, then her capacity is greater than her second period Cournot output.

In any equilibrium, the incumbent's �rst period output is greater than or equal to the

to set a high capacity in the �rst period. That is, Assumption E1 is not meant to negate Proposition
1, but only to select amongst the possible equilibria.
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minimum of her �rst period monopoly and �rst period generalized Stackelberg output.

Proposition 2 implies that idle capacity is not a possibility in a delayed entry equi-

librium. Let M t = (RI
t (0); 0). Clearly the �rst term, M I

t , is the monopoly output. Let

�Mt = ( �RI
t (0); 0).

�M I
t is the monopoly output for a �rm with no marginal costs. Consider

an outcome with delayed entry and idle �rst period capacity. If capacity is left idle in

the �rst period, then KI
1 >

�M I
1 . Since the entrant wishes to enter in the second period,

but not in the �rst, it must be the case that �E1 (
~S1) � F . Hence �E1 (W1) � �E1 (

~S1) � F .

Now consider an outcome which is the same, except that KI
1 = maxfW I

1 ;M
I
1g < �M I

1 .

The entrant's incentive to enter in the second period is unchanged, and so we may ex-

pect the same second period pro�ts for both �rms. However, the incumbent no longer

has to pay the �rst period costs of maintaining idle capacity, and is producing closer to

the pro�t maximizing output, M I
1, in the �rst period. Clearly the incumbent's pro�ts

are higher, and the original outcome was not an equilibrium.

Proposition 3 There is never idle capacity in a delayed entry equilibrium.

In cases where idle �rst period capacity is possible, that possibility must depend

upon the amount of demand growth.

Assumption G There is suÆcient growth in demand that commitment in the second

period requires idle capacity in the �rst: CN I
2 >

�M I
1 .

By the de�nition of �M I
1 , idle capacity in the �rst period of a deterence equilibrium

occurs when KI
1 > �M I

1 . On the other hand, by Proposition 2, we know that for the
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incumbent's �rst period capacity to have a consequence in the second period, it must

be greater than CN I
2 . Hence Assumption G is the requirement that commitment in the

second period requires idle capacity in the �rst period.15 This simpli�es the analysis of

both deterence equilibria, and Stackelberg leadership.

Because the incumbent's �rst period capacity determines the outcome in both pe-

riods, when acting as a Stackelberg leader, he trades o� more pro�table commitment

today with less pro�table commitment tomorrow and vice versa. There are two ex-

treme cases to consider. A type 1 Stackelberg leader chooses capacity to commit in

the �rst period, but gives up the ability to commit in the second. That is, she chooses

KI
1 = qI1 � minfCN I

2 ;W
I
1 g. Clearly this leads to an equilibrium with outputs of Ŝ1 in

the �rst period andCN in the second. A type 2 Stackelberg leader commits in the second

period, and 'over commits' in the �rst. That is she chooses KI
1 = qI2 > maxfCN I

2 ;W
I
1 g.

In this case, the incumbent has idle �rst period capacity and the �rst period output

is ~S1. In the second period the output is set at (KI
1 ; R

E
2 (K

I
1 )). Under Assumption G,

these are the only types of accommodating behavior which can arise in equilibrium.16

However, if there is demand growth, but Assumption G does not hold, then there is an

intermediate type of Stackelberg leader, who both uses all of her capacity in the �rst

15Obviously one might look for a somewhat weaker assumption, which allows for cases in which idle
capacity is a possibility, and cases in which commitment occurs without idle capacity. Since any capacity
greater than W I

2 has no commitment power in either period, W I

2 > �MI

1 is clearly the weakest possible
growth assumption.

16By Proposition 2. In fact, a somewhat weaker condition, W I

1 � CNI

2 suÆces. This condition,
however, is not relevant when considering deterence equilibria.
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period, and commit to an output in the second. In this case, the incumbent chooses KI
1

such that ŜI1 � qI1 = KI
1 = qI2 � ŜI2 .

17 Entrant outputs are at RE
t (K

I
1 ).

We are now ready to turn to the paper's central issue, under what conditions can idle

capacity occur in equilibrium. Throughout what follows, Assumptions G is maintained.

The following �ve conditions must be satis�ed: 1) It is possible to deter �rst period entry,

but 2) only if the incumbent maintains idle capacity. 3) It is possible to deter entry

in the second period. 4) The incumbent prefers entry deterence to being a Stackelberg

leader, and 5) given that entry has not occurred in the �rst period, the incumbent

prefers to deter it in the second period as well. The �rst three of these conditions are

statements about the Entrant's payo�s in di�erent situations. They might be restated

as 1') �E1 (
~S1) + �E2 (W2) � �F + 2F , 2') �E1 (W1) + �E2 (CN2) � �F + 2F , and and 3')

�E2 (W2) � �F +2F . These conditions can be translated to �E1 (
~S1)+�

E
2 (W2) � �F +2F �

�E1 (W1)+�E2 (CN2) and F � [�E2 (CN2)��E2 (W2)]+�E1 (W1). Since �
E
1 (W1) � �E1 (

~S1),

�E2 (W2) < �E2 (CN2) and 0 < [�E2 (CN2) � �E2 (W2)] + �E1 (W1), one can choose �F , and

F such that conditions 1,2 and 3 hold. This yields:

Proposition 4 Under Assumption G, one can �nd �nd values for F and �F such that

a deterence equilibrium requires idle �rst period capacity.

Observe that Proposition 4 is merely a statement that there are circumstances under

which, if the incumbent wishes to deter entry, then he must maintain idle capacity. To

17If SIt < W
I

t in both periods, then it follows that SI1 < q
I

1 = K
I

1 = qI2 < S
I

2 .
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demonstrate that such equilibria actually exist, one must show that the entrant prefers

deterence through idle capacity over being a Stackelberg leader. Because it is not so

straight forward to compare the incumbent's payo�s in di�erent circumstances, some

further structure must be imposed. For the remainder of the paper, linear demand is

assumed.

Assumption L Demand is linear: Pt = at � b(qEt + qIt ) with a2 > a1 > c.

There still remains the problem that the payo�s for detering entry depend crucially

upon �xed costs. Hence in comparing payo�s, it is convenient to �x upon a particular

case. Speci�cally, let us presume for now that KI
1 = M I

2 is suÆcient to deter entry in

both periods. The task of �nding values for F and �F which justify this presumption

will be addressed later. The �rst bene�t from Assumption L is the ability to rule out

type 2 Stackelberg leadership.

Proposition 5 Let Assumptions E and L hold. If there exists KI
1 � minfM I

2;W
I
2 g

which is suÆcient to deter entry in both periods, then type 2 Stackelberg leadership

never occurs in equilibrium.

The intuition of Proposition 5 is that either the �rst period or the second period is

in some sense more important. If the �rst period is more important, then the incumbent

prefers type 1 Stackelberg leadership to type 2. If the second period is more important,

then the incumbent prefers to deter entry, because by presumption, entry deterence is

not diÆcult. It now remains to show that there are cases in which the incumbent prefers
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deterence to type 1 Stackelberg leadership, for which the following assumption is useful.

Assumption D (a1)
2 + 2a1c� (c)2 � (a2 � c)(5c � a2).

SuÆcient conditions for Assumption D to hold are: a1
c
� 1:5 or a2

c
� 4:5. Proposition

6 informs us that Assumption D is an algebraic statement that the second period is

more important than the �rst period, so that the incumbent prefers deterence, when it

is relatively easy, to type 1 Stackelberg leadership.

Proposition 6 �I1(
�M1) + �I2(M2) � c(M 2 � �M1) � �I1(Ŝ1) + �I2(CN2) if and only if

Assumption D holds.

Observe that Proposition 6 is a statement that the incumbent would be willing

to hold the second period monopoly capacity, M I
2, in the �rst period to deter entry.

Hence, while Assumption D is 'tight' for Proposition 6, there are clearly cases in which

Assumption D does not hold, but the incumbent is nonetheless willing to hold idle

capacity. Likewise, if Assumption D holds with a strict inequality, then the incumbent

would be willing to hold capacity greater than M I
2 to deter entry. However, this gives

us an easy case to check for parameter values such that entry deterence is both possible,

and desired by the incumbent. It remains to show that there are values of F and �F , and

a choice of �rst period capacity, which satisfy all of the conditions. That is, let us �x


 = (KL; RE
2 (K

L)) for come capacity level KL. Our task is completed by �nding F and

�F such that there exists KL, with CN I
2 < KL � ŜI2 , satisfying the following conditions.

�E1 (W1)+�
E
2 (
) =

�F+2F < �E1 (W1)+�
E
2 (CN2) assures that entry deterence is possible

14



in the �rst period, if and only if the incumbent maintains at least capacity KL. Since

KL > CN I
2 , and Assumption G holds, this involves idle capacity. �E2 (Ŝ2) � �F + F

assures that deterence in the second period is feasible, and never requires more than the

monopoly level of capacity. Hence, delayed entry equilibria are ruled out. Now observe

that since �E2 (
) < �E2 (CN2), it is always possible to assure these conditions.18 By

Assumption D, �I1(
�M1) + �I2(M2)� c(KL � �M1) � �I1(

�M1) + �I2(M2)� c(M 2 � �M1) �

�I1(Ŝ1) + �I2(CN2). This guarantees that the incumbent prefers bearing the cost of idle

capacity to sharing the market.

Proposition 7 Let Assumptions G, L, and D hold. There are values for the �xed

and sunk costs such that there is a unique equilibrium satisfying Assumption E. This

equilibrium is a deterence equilibrium in which the incumbent maintains idle �rst period

capacity.

4 Conclusion

We have found that for an incumbent to deter entry when there is demand growth can

require the maintenance of idle capacity. The model was chosen to be as simple as pos-

sible, and could be generalized. One simple extension would be the addition of physical

depreciation. Since it is only the post depreciation capacity that has any commitment

value, depreciation would, all other things being equal, increase the capacity require-

18By essentially the same arguments as Proposition 4.
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ments for entry deterence. Consequently, physical depreciation should serve much the

same role as demand growth in making idle capacity strategically meaningful.

Less trivial would be to extend the model to a longer (possibly in�nite) sequence of

periods. Since a foothold is valuable in all future periods, an incumbent �rm would have

to consider demand in all future periods when choosing capacity. Reynolds (1987) has

analyzed such a model for a duopoly market. He �nds that concern over future periods

increases the capacity which �rms hold. This seems to indicate that results similar to

those contained herein could be found in an in�nite horizon model. However, Reynolds'

analysis depends upon �rm payo�s being quadratic in capacity, which disallows the

possibility of idle capacity.19

It remains to consider the possibility of selecting equilibria through some method

other than assumption E. One might follow Basu and Singh (1990) and select an equilib-

rium by presuming that the incumbent has means for committing other than capacity.

In this case, one would select the continuation in the second period most favorable to

the incumbent. This approach would have the draw back that entry might not occur,

because the entrant correctly anticipates that the continuation following entry involves

very large second period capacity by the incumbent. In essence, following Basu and

Singh (1990) involves giving the incumbent a �rst mover advantage in both periods,

which remove any value within the model from achieving a toehold.

19Reynolds analyses a di�erential game within a continuous time framework.

16



Another possibility would be to select equilibria through a forward induction ar-

gument (as in Bagwell and Ramey, 1996.) In this case, because there are multiple

equilibrium continuations in the second period, the entrant has a second mover advan-

tage. That is, forward induction requires that if entry occurs in the �rst period, then the

entrant must be planning a continuation in the second period that would yield him pos-

itive pro�ts. Clearly for entry deterence to be forward induction rational requires that

there be no continuations which yield the entrant positive pro�ts. Since the entrant's

most preferred continuation is when the incumbent does not increase her capacity, the

requirements for deterence would remain unchanged. However, the entrant's second

mover advantage might have a dramatic consequence in entry equilibria. For example,

it might be the only continuations which give the entrant positive pro�ts are those in

which the entrant acts as a Stackelberg leader in the second period. This would clearly

make a toehold in the industry worth more than a simple negation of the incumbent's

�rst mover advantage. On the other hand, because there are many cases in which many

equilibria would survive forward induction, the question of selection would remain.

5 Appendix

Proof of Proposition 1

If Ki
1 > 
i then Ki

2 � Ki
1 > 
i � qi2 since the only thing that can move second period

output away from 
 is if �rm j 6= i increases capacity which will weakly decrease �rm
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i's equilibrium output. Also the only way that 
i > W I
2 is if Ki

1 > W I
2 , which implies

Ki
2 > W I

2 and K
j
2 = ~SE2 and �rm i will be left with Ki

2 > qi2. Since we know that

Ki
2 � qi2 the Proposition follows. |

Proposition 8 Presume entry in period one, and �x period one capacities such that

they satisfy Proposition 1. A choice of second period capacities and outputs are a second

period equilibrium if and only if Ki
1 � Ki

2 � W I
2 (i = I; E) and one of the following

conditions holds.

1) (KI
2 � KE

2 ) q
I
2 = KI

2 = SI2 and KE
2 � qE2 = ŜE2

2) (KI
2 � KE

2 ) CN
I
2 � qI2 = KI

2 � SI2 and KE
2 = qE2 = RE

2 (K
I
2 )

3) (KI
2 � KE

2 ) q
E
2 = KE

2 = SI2 and KI
2 � qI2 = ŜI2

4) (KI
2 � KE

2 ) CN
E
2 � qE2 = KE

2 � SI2 and KI
2 = qI2 = RI

2(K
E
2 )

Proof: Assume without loss of generality that KI
2 � KE

2 . In both cases (1) and (2)

both �rms produce the optimal output given the capacity choices. In both cases, the

incumbent is choosing a capacity which results in output as close to Ŝ2 as possible.

Hence she does not wish to change her capacity. In both cases, the entrant is producing

the optimal output given the incumbent's choice of capacity, and has capacity less than

or equal to his output. Hence he has no incentive to change. Presume that the conditions

do not hold. If KE
2 > RE

2 (K
I
2 ), then (since KI

2 � W I
2 ) the entrant wants to reduce his

capacity. If KE
2 < RE

2 (K
I
2 ) and KI

2 < SI2 , then the incumbent wants to increase his

capacity. Hence a violation of both (1) and (2) is not an equilibrium. |
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Proposition 9 Let Assumption E1 hold. If there is an entry equilibrium in which

qE1 > KE
1 , then there is another equilibrium in which all outputs are unchanged, �rms

receive the same pro�ts, and qE1 = KE
1 .

Proof: That KE
1 < qE1 implies that �rst period output is on RE

1 and that qE1 � CNE
1 .

Hence increasing KE
1 to qE1 will not change the intersection of �rst period reaction func-

tions, nor will it result in KE
1 > CNE

2 . Hence, the output in neither period will change.

Since capacity is only a commitment to pay costs that must be paid if production takes

place, and outputs have not changed, pro�ts remain the same. |

The following four lemmas are for the purpose of proving Proposition 2.

Lemma 5.1 Presume that Assumption E Part 1 holds. In an entry equilibrium, both

�rms set �rst period capacity less than or equal to �rst period output, or equal to second

period output.

In a deterence equilibrium, the incumbent sets her capacity less than or equal to her �rst

period output, or strictly greater than the second period Cournot output.

Proof: We already know that capacity is not set above second period output, so it

remain to rule out a choice of capacity greater than �rst period output, but less than

second period output. In this case, there must be some bene�t from this in the second

period. In an entry equilibrium, if capacity is less than the the second period output,

then by Assumption E Part 1, it has no consequence on the second period. Clearly this
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implies that capacity less than the second period Cournot has no consequence in the

second period. |

Lemma 5.2 Let Assumption E Part 1 hold. In an entry equilibrium, if CN I
2 � KI

1 �

W I
2 , then the Entrant sets his capacity less than or equal to his �rst period output.

Proof: If CN I
2 � KI

1 �W I
2 then we know that the entrant gets no bene�t from capacity

in the second period, because his optimal second period output is (holding KI
2 = KI

1 )

R2(K
I
1 ) which he will receive even ifK

E
1 = 0 (Assumption E1) Hence he setsKE

1 � qE1 .|

The point of the following two Lemmas is to rule out the case where the dominant

�rm wishes to act like a Stackelberg follower in the second period, and hence chooses a

low capacity to induce the entrant to chooses a 'leader' capacity. Hence in these proofs

there is a possibility that the dominant �rm sets his capacity at say ~SE1 .

Lemma 5.3 Let Assumption E Part 1 hold. Presume that there is an entry equilibrium

in which the incumbent chooses KI
1 < CN I

2 , but the entrant chooses KE
1 > CN I

2 .

1) If KE
1 �W I

1 then KI
1 � R1(K

E
1 ) or K

I
1 = R2(K

E
1 ) > R1(K

E
1 ).

2) If KE
1 > W I

1 then KI
1 = ~SE1 or KI

1 = R2(K
E
1 ) � ~SE1

Proof: Let �K denote R1(K
E
1 ) for case 1 and ~SE1 for case 2. Observe, that from Lemma

5.2 we know that �K would be the optimal response by the incumbent if the entrant

moved �rst and chose the capacity suggested in one of the cases. If the incumbent has

to choose some K < �K in order to get the entrant to choose KE
1 , then there is no
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equilibrium in which the entrant chooses KE
1 , because

�K and an entrant capacity lower

than KE
1 is preferred (by the incumbent) to K and KE

1 which is in turn preferred to

�K and KE
1 . Now consider the possible choice of K > �K in period 1 by the incumbent.

The only reason to make such a choice would be to take away the entrant's incentive to

set an even higher capacity, and this is done as cheaply as possible at KI
1 = R2(K

E
1 ).

|

Lemma 5.4 If the dominant �rm chooses KI
1 � CN I

2 in an entry equilibrium, then the

entrant chooses KE
1 � CN I

2 .

Proof: I assume that KI
1 � CN I

2 < KE
1 , and derive a contradiction. By Lemma 5.3 it is

evident that if the incumbent chose the entrant's equilibrium capacity, then a reversal of

outputs would result. Therefore the incumbent must be making higher net pro�ts than

the entrant. In addition, the entrant could simply choose to mimic the incumbent's

capacity choice, so that this must yield lower pro�ts than the entrant's equilibrium

choice. However, note that in this case, the entrant would make at least as much pro�ts

in the �rst period, and strictly more pro�ts in the second period than the incumbent

is making in equilibrium. Therefore the entrant is making higher net pro�ts than the

incumbent is, by which contradiction the Lemma is proven. |

Proof of Proposition 2.

Given Lemma 5.1, there remain two things to show. By putting Lemmas 5.1 and

5.4 together, we see that a �rst period entrant sets KE
1 � qE1 . With Assumption E2,

21



KE
1 = qE1 . It remains now to show only that qI1 � minfŜI1 ;M I

1g. This is now immediate,

since if there is no �rst period entry, then the incumbent will wish to produce at least

his monopoly output, M I
1, and if there is entry, then he will wish to produce at least

ŜI1 in both periods, even if she could commit period by period. |

Proof of Proposition 5

The �rst step is to quantify the pro�ts from Type 2 Stackelberg leadership. Observe,

that capacity is set purely on it value in the second period, but has to be carried for

two periods. Hence it is set to maximize: (a2 � 2c� b(K + a2�c�bK
2b ))K with solution

K� = a2�3c
2b . Clearly for type two behavior to be valid it must be the case thatK� > qCN2

which requires a2 > 7c. Presuming that a2 > 7c, and recognizing that the �rst period

outcome must be ~S1, then net pro�ts from type 2 Stackelberg leadership are no more

than (a1+2c)2

16b � a2c�3c2

2b + (a2+c)(a2�3c)
8b . We need now to compare these net pro�ts with

�I1(
�M1) + �I2(M 2)� c(M 2 � �M1) =

a1(a1�2c)
4b + (a2�c)2

4b � (a2�a1�c)c
2b .

Algebra reveals that type 2 Stackelberg are the smaller of the two if a1(3a1 � 4c) >

�2((a2)2 � 4a2c� 5c2) which itself follows with a1 > c and a2 > 7c. |

Proof of Proposition 6

�I1(
�M1)+�

I
2(M 2)�c(M2� �M1) � �I1(Ŝ1)+�

I
2(CN2), a1(a1�2c)

4b + (a2�c)2
4b � (a2�a1�c)c

2b �
(a1�c)2

8b + (a2�c)2
9b , (a1)

2 + 2a1c� (c)2 � (a2 � c)(5c � a2). |
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6 Linear Appendix

I provide here algebraic expressions for the values de�ned in section 2. Since these are

based upon the one period model, I drop the time subscript. When I mention points in

qI ; qE space, the qI value is listed �rst.

CN = (
a� c

3b

a� c

3b
) (1)

V = (
a+ c

3b
;
a� 2c

3b
) (2)

U = (
a

3b
;
a

3b
) (3)

S = (
a� c

2b
;
a� c

4b
) (4)

~S =

8>>><
>>>:

(a+2c
4b ; a�2c

2b ) if a � 6c

U if a � 6c

(5)

W I =

8>>><
>>>:

a�c
b
� a�2c

b
p
2
) if a � 6c

a�c
b
� 2

p
a(a�3c)

3b if a � 6c

(6)

WE =

8>>><
>>>:

a�2c
2b
p
2

if a � 6c
p
a(a�3c)

3b if a � 6c

(7)

Ŝ = (minfSI ;W Ig;maxfSE ;WEg) (8)

�E( ~S) = �E(W ) =

8>>><
>>>:

(a�2c)2

8b if a � 6c

a(a�3c)
9b if a � 6c

(9)
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�I( ~S) = =

8>>><
>>>:

a2�4c2

16b if a � 6c

a(a�3c)
9b if a � 6c

(10)

�I(W ) = =

8>>><
>>>:

(a�2c)(a+c
p
2)

8b � (2p2� 2) if a � 6c

(a�c)
p

a(a�3c

3b � 2a(a�3c)
9b if a � 6c

(11)

In the linear model, Rt(�;K) is de�ned as follows.

Rt(q;K) =

8>>>>>>><
>>>>>>>:

at�bq
2b if q < at�2bK

b

at�bq�c
2b if q > at�2bK�c

b

K otherwise

(12)

Below I nail down some stu�. For W I � M requires that 6c � a and that a
c
�

2
p
2�1p
2�1

� 4:5.

24



References

[1] Kyle Bagwell and Garey Ramey. Capacity, entry and forward induction. Rand J.

of Economics, 27:660{680, 1996.

[2] Brad Barham and Roger Ware. A sequential entry model with strategic use of

excess capacity. Canadian J. Econ., 26:286{298, 1993.

[3] Kaushik Basu and Nirvikar Singh. Entry-deterence in stackelberg perfect equilibria.

Int. Econ. Review, 31:61{71, 1990.

[4] Jeremey Bulow, John Geanakoplos, and Paul Klemperer. Holding idle capacity to

deter entry. Economic Journal, 95:178{182, 1985.

[5] D. Cossutta and M. Grillo. Excess capacity, sunk costs and collusion: a noncoop-

erative bargaining game. Int. J. Industrial Organization, 4:251{270, 1989.

[6] Avinash Dixit. A model of duopoly suggesting a theory of entry barriers. Bell J.

of Economics, 10:20{32, 1979.

[7] Avinash Dixit. The role of investment in entry deterence. Economic Journal,

90:95{106, 1980.

[8] Douglas C. Dobson, William G. Shepherd, and Robert D. Stoner. Strategic Capac-

ity Preemption: DuPont (Titnium Dioxide) (1980). in The Antitrust Revolution,

25



The Role of Economics, edited by John E. Kwoka, jr, and Lawrence J. White. New

York, NY.: Harper Collins College Publishers, 1994.

[9] B. Curtis Eaton and Richard G. Lipsey. The theory of market preemption: The

persistence of excess capacity and monopoly in growing spatial markets. Economica,

1979:95{106, 1979.

[10] B. Curtis Eaton and Richard G. Lipsey. Exit barriers are entry barriers: the

durability of capital as a barrier to entry. Bell J. of Economics, 10:721{729, 1980.

[11] F. Esposito and L. Esposito. Excess capacity and market structure. Rev. Econ.

Stat., 56:188{194, 1974.

[12] Drew Fudenberg and Jean Tirole. Capital as a commitment: Strategic investment

to deter mobility. J. Econ. Theory, 31:227{250, 1983.

[13] Drew Fudenberg and Jean Tirole. The fat-cat e�ect, the puppy-dog ploy, and the

lean and hungry look. Amer. Econ. Review, 74:361{366, 1984.

[14] Richard Gilbert and Richard Harris. Investment decisions with economies of scale

and learning. Amer. Econ. Review, 71:172{177, 1981.

[15] Richard Gilbert and Richard Harris. Competition with lumpy investment. Rand

J. of Economics, 15:197{212, 1984.

26



[16] Learned Hand. U.S. vs. Alcoa Aluminum Company of America et.al.. 44 F. Supp.

97(1941), 148 F. 2d 416(1945).

[17] Finn Kydland. Equilibrium solutions in dynamic dominant-player models. J. Econ.

Theory, 15:307{324, 1977.

[18] Stephen Martin. Industrial Economics: Economic Analysis and Public Policy.

Prentice Hall, Englewood Cli�s, NJ 07632, 1993.

[19] R. Masson and J Shannan. Excess capacity and limit pricing: an empricial test.

Economica, 53:365{378, 1982.

[20] S.S. Reynolds. Strategic capital investment in the american aluminum industry. J.

Industrial Economics, 34:?, 1986.

[21] D. Rosenbaum. An emprical test of the e�ect of excess capacity in price setting,

capacity constrained supergames. Int. J. Industrial Organization, 7:231{241, 1989.

[22] Steven C. Salop. Strategic entry deterence. Amer. Econ. Review, 69:335{338, 1979.

[23] Richard Schmalensee. Economies of scale and barriers to entry. J. Polit. Econ.,

89:1228{1238, 1981.

[24] A. Michael Spence. Entry, capacity, investment and oligopolistic pricing. Bell J.

of Economics, ?:534{544, 0000.

27



[25] A. Michael Spence. Investment strategy and growth in demand in a new market.

Bell J. of Economics, 10:1{19, 1979.

[26] Roger Ware. Sunk costs and strategic commitment: a proposed three-stage equi-

librium. Economic Journal, 94:370{378, 1984.

28


