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Abstract

Many volatile financial time series have been assumed to be driven by a distribution
with an infinite population variance beginning with the seminal observations by Mandle-

brot (1963) and Fama (1965). Although a flourish of statistical and econometric research
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in the fields of estimation and inference for processes with infinite variance has been the
result, few attempts have been made to characterize tractable and efficient prediction
techniques. Existing techniques are restricted to the class of predictors which minimize
a prediction error dispersion criterion. However, for linear optimal forecasts which are
based on a finite sample of available data, minimum dispersion methods generally result
in biased forecasts (i.e. E[é|X] # 0, with é the prediction error), or predictors which are
not unique in the case when the population mean in infinite. Moreover, solution algo-
rithms can be highly cumbersome. This analytical rift between the minimization of an
appropriately chosen dispersion metric and canonical conditional expectations has largely
been ignored in the literature.

In the present paper, we develop and completely characterize a theory of optimal
linear forecasts for stationary ARMA processes based on the criterion of unbiasedness
(i.e. E[é]X1,...,X,] =0). We demonstrate that the added prediction error dispersion be-
comes increasingly negligible as the dimension of X grows. Moreover, our method provides
unique solutions even in the case when the population mean is infinite, is far less costly
to compute, and obtains the minimum error dispersion of the class of linear predictors
for any AR(p) data generating process with n > p. Further, we develope a fast recursive
solution algorithm comparable to traditional techniques that exist only for processes with
finite variance. Finally, a numerical experiment demonstrates that the variability of the
minimum dispersion prediction bias can be relatively extensive, while the prediction error
dispersion of the best linear unbiased predictor is comparable to the minimum level of
dispersion, suggesting that the simpler unbiased method may provide the ”best” linear

predictor.



1. Introduction

In the present paper, we are interested in methods of optimal linear forecasts of the
causal-invertible ARMA process X,, — ¢ Xp 1 —..— ¢, X p =€, + 01601 +...4 Og€n ¢
where the innovations ¢; are 7id non-normal a-stable. The stable-laws! have been the focus
of a growing body of empirical and theoretical research in financial and macro-economics
since the now classical studies by Mandlebrot (1965) and Fama (1963) on the distribu-
tional behavior of common asset prices. In particular, in those and subsequent studies
(e.g. Cheng and Rachev, 1995, Jansen and de Vries, 1991, and McCulloch, 1984, 1987,
1996, 1997) the empirical distributional characteristics of asset returns, asset prices, option
prices, and forward and spot exchange rates have in many cases displayed the character-
istic of having ”heavy distribution tails”; indeed, there exists evidence for a substantially
high probability of large deviations. Importantly, the odds of large positive or negative
swings are typically too great to be modelled by a normal distribution, and without fur-

ther behavioral information (e.g. structural breaks?), choice of the assumed underlying

IRecall that any stable random variable with « # 1 is represented by the log-c.f. Inw(e,t) = 6t —
Clt|*(1 — iB[t/|t|] tan[.5ma]), where 6 € R, C > 0, 8 € [—1,1] and o € (0,2) denote respectively the
location, scale/dispersion, skewness and characteristic exponent. When 8 = § = 0, € is symmetric a-
stable (SaS). It is well known that a = sup(q : Ele|? < 00), implying Va < 2 the population variance is

infinite. In the multivariate case, a # 1, for any jointly distributed stable (n +1)-vector (X,Y) we have

Inw(t,s) =i(d,t) — /:g [(t,s)|% [1 — isgn(s, t) tan(.5ra)] d'(t, s)
n1

where Sy is the unit hypersphere on R%, and T’ denotes the stable spectral measure, a finite non-negative
Borel measure on Sp41. Special cases include o« = 2 (Gaussian), o« = 1 (Cauchy) and a = 1/2 (inverted
x2). See Ibragimov and Linnik (1971), Zoloratev (1971) and Samorodnitski and Taqqu (1994) for further
exposition on stable processes. Throughout, we ignore the Cauchy case (o = 1) for compactness, however

all results can be extended to Cauchy r.v.’s.

2Competing literatures with the stable and stable-domain hypotheses exist in which volatile financial

time-series are modeled as distrubutional "mixtures” of normal random variables, markov switching struc-



distribution would be necessarily arbitrary.

Stable random variables, however, have the property of infinite population variance
(i.e. heavy tails) for all stable-laws except the normals, and are conveniently distribu-
tionally ”stable” under addition: the sum of stables is itself a stable random variable.
This property of stable summation is particularly attractive for modelling the behavioral
properties of volatile low frequency (e.g. weekly/mothly) asset returns which are con-
structed as sums (products) of high frequency returns (e.g. daily /hourly) . For a general
survey on the development of pricing models for stably-distributed assets, see McCulloch
(1996). See, also, Gamrowski and Rachev (1999), and the citations therein, for the recent
development of a stable-law capital asset pricing model.

Although research in statistical and econometric theory employing the stable-laws, or
processes whose scaled sums converge to stable random variables, is extensive®, surpris-

ingly little exists in the econometric field of linear prediction and the theory of optimal

forecasting. Our goal is to develop a simple and accurate projection technique for predict-

tures, or combinations of the above under a GARCH innovations structure. Analytical methods employed
for testing the normal-mixtures hypothesis against the stable hypothesis, however, have recently come
under scrutiny in McCulloch (1997). In this work, the nature of the null compound hypothesis is criti-
cized (e.g. the compound null of i.i.d. stable is often rejected in favor of a normal-mixture), or, variously,
empirical statistical methods for detection of processes governed by infinite variance stable-laws have been

shown in simulation study to render biased rejections of the null in favor of alternative hyptheses.

3 Adequately citing the existing literature is necessarily impossible, however without any attempt to
be inclusive, we list a few papers and their topics here which reasonably represent the girth of topics
covered in the field of estimation and inference with infinite variance processes: Hannan and Kanter
(1977: least squares), Cline (1983: least squares, M-estimation, prediction), Phillips (1987: wunit root
analysis), Phillips and Loretan (1991: Durbin- Watson test), Knight (1993: least absolute deviation, ARX
estimation), Kokoszka and Taqqu (1996: moving average estimation with dependent errors), Runde (1997:

tests for serial dependence), Caner (1998: cointegration tests).



ing out-of-sample values of the infinite variance process X based on the available informa-
tion Xi,..., X,,. In particular, we develop methods which dramatically simplify existing
solution mechanics for deriving the optimal linear forecast, and provide prediction which
uniformly out-performs existing computationally burdensome techniques.

If we denote by L the lag operator, we have
¢, (L) Xy = Oq(L)er, (1)

where we restrict the polynomials ¢,,(L) =1 + 2¢; +...+ 2P¢, and 0,(L) = 1 + 201 +...+

296, to have no common roots, and to satisfy

¢,(L)0,(L) #0 Vz € R such that [z < 1. (2)

In particular, we assume ¢, (L) has no roots outside the unit circle. It follows (see Brock-
well and Davis, 1987, Cf. Cline, 1983) that there exist unique stationary solutions to
(1),

Xn = iﬂ-ienfi Xp =€+ iq/)anfi (3)
=0

=1

with Y707, 1% < oo and 350 |1;|® < o0, § < min(1,a), and |m;| < Ap’ for some A > 0
and p € (0,1) as i — oo.

For a k-ahead forecast, we consider linear predictors of the truncated form

Xosr = Zaan+1—i (4)
i=1

k > 1. For non-normal stable-laws (i.e. « < 2), the problem of developing an opti-
mal linear projection is non-trivial, and produces an analytical rift that has largely been
ignored in the literature. In particular, when « = 2, the linear space of the Gaussian
process is a Hilbert space which provides the theory of minimum mean squared error

prediction criterion. This elegant theory has been fully developed in the Gaussian case:



the mmse predictor is optimally linear and identically the conditional expectations. The
linear space of the stable-laws with 1 < a < 2, however, is a Banach space, and whenever
a < 1, only a metric space. Indeed, when o < 2, in most cases we must choose between
minimizing an acceptable L,-metric, or employing the traditional conditional expectations

form, E [ X1k

X1, ..., Xp], or synonymously E[X,r — a'X|X,,+1-¢] = 0. See Cambanis
and Miller (1991: Theorems 5.6 and 5.8) for abstract examples which differentiate be-
tween conditional expectations and minimization of an appropriately chosen L,-distance
for Sa.S r.v.’s in stochastic integral form. Moreover, in many cases, the conditional expec-
tations may not render a tractable linear form, or even exist, Cf. Hardin et ol (1991) and
Cambanis and Wu (1992). For example, provided €; belongs to the domain of attraction
of a stable-law, few results exist which characterize the (linear) conditional expectations,
Cf. Cioczek and Taqqu (1994). The central theme of this paper, therefore, is the complete
analytical articulation of the unbiased linear prediction of stable linear processes based on
conditional expectations and its performance when compared to traditional L,-methods.

For processes with infinite variance, optimal linear predictors based on an L ,-criterion
include time-domain minimum dispersion for univariate and multivariate processes which
belong to the domain of attraction of a non-normal stable-law (Cline, 1983; Cline and
Brockwell, 1985; and Soltani and Moeanaddin, 1994), minimization of the expected ab-
solute prediction error and spectral-domain techniques (Cambanis and Soltani, 1982). In
the univariate minimum dispersion case, a method widely cited in the literature, Cline
and Brockwell (1985), Cf. Cline (1983), employ Stuck’s (1978) criterion of minimizing the

prediction error dispersion, with dispersion of a moving average defined as

disp(X,,) = disp <Z 7rieni> = Z || . (5)
im1 i=1

Whenever the iid variate €; is governed by a stable-law, a € (0,2), with scale C. > 0,



standard c.f. manipulation dictates that

%) 1/ 00
X, 2e (Z |m-a> C%, =0 |mi|* < o0 (6)
i=1 =1

where the finiteness of the resulting scale follows necessarily from (3). Thus, minimization
of the prediction error dispersion is identical to the problem of finding a vector a which
minimizes the stable-scale associated with the prediction error, provided the error is stably

distributed. In order to see that the prediction error ¢ = X,y — Z?:l a; Xpy1-q 1s

governed by a stable-law Vn > 1, observe that

n o n o
Xtk — E ; Xnt1—i = E Ti€nth—i — E a; E Ti€nt1—j—i (7)
im1 i=0

j=1 i=0
k—1 n
= E Ti€ntk—i + E (Thgh—i — Q1T — . — Ap_j+170) €
1=0 i=1
oo
+ E (Tnthts — Q1Tppq — oo — ApT5) €
i=0

0o 0o 1/
d @
= Z)\iﬁnwﬂ‘ =€ (Z)\J ) )
i=0 i=0
where 777 |\;|% < oo follows from (3) and Cline (1983). Consequently, disp(é) =
Ce 37 IAi]®, therefore without loss of generality we assume C, = 1.
Moreover, if we define the signed-power z<%> in the usual manner (ie. 2<%> =
|z|°sgn(z)), then from the FOC’s of the minimization problem it is straightforward to

show that V¢ = 1..n and Vo € (0,2),

8 di N n+k—1 oo
18p (e) _ A<o¢71> ) o )\<O¢71> . 8
—8a - i T —(k—1+t) i T4—(k—1+t) (8)
t i=k—14t i=ntk
n—t oo
_ <a—1> <a—1>
= - Z A k134T — Z A 134T
i=0 i=n—t+1
o0
<a—1>
= 72 k1T =0, t=1.n.
1=0

Thus, the set {a : a= argmindisp(Xpix — > oy @i Xpy1-4)} solves the homogenous

system of n-equations implied by (8). Nonlinearity in the sequence {)\i<a71>}i21 often



implies a computationally extensive solution technique, and when a < 1 the solution set
is typically not unique. See Cline and Brockwell (1985: Theorem 3.2 and Lemma 4.1).
Importantly, the statistic >~ )\ffk__llitm is identically the stable covariation of

Xpn+1-¢ on the prediction error Xn+k — Z?:l a;Xn+1—i, denoted and defined as

n n <a—1>
Xn—i—l—ty Xn—i—k - Z aiX'n+1—i‘| = / Ut (V - Z aiun+1—i> dr(us V)s (9)
a Sn+l =1

i=1

where (v,u)’ denotes the vector (X,,1x; X1,..., X)" in polar coordinates. Observe that

for general at® order processes, o < 2, we use

<Xn+1t>Xn+k - Zaan+1i> (10)

=1

n <a—1>
= F Xn+17t <Xn+k - ZaanJrli)

i=1
The stable covariation plays a central role in the development of our linear predictor, hence
we will discuss several of this statistic’s important properties. The interested reader is re-
ferred to Cambanis and Miller (1981) for pioneering work in the articulation of covariation
and its conjugate for generalized at” order processes, a < 2. See, also, Samorodnitsky and
Taqqu (1994) for a comprehensive treatment of stable dependence. Now, for any three
stable-laws, say z1, zo, and z3, [z1, 20]2 = cov(z1, 2z2)/2. Moreover, z;-independent-zo im-
plies [z1, 23], = [#2,21], = 0, however whenever 1 < a < 2 the obverse may not hold.

Furthermore, additivity in the first argument is easy:

[az1 + bza, 23] = / (auy + bug)v<*"1>dl(u,v) (11)
S3
= a/ u <12 d0 (u, v) + b/ bugy<*~1>dl(u,v)
= alz, z3)a + b[22, 23]0.

Moreover, provided z; and 2z are independent and symmetrically distributed (i.e. (21, z2)

— a<a—1> [

~ SaS'), quasi-linearity in the second argument provides [z3,az; + bza),, 23, 21]a



+ b<®71> [23,bz],, by inspection of the stable characteristic function and spectrum, Cf.
Miller (1977). The covariation, therefore, is not, in general, symmetric in its arguments
(hence we say the ”covariation of z; on 2z3”). From the afore mentioned properties of

additivity and independence, provided the sequence e¢; is iid it is easy to show that

[Xn+1—t; é]a - Z )\Z‘<+O;€1111t7ri- (12)
=0

It follows immediately that the set {a: [X,,y1_¢,é]o =0, t = 1..n} identically solves the
minimum dispersion problem, but not necessarily the conjugate set {a: [é, Xp11_t]a =0,
t =1.n}.

Precisely because of this lack of symmetry, in general, does the MDLP not imply the
canonical condition of unbiasedness in the error term, F[é|X] = 0. Indeed, if « > 0 and
Ele] = 0, then E[é|X] # 0 implies the residuals are not iid, a fundamental condition by
assumption. Further, the prediction bias itself can obtain substantial levels of dispersion
for a non-negligible subset of the parameter space ©, as will be discussed below. Moreover,
because the best linear unbiased predictor is unique, all other prediction methods (e.g.
Cambanis and Soltani, 1992; Soltani and Moeanaddin, 1994) render necessarily biased

predictors. As a consequence, throughout the remainder of the paper for an appropriately

<a—1>

4

chosen vector a we refer to the ”alternative” system [, X;,11_¢]a = Zfio Ai ko142
= 0 as covariation-orthogonal (i.e. Ai(a)'® = 0 where we define the linear vector A;(a) =

[)\0+k71+t(a)7 ) ]/a and T = [W§a71>

,...]), and we define the solution set {a: [é, X, 11 ¢]a
=0, t = 1l..n} as the covariation-orthogonal linear predictor (COLP) coefficients. In the
sequel, we will demonstrate that the COLP is easier to compute, necessarily implies non-
collinearity E[é|X] = 0, provides a unique solution set in all cases a € (0,2), and obtains

the minimum level of dispersion for a wide class of linear processes. Due to solution

uniqueness, it will be trivially the case that the COLP is the best predictor of the class



of linear unbiased predictors.

The rest of the paper is organized as follows. In Section 2, we derive the relationship
between the conditional expectations, and the unbiased and minimum dispersion linear
predictors. We subsequently construct optimal projection functions for asymptotic and
truncated predictors, and explicitly derive optimal solutions according to the covariation-
orthogonality criterion for AR(p) and ARMA(1,1) processes in Sections 3 and 4. Section 5
follows with derivations for higher order moving average and ARMA processes, including
the characterization of a fast numeircal algorithm for solving the best linear unbiased
predictor based on resursive prediction residuals. Section 6 concludes with a numerical

comparison of the minimum dispersion and unbiased predictors.

2. Conditional Expectations and Covariation-Orthogonal Linear Predic-
tors Our investigation begins with an articulation of the relationship between multivari-
ate conditional expectations, the COLP, and predictor unbiasedness when the innovations
sequence €; is governed by an iid stable-law. Further details can be found in Cambanis

and Wu (1992) and Samorodnitsky and Taqqu (1994). Throughout, we assume « € (0, 2),

a #£ 1.

Lemma 1 (Existence) Let X, ..., X,;; X,, 1 be jointly a-stable with 3 € [—1,1], and let

X, satisfy (1) - (8). Then, provided

/ (v —a'u) [t'u/* 'dl(v,u) =0 (13)
Snt1

for any t € R™, the following criteria are necessarily and sufficiently identical, and sub-
sequently render the same solution set a:

i E[Xpix

X] =a'X

i, EXper - a'X[X] =0

10



211. [X77,+k — a/X,X71+1,t}a = 0, Vi =1..n
. <X'n+k - a/X,X,n+1_t>a = 0, Vi =1..n

v. a = argmingegn {disp(E [| X1, ..., Xn])}.

Proof. Trivially, if there exists a vector a € R™ such that (i) is true, then (i7) is

immediate. Moreover, observe that whenever E[X,,; — a’X|X] = 0, then necessarily

<Xn+1—ta X'n—i—k - a/X>a = (14)
B (X —aX) XS77] = B (X507 B X — a'XIX])

= 0

where F, denotes the expectation operator with respect to the o-field generated by X.

Conversely, provided (X1 — a'X, X,41-+), =0, and E[X,,4x|X] = b’X for some b €

R™ then Vt = 1..n,

> (b —ai) B[ X507 Xngr—i] =0
i=1
holds for any ARMA(p, q) and for any a € (0,2) only if b; = a;, i = 1..n.
In order to prove that criteria (i) — (iv) are identical, therefore, it suffices to prove

that (¢) exists and implies, necessarily and sufficiently, (iéi). Now, by Theorems 1 and 2 of

Cambanis and Wu (1992), E[X,,1x|X] = ¢’X a.s. if and only if YVt € R™ and «a € (0, 2),

a#£1,

/S (v —a'u) (t'uw)“* Zdl(v,u) = 0 (15)

I
e

/ (v —a'u) [t'u|* " 'dl(v, u)
S”+1

Therefore, simply chose n vectors t; = [0,0,...0,1,0,...0]" with the 1 in the i*" row. Con-

sequently,

/S (v —a') ()< dh(v,0) =0 i=1l.n (16)

11



which is, by definition, (iii). We conclude this proof by establishing the identity between

(7) and (v). Now, consider any linear predictor, say

Kok =Y biXng1i, (17)
=1

and observe that we have the tautological regression form
Xopk =Y biXpg1oi+é (18)
i=1

where € = X4 — >y biXnt1—; is governed by a stable-law Vb; € (—o0,00), CL. (7).

Therefore, by (3) and (5), disp(E [é| X7, ..., X},]) is identically

[e%

n—1| 1 e}
Yoo mis (@i = b)) | + D magi (a1 = b1) + o+ i (an = )|,
i—=0 |j=0 i=0

which is trivially minimized by setting b; = a; Vj = 1.n. &

Remark 1: The identity of (i) - (v) holds for any (possibly maximally) skewed
stable n + 1 vector (X,Y). Indeed, in general we do not even require the stipulations
detailed in (1) - (3). In order to explicitly derive the optimal coefficient set a under the
proviso that (1) - (3) hold, however, we require that (X,Y") be jointly Sa.S. We take this
issue up in the sequel.

Remark 2: Consider the general unbiased predictor E[Y| X7 ..X,,] where the vector
(X1,.., X,;Y) is jointly distributed a-stable, and assume for the moment that the X/s are
pair-wise mutually independent. Then fSn,H (@'u) (u;)~* 7dl(v,u) = a; Jg lu*dT (u),

Vi = 1..n. Consequently,

[Y7 Xi]a . 1
i = ——= i{=1.n,
“T XX, !
where a = {a; : [Y —a’X,X;], = 0} and [X;,X;], = Y oo, |m:|* This trivial result, of
course, holds only as benchmark for more sophisticated ARMA processes.

Remark 3: The identity between criteria (i) and (iv) in the stable case allows for

great simplification of solution methods. However, further non-stable processes which be-

12



long to the domain of attraction of a stable-law are not guaranteed to generate a linear
conditional expectations. In particular, condition (i#¢) will not be appropriate, and con-
ditions (¢) and (iv) are certainly not necessarily implied. See Cioczek and Taqqu (1994).

We leave for Sections 3 and 4 details on the uniqueness of the solution set a in Lemma

3. Linear Prediction with AR(P) Processes We begin by establishing a general
result which characterizes the unique linear projection Xn+k = P(Xp4k, X) based on
covariation-orthogonality. The following lemma establishes concretely that the COLP is
the MDLP as n — oo for any stationary ARMA a-stable processes. We subsequently
derive the COLP for any finite order autoregressive process, and conclude the section
by proving the COLP is the best linear unbiased estimator for any stationary ARMA
a-stable processes and any n > 1. In order to exploit the property of quasi-linearity in
the second argument of the covariation, we require the assumption that in all cases the
vector (X71,...,X,;Y) 7 SaS. It should be pointed out that in the joint SaS case, (13)
is trivially satisfied (Cambanis and Wu, 1992), hence it suffices to consider condition (#i7)

of Lemma 1.

Lemma 2 (Uniqueness) For any ARMA(p,q) process X,, assume (1)-(3) are true, and

denote by S the class of random variables of the form

D oo+ Y viXnt (19)
j=1

j=n+1
where 37 |p;|° < 00 and Y77 |v|° < oo for some § < min(1,a). Then, for anyY €

S, the set
pY 2: X . E :n . 4 X, | =
n { a Qi Apy1—q - FE |:Y =1 azXn+17l|Xny ey 1:| 0}

13



consists of exactly one element, Y, = Z:‘L:1 Vi Xpi1-4, a5 — 00. Moreover, the mapping
Y — Y, is linear on S. Further, as n — oo the random variable Y, is the unique element

of the set

= {Zaan_H_i 2 disp <Y — Zaan+1—i> 18 minimized} .
i=1 i=1

Proof. For any Y € 5’,

n J
Y — Zaan—i-l—i = Z pi€; + Z €nt1—j [Z - a"L Tj— i‘| (20)
=1

j=n+1 j=1 =1

LS n J
Y e [ Wi—a) miat Y vl
j=n+1 =1 i=n+1

consequently, by identities (#¢) and (ii7) of Lemma 1, V¢ = 1..n, it suffices to solve

n n—t
< 1> < 1>
ZaiX7i+1i7Xn+1t] =3 Ay Z i, T =0 (21)
i=1 o 7=0 j=n+1

where

n

' j
Aj = Z (vi—ai)mji ¢y = Z (Vi —a;) T + Z ViTli_y. (22)

=1 i=1 i=n+1

In the limit, the sufficiency of a; = v;, j = 1..n, is trivial. Now, by (21) for ¢t = n,

lim,, oo (0, (Vi — @) Ty i) 751> =0, and when t = n — 1,

n—1 n
. <a 1> <a—1> __
lim E (vi —a;) Tpo1—i | T + E (vi —a;) Tp—i | ™5 =0.
n—00
i=1 i=1

For non-degenerate sequences {7;};>1, we conclude necessarily that v,, = a,, as n — oo.

It follows recursively that as n — oo equality in (21) holds if and only if a; =v;, j =1..n,

n

hence the unique element of the set PY asn — oo is ¥;, = >in

1 ViXnt1—4, as claimed.
The linearity of the mapping ¥ — Y,, follows easily by observing that for any Y =
LY, Y € S, i = 1.n, then

Z pj€]+zl/] nt+l—j>

j=n+1

14



where p; = Y1 bip;; and Uy = > bivj ;. Therefore Y € S,and a; =y, 5 =1,2,...

Consequently,

Py (Y)

Y= 0iXns1j =) ) bivjiXnsi—
j=1

j=14=1

Zbi ZVj,anJ,-l—j = szf/z
=1 =1 i—1

Finally, as a consequence of Cline and Brockwell (1985: Lemma 2.1), Cf. (23), below,
Y,, is the unique element of the set P,z/ .

Remark 1: The set PY defines the unique covariation orthogonal projection S —
span (X1, Xo, ...). In Corollary 3, below, we augment this result to any truncated projec-
tion.

Remark 2: Subsequent to (8), Y;, satisfies lim,, oo[Xni1_¢, Y — S aiXni1—ila
=0Vt =1,2,.. Consider, then, the covariation of X,,1_; on the prediction error for any

t =1.n,

n
[X71+1ta Y — Z aiX71+1i‘| (23)
i=1 o
n—1 Jj+t <a—1> 00 n 7 <a—1>
- SnlSwwn] 4 3w [ 3
j =1 j=n+1 =1 i=n—+1
For any finite sample size n, the MDLP solution set a will not in general render the
solution to (21) Vo € (0,2) due to the non-linear components. However, as n — o0, a
recursive argument identical to the exposition below (22) proves that the COLP minimizes
the prediction error dispersion. In the sequel, we explicitly characterize the nature of the
difference between the truncated COLP and MDLP methods for ARMA(1,1) and MA(q)
processes.

Observe that lemmas 1 and 2 trivially imply the COLP is the unique best predictor of

the class of linear unbiased predictors Vn > 1.

15



Corollary 3 For any ARMA(p,q) process X,, assume (1)-(3) are true, and denote by S
the class of random variables defined in Lemma 2. Moreover, denote by Eq the event that
ElY — Y0 aiXpi1 4| X1, ..., Xn] = 0. Consequently, for any Y € S, the set
]3,? = {ZaiX”‘*‘l—i : disp <Y - Zaan+1—iE0> 18 mz’m’mized}
i=1 =1
consists of exactly one element, Y, = Z:‘L:1 Ui Xpy1—i, for any n > 1 where v; solves the

following implicit system of n-equations,

Z ;N = Z NiiVi ¢, (24)
i—1 =1

where
n—t [eS]
_ <a—1> <a—1>
)\i,t = E T + E 5 T (25)
j=1—t j=n+1
~ wn,t
Vig = Vit
n/\i,f,
t o0 o0 [e%}
_ <a—1> <a—1>
Wnt = E Vnd14i Eﬂj+t—17rn+1+j +§ Vn41+i Eﬂ_jﬂ-nJrlJrj
i=0 Jj=0 i=t+1 =0

Moreover, the mapping Y — Y, is linear on S. Finally, lim,_,oc ¥; = limp oo V3¢ = ;s

for everyi = 1,2, ...

Remark 1: The set 15){ defines the unique truncated covariation orthogonal pro-
jection of S — span(Xi, ...X,), the space of all linear combinations of the available data.
For large n < 00, (21) and (22) demonstrate that the truncated COLP will be approx-
imately the MDLP as n grows large. Conversely, for large n the MDLP will be roughly
unbiased. However, for general AR(p) processes, the following result establishes that the

truncated COLP is identically the MDLP provided n > p.

Theorem 4 Let Xq,...,X,; Xpyr be jointly a-stable with o € (0,2), and assume (1) -

(8) holds with ¢ = 0, n > p. Then, provided k = 1, (i)- (v) of Lemma 1 each provide a;
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= ¢;, j = 1..p. Moreover, Vk > 1 we obtain the recursive relationship

XnJrk = ¢1Xn+k71 + ot QstnJrkfp (26)

where optimally Xj = X; Vj < n. Further, XnJrk obtains the minimum level of error

dispersion.

Proof. (26) is immediate by Lemma 2 and Corollary 3. For the resulting minimized
level of dispersion, see Cline and Bockwell (1985: Lemma 2.3 and Corollary 2.4) for
derivation of the MDLP X, ;. m

Remark 1: The best linear unbiased predictor Xn+k is precisely the least squares
predictor for finite autoregressive processes. This elegant symmetry, however, does not

hold for general ARMA(p,q) processes, a topic we discuss in the sequel.

4. Linear Prediction of the ARMA(1,1) a-Stable Process In the present
section, we explicitly treat the random variable X,, which is governed by a stationary
ARMA(1,1) processes

Xn - ¢1Xn—1 =€n+ alen—l (27)

with |¢| < 1 and |f| < 1. Further, we demonstrate that the AR(1) optimal COLP is
identically the MDLP (which also follows from Theorem 3), however for truncated pre-
dictors, the MDLP is in general biased for higher order ARMA processes. Observe that

the following results hold for any characteristic exponent « € (0,2), a # 1.

Theorem 5 Let (X1,..., Xpn; Xoyr) be jointly SaS, and assume (3) holds. Then (i) - (v)

of Lemma 1 each provide the unique solution set

O+0)A—n+8 e +0]

k_(_p)yi—Ltpk1
=070 L—n+&0—nm) ’

J
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where we define

_ o+l

S

n=0[+0)"""> =g, (29)
The corresponding prediction error is

1€ (1= gl +

¢" el — )
L—n+&1—nm)

07"

n—1

Ml +1]

J=0

where 7) = (0 + ¢)<*~1> — A", Moreover, as n — oo, the set of coefficients {a?}jzl

minimizes the prediction error.

Proof. Because |¢| < 1, we can write

Xe=e+0+0)> ¢ tea; (30)
j=1
therefore, observe that X, — a’X reduces to
k-1 ' ntk—1 j—k ' 4
enik+ > (0+¢) " - > [aj_kﬂﬂew)Zaiw‘“ enth—j (31)
j=1 j=k i=0
—(0+¢) Zaicb“] S T ey
i=0 j=n+k
Now, define the sequence {c; 7o according to the recursive relationship aé‘} =c —
¢cj_1with ¢p = A (ie. ¢; = 3:0 qSia;"»”_i). Consequently, by the properties of covaria-

tion and the assumption that the sequence {e;};>1 is iid a-stable, after some manipulation

it can be shown that Vo € (0,2) and Vt = 1.n — 2

[erk — ZaiX'n+1—i:Xn+1—t‘| (32)
=1 «@
n—t—2 )
= fciy + [1+(6+¢)<“*1> 9} et (0+ ) (14007) Y Pleay
=0

n—t—1\<a—1> 0 <a—1> <a—1> <9+¢o¢>:| »
I R R (s Ik

= 07
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fort=n-—1

[X7z+k - ZaiX7z+1i7Xn+1t] - 967172 + |:1 + (0 + ¢)<o¢71> 6:| Cn—1 (33)
=1 [
+ {(9 + ) gt ('6 - (ﬁ'aﬂ tn
1—|¢|

and when t = n,

n 0+ |
[Xn+k — ZaiX7l+1iaXn+1t‘| =0cp1+ {1 + %] cn =0. (34)
=1 o

This system of n-equations offers a recursive solution in the following stepwise manner.

From (34),

0
Cp = — <m> Cpn—1, (35)

which is substituted into (33) providing

14+¢
n1 = —0cp o | ——————| . 36
ot ‘ 2{1+£(1+n)] (30
Subsequently, employing (32) recursively, we deduce that
Ry
c; =—bc;_4 | —==——|. 37
J 7—1 _1+£Zi:17]1_1 ( )
Observing that co = —#* !, we obtain
L gy | LHET ] . [1—77+£(1—77”j)
k—1 i =1 k—1 i
ci =—¢ .y’ = i =0 -0 38
J ( ) 1+§Zi:1n7]71— ( ) 1*774’6(177]”) ( )

provided |n| < 1, V(8,¢) € O, which follows readily, and the optimal vector a can be found

by solving aé? = c¢j — ¢c;—1. The proof is complete upon observing that

disp(X7z+k - a/X)

« 1-— Qsa(k_l) - o 0+¢ [
1416+ 9| <W>+Z|Cj+96j1| +<1_|¢L>|0n|

=1

= L (1101 ) + D ey 4 Oy + el

Jj=1
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Subsequently, from (38) we deduce

k1, g E(1— )y
Gl =0 (0V<1—n+§ﬂ—nﬂ>

k—lej—'n n—j g(l — 77) >
? K <1n+§ﬂnﬂ

¢" (1 — )
L—n+&1—nm)

(a3

Il

|¢j + 8¢ |67

167|177 |

Il

)

hence

disp(Xp4r —a’'X)

P" (1 — )
L—n+&(1—n")

= 1+ (1 (gl 4 jon°

n—1 ]
D
=0

= g (1= gt

as n — 0o, the minimum level of dispersion Voo > 0 and V& > 1. m

Remark 1: In all cases a € (0,2) the projection X, — Xn+k in unique and
linear on span(Xi, X, ...). Comparatively, Va < 1 the MDLP is not unique and depends
on known parameter values. Further, by Corollary 3, the solution set (28) renders the
best predictor of the class of linear unbiased predictors.

Remark 2: The set of COLP coeflicients is remarkably similar to the MDLP co-
efficients for characteristic exponents 1 < a < 2. Indeed, if we redefine n = ||%/*~1
and & = [(|0 + ¢[*)/(1 — |p|*)]/*~1, the coefficient set denoted in (28) will mini-
mize the prediction error dispersion, Cf. Cline and Brockwell (1985). Moreover, clearly
lim,, o0 aé? = ¢ 1(—6)7"1(0 + ¢) which is identically the asymptotic MDLP coefficient
set, Cf. Cline and Brockwell (1985: eq. (3.3)), thus demonstrating Lemma 2.

Remark 3: Theorem 5 immediately implies a pseudo-linearity property of the trun-
cated COLP. Specifically, Vo € (0,2) and for any ¥ = Z?;& bj+1Xntk—j, we obtain the

best linear unbiased predictor Y = Z;”;é bj+1f(n+k_j where Xn+j = Z?:l aan_H_i
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follows from (28). Moreover,
Y = (b1 +bap+ ... + bk¢k71) Xnt1,

which follows by recursively solving (32) - (34) with co = — <b1 F by + ot bkgbk*l).
This linear structure is identical to the truncated MDLP linearity property except, of
course, for the unbiased one step-ahead predictor Xn+1 itself. It follows trivially that any
linear combination of biased minimum dispersion linear predictors will be biased.

Remark 4: By the definition of covariation, when a = 2, the COLP is identically
the least squares predictor. See Brockwell and Davis (1983) and Cline and Brockwell
(1985) for accounts of optimal recursive methods for deriving linear predictors in the
finite variance case..

The following corollary is an immediate result of Theorems 4 and 5.

Corollary 6 Let (X1, ..., Xp; Xnyx) be jointly SaS, and assume (3) holds. Provided X,
is ARMA(1,0) and |p| < 1, a1 = ¢* and a; = 0 Vi > 1. In particular, the COLP minimizes
the prediction error dispersion. Moreover, whenever X,, is ARMA(0,1) with k = 1,

. 1 — |g|e(nt+1-7) ]
aj=—(¢""") [—1 _| La(nﬂ) ] j=1l.n. (39)

Remark 1: Observe that in the AR(1) case, the optimal k-ahead COLP is merely

Xk = #"X,,, and in the MA(1) for any k > 2, Xpqp = 0.

Example We consider two ARMA(1,1) cases. Let X; = .3X;_1 + .8¢;—1 + €, and put
C.=1,a=175n=3and k = 1. As a consequence of Theorem 5 and Cline and

Brockwell (1985: Theorem 3.2) the COLP and MDLP are respectively

Xx¢ 9922X5 — .6164X5 + .2542X]

XM = 8959X5 — .5435X, + .2339X.
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The resulting levels of prediction error dispersion and disp(E [é| X1, ..., X,]) are

disp(e®) = .16252 disp(E [6€|X1, ..., Xu]) = 0.0

disp(e™) = 15046 disp(E [eM]X1,..., X,,]) = .70313.

Finally, let X; = 9X;_1 — .25¢;_1 + ez, and put Cc. =1, a =12, n =5 and k =

5. Then,

XSG = 42740X5 + .10625X, + 026414 X5 + .0065739X, + .0021326.X;

X% = .42647X5 + .10662X4 + .026654 X3 + .0066641 X5 + .0023058 X,
and

disp(é€) = 1.9936 disp(E [6€]X1, ..., Xu]) = 0.00

disp(éM) = 1.9932 disp(E [é|X1, ..., X]) = .038501.

The COLP compares well in each case, providing a comparatively low level of predic-
tion error dispersion for larger values of n and k. Indeed, the optimal coefficients are
nearly identical in the second case due to the relatively large persistence parameter
¢ =.9. Further, in both cases disp(E [éM\Xl, ...,Xn]) — disp(E [éC\Xl, ...,Xn]) >
disp(é°) — disp(éM), suggesting the magnitude of bias in the MDLP ”outweighs”
its comparative improvement in prediction error dispersion. We verify this claim
in the Section 6 for any n € [1,100]. Moreover, the MDLP renders the symmetric

result of diminishing the level of bias as k£ and n increase.

5. Optimal COLP for MA(q) and ARMA(p,q) a-Stable Processes Consider

the finite MA(q) processes X,,,

Xn = 0167171 + ...+ aqEnfq + €n, (40)
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where 0,(L) # 0. It is easy to show that )A(,wk = 0 for any k > ¢, hence fix k € [1,q]. As

before, assume (X1, ..., X;,; Xp1k) is jointly SaS with « € (0,2) « # 1.

Theorem 7 For any o € (0,2), o # 1, the optimal COLP solution set a satisfies a; =
det (M?) / det (M), i = 1..n, where M denotes an (n + 2q) X (n + 2q) identity matriz

with the sub-region (¢ + 1,1) : (n+q,n+2q) defined by the followingn x (n + 2q) matriz

fq 5‘1*1 §Q*2 51,71,(1
Eq1 3 §g-1 - Sone
q+ q q q (41)
§q+n—1 £q+n_2 §q+n_3 . g_q
where we define &; =371 07120,1;, and M? denotes the matriz M with the it" column

replaced by the (n + 2q)-vector

/

0 .. 0 & - &uwa1 O .o 0>
where the first and last sub-vectors of zeros are of q-length. The solution set {aj}"ffg 18
such thata; = 0,7 <0,j >n,and8; =0, <0,j >q, 0g =1.
Proof. Observe that
n
Xn+k - Zaanﬁ»lfi (42)
i=1
k—1 n+q
= D ensiili = D 1 (aj-gfy + o+ aj161 +aj — Opiji)
7=0 j=1
where a; =0, 7 < 0, j > n, and ap = —1. Consequently, after some manipulation, we
have Vt = 1..n,
n
Xn+k - Zaanﬁ»lfinnJrlft - (43)
i=1 «@
q+t q 4q
=24 OET i ) 05 e = 0
j=t—q =0 j=0
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where 8, =0, 7 < 0,5 >n,0p=1and a; =0, 5 <0, j > n. The above implicit linear
system of equations can be immediately solved upon application of Cramer’s Rule, which
completes the proof. m

Remark 1: The solution set a is unique Yo € (0,2). Observe that Yo < 1 the
MDLP reduces the choice set of a to (”:;q) possibilities as functions of the solutions to the
polynomial 29 + 61297t +..4+ 67 = 0, Cf. Cline and Brockwell (1985: p. 293). Thus, the
computational burden will be comparatively extensive for higher order moving average
processes for large n.

Finally, consider the general ARMA(p,q) processed denoted in (1) - (3), and define
the following sequence

pr=1 ¢ = Z¢j—i+1%—1 i =2.k, (44)

j=1

where the coefficients {1;};> are defined in (3). Then, by (3), for any £ > 1 we deduce
k—1 [e's)

Xtk = Z Pi€nyk—j t+ Z ViXni1-j (45)
7=0 j=1

where p; = Zikzl ¢, J=1l.kandv; = Zlle VYivk—i®ir J = 1,2, ... Consequent to Lemma
2, X, € PY and a; = vj, j = l..n, is the unique solution as n — co. Moreover, from

n

(44) and (45) it is straightforward to verify the following result.

Corollary 8 For any ARMA(p,q) process X, such that (1)-(3) hold, and for any k > 1
there exists a unique covariation orthogonal linear predictor which minimizes the prediction
error as n — 00. Specifically, this linear predictor satisfies the recursive relationship
k—1 [e's)
XnJrk - Z d)anJrkfj + ijXnJrkfj' (46)
j=1 i=k
In the case of ARMA(p, q) prediction when only a finite sample is available, we offer

the subsequent general corollary to Lemma 2 for truncated ARMA(p, q) predictors.
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Corollary 9 For any ARMA(p,q) process X,, such that (1)-(3) hold, for any k > 1, n <
oo and a € (0,2), a # 1, there exists a unique COLP coefficient set a such that (i) - (v)

of Lemma 1 are satisfied. In particular, a; solves

n
E ai)\i,t = § 1 11+§ Vn41+44 § Tjt— 17Tn+1+J (47)
=1
<a—1>
E:VnJrlJrz E TiTnr1+; | o

i=t+1
where Vt = 1.n ,
n—t o0
_ <a—1> <o— 1>
Mg = m Y mTE Y = (48)
j=1-t j=n+1

k
vi = Z“/’ﬂk#%
i=1
and m; =0, j < 0.

Proof. Subsequent to remark 1 of Lemma 2, Vt = 1..n, [X,,1p — a'X|X,,11-t]a =0
implies (47), and (48) is immediate due to (44) and (45). The unique coefficient set a
follows from traditional methods for solving linear systems of equations. m

Remark 1: We may infer from (47) and (48) that for large n, the truncated predic-
tor X, = Z? 111/) Xy T Z"+k ! ¥; Xy r—j will be close to optimal. Of course,
conversely the truncated MDLP will be approximately unbiased for large n.

Solving the implied n-equation system in (47) will be difficult even for low order pro-
cessses. However, existing algorithmic techniques that employ recursive prediction resid-
uals can be easily extended to the stable laws. For the following derivations, we require
some compact notation, in addition to stable-representations detailed in previous sections.

Define the recursive prediction residual e, = X1 — Xk+1, k =0..n —1, where Xl =0 by

convention. Additionally, for each horizon h € N, define the real-valued sequence {0 i }l 1
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such that a best linear unbiased predictor, cf. Lemma 1 and Corollary 9, satisfies the re-

n 9(h>

curisive residuals formula, Xn+h =>., n,i(X’n-i-l—i — Xn+1—i)- The following theorem
delivers a recursive algorithm for one-step ahead stable prediction of univariate processes
by utilizing a well-known prediction residuals format that has been characterized only in

the case of Hilbert-space prediction; see, e.g., Brockwell and Davis (1987).

Theorem 10 For any stable-law Xy, the unbiased a-orthogonal one-step ahead predictor

EX,1| Xn, ..., Xq] = Xn_,_l satisfies Xn_,_l =5y 9(1)(Xn+1_i — Xn+1—i), where for

1=1 " n,i

each k = 0..n —1,

k—1
0L, &= ([Xn+17Xk+ﬂa DI [ei,XkH}a) len Xiqal, - (49)
=0

Proof. Consider the recursive prediction residual form, Xnﬂ =y, 9,511’%_1»()(”“,%4
— Xn+1_i), for any n» > 0. Differencing with respect to X,41 and applying the a-
orthogonality condition, cf. Lemma 1, to both sides of the equality with respect to an
arbitrary element X1, k£ € [0,n — 1], we obtain

XW—XW,XW} = [Xnﬂ—ze,ﬁzen_i, Xpy1| (50)
* i=1

«

Now, observe that by a-orthogonality, the unbiased linear predictor necessarily renders

[ej,ek]a = 0 for any j > k. Consequently, [X,41 — Xny1, Xiti1]a = 0, therefore the

principles of covariation (linearity in the first argument) and (50) imply

k
0 = [Xntt, Xirt] = 300 lei Xl (51)
1=0
k—1
= [Xogr, Xew] = D050 ler, Xisaly — 0 [en, X,
i=0
Solving, we obtain
k—1
o) = <[Xn+17Xk+ﬂa =S [eiaxk-‘rﬂa) e Xialy s (52)
=0
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which proves the result. m

Remark 1: The substantive distinction between between the classical ”residuals”
Hilbert-space algorithm and the above stable-law procedure lies in the non-symmetry of
the a-orthogonality condition, [e;, e;] . Indeed, by construction, [X;y1 — Xi+1, Xit1-j]a
= 0 for every j = 1,2, ...i, however, as detailed in Section 1, the covariation is in general
not symmetric in it arguments. Thus, while [e;,e;] = 0, i > j, may be true, [e;,e;],
= 0 does not typically follow. A simple counter-example exists for the case when the
prediction residuals are independent, which is in general not true in the present setting,

by construction. Of course, when « = 2, the Lo-inner product is symmetric and (49)

reduces to the classical formula. See Brockwell and Davis (1987).

6. Numerical Experiment In the preceding sections, we proved that in theory
the COLP the MDLP will be ”similar” for large n. It is left for experimentation to
demonstrate the nature of the differential between the two predictors. Therefore, in this
concluding section, we explicitly derive that MA(1) and ARMA(1,1) COLP and MDLP
coefficients, denoted respectively a.; and a,, ;, over a 99 x 99 parameter grid (o, ) C
[1.01,1.99] x [.01,.99], and for various autoregressive parameters ¢ € {0,.7}. Results for
negative parameter values are symmetrically identical, and recall that the COLP and
MDLP are identical for all finite order autoregressive processes. Additionally, it is easy to
show that step values £k — oo monotonically diminishes both measures of dispersion while
rendering results comparatively similar to one-step ahead prediction, , hence we report
experiments only for one step-ahead forecasts (i.e. £ = 1). We explicitly ignore processes
with low order characteristic exponents (i.e. a < 1) in order to exploit the uniqueness

of the MDLP for purposes of criterion comparability. For each linear projection problem

27



and arbitrary n € {1, 10, 50,100} we plot the differential
dzsp(XnJrk - a;nx) - disp(X7z+k - a{:X) (53)
over the computed grid, and report the extrema

i disp(X,ip —al X) — disp( X, p — a' X 54
(a,e)gu.oﬂ%gg]x[.01,.99]{ZSp( 2 X) isp(Xnpn — aX)} (54)

disp(Xpir —a. X) — disp(Xpir —a.X)}.
(a,e)gu.oﬂ%]x[.oL.gg]{ZSP( ke~ 2 X) = disp(Xngy, — 2 X))}

Additionally, in order to demonstrate the bias in the canonical expected prediction error of

the MDLP, we plot the dispersion of the conditional expectations of the MDLP prediction

error,
~ n o 9+ e}
dypLp = Z ‘Zj + 62]'71‘ + (%) Zn, (55)
i=1
where z; = g:o gbj_i[(ac’i — ¢Paci—1) — (@m,i — Pam i—1)]. Of course, by Corollary 4 the

COLP is unbiased, hence cZoo p = 0, thus d M pLp also serves as the differential. Finally,

for each n € [1,100] and ¢ € {0, .7} we calculate the number of grid points for which

disp(Xnyh — a0, X) = disp(Xppp —alX)| < 1073 (56)

dyprp —doorp| < 1078

and subsequently plot the frequency progressions.

In summary, clearly, the MDLP provides an improvement over the COLP based on
a criterion of prediction error dispersion over a non-negligible sub-set of the parame-
ter space for small sample sizes (see Figures 1 and 2). However, there exists a nearly
one-to-one correspondence between the regions in which the COLP prediction error dis-
persion is large and the prediction error of the MDLP based on conditional expectations
is large (see Figures 3 and 4). Indeed, and not surprisingly, the greater the improve-

ment in prediction ”stability” by employment of the MDLP, ceteris paribus, the greater
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the resulting prediction error bias, a problem classically associated with efficient, biased
predictors/estimators.

In the MA(1) case, Figure 5 demonstrates that there exists a substantial monotonic
improvement over the dispersion differential as a function of n. As n grows large, the
parameter region over which the differential is negligible (i.e. less than 10~8) increases
monotonically. However, as ¢,/ 1 in general ARMA(1,1) models, the dispersion differen-
tial is affected non-linearly. Indeed, the relative spatial improvement of both differentials
is nearly identical in the MA(1) case. However, for large |¢| values, the MDLP improves
on bias faster than the COLP improves on prediction error dispersion when n is small.
For large n, however, clearly the unbiased COLP improves on prediction error dispersion
at a greater rate.

For instance, by Theorem 4, for small moving average components |6|, we expect
the COLP to be close to the MDLP, as evinced by the above example. Therefore, for
ARMA(1,1) processes with weak inter-temporal persistence the MDLP seems to be the
preferred projection method based on a criterion of minimum error dispersion. As the
number of data points grows large and for large parameter values |¢|, based on the same
criterion the COLP compares well with the best linear predictor. However, all evidence
suggests that the variability of the prediction error bias of the MDLP outweighs the
benefits associated with minimization of the prediction error dispersion.

We argue, in conclusion, that the unbiased linear forecast is the ”best” linear predictor
(indeed, it is the best predictor of the class of linear unbiased predictors). The unbiased
predictor renders a combined predictor error dispersion and error bias that is uniformly
lower than that provided by minimum dispersion methods. Morevoer, and perhaps more

importantly from a computational point of view, due to a reduction in the non-linearity

29



of the criterion function, the unbiased predictor is universally easier to compute than
existing methods. The result is a dominant method for deriving optimal linear forecasts

of highly volatile time-series.
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