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Abstract

This paper analyzes difference-in-differences setups with a continuous treatment. We show
that treatment effect on the treated-type parameters can be identified under a generalized paral-
lel trends assumption that is similar to the binary treatment setup. However, interpreting differ-
ences in these parameters across different values of the treatment can be particularly challenging
due to treatment effect heterogeneity. We discuss alternative, typically stronger, assumptions
that alleviate these challenges. We also provide a variety of treatment effect decomposition
results, highlighting that parameters associated with popular two-way fixed-effect specifications
can be hard to interpret, even when there are only two time periods. We introduce alterna-
tive estimation strategies that do not suffer from these drawbacks. Our results also cover cases
where (i) there is no available untreated comparison group and (ii) there are multiple periods
and variation in treatment timing, which are both common in empirical work.
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1 Introduction

The canonical difference-in-differences (DiD) research design compares outcomes between a treat-

ment and comparison group (difference one) before and after that treatment begins (difference two).

But many DiD applications study treatments that do not simply turn “on”, they have a “dose” or

operate with varying intensity. Pollution dissipates across space, affecting locations near its source

more severely than locations far away. Localities spend different amounts on public goods and

services, or set different minimum wages. Students choose how long to stay in school.

A continuous treatment may offer practical advantages over a binary treatment. Variation in

treatment intensity makes it possible to evaluate treatments that lack untreated comparison units

because all units are treated to some extent. A clear “dose-response” relationship between outcomes

and treatment intensity can bolster the case for a causal interpretation. In his 1965 presidential

address to the Royal Society of Medicine, Sir Austin Bradford Hill, a pioneer in the study of

smoking and cancer, included among his criteria for inferring causality from observational data, “a

biological gradient, or dose-response curve” and argued that “we should look most carefully for such

evidence” (Hill, 1965). Finally, we may care more about the effect of changes in treatment intensity

(e.g., increased funding, pollution abatement, or expanded eligibility) than about the effect of the

existence of a program that already exists.

Despite how conceptually useful and practically common it is to have continuous treatments,

relatively little theoretical research focuses on identification and interpretation of dose-response

DiD designs. This paper analyzes DiD models in which units move from no treatment to some non-

zero dose, and outlines potential pitfalls of two-way fixed effects (TWFE) regression estimators.

Our first contribution is to provide a clear bridge between the parameters of interest, identifying

assumptions and interpretation of canonical binary DiD and dose-response DiD models, highlighting

when and why additional assumptions are required. Second, we use these results to evaluate TWFE

estimators in the dose-response context.

We build on two types of causal effects that arise in a non-binary DiD setting corresponding

to levels and slopes of the dose-response relationship. The level effect is the treatment effect of

“dose” d, which equals the difference between a unit’s potential outcome under treatment d and its

untreated potential outcome. Following Angrist and Imbens (1995), the slope effect is the causal

response to an incremental change in the “dose” at d. The distinction between treatment effects

and causal responses is crucial because they can have meaningfully different interpretations and

has no analogy in binary DiD (in this case the treatment effect and causal response are the same).

One theme of our paper is that different causal parameters require different assumptions. Thus,

researchers attempting to answer causal questions should pay particular attention to whether the

given estimation strategy is actually suitable for the given application.

We begin with a simple setup with exactly two time periods, where no units receive the treatment

in the pre-period, and where some units become treated with different doses in the post-period. The

average treatment effect of dose d among units that receive dose d, ATT (d|d), is nonparametrically
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identified under a parallel trends assumption on untreated potential outcomes only.1 This is a simple

extension of binary DiD: one simply compares outcome changes among units that experienced a

particular dose to outcome changes for the untreated units.

Average causal response parameters, however, are not identified under parallel trends involving

untreated outcomes alone because they must come from comparisons between higher- and lower-

dose units. These comparisons mix together (i) the average causal response on the treated of dose

d for units who receive dose d, ACRT (d|d) and (ii) differences in the treatment effects between

the two groups at the lower dose (“selection bias”). Even if lower-dose units have the same evo-

lution of untreated potential outcomes as higher-dose units (parallel trends), they are only a good

counterfactual for higher-dose units if the evolution of outcomes at the lower dose would have been

the same, too.2 We propose an alternative “strong” parallel trends assumption that imposes these

restrictions. Under strong parallel trends, we show that comparisons of causal effect parameters

across different values of the doses can themselves be interpreted as causal responses. However,

strong parallel trends is likely to be a much stronger assumption than the sort of parallel trends

that is frequently invoked in DiD applications with a binary treatment. Moreover, pre-trend tests

commonly used to detect violations of parallel trends cannot distinguish between “standard” and

“strong” parallel trends.

We use the identification results to evaluate the most common estimator for dose-response

designs, a TWFE regression that includes time fixed effects (θt), unit fixed effects (ηi), and the

interaction of a dummy for the post-treatment period (Postt) with a variable that measures unit

i’s dose or treatment intensity, Di:

Yit = θt + ηi + βtwfe ·Di · Postt + vit (1)

We show that, under a parallel trends assumption on untreated potential outcomes, βtwfe can be

decomposed into different weighted sums of different treatment effect parameters, highlighting the

importance of appropriately (a priori) choosing the “building block” of the analysis. Interestingly,

if one adopts the (rescaled) average treatment effect of dosage d as the building block of the

decomposition, βtwfe is equal to a weighted sum of the (rescaled) ATT (d|d), though the weights

are non-convex and can be negative; see also de Chaisemartin and D’Haultfœuille (2020). If one

adopts the average causal response of dosage d as the building block of the decomposition, though,

βtwfe is equal to a weighted average of the ACRT (d|d)’s, where all the weights are guaranteed to

1Note that we do not refer to “the” ATT of dose d because there are many different treatment groups, each of
which has an average treatment effect at dose d in theory. We use the notation ATT (a|b) to denote the average effect
of administering dose a to the group that actually received dose b. This is similar to Callaway and Sant’Anna (2020)
who study staggered DiD designs and define ATT (g, t) as the average treatment effect for timing group g at time t.

2To give an example, suppose that for doses b > a, higher-dose units have a larger average treatment effect
than lower-dose units: ATT (b|b) > ATT (a|a). This does not imply that the effect of experiencing dose b is greater
than the effect of experiencing dose a on average for all units or even for any subpopulation. This is an important
limitation of dose-response DiD designs and occurs because standard parallel trends assumptions are not strong
enough to distinguish between cases where receiving more treatment generally increases outcomes or where differences
in ATT (b|b) and ATT (a|a) are due to other differences between the units that experience treatment amount b relative
to the units that experience treatment amount a — or due to combinations of these two possibilities.

2



be non-negative, plus another positively-weighted average of “selection bias” terms that come from

heterogeneous treatment effect functions across dose groups. Even under strong parallel trends,

which eliminates “selection bias”, TWFE estimates do not equal an average of ACR parameters

weighted by the population distribution of the dose (which is arguably the natural target parameter

in this case). Instead, the TWFE weighting scheme typically puts more weight on doses near the

average and less on the tails. If the highest or lowest doses create relatively extreme causal responses

(for example if the effect is zero below a certain dose), then TWFE estimates can be a misleading

summary of the overall average causal response.

We extend these baseline results to a setup with more than two time periods and where treat-

ment varies in intensity as well as timing. In this case, the TWFE estimator is composed of (i)

comparisons of the path of outcomes for units treated at the same time but with different doses,

(ii) comparisons of paths of outcomes in early-treated groups relative to later-treated groups in

periods before the later-treated groups become treated, (iii) comparisons of paths of outcomes of

later-treated groups relative to already-treated groups, and (iv) comparisons of paths of outcomes

between early-treated groups and later-treated groups in their common pre-treatment and post-

treatment periods. Under a version of strong parallel trends, the first two sets of comparisons turn

out to be equal to averages of causal response parameters, but the third and fourth set of compar-

isons contain extra terms that arise in the presence of treatment effect dynamics or heterogeneous

causal responses across groups. These results on TWFE regressions with multiple periods and

variation in treatment timing generalize the results in de Chaisemartin and D’Haultfœuille (2020)

and Goodman-Bacon (2021) to the case with a continuous treatment.

In this context, we propose an alternative strategy that delivers overall average causal response

parameters under strong parallel trends as well as event-study type parameters that do not require

ruling out treatment effect dynamics or heterogeneous causal effects across groups. This strategy

expands the group-time average treatment effects approach in Callaway and Sant’Anna (2020) to

the case where the treatment can be continuous.

Related literature: Our paper build on different strands of the literature. First, the inter-

pretation issues that we point out regarding comparisons of ATT (d|d) at different values of d are

related to existing points made on comparing “local” treatment effect parameters to each other (e.g.,

(Oreopoulos, 2006; Angrist and Fernandez-Val, 2013; Mogstad, Santos, and Torgovitsky, 2018) in

the context of local average treatment effects or (Frölich, 2004; Fricke, 2017) in the context of

difference-in-differences with multiple treatments). Second, our paper is broadly related to the

literature on continuous treatments in cross-sectional setups, see, e.g., Hirano and Imbens (2004),

Flores (2007), Flores, Flores-Lagunes, Gonzalez, and Neumann (2012), Galvao and Wang (2015),

Kennedy, Ma, McHugh, and Small (2017), Su, Ura, and Zhang (2019), and Callaway and Huang

(2020) in the context of an unconfounded treatment; and Florens, Heckman, Meghir, and Vytlacil

(2008) in the context of an endogenous treatment. Our paper is also related to D’Haultfoeuille,

Hoderlein, and Sasaki (2021), as they considered setups with repeated cross-sectional data. Our

paper complements theirs as our setups greatly differ: we consider identifying assumptions based
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on parallel trends while they rely on rank-invariance assumptions on the time trend as in Athey

and Imbens (2006). Besides not being in the same DiD context as our paper, most of these afore-

mentioned papers identify ATE-type parameters rather than ATT-type parameters, which implies

that they do not run into the same interpretation issues that we consider here.

We also contribute to the more recent literature highlighting potential problems with TWFE

specifications when one deviates from the canonical two-groups two-periods DiD setup, such as such

as “fuzzy” designs (de Chaisemartin and D’Haultfœuille, 2018) or staggered designs (Borusyak

and Jaravel, 2017; Goodman-Bacon, 2021; de Chaisemartin and D’Haultfœuille, 2020; Sun and

Abraham, 2020).3 Our results contribute to this literature by showing that, in setups with variation

in treatment intensity, TWFE regressions do not recover easy-to-interpret causal parameters even

in the two-period case. With variation in treatment timing, the problems are exacerbated as

(i) TWFE is not robust against treatment effect dynamics (as already-treated units serve as the

comparison group for late-treated units, just like the binary DiD case), and (ii) TWFE regressions

are confounded in the presence of heterogeneous causal responses across groups, which is not an issue

in the case with a binary treatment. We note that the supplemental appendix of de Chaisemartin

and D’Haultfœuille (2020) briefly discuss some potential problems interpreting TWFE coefficients

in the presence of a multi-valued discrete treatment. Our results complement theirs as we consider

continuous treatments and provide different decompositions that rely on different building blocks

than theirs. Interestingly, we show that the problem of “negative weighting” is not present when

one uses average causal responses as building blocks of the decomposition in the two-period setup.

2 The Sources and Uses of Continuous/Multi-valued Treatments

The development of causal inference methods has focused, often for expository reasons, on binary

(discrete) treatment variables. The history of DiD, dating to John Snow’s 1855 analysis, also

builds almost entirely on cases in which some units become treated and others do not. The focus

on binary treatments, in addition to simplifying theoretical analyses, cements the analogy between

quasi-experiments and simple randomized controlled trials.

But continuous treatment variables frequently arise and can provide much richer information—

sometimes fundamentally different information—about treatment effects than a binary variable

can. Price and income elasticities for example determine optimal policies like tax rates, tax bases,

subsidies, and regulations in many economic models (Hendren, 2016), but they are continuous

concepts that can only be estimated accurately with continuous variation.

Establishing a “dose-response” relationship between gradations of exposure and outcomes can

also help support a causal interpretation and point to potential mechanisms. Meyer (1995), for

example, argues that “differences in the intensity of the treatment across different groups allow one

to examine if the changes in outcomes differ across treatment levels in the expected direction” (pg.

3de Chaisemartin and D’Haultfœuille (2020) also consider non-staggered designs, where treatment can “turn on”
and “turn off”.

4



158).4 While dose-response effects can act as a kind of falsification exercise in some contexts, in

others a non-linear or non-monotonic effect of treatment intensity can shed light on mechanisms. In

a monopsonistic labor market, for example, a minimum wage can either raise or lower employment

depending on whether it is set below or above the competitive wage. Aggregate outcomes may

improve as a treatment expands to people who need it most then worsen if that treatment is forced

on people who are hurt by it (Heckman and Vytlacil (2005)).

Variation in the dose or treatment intensity also makes it possible to evaluate treatments for

which binary DiD is not feasible. Card (1992) exploits geographic differences in the “bite” of a 1991

federal minimum wage increase. In a statutory sense, the federal change affected all workers, so

there is no untreated group to use in a binary DiD. While the minimum wage increase should have

affected lower-wage workers more directly than higher-wage workers, comparing these groups in a

binary DiD would require longitudinal data. Instead, Card regresses the change in each state’s teen

employment rate on the share of teens in that state who earned less than the new minimum wage

in the pre-period and are thus “eligible” for a statutory wage increase. Converting the analysis

to the state-level DiD creates a continuous treatment variable that can identify effects of a federal

policy.

In practice, DiD designs with a continuous treatment are almost always estimated with a TWFE

regression. Applications typically justify dose-response DiD designs by extending the logic of canon-

ical binary DiD models, arguing that, under a parallel trends assumption on untreated potential

outcomes, regression estimators that compare units treated with different doses identify the average

treatment effect per unit of the dose. Wooldridge (2005) observes that a two-period DiD regression

estimator “can be easily modified to allow for continuous, or at least non-binary, ‘treatments’ ”

(pg. 132). Angrist and Pischke (2008) emphasize “a second advantage of regression DD is that it

facilitates the study of policies other than those that can be described by a dummy...the minimum

wage is therefore a variable with differing treatment intensity across states and over time” (p. 234).

The reason TWFE is so ubiquitous is that it makes it easy to “extend” regression estimators for

binary DiD models, whose properties are better understood, to the more complex case with varia-

tion in treatment intensity. Yet details about what treatment effect parameter these specifications

recover and under what assumptions remain unknown. We now turn to our analysis of these two

central issues.

4Hill (1965) makes this point in the context of smoking and cancer:

The fact that the death rate from cancer of the lung rises linearly with the number of cigarettes smoked
daily, adds a very great deal to the simpler evidence that cigarette smokers have a higher death rate
than non-smokers.

He also notes that more deaths among light rather than heavy smokers would weaken the causal claim unless one
could “envisage some much more complex relationship to satisfy the cause-and-effect hypothesis.” Toxicologists refer
to non-monotonicity as “hormesis” and questions about whether observed non-monotonic relationship between an
exposure and outcomes really represent causal effects versus offsetting confounders that dominate at low versus high
doses are ongoing for factors like radioactivity (Thayer et al. (2005)).
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3 Baseline Case: A New Treatment with Two Periods

We first consider a simple case that matches the canonical DiD setup except that we allow for a

multi-valued or continuous treatment rather than a binary one. Later, we extend these results to

more complicated data structures that are commonly encountered in empirical work.

3.1 Notation for the Baseline Case

We suppose that a researcher has access to two periods of panel data denoted by t and t − 1. In

the first period, no unit is treated. In the second period, units receive a treatment “dose” denoted

by Di. We denote the support of D by D. We define potential outcomes for unit i in period

s ∈ {t− 1, t} by Yis(d). This is the outcome that unit i would experience in period s under dose d.

We also make the following assumptions

Assumption 1 (Random Sampling). The observed data consists of {Yit, Yit−1, Di}ni=1 which is

independent and identically distributed.

Assumption 2 (Support). The support of D, D = {0} ∪ D+. In addition, P(D = 0) > 0 and

dFD(d) > 0 for all d ∈ D+. No units are treated in period t− 1.

Assumption 3 (Observed Outcomes / No Anticipation). For all units,

Yit−1 = Yit−1(0) and Yit = Yit(Di).

Assumption 1 says that we observe two periods of iid panel data. Assumption 2 implies that

there is a group of units that do not receive any dose in any period and is general enough to allow

for a binary, multi-valued discrete, or continuous treatment. For some results below, we specialize

this condition to explicitly make the dose continuous but most of our identification will hold under

very general treatment regimes. Assumption 3 says that we observe untreated potential outcomes

for all units in the first period and that, in the second period, we observe the potential outcome

corresponding to the actual dose that unit i experienced. It rules out that units change their

pre-treatment outcomes in response to the post-treatment dose.

For some of our results below, we provide specialized results to cases where the treatment is

either continuous or multi-valued discrete. In these cases, we sometimes require more specialized

versions of Assumption 2.

Assumption 2-Cont (Continuous Treatment). (a) The support of D, D = {0} ∪ D+ where

D+ = [dL, dU ] with 0 < dL < dU < ∞. In addition, P(D = 0) > 0 and fD(d) > 0 for all

d ∈ D+.

(b) E[∆Y |D = d] is continuously differentiable on D+.

Assumption 2-MV (Multi-Valued Treatment). The support of D, D = {0} ∪ D+ where D+ =

{d1, d2, . . . , dJ} where 0 < d1 < d2 < · · · < dJ . In addition, P(D = d) > 0 for all d ∈ D.
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Assumption 2-Cont formalizes that the treatment consists of a mass of units that do not partici-

pate in the treatment and an otherwise continuous treatment though it allows for the smallest value

of the treatment to be strictly larger than 0 which is common in applications. Assumption 2-MV

is essentially analogous but for the case when the treatment is discrete.

3.2 Parameters of Interest with a Continuous or Multi-Valued Treatment

For a binary treatment, the effect of being treated at all is the same as the effect of an “increase”

in treatment because both involve a change in the treatment variable from D = 0 to D = 1. But

when the treatment can take more values, treated units experience different changes in the dose.

Therefore, continuous/multi-valued treatments define more parameters of interest than binary ones.

The treatment effect of dose level d in time period t for a given unit equals the potential outcomes

when D = d minus the untreated potential outcome: Yt(d)−Yt(0).5 We also define that unit’s causal

response at d as Y ′t (d), the derivative of the potential outcome function,6 (when d is continuous)

or as the difference in potential outcomes between adjacent doses, Yt(dj) − Yt(dj−1) (when d is

discrete). These two types of treatment effects—the level of Yt(d)−Yt(0) or its slope, Y ′t (d)—define

the parameters of interest in this case, and connects to well-known results in the instrumental

variables (IV) literature on multi-valued or continuous endogenous variables (Angrist and Imbens,

1995, Angrist, Graddy, and Imbens, 2000).

Average Level Effects: What was the effect of dose d?

Treatment effects in levels extend the definitions of average treatment effects from the binary case

so that they refer to the average effect of being treated with a particular dose. Like the case with

a binary treatment, we can define treatment on the treated type parameters as well as overall

treatment effect parameters. However, there are some more possibilities here. In particular, we

define

ATT (a|b) = E[Yt(a)− Yt(0)|D = b] and ATE(d) = E[Yt(d)− Yt(0)].

ATT (a|b) is the average effect of dose a on units that actually experienced dose b. We often

consider the specialized version of this parameter, ATT (d|d), which is the average effect of dose d

among units that actually experienced dose d. ATE(d) is the mean difference between potential

outcomes under dose d relative to untreated potential outcomes across all units, not just those that

experienced dose d.

Figure 1 shows a graphical example of the ATT parameters with two doses, a < b. The definition

of potential outcomes means that each unit can have its own set of treatment effects, Yit(d)−Yit(0).

The concave lines in the figure represent the average treatment effects at all doses for the groups

5We include i subscripts for units in expressions that refer to sample quantities, but not in theoretical expressions
of population quantities. We also sometimes refer to Yt(d)− Yt(0) as the treatment effect function.

6This is a slight abuse of notation as we do not require Yt(d) to be differentiable, but rather we mean here the
effect of a marginal change in the dose on a unit’s outcome: limh→0+ (Yt(d+ h)− Yt(d)) /h.

7



Figure 1: Average Treatment Effects on the Treated, Two Doses

Notes: The figure plots ATT (d|a) (the average effect of experiencing dose d among units that actually experienced

dose a) and ATT (d|b) (the average effect of experiencing dose d among units that actually experienced dose b).

actually treated with dose a or dose b. There are four potential ATT parameters in this case. Two

refer to doses and groups that are actually observed — ATT (a|a) and ATT (b|b). As in the binary

treatment case, ATT (a|a) and ATT (b|b) are “local” to units that experienced dose a or b. The

other two refer to the effect of doses on groups that do not actually receive that particular dose —

ATT (a|b) and ATT (b|a).

Average Slope Effects: What was the incremental effect of the dth dose unit?

With continuous treatments researchers often care about the effect of an increment in the dose.

Following Angrist and Imbens (1995) we define a unit’s causal response function as Y ′t (d) when

treatment is continuous (see Angrist, Graddy, and Imbens, 2000) and as Yt(dj) − Yt(dj−1) when

treatment is discrete/multi-valued. We focus on identifying average causal response parameters.

For continuous treatments they are

ACRT (d|d) =
∂E[Yt(l)|D = d]

∂l

∣∣∣∣
l=d

and ACR(d) =
∂E[Yt(d)]

∂d
.

For discrete treatments the average causal response parameters are

ACRT (dj |dj) = E[Yt(dj)− Yt(dj−1)|D = dj ] and ACR(dj) = E[Yt(dj)− Yt(dj−1)].

The average causal response on the treated, ACRT (d|d), is the average difference between potential

outcomes under dose d compared to potential outcomes under a marginal change in the dose for

8



Figure 2: Average Causal Responses, Two Doses

Notes: The figure plots ACRT ’s as derivatives of the ATT curve (when the treatment is continuous) or as the slope

of the line connecting adjacent ATT ’s (when the treatment is discrete).

the group of units who actually experience dose d. For multi-valued treatments ACRT (d|d) equals

the difference in potential outcomes between dose level dj and the next lowest dose dj−1 (no matter

how big the gap between dj and dj−1 is).7 ACR(d) is the overall average causal response of a small

change in dose; it is an average across the entire population not just units that experienced dose d.

Figure 2 depicts the causal response parameters for two doses continuing the same example

from Figure 1. In panel A, we show the ACRT parameters at doses a and b when d is continuous.

Continuity is reflected in the fact that the slopes are tangent to the ATT (d|d) functions. In panel

B, we show the ACRT parameters when d is discrete and when a = 1 and b = 2 so that the

increment between doses equals 1. The two groups not only have different level effects, they also

have different slopes at every dose: ACRT (d|a) ≤ ACRT (d|b). Two slopes refer to the marginal

effect of doses actually received. ACRT (a|a) is the average effect of the ath dose unit for group a,

while ACRT (b|b) is the effect of the bth dose unit for group b. The other two slopes are also average

causal responses but for the dose not actually experienced by each group. ACRT (a|b) is the average

effect of the ath dose unit for group b who did not actually receive that much dose. ACRT (b|a)

is the effect of the bth dose unit for group a who actually received more than that dose. Since the

average causal response is higher for group b than for group a at every dose, ACRT (a|a) < ACR(a)

and ACRT (b|b) > ACR(b).

Another thing worth pointing out is that the shape of the average treatment effect function,

ATT (d|d), drives the interpretation of the slope parameters. All ATT (d|d) parameters may be

positive while some ACRT (d|d) parameters are zero or negative. For example, some treatment may

be better than none, but additional doses do not always raise outcomes. This underscores why it is

important to be clear about an ATT versus an ACRT interpretation in the dose-response context.

Besides that, comparisons between units treated with different doses may not allow inference about

7Differences in ATT (d|d) between doses that are farther apart than, say, one unit in the discrete case or differ by
a finite amount in the continuous case equal averages of the ACRT between the doses in question.

9



the ATT for any group because neither group can be used to estimate an untreated counterfactual.

But these comparisons can, under conditions stated below, be informative about causal response

parameters that describe how outcomes respond to small changes in the dose.

Sometimes it is worth considering average derivative versions of ACRT and ACR that average

the average causal responses across doses. These are given by

ACRT ∗ = E[ACRT (D|D)|D > 0] and ACR∗ = E[ACR(D)|D > 0].

ACRT ∗ and ACR∗ are natural single (i.e., non-functional) target parameters for understanding

the causal response of the treatment. These parameters do not show up in the case with a binary

treatment because D only takes one non-zero value.

3.3 Identification with a Continuous or Multi-Valued Treatment in the Baseline

Case

This section discusses identification of level effects (ATT (d|d) and ATE(d)) and slope effects

(ACRT (d|d) and ACR(d)) under parallel trends assumptions.

Levels: Identification of Average Treatment Effects

We begin by discussing identification of the ATT (d|d) because the approach and assumptions follow

closely from the traditional binary treatment case. We make the following assumption.

Assumption 4 (Parallel Trends). For all d ∈ D,

E[Yt(0)− Yt−1(0)|D = d] = E[Yt(0)− Yt−1(0)|D = 0].

Assumption 4 is very similar to parallel trends assumptions in binary DiD. First, it only involves

the path of untreated potential outcomes. Second, it says that the path of outcomes that units with

any dose d would have experienced if they had not participated in the treatment is the same as the

path of outcomes that units in the untreated group actually experienced — this is very similar to

the intuition for binary parallel trends except that now d can take on many values instead of just

being treated or untreated.

The following result shows that under Assumption 4, ATT (d|d) is identified.

Theorem 1. Under Assumptions 1 to 4, ATT (d|d) is identified for all d ∈ D, and it is given by

ATT (d|d) = E[∆Yt|D = d]− E[∆Yt|D = 0].

The proof of Theorem 1 is provided in Appendix D, but it is worth pointing out that Theorem 1

holds using essentially the same arguments as for the case with a binary treatment. ATT (d|d) equals

the difference between the change in outcomes for units treated with dose d and untreated units

10



because Assumption 4 ensures that the path of outcomes for untreated units is the same as the

path of outcomes that treated units would have experienced absent the treatment.

The next result shows that, in general, ATE(d) is not identified under Assumptions 1 to 4

alone.

Proposition 1. Under Assumptions 1 to 4, ATE(d) is not identified

The proof of Proposition 1 is provided in Appendix D. Intuitively, the result holds by first

noticing that ATE(d) = E[ATT (d|D)]. In other words, ATE(d) can be obtained by averaging

ATT (d|k) across all values of k — where ATT (d|k) is the average effect of experiencing dose d

among units that actually experienced dose k. However, for k 6= d, ATT (d|k) is not generally

identified under Assumption 4, so ATE(d) is not point identified under Assumption 4 either.

Additionally, the result in Proposition 1 is not surprising as, even in the binary treatment case,

ATE is not identified under the analogous parallel trends assumption.

Finally in this section, we impose a parallel trends assumption that is strong enough to identify

ATE(d).

Assumption 5 (Strong Parallel Trends). For all d ∈ D,

E[Yt(d)− Yt−1(0)] = E[Yt(d)− Yt−1(0)|D = d].

Assumption 5 says that, for all doses, the average change in outcomes over time across all units

if they had been assigned that amount of dose is the same as the average change in outcomes over

time for all units that experienced that dose. Assumption 5 is notably different from Assumption 4

especially because it involves potential outcomes under different doses d rather than only untreated

potential outcomes. The usefulness of this assumption arises because the term on the left hand side

of the equation in Assumption 5 is not identified (and, it will turn out that identifying this term

is a key ingredient to identifying ATE(d)) while the term on the right hand side is the observed

change in outcomes over time for units that experienced dose d.

It turns out that Assumption 5 is not strictly stronger than Assumption 4; however, it is likely to

be stronger (and potentially much stronger) in most applications. Assumption 5 is also related to,

but weaker than assuming that all dose groups would have experienced the same path of outcomes

had they been assigned the same dose (which would rule out any selection into a particular dose) or

that ATE(d) = ATT (d|d) (which is a kind of treatment effect homogeneity condition). Compared

to this, Assumption 5 allows for some selection into a particular dose but requires that, on average

across all doses, there is no selection into a particular dose. We discuss these points more precisely

in Appendix A. The next result shows that ATE(d) is identified under Assumption 5.

Theorem 2. Under Assumptions 1 to 3 and 5 and for all d ∈ D, ATE(d) is identified, and it is

given by

ATE(d) = E[∆Yt|D = d]− E[∆Yt|D = 0].
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The proof of Theorem 2 is provided in Appendix D. Interestingly, the estimands for ATT (d|d)

(under Assumption 4) and ATE(d) (under Assumption 5) are identical. The stricter assumptions

in this case only change the interpretation of the estimand, not its form. Another important

implication of the estimands in Theorems 1 and 2 being the same is that conventional pre-tests

(in this case, testing that E[∆Ys|D = d] − E[∆Ys|D = 0] = 0 for all d ∈ D+ where s is some

pre-treatment time period) cannot distinguish between pre-treatment versions of Assumptions 4

and 5.

Another difference between the case with a binary treatment and when the treatment is contin-

uous (or multi-valued) is that, in the latter case, researchers are often interested in comparing the

effect of different doses on the outcome. Next, we provide a result for understanding comparisons

of ATT (d|d) and ATE(d) across different values of the dose.

Proposition 2. Under Assumptions 1 to 3 and for two different doses, (d, d′) ∈ D ×D,

(1) If Assumption 4 holds, then

ATT (d|d)−ATT (d′|d′) = ATT (d|d)−ATT (d′|d)︸ ︷︷ ︸
(A)

+ATT (d′|d)−ATT (d′|d′)︸ ︷︷ ︸
“selection bias”

.

(2) If Assumption 5 holds, then

ATE(d)−ATE(d′) = E[Yt(d)− Yt(d′)].

Proposition 2 is a key result in the paper. Part (1) says that, although a standard parallel

trends assumption is enough to identify ATT (d|d), it is not strong enough to justify comparisons

of ATT (d|d) across different values of d as being causal effects of different amounts of the dose.

Rather, under Assumption 4, comparisons of ATT (d|d) across different values of d involve two

terms. Term (A) is the causal effect of dose d relative to an alternative dose d′ among units that

experienced dose d. The second term is a “selection bias” term that comes from the difference

between the effect of dose d′ on outcomes among units that experienced dose d relative to the

same effect among units that experienced dose d′. These are not restricted to be the same under

Assumption 4. It is also interesting to relate the “selection bias” term to paths of outcomes over

time. Notice that, under Assumption 4,

ATT (d′|d)−ATT (d′|d′) = E[Yt(d
′)− Yt−1(0)|D = d]− E[Yt(d

′)− Yt−1(0)|D = d′].

The second term here, E[Yt(d
′) − Yt−1(0)|D = d′], is the observed average path of outcomes over

time among units with dose d′. The first term, E[Yt(d
′) − Yt−1(0)|D = d] is the average path of

outcomes that units that actually experienced dose d would have experienced if they had instead

experienced dose d′. This path is not observed, but, more importantly, Assumption 4 does not

put restrictions on this path of outcomes (this holds because Assumption 4 only restricts untreated

potential outcomes).
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On the other hand, the second part of Proposition 2 shows that comparisons of ATE(d) across

different doses do yield differences in average causal effects due to differences in the the dose.

Thus, overall, Proposition 2 shows that, in DiD designs with a continuous/multi-valued treat-

ment, interpreting differences in treatment effect parameters across different values of the dose

is likely to require (substantially) stronger assumptions than researchers typically think they are

imposing. The intuitive explanation for this result is that standard DiD assumptions on paths

of untreated potential outcomes identify “local” effects of participating in the treatment relative

to not participating in the treatment. However, comparing local treatment effect parameters is

not so simple and generally requires imposing stronger assumptions in order to justify interpreting

differences in local treatment effects themselves as causal effects.

Slopes: Identification of Average Causal Responses

Identifying ACR parameters is different from identifying ATT parameters because it additionally

requires comparing units treated with slightly different doses.This section presents our main results

on the difficulties in moving from an interpretation of level effects, ATT (d|d), to slope effects,

ACRT (d|d), in a DiD framework with a multi-valued/continuous treatment. In the previous section,

we showed that, depending on the particular parallel trends assumption invoked by the researcher,

both ATT (d|d) and ATE(d) were equal to E[∆Yt|D = d]− E[∆Yt|D = 0]. This suggests

∂E[∆Yt|D = d]

∂d
or E[∆Yt|D = dj ]− E[∆Yt|D = dj−1].

as reasonable candidates for interpreting as average causal response parameters in the case where

the treatment is continuous or multi-valued discrete, respectively.8 The following proposition relates

these expressions to ACRT and ACR.

Proposition 3. Under Assumptions 1 to 3 and for d ∈ D+ (when d is continuous) or dj ∈ D+

(when d is discrete),

(a) If Assumption 4 holds, then

∂E[∆Yt|D = d]

∂d
= ACRT (d|d) +

∂ATT (d|l)
∂l

∣∣∣
l=d︸ ︷︷ ︸

“selection bias”

, (a-Cont)

E[∆Yt|D = dj ]− E[∆Yt|D = dj−1] = ACRT (dj |dj) +ATT (dj−1|dj)−ATT (dj−1|dj−1)︸ ︷︷ ︸
“selection bias”

,

(a-MV)

where Equation (a-Cont) holds when the dose is continuous and Equation (a-MV) holds when

the dose is discrete.

8Notice that E[∆Yt|D = 0] is common across doses and cancels when taking differences across doses.
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(b) If Assumption 5 holds, then

∂E[∆Yt|D = d]

∂d
= ACR(d), (b-Cont)

E[∆Yt|D = dj ]− E[∆Yt|D = dj−1] = ACR(dj), (b-MV)

where Equation (b-Cont) holds when the dose is continuous and Equation (b-MV) holds when

the dose is discrete.

Proposition 3 is an immediate implication of Proposition 2 when applied to neighboring doses.

It says that under a standard version of parallel trends (as in Assumption 4), local comparisons of

paths of outcomes mix together (i) ACRT (d|d) and (ii) a “selection bias” type of term that comes

from differences in treatment effects across groups. Intuitively, in the case with a discrete treatment,

the difference between the change in outcomes among units that experience dose dj relative to those

that experience dose dj−1 comes both from the fact that dj > dj−1, a causal response, and from

differences in the groups’ treatment effect of the same dose, dj−1, “selection bias”. To give an

example, if units know their own hump-shaped treatment effects and can costlessly choose their

dose, the first-order conditions for the unconstrained maximization problem is to choose d such that

Y ′(d) = 0. No unit benefits from marginal changes in their dose but ATT (d|d) may vary across d

because of treatment effect heterogeneity. Therefore derivatives of E[∆Yt|D = d] may be non-zero

even though ACRT (d|d) is zero for all units. In practice, this suggests that it is hard to tell the

difference between true causal responses to the treatment relative to “selection bias”.

On the other hand, strong parallel trends implies that local comparisons of paths of outcomes

deliver ACR(d).

Figure 3 illustrates the result in Proposition 3 in the two-dose example. The slope of the line

that connects the points (a,ATT (a|a)) and (a + 1, ATT (a + 1|a + 1)) is steeper than the average

causal response of interest, ACR(a+1|a+1) because it jumps from one ATT function to the other.9

This is captured by the “selection bias” term, which equals the difference in treatment effects at

the lower dose: ATT (a|a+ 1)− ATT (a|a). “Selection bias” is the same as selection-on-gains, but

unlike in binary models where selection-on-gains alters the interpretation of the causal estimand,

here it breaks the causal interpretation. The “selection bias” is not identified because we do not

observed Yt(a) for units that experienced dose a+ 1.

Remark 1. An interesting intermediate assumption between Assumption 4 and Assumption 5 would

be to directly assume that the “selection bias” term in Proposition 3 (i.e., ∂ATT (d|l)/∂l|l=d) is equal

to 0. This would imply that ACRT (d|d) is identified. Another interesting intermediate assumption

is that for d ∈ Ds where Ds ⊂ D+, E[Yt(d) − Yt−1(0)|D ∈ Ds] = E[Yt(d) − Yt−1(0)|D = d]. This

would imply that one could identify parameters such as E[Yt(d) − Yt(0)|D ∈ Ds] for d ∈ Ds (as

well as its derivative). These types of assumptions might be appealing in applications where there is

substantial variation in the dose, and the researcher is willing to assume that there is no “selection

9Because we are considering one unit increments, the “bias” can be seen on the y-axis as well. ATT (a|a + 1) −
ATT (a|a) is “bias” and ATT (a+ 1|a+ 1)−ATT (a|a+ 1) is the ACRT (a+ 1|a+ 1).
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Figure 3: Non-Identification of Average Causal Response with Treatment Effect Heterogeneity,
Two Discrete Doses

Notes: The figure shows that comparing adjacent ATT (d|d) estimates equals an ACRT parameter (the slope of the

higher-dose group’s ATT function) and “selection bias” (the difference between the two groups’ ATT functions at

the lower dose).

bias” among units that selected similar doses, but the researcher is unwilling to assume that there

is no “selection bias” among units that select substantially different doses.

Remark 2. Most of our results so far have been rather negative — suggesting that identifying causal

effect parameters in the case with a continuous or multi-valued treatment require stronger assump-

tion than are typically imposed in DiD setups. One interesting and positive result of Proposition 3,

however, is that, for a continuous/multi-valued treatment, identifying causal response parameters

(unlike identifying the treatment effect parameters in the previous section) does not necessarily

require having access to a group that does not participate in the treatment.

3.4 What Parameter Does TWFE Estimate in the Baseline Case?

In order to estimate the effect of a continuous/multi-valued treatment on some outcome, researchers

commonly estimate the two-way fixed effects regression in Equation (1). In our baseline case the

TWFE estimator is equivalent to the coefficient from a univariate regression of the change in

outcomes, ∆Yi = Yit − Yit−1, on Di. In this section, we consider how to interpret this sort of

regression in the context of DiD with a continuous/multi-valued treatment. To start with, we

provide a result relating the TWFE regression to derivatives of E[∆Yt|D = d] in the case when

these derivatives may vary across d.

Proposition 4. Consider βtwfe in Equation (1) and suppose that Assumption 1 holds.
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(1) If Assumption 2-Cont also holds, then

βtwfe =

∫ dU

dL

w1(l)
∂E[∆Yt|D = l]

∂l
dl + w0

E[∆Yt|D = dL]− E[∆Yt|D = 0]

dL
,

where

w1(l) :=
(E[D|D ≥ l]− E[D])P(D ≥ l)

var(D)
and w0 :=

(E[D|D > 0]− E[D])P(D > 0)dL
var(D)

,

which are weights that satisfy (i) w1(l) ≥ 0 ∀l ∈ D, w0 > 0, and (ii)
∫ dU
dL

w1(l) dl + w0 = 1.

(2) If Assumption 2-MV also holds, then

βtwfe =
∑

dj∈D+

w1(dj)
E[∆Yt|D = dj ]− E[∆Yt|D = dj−1]

dj − dj−1
,

where w1 are the same weights defined in Part (1) which satisfy (i) w1(dj) ≥ 0 ∀ dj ∈ D+

and (ii)
∑

dj∈D+
w1(dj) = 1.

Proposition 4 shows that βtwfe can be decomposed into a weighted average of derivatives of

the conditional expectation function. All of the weights are positive and they integrate (or sum

in the discrete case) to one. This result is similar to one in Yitzhaki (1996) in a different context.

Proposition 4 is a mechanical decomposition of βtwfe in the sense that it does not invoke any of

the DiD related assumptions.

This mechanical decomposition, however, just describes how βtwfe is computed from the data.

It is not very clear on whether βtwfe has a causal interpretation and, if so, what causal parameter

it estimates. Researchers commonly interpret βtwfe as the causal effect of a unit change in the

dose—that is, as an average causal response. Furthermore, our identification results show that

comparisons between two treated groups can include “selection bias” and need not have a causal

interpretation. The rest of this section shows how to interpret the TWFE estimand under both the

traditional parallel trends and strong parallel trends assumptions.

The following is a main result for interpreting TWFE regressions in this context.

Theorem 3. Under Assumptions 1 to 3,

(1) If, in addition, Assumption 4 holds, then

βtwfe =

∫ dU

dL

w1(l)

[
ACRT (l|l) +

∂ATT (l|h)

∂h

∣∣∣
h=l

]
dl + w0

ATT (dL|dL)

dL
, (1-Cont)

βtwfe =
∑

dj∈D+

w1(dj)

(
ACRT (dj |dj)
dj − dj−1

+

(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
dj − dj−1

)
, (1-MV)

where Equation (1-Cont) holds when the dose is continuous (i.e., under Assumption 2-Cont)

and Equation (1-MV) holds when the dose is discrete (i.e., under Assumption 2-MV).
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(2) If, in addition, Assumption 5 holds, then

βtwfe =

∫ dU

dL

w1(l)ACR(l) dl + w0
ATE(dL)

dL
, (2-Cont)

βtwfe =
∑

dj∈D+

w1(dj)
ACR(dj)

dj − dj−1
, (2-MV)

where Equation (2-Cont) holds when the dose is continuous (i.e., under Assumption 2-Cont)

and Equation (2-MV) holds when the dose is discrete (i.e., under Assumption 2-MV).

For both Part (1) and Part (2), w1 and w0 are the same weights as in Proposition 4 and satisfy

the same properties mentioned in that proposition.

The proof of Theorem 3 is provided in Appendix D. To gain intuition for how to interpret βtwfe,

we begin with part (2) of Theorem 3. Under Assumption 5 there is no “selection bias” and the

TWFE coefficient equals a positively weighted average of ACR(d) parameters across doses. But

what weighted average? First, because the TWFE weights w1(d) do not generally equal fD|D>0(d),

the density of D conditional on D > 0, βtwfe does not equal the overall average causal response,

ACR∗. If the treatment effect function is non-linear or non-monotonic so that ACR(d) parameters

vary widely across doses, then the TWFE estimand may differ meaningfully from ACR∗. It is

therefore important to understand the TWFE weights. The TWFE weighting scheme is relatively

simple to describe, however. Differentiating w1(d) shows that the weights are centered around

the mean dose because w′1(d) = fD|D>0(d)
(
E[D] − d

)
has the sign of E[D] − d. The weights are

hump-shaped and always put the most weight on ACR(E[D]).

That the TWFE weights are hump-shaped and centered on E[D] provides some intuition about

what parameter TWFE estimates and how it compares to ACR∗, especially when fD|D>0(d) has

a different shape than w1(d). If D is distributed U(0, 1), for example, then relative to ACR∗,

the TWFE estimator puts more weight on ACR(d) parameters close to the mean and less weight

on ACR(d)s closer to 0 or 1.10 For declining distributions like the exponential, TWFE puts less

weight on the most common doses below the mean, and more weight on the rarer doses above the

mean.11 It can be the case that TWFE puts the most weight on ACR parameters for doses that are

quite rare. For a bimodal distribution of D there may be very few observations with doses close to

E[D], yet because w1(d) is always hump-shaped and centered on E[D] these ACR parameters will

get the most weight despite potentially applying to the least common doses. If D were normally

distributed,12 we would have w1(d) = fD|D>0(d) (Yitzhaki, 1996). In general, when the distribution

10For a uniformly distributed dose we have w1(d) = 6d(1−d). Therefore, the difference in weight on ACR(d) across
the two weighting schemes is fD(d)−w1(d) = 1−6d(1−d). This function is concave up and has roots at 1/2±

√
3/6,

which are about 0.21 and 0.79, so TWFE puts more weight on parameters in the middle of the distribution and less
weight on the ends.

11For fD(d) = λe−λd, d ≥ 0, we have w1(d) = λ`fD(d). The difference between the distribution of D weights and
the TWFE weights is fD(d)− w1(d) = fD(d)λ( 1

λ
− d). This shows that TWFE under-weights ACRs at doses below

the mean (d < 1
λ

) and over-weights them at doses above the mean (d > 1
λ

).
12However, technically speaking, this case is ruled out in our context, as we assume that D ≥ 0 with probability

one.
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of the dose is symmetric and closer to normal, TWFE weights can be close or even identical to

weighting ACR(d) parameters by the distribution of D. But when the distribution of the dose is

skewed, TWFE weights ACR(d) parameters close to the mean dose more than their population

weights.

Part (1) of Theorem 3, however shows that, when we use the ACRT as the building block of

the analysis, the TWFE estimator’s most important potential problem is not its weighting scheme,

but the fact that under parallel trends alone it includes “selection bias”. The sign of this “bias”

depends on how treatment effects vary across groups at a given dose; “selection on gains”. The

extent of “selection bias” in βtwfe depends on the sign, size, and weight placed on the ∂ATT (l|h)
∂h

∣∣∣
h=l

terms. If, for example, units with higher doses had larger positive treatment effects at every dose

than units with lower doses, then TWFE estimate would be positively “biased” relative to the

average of the ACRs that appear in Theorem 3. Note that “selection bias” could lead to TWFE

estimates with the opposite sign as the average ACRT (d|d).

In general, the sign and magnitude of “selection bias” depends on the underlying treatment

effect heterogeneity that determines the strength of any selection across doses, the way that selec-

tion relates to the dose, and the TWFE weights, w1(d). The first two factors are not inherently

statistical. They come from the “technology” that generates treatment effects–do ACRs vary and

by how much?–and the allocation mechanism for the dose–how is the ATT function related to

the observed dose? The weights determine which “selection bias” matters most and/or the extent

to which any opposite signed ∂ATT (l|h)
∂h

∣∣∣
h=l

terms cancel. As discussed, for the TWFE estimate,

“selection bias” around the average will always matter more than around extreme doses.

We conclude this section by emphasizing the importance of carefully selecting the “building

block” of the analysis when decomposing the βtwfe estimand into causal quantities of interest. More

precisely, the decomposition results in Theorem 3 presumes that researchers are potentially inter-

ested in recovering weighted averages of ACRT/ACR-type parameters. Alternatively, researchers

may want to recover weighted averages of (rescaled) ATT/ATE-type parameters, which would mo-

tivate alternative decompositions for the βtwfe estimand, which may potentially have very different

interpretations. Although we perceive the ACRT/ACR as being the most natural building blocks

of the analysis in our context, we provide in Appendix B three additional decompositions for βtwfe

in terms of other causal parameters.

First, we show that βtwfe can be written as a variance weighted average of all possible 2 ×
2 comparisons among units that experience different doses. As in Theorem 3, the weights in

this expression are all positive and integrate (or sum) to one. This result extends Theorem 1

in Goodman-Bacon (2021) and provides a connection between continuous and binary DiD under

staggered treatment adoption.

Second, we provide an expression involving weighted averages of ATT (d|d)/d (or ATE(d)/d

depending on which version of parallel trends is invoked). These rescaled average treatment effects

are an alternative version of an average causal response in the sense that they measure the average

treatment effect per dose unit of dose level d for dose group d, which is simply an average of
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ACRT (d|d) parameters. In the case of a discrete dose, this result is similar to the one in Theorem

S3 of the Supplementary Appendix of de Chaisemartin and D’Haultfœuille (2020). In this case, it

is possible for the weights at some values of d to be negative though they integrate (or sum) to one.

Finally, we show that βtwfe can be written as a weighted combination of ATT (d|d) (or ATE(d))

across different values of d. In this case, the weights integrate (or sum) to 0 indicating that βtwfe

should not be interpreted as approximating the level of any kind of causal effect parameter in this

context.

In our view, the main take-way message from these alternative decompositions is that the same

TWFE estimand βtwfe may have very different interpretations, depending on the underlying causal-

parameter of interest. As so, researchers should decide and discuss the type of causal parameter

they are interested in a given application, as the type of potential problem associated with a given

estimation strategy is “question” specific. By following this route, one would be able to assess

whether “negative weighting” or “non-intuitive weighting” is a main concern in DiD setups with

two-time periods and variation in treatment intensity.

Remark 3. As in Remark 2, in many applications, all units begin untreated but end up treated;

there are no “never-treated” units. Proposition 4 and Theorem 3 both continue to apply in this case

by noting that P(D = 0) = 0.

3.5 Simulated Example

Next, we illustrate the theoretical results from the previous section using simulated data. There

are 100 units with doses drawn from an exponential distribution with λ = 3. We set the lowest

quartile of doses to zero and, for simplicity, round remaining doses to the nearest 0.5. This matches

the fact that many doses are continuous but measured in discrete intervals. We build in selection

into higher doses through the following treatment effect function: (1+di)ln(1+Di). The multiplier

1 + di builds in positive “selection bias” since units with higher doses have higher treatment effects

at all doses. The function ln(1+Di) means that all groups have a concave treatment effect function.

There are two time periods and the data generating process for Yit is: Yit = αi· + Postt/3 + (1 +

di)ln(1 +Di)Postt + εit with εit ∼ N(0, 9).

Figure 4 plots the change in outcomes (∆Yi in gray circles) as well as the average change in

outcomes for each value of the dose (∆Ȳd in black triangles) against the dose di. Figure 4 also clearly

highlights the well-known fact that in this simple case, β̂twfe is just the best fit line connecting ∆Yi

and di.

Figure 5 illustrates the weighting scheme for our simulated example. It plots the empirical pdf

of positive doses in the solid gray line against the TWFE weights from Theorem 3 in black dashed

line. TWFE puts more weight on doses close to the average (E[D] = 2.52) and does not have the

obvious spike at low doses that fD|D>0 has.

In our simulated example every unit has an ACRT of one at its true dose because ∂(1+di)ln(1+

Di)/∂Di = (1 + di)/(1 + Di) which is 1 when Di = di. But the derivative of E[∆Yi|Di = di] with

respect to di equals 1 + ln(1 + di) > 1. Therefore “bias” in the TWFE estimate can be seen clearly
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Figure 4: Baseline Case Scatter Plot: Exponential Dose and Positive “Selection Bias”

Notes: The figure plots simulated data. There are 100 units with doses drawn from an exponential distribution with

λ = 3, with all draws below the 25th percentile set to zero, and remaining positive doses rounded to the nearest 0.5

(for readability). Each unit’s treatment effect function is di × ln(Di), where the di represents “selection bias”

(larger treatment effects for higher dose groups) and the ln(Di) means that treatment effects are concave in the

dose. This specification means that each unit’s ACRT (di|di) at its actual dose is 1, “selection bias” is ln(di), so the

derivative of ATT (di|di) is 1 + ln(di). Outcomes are: Yit = αi· + α·t + diln(Di)Postt + εit with εit ∼ N(0, 9). The

figure scatters the change in outcomes ∆Yi in gray open circles and the average change in outcomes for each

observed dose E[∆Yi|Di = d] and against d. The red dashed line has a slope of 1 representing the true ACRT . The

gray dotted line has a slope of 1 + ln(d) representing the observed relationship between ATT (d|d) and d, and the

solid black line is the TWFE estimate which is a line with a slope of 1.87.

in Figure 4 by the extent to which the TWFE slope deviates from one (plotted in the red dashed

line). “Selection bias” in this case makes the TWFE estimate twice as large as the true ACRT .
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Figure 5: Baseline Case Estimand Weights: Two-Way Fixed Effects Weights versus Treatment
Distribution Weights

Notes: The figure plots the density of positive doses in gray and the TWFE weights from Theorem 3 in black.

TWFE puts more weight on slopes for doses near E[D] compared to the right skewed exponential distribution of

positive doses. Because “selection bias” in this example is positive and rising with the dose (is equals ln(d)) this

weighting scheme puts more weight on doses with larger “bias” relative to a weighting scheme based on the sample

distribution of observed doses.

4 Multiple Periods and Variation in Treatment Timing and Dose

DiD applications often use more than two time periods in which case treatments, whether binary

or not, can turn on at different times for different units. This section extends the results from

the previous sections to allow for multiple time periods (t = 1, ..., T ) with variation in the time

when units become treated (G = g ∈ G). By convention, we set G = T + 1 for units that remain

untreated across all time periods, and we exclude units that are treated in the first period so that

G ⊆ {2, . . . , T + 1}.13 Treated units receive dose D = d ∈ D. We also focus on the case that

treatment is an absorbing state (or where units do not “forget” their treatment experience).

In this section, we somewhat modify the potential outcomes notation from the previous section

to allow for variation in treatment timing. For each unit, we define potential outcomes Yit(g, d)

indexed by both treatment timing and dose. Note that treated potential outcomes at time t

depend on when a unit first becomes treated—i.e., Yit(g, d) may not equal Yit(g
′, d) for g 6= g′—

which allows for general treatment effect dynamics. Yit(T + 1, 0) is the outcome that unit i would

experience if they did not participate in the treatment in any period. For simplicity, we define

13We could alternatively use G =∞ for units that remain untreated across all time periods.

21



Yit(0) := Yit(T + 1, 0) and refer to this as a unit’s untreated potential outcome.14 We also define

the variable Wit := Di1{t ≥ Gi} which is the amount of dose that unit i experiences in time period

t; Wit = 0 for all units that are not yet treated by time period t.

Throughout this section, we make the following assumptions.

Assumption 1-MP (Random Sampling). The observed data consists of {Yi1, . . . , YiT , Di, Gi}ni=1

which is independent and identically distributed.

Assumption 2-MP (Support). (a) The support of D, D = {0}∪D+. In addition, P(D = 0) > 0

and dFD|G(d|g) > 0 for all (g, d) ∈ (G \ {T + 1})×D+.

(b) D+ = [dL, dU ] with 0 < dL < dU <∞.

(c) For all g ∈ (G \{T + 1}) and t = 2, . . . , T , E[∆Yt|G = g,D = d] is continuously differentiable

in d on D+.

Assumption 3-MP (No Anticipation / Staggered Adoption). (a) For all g ∈ G and t = 1, . . . , T
with t < g (i.e., in pre-treatment periods), Yit(g, d) = Yit(0).

(b) Wi1 = 0 almost surely and for t = 2, . . . , T , Wit−1 = d implies that Wit = d.

Assumption 1-MP says that we have access to T periods of panel data and observe each unit’s

dose and treatment timing. Assumption 2-MP extends our definitions of the support of D to the

case with multiple periods and variation in treatment timing. As in earlier sections, many of our

identification results only require part (a) (which allows for very general treatment regimes) while

some of our results are specialized to the continuous case as in parts (b) and (c).15 Assumption 2-

MP also imposes a kind of common support of the dose across timing groups, though it allows

for the distribution of the dose to vary across timing groups in otherwise unrestricted ways; that

said, it appears to be straightforward to relax this part of the assumption at the cost of additional

notation.

Assumption 3-MP(a) rules out that units anticipate experiencing the treatment in ways that

affect their outcomes before they actually participate in the treatment. It would be relatively

straightforward to extend our arguments in this section to allow for anticipation along the lines of

Callaway and Sant’Anna (2020) (in the case of a binary treatment). Assumption 3-MP(b) implies

that we consider the case with staggered adoption which means that once units become treated with

dose d they remain treated with dose d in all subsequent periods. This allows us to fully categorize

a unit by the timing of their treatment adoption and the amount of dose that they experience.

14The analysis in this section could be extended to allow for units to be “treated” at time g but with d = 0.
For example, units may live in a jurisdiction that implements a program at time g for which they are not eligible.
Similarly, we could allow for units to have dose d but remain untreated g = T + 1. This would make sense if a
program’s dose was based on a known formula so that it was possible to observe d even for units not actually selected
for treatment.

15For the results in this section that are specialized to the case where the treatment is continuous, it is straightfor-
ward to adjust them to allow for a multi-valued discrete treatment along the same lines as in the previous section.
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For each unit, we observe their outcome in period t, Yit, which is given by

Yit = Yit(0)1{t < Gi}+ Yit(Gi, Di)1{t ≥ Gi}.

In other words, we observe a unit’s untreated potential outcomes in time periods before they

participate in the treatment, and we observe treated potential outcomes in post-treatment time

periods that can depend on the timing of the treatment and the amount of the dose.

4.1 Parameters of Interest with a Staggered Continuous Treatment

The causal parameters of interest are the same as in our baseline case except that they are separately

defined for each timing group and in each post-treatment time period. The average treatment effect

parameters of dose d, for group g, in time period t are:

ATT (g, t, d|g, d) := E[Yt(g, d)− Yt(0)|G = g,D = d] and ATE(g, t, d) := E[Yt(g, d)− Yt(0)|G = g].

ATT (g, t, d|g, d) is the average effect of dose d, for timing group g, in time period t, among

units in group g that experienced dose d. ATE(g, t, d) is the average effect of dose d among all

units in timing group g (not all units in the population though), in time period t. ATT (g, t, d|g, d)

and ATE(g, t, d) are similar to the group-time average treatment effects discussed in Callaway and

Sant’Anna (2020) except they are also specific to a dose, and allow for the effect of dose to vary

arbitrarily across timing groups and time periods.

ACR parameters are similarly defined as the effect of a marginal change in the dose on the

outcomes of timing group g in period t. For continuous treatments the ACR parameters are:

ACRT (g, t, d|g, d) :=
∂E [Yt(g, l)|G = g,D = d]

∂l

∣∣∣∣∣
l=d

,

ACR(g, t, d) :=
∂E [Yt(g, d)|G = g]

∂d
.

For discrete treatments the ACR parameters are:

ACRT (g, t, dj |g, dj) := E[Yt(g, dj)− Yt(g, dj−1)|D = dj , G = g],

ACR(g, t, dj) := E[Yt(g, dj)− Yt(g, dj−1)|G = g].

The two parameters—ACRT (g, t, d|g, d) and ACR(g, t, d)—correspond to ATT (g, t, d|g, d) and

ATE(g, t, d) in that they are either local to a specific timing group and dose or refer to the entire

population.

In many applications, ACR(g, t, d) is relatively high-dimensional and challenging to report.

There are a number of possible aggregations that reduce dimensionality and result in parameters

that are easier to interpret. We focus on aggregations into an overall causal response across doses,

timing groups, and treated periods, as well as into an event study; see Callaway and Sant’Anna

23



(2020) for additional possible aggregations along these lines. Also, note that the aggregations

considered below are identified if ACR(g, t, d)’s are identified.

To start with, we define an overall causal response of experiencing dose d, for timing group g,

across all post-treatment time periods

ACRgroup(g, d) =
1

T − g + 1

T∑
t=g

ACR(g, t, d).

These can be further aggregated by averaging across timing groups,

ACRoverall(d) =
∑
g∈G

ACRgroup(g, d)P (G = g|G ≤ T , D = d)

ACRoverall(d) is the average causal response of dose d across all timing groups that participate in

the treatment in any period. It averages ACR(g, t, d) across all observed doses, groups, and treated

periods (in other words, all doses at each event-time and then across all event-times). This is a

natural analogue of ACR(d) in the two period case.

Another further aggregation is to average across the distribution of the dose (of all timing

groups that participate in the treatment)

ACR∗,mp = E
[
ACRoverall(D)|G ≤ T

]
.

ACR∗,mp is the overall average causal response (averaged across doses and and over all timing

groups that participate in the treatment in any time period). ACR∗,mp is a single number; it is

the analogue of ACR∗ from the two period case and is arguably a natural target parameter for a

TWFE regression.

Next, we consider an event study type of aggregation.

ACRes(e, d) =
∑
g∈G

1{g + e ≤ T }ACR(g, g + e, d)P(G = g|G+ e ≤ T , D = d).

ACRes(e, d) is the average causal response of dose d among units that have been exposed to the

treatment for exactly e periods. This can be further aggregated across the distribution of the dose

ACR(e) = E[ACRes(e,D)|G ≤ T ],

which is the average partial effect (averaged across all doses) among units that have been exposed

to the treatment for exactly e periods. Importantly, this keeps the distribution of the dose constant

across different lengths of exposure to the treatment; the distribution of the dose is set to be equal

to the distribution of the dose among the group of units that ever participate in the treatment. For

values of e ≥ 0, ACR(e) can be interpreted as dynamic effects; but it is also interesting to consider

cases where e < 0 which can be interpreted as a pre-test of the parallel trends assumption.
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Remark 4. The aggregations above are related to ACR(g,t,d), but similar arguments would apply to

other parameters discussed in the paper including ATT (g, t, d|g, d), ATE(g, t, d), and ACRT (g, t, d|g, d).

4.2 Identification with a Continuous Treatment and Staggered Timing

With multiple time periods and variation in treatment timing, there are several possible versions

of parallel trends and strong parallel trends assumptions that one could make because there are

many ways to compare groups with different changes in their dose over time.

We focus on a version of strong parallel trends in this section and we provide a number of

alternative parallel trends assumptions (and corresponding identification results) in Appendix C.

Assumption 5-MP (Strong Parallel Trends with Multiple Periods and Variation in Treatment

Timing). For all g ∈ G, t = 2, . . . , T , and d ∈ D, E[Yt(g, d) − Yt−1(0)|G = g,D = d] =

E[Yt(g, d)− Yt−1(0)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0].

Assumption 5-MP is an extension of Assumption 5 to the case with multiple time periods. In

particular, it restricts paths of treated potential outcomes (not just paths of untreated potential

outcomes) so that all dose groups treated at time g would have had the same path of potential

outcomes at every dose.

Theorem 4. Under Assumptions 1-MP, 2-MP(a), 3-MP, and 5-MP, and for all g ∈ G, t = 2, . . . , T
such that t ≥ g, and for all d ∈ D+.

ATE(g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0].

If, in addition, Assumption 2-MP(b) and (c) hold, then, for all d ∈ D+,

ACR(g, t, d) =
∂E[Yt − Yg−1|G = g,D = d]

∂d
.

The proof of Theorem 4 is provided in Appendix D. The result is broadly similar to the one in

the case with two periods. It says that ATE(g, t, d) can be recovered by a DiD comparison between

the path of outcomes from period g − 1 to period t for units in group g treated with dose d and

the path of outcomes among units that have not participated in the treatment yet. Relative to the

case with two time periods, the main difference is that the “pre-period” is g − 1. The reason to

use the base period g − 1 is that this is the most recent time period when the researcher observes

untreated potential outcomes for units in group g. Thus, the result is very much like the case with

two time periods: take the most recent untreated potential outcomes for units in a particular group,

impute the path of outcomes that they would have experienced in the absence of participating in

the treatment from the group of not-yet-treated units (these steps yield mean untreated potential

outcomes that units in group g would have experienced in time period t) and compare this to the

outcomes that are actually observed for units in group g that experienced dose d.
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Remark 5. Theorem 4 identifies ATE(g, t, d) and ACR(g, t, d) under a version of strong paral-

lel trends. In Appendix C, we discuss identifying ATT (g, t, d|g, d) and ACRT (g, t, d|g, d) under

a version of parallel trends that only involves untreated potential outcomes; in this case, like in

the two period case, ATT (g, t, d|g, d) is identified, comparisons of ATT (g, t, d|g, d) across different

values of d do not deliver a causal effect of moving from one dose to another (as they addition-

ally include “selection bias” terms), and derivative of paths of outcomes over time do not recover

ACRT (g, t, d|g, d) due to the same “selection bias” terms.

Remark 6. It is natural to estimate ATE(g, t, d) by simply replacing the population averages in

Theorem 4 by their sample counterpart. This approach is very simple and intuitive, but in some

cases, it may be possible to develop more efficient estimators using GMM. See the discussion in

Marcus and Sant’Anna (2021) in the context of a binary treatment. When treatment d is continuous,

some smoothing is required. However, one can use off-the-shelf standard nonparametric estimations

procedures based on kernels or sieves to estimate these target causal parameters.

4.3 TWFE estimators with multiple time periods and variation in treatment

timing

In applications with multiple periods and variation in treatment timing, empirical researchers al-

most always estimate a TWFE regression

Yit = θt + ηi + βtwfeWit + vit. (2)

Equation (2) is exactly the same as the TWFE regression in the baseline case with two periods

in Equation (1) only with the notation slightly adjusted to match this section. The results in this

section generalize the results in several recent papers on TWFE estimates including Goodman-

Bacon (2021) and de Chaisemartin and D’Haultfœuille (2020) to our DiD setup with variation in

treatment intensity.

To start with, write population versions of TWFE adjusted variables by

Ẅit := (Wit − W̄i)−

(
E[Wt]−

1

T

T∑
t=1

E[Wt]

)
, where W̄i :=

1

T

T∑
t=1

Wit.

The population version of the TWFE estimator is

βtwfe =

1

T

T∑
t=1

E[YitẄit]

1

T

T∑
t=1

E[Ẅ 2
it]

. (3)

As in the previous section, we present both a “mechanical” decomposition of the TWFE esti-

mator and a “causal” decomposition of the estimand that relates assumptions to interpretation.
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In order to define these decompositions, we introduce a bit of new notation. First, define the

fraction of periods that units in group g spends treated as

Ḡg :=
T − (g − 1)

T
.

For the untreated group g = T + 1 so that ḠT +1 = 0.

Next, we define time periods over which averages are taken. For averaging variables across time

periods, we use the following notation, for t1 ≤ t2,

Ȳ
(t1,t2)
i :=

1

t2 − t1 + 1

t2∑
t=t1

Yit.

It is also convenient to define some particular averages across time periods. For two time periods g

and k, with k > g, (below, g and k will often index groups defined by treatment timing), we define

Ȳ
PRE(g)
i := Ȳ

(1,g−1)
i , Ȳ

MID(g,k)
i := Ȳ

(g,k−1)
i , Ȳ

POST (k)
i := Ȳ

(k,T )
i .

Ȳ
PRE(g)
i is the average outcome for unit i in periods 1 to g − 1, Ȳ

MID(g,k)
i is the average outcome

for unit i in periods g to k − 1, and Ȳ
POST (g,k)
i is the average outcome for unit i in periods k to

T . Below, when g and k index groups, Ȳ
PRE(g)
i is the average outcome for unit i in periods before

units in either group are treated, Ȳ
MID(g,k)
i is the average outcome for unit i in periods after group

g has become treated but before group k has been treated, and Ȳ
POST (k)
i is the average outcome

for unit i after both groups have become treated.

To fix ideas about how the staggered-timing/continuous treatment case works, consider a setup

with two timing groups, g and k with k > g. Some units in the “early -treated” group have d = 2

and others have d = 4. Some units in the late treated group have d = 5 and others have d = 6.

Thus, the four groups are early-treated/high-dose, early-treated/low-dose, late-treated/high-dose,

and late-treated/low-dose. Figure 6 plots constructed outcomes for these groups with a treatment

effect that is a one-time shift equal to d1.5.

Following Goodman-Bacon (2021), we motivate the decomposition of the TWFE estimand by

considering the four types of simple DiD estimands that can be formed using only one source of

variation. The first comparison is a within-group comparison of paths of outcomes among units

that experienced different amounts of the treatment.

δWITHIN (g) :=
cov(Ȳ POST (g) − Ȳ PRE(g), D|G = g)

var(D|G = g)
. (4)

This term is essentially the same as the expression for the TWFE estimand in the baseline two-

period case. It equals the OLS (population) coefficient from regressing the change in average

outcomes before and after g for units treated at time g on their dose, d. Figure 7 uses the four-

group example to show how δWITHIN (g) and δWITHIN (k) use higher-dose units as the “treatment
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Figure 6: A Simple Set-Up with Staggered Timing and Variation in the Dose

Notes: The figure plots simulated data for four groups: early-treated/high-dose, early-treated/low-dose,

late-treated/high-dose, and late-treated/low-dose.

group” and lower-dose units as the “comparison group”.

The second comparison is based on treatment timing. It compares paths of outcomes between

a particular timing group g and a “later-treated” group k (i.e., k > g) in the periods after group g

is treated but before group k becomes treated relative to their common pre-treatment periods.16

δMID,PRE(g, k) :=
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]

. (5)

Panel A of Figure 8 plots the outcomes used in this comparison with timing-group averages in

black and the specific dose groups from Figure 6 in light gray. Under a parallel trends assumption,

we show below that this term corresponds to a reasonable treatment effect parameter because the

path of outcomes for group k (which is still in its pre-treatment period here) is what the path

of outcomes would have been for group g if it had not been treated. Also note that this term

encompasses comparisons of group g to the “never-treated” group.

The third comparison is between paths of outcomes for the “later-treated” group k in its post-

treatment period relative to a pre-treatment period adjusted by the same path of outcomes for the

16Each of the following expressions also includes a term in the denominator. Below, this term is useful for inter-
preting differences across groups as partial effects of more treatment, but, for now, we largely ignore the expressions
in the denominator.
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Figure 7: Within-Timing-Group Comparisons Across Doses

Notes: The figure shows the within-timing group comparison between higher- and lower-dose units defined by

δWITHIN (g) and δWITHIN (k).

“early -treated” group g.

δPOST,MID(g, k) :=
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

]
E[D|G = k]

.

(6)

These terms use the already-treated group g as the comparison group for group k. Panel B of

Figure 8 plots the outcomes used in this term. Mechanically, the TWFE regression exploits this

comparison because group g’s treatment status/amount is not changing over these time periods.

However, these are post-treatment periods for group g and parallel trends assumptions do not place

restrictions on paths of post-treatment outcomes, which are subtracted in Equation (6). Below we

discuss assumptions about treatment effect heterogeneity over time that are necessary to deal with

this issue.17

The final comparison that shows up in the TWFE estimator is between paths of outcomes

between “early” and “late” treated groups in their common post-treatment periods relative to

their common pre-treatment periods. In other words, this comparison only uses periods in which

treatment status differs and focusing only on the “endpoints” where the two timing groups are

either both untreated or both treated with potentially different average doses.

δPOST,PRE(g, k) :=
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]− E[D|G = k]

. (7)

Figure 9 shows the outcomes that determine the comparisons that show up in this term. The reason

that this term shows up in βtwfe is that differences in the paths of outcomes between groups that

17This sort of comparison also shows up in the case with a binary, staggered treatment. See, e.g., Borusyak and
Jaravel (2017), de Chaisemartin and D’Haultfœuille (2020) and Goodman-Bacon (2021).
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Figure 8: Between-Timing-Group Comparisons

Notes: The figure shows the between-timing-group comparisons that average the outcomes in groups g and k across

dose levels and compare the early group to the later group (panel C) or the later group to the early group (panel D).

have different distributions of the treatment are informative about βtwfe. For example, if more dose

tends to increase outcomes and group g’s dose is higher on average than group k’s, then outcomes

may increase more among group g than group k resulting in δPOST,PRE(g, k) not being equal to

0.18

Next, we show how βtwfe weights these simple DiD terms together and discuss its theoretical

interpretation under a parallel trends assumptions. To characterize the weights, first, define

pg|{g,k} := P (G = g|G ∈ {g, k}),

which is the probability of being in group g conditional on being in either group g or k. We also

define the following weights, which measure the variance of the treatment variable used to estimate

each of the simple DiD terms in equations Equations (4) to (7).

wg,within(g) := var(D|G = g)(1− Ḡg)Ḡgpg

/
1

T

T∑
t=1

E[Ẅ 2
it],

wg,post(g, k) := E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)(pg + pk)2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
it],

wk,post(g, k) := E[D|G = k]2Ḡk(Ḡg − Ḡk)(pg + pk)2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
it],

wlong(g, k) := (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)(pg + pk)2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
it].

18To be more precise, this term involves comparisons between groups g and k for the group with a higher dose
on average to the group with a smaller dose on average. When E[D|G = g] > E[D|G = k], this corresponds to the
expression in Equation (7). When E[D|G = g] < E[D|G = k], one can multiply both the numerator and denominator
by −1 so that we effectively make a positive-weight comparison for the group that experienced more dose relative to
the group that experienced less dose.
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Figure 9: Long Comparisons Between Timing Groups

Notes: The figure shows the comparisons between timing groups in the POST (k) window when both are treated

with potentially different average doses and the PRE(g) window when neither group is treated.

These weights are similar to the ones in Goodman-Bacon (2021) in the sense that they combine

the size of the sample and the variance of treatment used to calculate each simple DiD term. In

wg,within(g), for example, var(D|G = g) measures how much the dose varies across units with G = g,

(1 − Ḡg)Ḡg measures the variance that comes from timing which falls when g is closer to 0 or T ,

and pg measures the share of units with G = g (i.e.,. subsample size). Since they only compare

outcomes between timing-groups, wg,post(g, k) and wk,post(g, k) do not contain a within-timing-

group variance ofD, but they do include E[D|G = k]2 which reflects the fact that timing groups with

higher average doses get more weight. The rest of the timing weights have the same interpretation

as in Goodman-Bacon (2021). Finally, wlong(g, k) includes the square of the difference in mean

doses between groups g and k—(E[D|G = g] − E[D|G = k])2—which shows that the “endpoint”

comparisons only influence βtwfe to the extent that timing groups have different average doses.

Two timing groups with the same average dose do not contribute a δPOST,PRE(g, k) term because

there is no differential change in their doses between the PRE(g) window (when both groups are

untreated) and the POST (k) window (when both groups have E[D|G = g] = E[D|G = k]).

Our next result combines the simple DiD terms and their variance weights to provide a me-

chanical decomposition of βtwfe in DiD setups with variation in treatment timing and variation in

treatment intensity.

Proposition 5. Under Assumptions 1-MP, 2-MP(a), and 3-MP, βtwfe in Equation (2) can be

written as

βtwfe =
∑
g∈G

wg,within(g)δWITHIN (g)

+
∑
g∈G

∑
k∈G,k>g

{
wg,post(g, k)δMID,PRE(g, k) + wk,post(g, k)δPOST,MID(g, k) + wlong(g, k)δPOST,PRE(g, k)

}
.
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In addition, (i) wg,within(g) ≥ 0, wg,post(g, k) ≥ 0, wk,post(g, k), and wlong(g, k) ≥ 0 for all g ∈ G
and k ∈ G with k > g, and (ii)

∑
g∈G w

g,within(g)+
∑

g∈G
∑

k∈G,k>g

{
wg,post(g,k)(g, k)+wk,post(g, k)+

wlong(g, k)
}

= 1.

Proposition 5 generalizes the decomposition theorem for binary staggered timing designs in

Goodman-Bacon (2021) to our setup with variation in treatment intensity. 19 Notice that it does

not require Assumption 2-MP(b) or (c), and is therefore compatible with a binary, multi-valued,

continuous, or mixed treatment. It says that βtwfe can be written as a weighted average of the four

comparisons in Equations (4) to (7). These weights are all positive and sum to one.

Proposition 5 is a new, explicit description of what kinds of comparisons TWFE uses to com-

pute βtwfe, but it does not on its own provide guidance on how to interpret TWFE estimates.

Our baseline results, for example, show that simple estimators like δWITHIN (g) equal averages

of ACRT parameters plus “selection bias” that arises from heterogeneous treatment effect func-

tions. Similarly, the terms that compare outcomes across timing groups necessarily average over

the dose-specific treatment effects of units within that timing group. We analyze the theoretical

interpretation of each of these simple DiD estimand under different assumptions and then discuss

what this implies about the (arguably implicit) identifying assumptions and estimand for TWFE.

To begin we define additional weights that apply to the underlying causal parameters in the

DiD terms in Equations (4) through (7):

wwithin
1 (g, l) :=

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
var(D|G = g)

P(D ≥ l|G = g),

w1(g, l) :=
P(D ≥ l|G = g)

E[D|G = g]
, w0(g) :=

dL
E[D|G = g]

,

wacross
1 (g, k, l) :=

(P(D ≥ l|G = g)− P(D ≥ l|G = k))

(E[D|G = g]− E[D|G = k])
, w̃across

0 (g, k) :=
dL

(E[D|G = g]− E[D|G = k])
,

w̃across
1 (g, k, l) :=

P(D ≥ l|G = k)

(E[D|G = g]− E[D|G = k])
.

In addition, define the following differences in paths of outcomes over time

πPOST (k̃),PRE(g̃)(g) := E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g

]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

πMID(g̃,k̃),PRE(g̃)(g) := E
[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g

]
− E

[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

πPOST (k̃),MID(g̃,k̃)(g) := E
[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|G = g

]
− E

[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|D = 0

]
,

19In particular, in the special case of a staggered, binary treatment, wg,within(g)δWITHIN (g) = 0 (since there is no
within group variation in the dose in this case), and wlong(g, k)δPOST,PRE(g, k) = 0 (because the distribution of the
dose is the same across all groups). Then, Proposition 5 collapses to Theorem 1 in Goodman-Bacon (2021) because
the terms wg,post(g,k)δMID,PRE(g, k) and wk,post(g, k)δPOST,MID(g, k) correspond exactly to between-timing-group
comparisons.
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and, similarly,

π
POST (k̃),PRE(g̃)
D (g, d) := E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

π
MID(g̃,k̃),PRE(g̃)
D (g, d) := E

[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
− E

[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

π
POST (k̃),MID(g̃,k̃)
D (g, d) := E

[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|G = g,D = d

]
− E

[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|D = 0

]
,

which are the same paths of outcomes but conditional on having dose d.

The following result is our main result on interpreting TWFE estimates with continuous treat-

ment.

Theorem 5. Under Assumptions 1-MP, 2-MP, and 3-MP,

(1) The four comparisons in Equations (4) to (7) can be written as

δWITHIN (g) =

∫
D+

wwithin
1 (g, l)

∂π
POST (g),PRE(g)
D (g, l)

∂l
dl,

δMID,PRE(g, k) =

∫
D+

w1(g, l)
∂π

MID(g,k),PRE(g)
D (g, l)

∂l
dl + w0(g)

π
MID(g,k),PRE(g)
D (g, dL)

dL

− w0(g)
πMID(g,k),PRE(g)(k)

dL
,

δPOST,MID(g, k) =

∫
D+

w1(k, l)
∂π

POST (k),MID(g,k)
D (k, l)

∂l
dl + w0(k)

πPOST (k),MID(g,k)(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫
D+

wacross
1 (g, k, l)

∂π
POST (k),PRE(g)
D (g, l)

∂l
dl

−

{∫
D+

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−
∂π

POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− πPOST (k),PRE(g)

D (g, dL)

dL

)}
.

(2) If, in addition, Assumption 5-MP holds, then

δWITHIN (g) =

∫
D+

wwithin
1 (g, l)ACR

POST (g)
(g, l)dl,

δMID,PRE(g, k) =

∫
D+

w1(g, l)ACR
MID(g,k)

(g, l) dl + w0(g)
ATE

MID(g,k)
(g, dL)

dL
,
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δPOST,MID(g, k) =

∫
D+

w1(k, l)ACR
POST (k)

(k, l) dl + w0(k)
ATE

POST (k)
(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫
D+

wacross
1 (g, k, l)ACR

POST (k)
(g, l) dl

−

{∫
D+

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−
∂π

POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− πPOST (k),PRE(g)

D (g, dL)

dL

)}
.

In addition, (i) wwithin
1 (g, d) ≥ 0, w1(g, d) ≥ 0, and w0(g) ≥ 0, for all g ∈ G and d ∈ D+ and (ii)∫

D+
wwithin

1 (g, l) dl = 1,
∫
D+

w1(g, l) dl + w0(g) = 1, and
∫
D+

wacross
1 (g, k, l) dl = 1.

Part (1) of Theorem 5 links the four sets of comparisons in the TWFE estimator in Proposition 5

to derivatives of conditional expectations (this is analogous to Proposition 4 in the baseline case

above) along with some additional (nuisance) paths of outcomes.

Part (2) of Theorem 5 imposes Assumption 5-MP. Under Assumption 5-MP, δWITHIN (g) and

δMID,PRE(g, k) both deliver weighted averages ofACR-type parameters. However, δPOST,MID(g, k)

and δPOST,PRE(g, k) still involve non-negligible nuisance terms. Under Assumption 5-MP, the ad-

ditional term in δPOST,MID(g, k) involves the difference between treatment effects for group g in

group k’s post-treatment periods relative to treatment effects for group g in the periods after group

g is treated but before group k is treated — that is, treatment effect dynamics. Parallel trends

assumptions do not imply that this term is equal to 0. And, in the special case where the treatment

is binary, this term corresponds to the “problematic” term related to treatment effect dynamics in

Goodman-Bacon (2021).

The additional nuisance term in δPOST,PRE(g, k) involves differences in partial effects of more

treatment across groups in their common post-treatment periods. Parallel trends does not restrict

these partial effects to be equal to each other. This term does not show up in the case with a binary

treatment because, by construction, the distribution of the dose is the same across groups. It is

helpful to further consider where this expression comes from. For simplicity, temporarily suppose

that the partial effect of more dose is positive and constant across groups, time, and dose. In this

case, if group g has more dose on average than group k, then its outcomes should increase more

from group g and k’s common pre-treatment period to their common post-treatment period. This

is the comparison that shows up in δPOST,PRE(g, k). However, when partial effects are not the

same across groups and times (which is not implied by any parallel trends assumption), then, for

example, it could be the case that the partial effect of dose is positive for all groups and time

periods but greater for group k relative to group g. If these differences are large enough, it could

lead to the cross-group, long-difference comparisons in δPOST,PRE(g, k) having the opposite sign.

Next, we engage on how one could potentially “rescue” TWFE procedures such that βtwfe
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would always recover a weighted average of reasonable treatment effect parameters. To do so, one

must further restrict different types of treatment effect heterogeneity.

Assumption 6. (a) [No Treatment Effect Dynamics] For all g ∈ G \ (T + 1) and t ≥ g (i.e,

post-treatment periods for group g), ACR(g, t, d) and ATE(g, t, dL) do not vary with t.

(b) [Homogeneous Causal Responses across Groups] For all g ∈ G \ (T + 1) with t ≥ g and

k ∈ G \ (T + 1) with t ≥ k, ACR(g, t, d) = ACR(k, t, d) and ATE(g, t, dL) = ATE(k, t, dL).

(c) [Homogeneous Causal Responses across Dose] For all g ∈ G\(T +1) with t ≥ g, ACR(g, t, d)

does not vary across d, and, in addition, ATE(g, t, dL)/dL = ACR(g, t, d).

Assumption 6 introduces three additional conditions limiting treatment effect heterogeneity.

Assumption 6(a) imposes that, within a timing-group, the causal response to the treatment does

not vary across time which rules out treatment effect dynamics. Assumption 6(b) imposes that, for

a fixed time period, causal responses to the treatment are constant across timing-groups. Assump-

tion 6(c) imposes that, within timing-group and time period, the causal response to more dose is

constant across different values of the dose.

Proposition 6. Under Assumptions 1-MP, 2-MP, 3-MP, and 5-MP,

(a) If, in addition, Assumption 6(a) holds, then

δPOST,MID(g, k) =

∫
D+

w1(k, l)ACR
POST (k)

(k, l) dl + w0(k)
ATE

POST (k)
(k, dL)

dL
.

(b) If, in addition, Assumption 6(b) holds, then

δPOST,PRE(g, k) =

∫
D+

wacross
1 (g, k, l)ACR

POST (k)
(g, l) dl.

(c) If, in addition, Assumption 6(a), (b) and (c) hold, then

βtwfe = ACR∗,mp.

Proposition 6 provides additional conditions under which the nuisance terms in δPOST,MID(g, k)

and δPOST,PRE(g, k) are equal to 0. For δPOST,MID(g, k), these nuisance terms can be eliminated

by ruling out treatment effect dynamics; that is, by assuming that, within a particular group, the

causal response to more dose does not vary across time. Ruling out these sort of treatment effect

dynamics is analogous to the kinds of conditions that are required to interpret TWFE estimates with

a binary treatment. In order for the nuisance terms in δPOST,PRE(g, k) to be equal to 0, we impose

homogeneous causal responses across groups — that the causal response to more dose is the same

across groups conditional on having the same amount of dose and being in the same time period.

Neither of these assumptions are implied by any of the parallel trends assumptions that we have

considered, and they are both potentially very strong. Therefore, under both Assumption 6(a) and
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(b), βtwfe is equal to a weighted average of average causal response parameters, but these weights

continue to be driven by the TWFE estimation strategy and, like in the baseline two period case,

can continue to deliver poor estimates of the overall average causal response to the treatment.

Imposing Assumption 6(a), (b), and (c) implies that ACR(g, t, d) does not vary by timing group,

time period, or the amount of dose, and part (c) of Proposition 6 says that βtwfe is equal to the

overall average causal response under these additional, strong conditions.

Remark 7. The results in Part (2) of Theorem 5 and in Proposition 6 relied on the multi-

period version of strong parallel trends in Assumption 5-MP. In Theorem 5-Extended in Ap-

pendix D, we additionally show that, under a multi-period version of standard parallel trends

(this is analogous to Assumption 4 in the two period case and details are provided in Assump-

tion 4-MP(a) in Appendix C), similar results hold except that ACR
·
(·, d) should be replaced by

ACRT
·
(·, d|·, d)+ ∂ATT

·
(·,d|·,l)

∂l

∣∣∣
l=d

where the second term is a “selection bias” term, and ATE
·
(·, dL)

should be replaced by ATT
·
(·, dL|·, dL). This implies that, under a standard version of parallel

trends, all four comparisons in Equations (4) to (7) include “selection bias” terms.

4.4 Discussion

The results in this section suggest three important weaknesses of TWFE estimands in a difference-

in-differences framework with multiple time periods, and variation in treatment intensity and timing

of adoptions. First, like the TWFE estimands considered above in the case with two time periods,

TWFE estimands have weights that are driven by the estimation method. As above, these weights

may have undesirable properties in setups where treatment effect heterogeneity is the rule rather

than the exception.

Second, in addition to reasonable treatment effect parameters, TWFE estimands also include

undesirable components due to treatment effect dynamics and heterogeneous causal responses across

groups and time periods. That these show up in the TWFE estimand is potentially problematic

and can possibly lead to very poor performance of the TWFE estimator. Ruling out these problems

requires substantially stronger conditions in addition to any kind of parallel trends assumption.

Finally, even when these extra conditions hold (i.e., the best case scenario for TWFE), if a

researcher invokes a standard parallel trends assumption, the TWFE estimand delivers weighted

averages of derivatives of ATT -type parameters which are themselves hard to interpret because,

like in the two period case, they include both actual causal responses and “selection bias” terms.

Of these three weaknesses, the first two can be completely avoided by using the estimands

presented in Theorem 4. These estimands rely only on parallel trends assumptions; in particular,

they are available without imposing any conditions on treatment effect dynamics or how causal

responses vary across groups. The third weakness, though, is a more fundamental challenge of

difference-in-differences approaches with variation in treatment intensity as comparing treatment

effect parameters across different values of the dose appears to fundamentally require imposing

stronger assumptions that rule out some forms of selection into different amounts of the treat-

ment. Although undesirable, we are not aware of any other practical solution to this empirically
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relevant DiD problem. Thus, we urge practitioners to transparently discuss their assumptions,

potentially exploiting context-specific knowledge to justify the plausibility of a stronger parallel

trends assumption in the given application.

5 Conclusion

In this paper, we have studied difference-in-differences approaches to identifying and estimating

causal effects of a multi-valued or continuous treatment. The paper has a number of results that

are potentially useful to empirical researchers, and, to conclude the paper, we briefly summarize

these results.

First, while ATT -type parameters can be identified under a standard parallel trends assump-

tion, a fundamental complication in the case with a multi-valued/continuous treatment is that

comparisons across different amounts of the treatment are confounded by “selection bias” type

terms that make these sorts of comparisons very difficult to interpret. This kind of bias carries over

to identifying average causal responses of more dose. These sorts of difficulties can be avoided by in-

voking alternative parallel trends assumptions, but these assumptions are likely to be substantially

stronger than the ones most researchers have in mind when they are using a difference-in-differences

identification strategy. In addition, pre-tests commonly used in DiD applications are not able to

distinguish between these two types of parallel trends assumptions.

Furthermore, two way fixed effects regressions that are commonly used by empirical researchers

have a number of drawbacks. In a baseline case with two periods, TWFE regressions deliver a

weighted average of causal responses to the treatment. The weights are all positive, but they are

driven by the estimation procedure which can result in misleading results in a number of realistic

cases. Moreover, in cases where there are multiple time periods, variation in treatment timing

and in treatment intensity (which are common in applications), TWFE regressions are additionally

sensitive to (i) treatment effect dynamics and (ii) heterogeneous causal responses across timing

groups. We propose an identification and estimation strategy that is straightforward to implement

and does not suffer from these drawbacks.
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A Comparing Alternative Parallel Trends Assumptions

It is worth thinking more carefully about the differences between Assumption 4 and Assumption 5.
In this section, we show that Assumption 5 is not strictly stronger than Assumption 4 though it is
likely to be stronger in practice in most applications.

To see that Assumption 5 is not strictly stronger, consider the case where there are two doses
d1 and d2. In this case, Assumption 4 is equivalent to the following conditions

E[∆Yt(0)|D = d1] = E[∆Yt(0)|D = d2] = E[∆Yt(0)|D = 0] (8)

while Assumption 5 is equivalent to

E[∆Yt(0)] = E[∆Yt(0)|D = 0] (Comp-0)

E[Yt(d1)− Yt−1(0)] = E[Yt(d1)− Yt−1(0)|D = d1] (Comp-1)

E[Yt(d2)− Yt−1(0)] = E[Yt(d2)− Yt−1(0)|D = d2] (Comp-2)

Assumption 4 does not place any restrictions on any potential outcomes besides untreated potential
outcomes, and therefore the “extra” conditions in Equations (Comp-1) and (Comp-2) imply that
Assumption 5 is not weaker than Assumption 4.

On the other hand, Equation (Comp-0) does not imply Equation (8); rather, it implies that

E[∆Yt(0)|D = 0] = E[∆Yt(0)|D = d1]
P(D = d1)

P(D = d1) + P(D = d2)
+ E[∆Yt(0)|D = d2]

P(D = d2)

P(D = d1) + P(D = d2)

In other words, the trend in untreated potential outcomes does not have to be exactly the same for
all doses, but, instead, they have to be the same on average.

In practice, this potentially allows for some units to select their amount of dose on the basis of
the path of their untreated potential outcomes (which is not allowed under the standard parallel
trends assumption in Assumption 4), but that the amount of selection has to average out across
doses to be equal to zero. It seems hard to think of realistic cases where Assumption 5 would be
weaker than Assumption 4 in practice.

A related alternative assumption is

Assumption 5-Alt (Alternative Strong Parallel Trends Assumption). For all d ∈ D and l ∈ D,

E[Yt(d)− Yt−1(0)|D = l] = E[Yt(d)− Yt−1(0)|D = d]

Assumption 5-Alt is a stronger, but closely related version of the strong parallel trends as-
sumption in Assumption 5. Assumption 5-Alt says that, across all potential doses d, the path of
potential outcomes Yt(d)− Yt−1(0) (which is the path of outcomes that a unit would experience if
they experienced dose d in time period t and were untreated in period t− 1) is, on average, (i) the
same across all actual doses experienced, l, and (ii) is equal to the average path of outcomes for
units that actually experienced dose d. Further, note that E[Yt(d)−Yt−1(0)|D = l] is not identified
from the sampling process except in the case where l = d (i.e., the left hand side of the equation
in Assumption 5-Alt is not identified from the sampling process, but the right hand side is). It
is immediately clear that this assumption implies both Assumptions 4 and 5. While it does not
place restrictions on the levels of untreated potential outcomes in period t− 1, it does place (sub-
stantial) restrictions on treated potential outcomes and on treatment effect heterogeneity which is
demonstrated in the next proposition.
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Proposition 7. Assumption 5-Alt implies that

ATE(d) = ATT (d|d)

Proof. Starting with the definition of ATE(d),

ATE(d) = E[Yt(d)− Yt(0)]

= E[Yt(d)− Yt−1(0)]− E[Yt(0)− Yt−1(0)]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = d]

= E[Yt(d)− Yt(0)|D = d]

= ATT (d|d)

where the second equality holds by adding and subtracting E[Yt−1(0)], the third equality holds by
Assumption 5-Alt (also, notice that this equality does not hold under Assumption 4, nor is ATE(d)
generally equal to ATT (d|d) under Assumption 4 alone), the fourth equality holds by canceling the
two E[Yt−1(0)|D = d] terms, and the remaining term in that equality is ATT (d|d)

Proposition 7 shows that Assumption 5-Alt implies that the overall average effect of dose d is
equal to the average effect of dose d for units who actually experienced dose d. The implication of
this result is that Assumption 5-Alt rules out many forms of selection into a particular dose d on
the basis of the effect of that amount of dose.

B Alternative Decompositions for TWFE Regression

In this section, we provide three alternative decompositions of the TWFE regression estimator in
Equation (1) in the baseline case with two periods, where no unit is treated yet in the first period,
and where some units remain untreated in the second period.

The first decomposition is one where βtwfe equals a weighted average of 2× 2 DiD comparisons
between pairs of dose groups scaled by the difference in their doses:

Proposition 8. Consider βtwfe in Equation (1) and suppose that Assumption 1 holds.

(1) If Assumption 2-Cont also holds, then

βtwfe =

∫
D+

∫
D,h>l

w2×2,cont
1 (l, h)

(m∆(h)−m∆(l))

(h− l)
dh dl

+

∫
D,h>0

w2×2,cont
0 (h)

m∆(h)−m∆(0)

h
dh

where

w2×2,cont
1 (l, h) := (h− l)2(fD(h) + fD(l))2fD|{h,l}(h)fD|{h,l}(l)/var(D)

w2×2,cont
0 (h) := h2(fD(h) + pD0 )2fD|{h,0}(h)pD0|{h,0}/var(D)
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and

fD|{h,l}(h) := fD(h)/(fD(h) + fD(l))

fD|{h,l}(l) := fD(l)/(fD(h) + fD(l))

fD|{h,0}(h) := fD(h)/(fD(h) + pD0 )

pD0|{h,0} := pD0 /(fD(h) + pD0 )

In addition, w2×2,cont
1 (l, h) ≥ 0 for all (l, h) ∈ D+ × Dh>l, w

2×2,cont
0 (h) ≥ 0 for all h ∈ D+,

and
∫
D+

∫
D,h>l w

2×2,cont
1 (l, h) dh dl +

∫
D+

w2×2,cont
0 (h) dh = 1.

(2) If Assumption 2-MV also holds, then

βtwfe =
∑
l∈D

∑
h∈D,h>l

w2×2,disc(l, h)
(m∆(h)−m∆(l))

(h− l)

where

w2×2,disc(l, h) := (h− l)2(pDl + pDh )2pDl|{g,h}(1− p
D
l|{g,h})/var(D)

pDl|{l,h} := P(D = l|D ∈ {l, h})

and pDh := P(D = h), pDl := P(D = l). In addition, w2×2,disc(l, h) ≥ 0 for all (l, h) ∈ D2 and∑
l∈D

∑
h∈D,h>l w

2×2,disc(l, h) = 1.

Proof. From the proof of Proposition 4, we have that

β = E
[

(D − E[D])

var(D)
m∆(D)

]
=

1

var(D)

∫
D

(h− E[D])m∆(h) dFD(h)

=
1

var(D)

∫
D

(
h−

∫
D
l dFD(l)

)
m∆(h) dFD(h)

=
1

var(D)

∫
D

∫
D

(h− l)m∆(h) dFD(h) dFD(l)

=
1

var(D)

∫
D

∫
D,h>l

(h− l)(m∆(h)−m∆(l)) dFD(h) dFD(l)

=
1

var(D)

∫
D

∫
D,h>l

(h− l)2 (m∆(h)−m∆(l))

(h− l)
dFD(h) dFD(l) (9)

where the second equality holds by writing the expectation as an integral, the third equality write
E[D] as an integral, the fourth equality rearranges terms, the fifth equality holds because the
integrations are symmetric, and the last equality holds by multiplying and dividing by (h− l).

The above arguments hold if treatment is continuous or discrete. Under Assumption 2-Cont,

Equation (9) =
1

var(D)

∫
D+

∫
D,h>l

(h− l)2 (m∆(h)−m∆(l))

(h− l)
fD(h)fD(l) dh dl

+
1

var(D)

∫
D,h>0

h2m∆(h)−m∆(0)

h
fD(h)pD0 dh

43



which holds by splitting up the first integral in Equation (9) by whether l ∈ D+ or l = 0. Then,
the result for part (1) holds by multiplying and dividing the first line by (fD(h) + fD(l))2 and by
the definition fD|{h,l} and multiplying and dividing the second line by (fD(h) + pD0 )2 and by the

definitions of fD|{h,0} and pD0|{h,0}.
Under Assumption 2-MV,

Equation (9) =
1

var(D)

∑
l∈D

∑
h∈D,h>l

(h− l)2 (m∆(h)−m∆(l))

(h− l)
pDh p

D
l

=
1

var(D)

∑
l∈D

∑
h∈D,h>l

(h− l)2 (m∆(h)−m∆(l))

(h− l)
(pDl + pDh )2pDl|{g,h}(1− p

D
l|{g,h})

where the first equality holds immediately and the second equality holds by multiplying and dividing
by (pDl + pDh )2 and by the definition of pDl|{g,h}.

That the weights are all positive holds immediately by their definitions. That the weights
integrate to one holds because∫
D+

∫
D,h>l

w2×2,cont
1 (l, h) dh dl +

∫
D+

w2×2,cont
0 (h) dh =

1

var(D)

∫
D

∫
D

1{h > l}(h− l)2 dFD(h) dFD(l)

= 1

The same sort of argument holds for the discrete case as well.

Proposition 8 is analogous to the decomposition theorem for binary staggered timing designs in
Goodman-Bacon (2021) in that it expresses the TWFE coefficient as a variance-weighted average
of 2× 2 DiD comparisons (it is also mechanically very similar to the Wald-IV theorem in Angrist
(1991)). Each 2×2 term is the change in average outcomes for a group with a higher dose (m∆(h))
minus the same difference for a group with a lower dose (m∆(l)), divided by the difference in
their doses (h − l). de Chaisemartin and D’Haultfœuille (2018) refer to this as a “Wald-DD”
estimator. The weights combine the size of each subsample, (pDl + pDh ), with the variance of the
dose in that subsample. The variance depends on the relative size of the two groups, measured by
pDl|{g,h}(1−p

D
l|{g,h}), and the distance between their doses, (h− l). This formula reflects the intuitive

way researchers read a scatter plot between m∆(d) and d: each
(m∆(h)−m∆(l)

k−l
)

is the slope of a line
connecting two points and large groups and groups with very different doses (i.e., far apart on the
x-axis) have the most influence on the slope.

Using the same simulated data as in Section 4, Figure 10 represents the decomposition result
for βtwfe in a different way by plotting each 2 × 2 Wald-DiD against its weight as in Figure 6 of
Goodman-Bacon (2021). Comparisons between each treated group and the untreated group are in
black circles and comparisons between two treated groups are in gray triangles. With K non-zero
doses and some untreated units there are (K + 1)K/2 Wald-DiD comparisons in Proposition 8.
With 18 non-zero doses our example has 171 Wald-DiD terms. Because the untreated group is so
large (a quarter of the sample), comparisons to the untreated group get about half the weight in
this example even though there are just 18 of them, one for each observed dose.

Next, we consider a decomposition that is based on (m∆(d) −m∆(0))/d. Under, for example,
Assumption 5, this expression is equal to ATE(d)/d which is an alternative way to define an average
causal response.
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Figure 10: Baseline Case Decomposition: Two-Way Fixed Effects Estimator as a
Weighted Average of Wald-DiDs

Notes: The figure plots each 2× 2 Wald DiD estimate against its weight from Proposition 8. Closed black circles

are comparisons between one dose group and untreated observations: (∆Ȳh −∆Ȳ0)/h. Open gray triangles are

comparisons between two dose groups: (∆Ȳh −∆Ȳ`)/(h− `). The weights are proportional to the share of

observations in each subsample (nh + n`)
2 and the variance of the dose in each subsample. The variance of the dose

equals the relative size of the two groups (nh`(1− nh`)), and the square of the distance between their doses (h− `)2.

Proposition 9. Consider βtwfe in Equation (1) and suppose that Assumption 1 holds.

(1) If Assumption 2-Cont also holds, then

βtwfe =

∫
D+

walt-acr,cont
1 (l)

(m∆(l)−m∆(0))

l
dl

where

walt-acr,cont
1 (l) :=

(l − E[D])l

var(D)
fD(l)

In addition,
∫
D w

alt-acr,cont(l) dl = 1, but walt-acr,cont(l) can be negative for some values of
l ∈ D.

(2) If Assumption 2-MV also holds, then

βtwfe =
∑
l∈D+

walt-acr,disc (m∆(l)−m∆(0))

l
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where

walt-acr,disc(l) :=
(l − E[D])l

var(D)
pDl

In addition,
∑

l∈D+
walt-acr,disc(l) = 1, but walt-acr,disc can be negative for some values of l ∈ D.

Proof. From the proof of Proposition 4, we have that

βtwfe =
P(D > 0)

var(D)
E[(D − E[D])(m∆(D)−m∆(0))|D > 0]

=
P(D > 0)

var(D)

∫
D+

(l − E[D])(m∆(l)−m∆(0)) dFD|D>0(l)

=
P(D > 0)

var(D)

∫
D+

(l − E[D])l
(m∆(l)−m∆(0))

l
dFD|D>0(l)

=
1

var(D)

∫
D+

(l − E[D])l
(m∆(l)−m∆(0))

l
fD(l) dl

=

∫
D+

walt-acr,cont(l)
(m∆(l)−m∆(0))

l
dl

where the second equality holds by writing the expectation as an integral, the third equality holds
by multiplying and dividing by l, the fourth equality holds under Assumption 2-Cont, and the last
equality holds by the definition of walt-acr,cont.

For part (2), the first three equalities above continue to hold. The fourth equality replaces the
integral with a summation and fD(l) with pDl ; then the result holds by the definition of walt-acr,disc.

In both cases, the weights can be negative because it is possible that l < E[D] for some values
of l ∈ D+. That the weights integrate to 1 holds because∫

D+

walt-acr,cont(l) dl =

(∫
D+

(l − E[D])l dFD(l) + (0− E[D])0P (D = 0)

)/
var(D)

=

(∫
D

(l − E[D])l dFD(l)

)/
var(D)

= 1

An analogous argument applies for walt-acr,disc.

Finally, we provide a decomposition in terms of levels of paths of outcomes: m∆(d)−m∆(0).

Proposition 10. Consider βtwfe in Equation (1) and suppose that Assumption 1 holds.

(1) If Assumption 2-Cont also holds, then

βtwfe =

∫
D
wlevels,cont(l)(m∆(l)−m∆(0)) dl

where

wlevels,cont(l) :=
(l − E[D])

var(D)
fD(l)
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In addition,
∫
D w

levels,cont(l) dl = 0, and wlevels,cont(l) can be negative for some values of l ∈ D.

(2) If Assumption 2-MV also holds, then

βtwfe =
∑
l∈D+

wlevels,disc(m∆(l)−m∆(0))

where

wlevels,disc(l) :=
(l − E[D])

var(D)
pDl

In addition,
∑

l∈D+
wlevels,disc(l) = 0, but wlevels,disc can be negative for some values of l ∈ D.

Proof. From the proof of Proposition 4, we have that

βtwfe =
P(D > 0)

var(D)
E[(D − E[D])(m∆(D)−m∆(0))|D > 0]

=
P(D > 0)

var(D)

∫
D+

(l − E[D])(m∆(l)−m∆(0)) dFD|D>0(l)

=
1

var(D)

∫
D+

(l − E[D])(m∆(l)−m∆(0))fD(l) dl

=

∫
D+

wlevels,cont(l)(m∆(l)−m∆(0)) dl

where the second equality holds by writing the expectation as an integral, the third equality holds
under Assumption 2-Cont, and the last equality holds by the definition of wlevels,cont.

For part (2), the first two equalities above continue to hold. For the third equality, replace the
integral with a summation and fD(l) with pDl ; then the result holds by the definition of wlevels,disc.

In both cases, the weights can be negative since l can be less than E[D]. That the weights
integrate to 0 holds because∫

D+

wlevels,cont(l) dl =

(∫
D+

(l − E[D]) dFD(l) + (0− E[D])0P(D = 0)

)/
var(D)

=

(∫
D

(l − E[D]) dFD(l)

)/
var(D)

= (E[D]− E[D])/var(D)

= 0

An analogous argument applies for wlevels,disc.

Proposition 10 suggests that it would be inappropriate to interpret βtwfe as approximating the
level effect of the dose.

C Additional Details for Multiple Periods and Variation in Treat-
ment Timing

In this section, we consider alternative identifying assumptions for treatment effect parameters of
interest in the case with multiple periods, variation in treatment timing, and where the dose can
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vary across units.
As in the baseline case with two time periods, identifying ATT parameters involves untreated

groups that serve as a valid counterfactual for treated groups. We first define a parallel trend
assumption similar to Assumption 4 whose parts correspond to different comparison groups and
time periods where one may believe that parallel trends in untreated potential outcomes holds.

Assumption 4-MP (Parallel Trends with Multiple Periods and Variation in Treatment Timing).

(a) For all g ∈ G, t = 2, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(b) For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(c) For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k] for all groups
k ∈ G such that t < k (i.e., pre-treatment periods for group k).

Assumption 4-MP(a) is the strongest assumption about paths of untreated potential outcomes.
It says that paths of untreated potential outcomes are the same for all groups and for all doses
across all time periods. Assumption 4-MP(b) says that the path of outcomes for group g in post
treatment time periods is the same as the path of untreated potential outcomes among never-treated
units. Parallel pre-trends need not hold under part (b). Assumption 4-MP(c) says that the path
of outcomes for group g in post treatment time periods is the same as the path of outcomes among
all groups that are not treated yet in that period — this includes both the untreated group as well
as groups that will eventually be treated but that are not treated yet. Based on the results in
earlier sections, note that each parallel trends assumption in Assumption 4-MP is directed towards
identifying ATT (g, t, d|g, d) rather than ATE(g, t, d).

Next, we provide an analogous set of assumptions that target identifying ATE(g, t, d).

Assumption 5-MP-Extended (Strong Parallel Trends with Multiple Periods and Variation in
Treatment Timing).

(a) For all g ∈ G, t = 2, . . . , T , and d ∈ D, E[Yt(g, d) − Yt−1(0)|G = g,D = d] = E[Yt(g, d) −
Yt−1(0)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(b) For all g ∈ G, t = g, . . . , T , d ∈ D, E[Yt(g, d) − Yt−1(0)|G = g,D = d] = E[Yt(g, d) −
Yt−1(0)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(c) For all g ∈ G, t = g, . . . , T , d ∈ D, E[Yt(g, d) − Yt−1(0)|G = g,D = d] = E[Yt(g, d) −
Yt−1(0)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k] for all groups k ∈ G such
that t < k (i.e., pre-treatment periods for group k).

Parts (a), (b), and (c) of the assumption correspond to the same parts in Assumption 4-MP
and differ based on which group is used as the comparison group in terms of untreated potential
outcomes. Part (a) additionally corresponds to Assumption 5-MP in the main text. Finally, the
reason that there are two parts to these assumptions rather than just one as in Assumption 4-MP is
that, in the setup of this section, conditional on being in group g with t ≥ g, there are no untreated
units in the group; thus, the second part of the assumption handles untreated potential outcome
slightly differently than treated potential outcomes.

Theorem 6. Under Assumptions 1-MP, 2-MP(a), and 3-MP, and for all g ∈ G, t = 2, . . . , T such
that t ≥ g, and for all d ∈ D,
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(1a) If, in addition, either Assumption 4-MP(a) or (c) holds, then

ATT (g, t, d|g, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

(1b) If, in addition, Assumption 4-MP(b) holds, then

ATT (g, t, d|g, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|D = 0]

(2a) If, in addition, either Assumption 5-MP-Extended(a) or (c) holds, then

ATE(g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

(2b) If, in addition, Assumption 5-MP-Extended(b) holds, then

ATE(g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|D = 0]

The proof of Theorem 6 is provided in Appendix E. Part (1a) of Theorem 6 says thatATT (g, t, d|g, d)
— the average effect of participating in the treatment in time period t among units who became
treated in period g and experienced dose d — is identified under a parallel trends assumption and
that it is equal to the average path of outcomes experienced by units in group g under dose d
adjusted by the average path of outcomes experienced among units that are not-yet-treated by
period t. The results in the other parts are similar as well. For part (1b), the weaker parallel
trends assumption in Assumption 4-MP(b) implies that the never-treated group should be used as
the comparison group (this is a smaller comparison group relative to the not-yet-treated group).
Parts (2a) and (2b) show that under Assumption 5-MP-Extended the same estimands identify
ATE(g, t, d).

Remark 8. The parallel trends assumptions in Assumption 4-MP are not the only possible ones.
Interestingly, with a multi-valued/continuous treatment, there are some possible (and reasonable)
comparison groups that are available that are not available with a binary treatment. For example,
one could assume that

For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k,D = d] for all
groups k ∈ G such that t < k (i.e., pre-treatment periods for group k).

This sort of assumption amounts to using as a comparison group the set of units that are not
yet treated but will eventually experience the same dose. It is straightforward to adapt the approach
described in Theorem 6 to this sort of case and propose related estimators that can deliver consistent
estimates of ATT (g, t, d|g, d).

Remark 9. If a researcher is interested in targeting a particular ATT (g, t, d|g, d) or ATE(g, t, d),
it is generally possible to weaken Assumption 4-MP or 5-MP-Extended. For example, one could
make parallel trends directly about long differences, (Yt−Yg−1), rather than all short differences (this
sort of assumption is generally weaker), or, in part (c) of each assumption, use more aggregated
comparison groups instead of imposing parallel trends for all possible comparison groups (which is
also weaker), or alternatively only make parallel trends assumptions for the particular dose being
considered.
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D Proofs

D.1 Proofs of Results in Section 3.3

This section contains the proofs of the results in Section 3.3 on identifying ATT (d|d) and ATE(d)
under parallel trends assumptions and with a multi-valued/continuous treatment.

Proof of Theorem 1

Proof. To show the result, notice that

ATT (d|d) = E[Yt(d)− Yt(0)|D = d]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = d]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = 0]

= E[∆Yt|D = d]− E[∆Yt|D = 0]

where the second equality holds by adding and subtracting E[Yt−1(0)|D = d], the third equality
holds by Assumption 4, and the last equality holds because Yt(d) and Yt−1(0) are observed potential
outcomes when D = d and Yt(0) and Yt−1(0) are observed potential outcomes when D = 0.

Proof of Proposition 1

Proof. To show the result, notice that

ATE(d) = E[Yt(d)− Yt(0)]

= E
[
E[Yt(d)− Yt(0)|D]

]
=

∫
D
ATT (d|l) dFD(l)

where the second equality holds by the law of iterated expectations, and the third equality holds
by the definition of ATT (d|l). Then, the result holds because ATT (d|l) is only identified under
Assumption 4 when d = l.

Proof of Theorem 2

Proof. Notice that

ATE(d) = E[Yt(d)− Yt(0)]

= E[Yt(d)− Yt−1(0)]− E[Yt(0)− Yt−1(0)]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = 0]

= E[∆Yt|D = d]− E[∆Yt|D = 0]

where the second equality holds by adding and subtracting E[Yt−1(0)], the third equality holds
by Assumption 5, and the fourth equality holds because Yt(d) and Yt−1(0) are observed outcomes
when D = d.
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Proof of Proposition 2

Proof. For part (1), the result holds by adding and subtracting ATT (d′|d). For part (2), the result
holds immediately by the definition of ATE(d).

Proof of Proposition 3

Proof. For Equation (a-Cont), notice that, for d ∈ D+ and (d+ h) ∈ D+,

E[∆Yt|D = d]− E[∆Yt|D = d+ h]

h
=
ATT (d|d)−ATT (d+ h|d+ h)

h

=
ATT (d|d)−ATT (d+ h|d)

h
+
ATT (d+ h|d)−ATT (d+ h|d+ h)

h

where the first equality holds by Theorem 1 and the second equality holds by Proposition 2. The
result holds by taking the limit as h→ 0 and the definition of ACRT (d|d).

For Equation (a-MV) and for dj ∈ D+,

E[∆Yt|D = dj ]− E[∆Yt|D = dj−1] =
(
ATT (dj |dj)−ATT (dj−1|dj)

)
+
(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
= ACRT (dj |dj) +

(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
where the first equality holds by Theorem 1 and Proposition 2 and the second equality holds by
the definition of ACRT (dj |dj).

Similarly, the result in Equation (b-Cont) holds by noting that for d ∈ D+ and (d+ h) ∈ D+,

E[∆Yt|D = d]− E[∆Yt|D = d+ h]

h
=
ATE(d)−ATE(d+ h)

h

which follows from Proposition 2 and then by following the same arguments as for Equation (a-
Cont).

For Equation (b-MV) and for dj ∈ D+,

E[∆Yt|D = dj ]− E[∆Yt|D = dj−1] =
(
ATE(dj)−ATT (dj−1)

)
which holds by Proposition 2.

D.2 Proofs of Results from Section 3.4

This section contains the proofs of the results in Section 3.4 on interpreting TWFE regressions with
a multi-valued/continuous treatment.

Proof of Proposition 4

To conserve on notation, we define

m∆(d) := E[∆Y |D = d]
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Proof. First, notice that Equation (1) is equivalent to

∆Yi = (θt − θt−1) + βtwfeDi + ∆vit (10)

which holds by taking first differences and because all units are untreated in the first period.
Therefore, it immediately follows that

βtwfe =
E[∆Y (D − E[D])]

var(D)

= E
[

(D − E[D])

var(D)
(m∆(D)−m∆(0))

]
= E

[
(D − E[D])

var(D)
(m∆(D)−m∆(0))|D > 0

]
P(D > 0)

= E
[

(D − E[D])

var(D)
(m∆(D)−m∆(dL))|D > 0

]
P(D > 0) + E

[
(D − E[D])

var(D)
(m∆(dL)−m∆(0))|D > 0

]
P(D > 0)

:= A1 +A2

where the first equality holds because Equation (10) is a simple linear regression of ∆Y on an
intercept and D, the second equality holds because E[(D−E[D])m∆(0)] = 0, the third equality holds
because E[m∆(D) −m∆(0)|D = 0] = 0, and the fourth equality holds by adding and subtracting
m∆(dL).

We consider A1 and A2 separately next. First, for A1,

A1 = E
[

(D − E[D])

var(D)
(m∆(D)−m∆(dL))|D > 0

]
P(D > 0)

=
P(D > 0)

var(D)

∫ dU

dL

(k − E[D])(m∆(k)−m∆(dL)) dFD|D>0(k)

=
P(D > 0)

var(D)

∫ dU

dL

(k − E[D])

∫ k

dL

m′∆(l) dl dFD|D>0(k)

=
P(D > 0)

var(D)

∫ dU

dL

(k − E[D])

∫ dU

dL

1{l ≤ k}m′∆(l) dl dFD|D>0(k)

=
P(D > 0)

var(D)

∫ dU

dL

m′∆(l)

∫ dU

dL

(k − E[D])1{l ≤ k} dFD|D>0(k) dl

=
P(D > 0)

var(D)

∫ dU

dL

m′∆(l)E[(D − E[D])1{l ≤ D}|D > 0] dl

=
P(D > 0)

var(D)

∫ dU

dL

m′∆(l)E[(D − E[D])|D ≥ l]P(D ≥ l|D > 0) dl

=

∫ dU

dL

m′∆(l)
(E[D|D ≥ l]− E[D])P(D ≥ l)

var(D)
dl (11)

where the first equality is the definition of A1, the second equality holds by rearranging terms
and writing the expectation as an integral, the third equality holds by the fundamental theorem
of calculus, the fourth equality rewrites the inner integral so that it is over dU to dL, the fifth
equality holds by changing the order of integration and rearranging terms, the sixth equality holds
by rewriting the inner integral as an expectation, the seventh equality holds by the law of iterated
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expectations (and since D ≥ l =⇒ D > 0), and the last equality holds by combining terms.
Next, for A2, it immediately holds that

A2 = E
[

(D − E[D])

var(D)
(m∆(dL)−m∆(0))|D > 0

]
P(D > 0)

=
(E[D|D > 0]− E[D])P(D > 0)dL

var(D)

(m∆(dL)−m∆(0))

dL
(12)

where the first equality is the definition of A2, and the second equality holds by multiplying and
dividing by dL.

Then, the first result in Proposition 4 holds by combining Equations (11) and (12). That the
weights are all positive holds immediately since (E[D|D ≥ l]−E[D]) > 0 for all l ≥ dL, P(D ≥ l) > 0
for all l ≥ dL, (E[D|D > 0]− E[D]) > 0, P(D > 0) > 0, and var(D) > 0.

Next, we next show that
∫ dU
dL

w1(l) dl + w0 = 1. First, notice that

∫ dU

dL

w1(l) dl + w0 =
1

var(D)

{∫ dU

dL

E[D|D ≥ l]P(D ≥ l) dl

− E[D]

∫ dU

dL

P(D ≥ l) dl

+ E[D|D > 0]P(D > 0)dL

− E[D]P(D > 0)dL

}
:=

1

var(D)

{
B1 −B2 +B3 −B4

}
and we consider B1, B2, B3, and B4 in turn.

For B1, first notice that for all l ∈ D+,

E[D|D ≥ l]P (D ≥ l) = E[D1{D ≥ l}|D ≥ l]P(D ≥ l)
= E[D1{D ≥ l}] (13)

which holds by the law of iterated expectations and implies that

B1 =

∫ dU

dL

E[D|D ≥ l]P(D ≥ l) dl

=

∫ dU

dL

∫
D
d1{d ≥ l} dFD(d) dl

=

∫
D
d

(∫ dU

dL

1{l ≤ d} dl
)
dFD(d)

=

∫
D
d(d− dL) dFD(d)

= E[D2]− E[D]dL (14)

where the first line is the definition of B1, the second equality holds by Equation (13), the third
equality holds by changing the order of integration, the fourth equality holds by carrying out the

53



inner integration, and the last equality holds by rewriting the integral as an expectation.
Next, for term B2,

B2 = E[D]

∫ dU

dL

P(D ≥ l) dl

= E[D]P(D > 0)

∫ dU

dL

P(D ≥ l|D > 0) dl

= E[D]P(D > 0)

∫ dU

dL

∫ dU

dL

1{d ≥ l} dFD|D>0(d) dl

= E[D]P(D > 0)

∫ dU

dL

(∫ dU

dL

1{l ≤ d} dl
)
dFD|D>0(d)

= E[D]P(D > 0)

∫ dU

dL

(d− dL) dFD|D>0(d)

= E[D]P(D > 0)
(
E[D|D > 0]− dL

)
= E[D]2 − E[D]P(D > 0)dL (15)

where the first equality is the definition of B2, the second equality holds by the law of iterated
expectations, the third equality holds by writing P(D ≥ l|D > 0) as an integral, the fourth equality
changes the order of integration, the fifth equality carries out the inside integration, the sixth
equality rewrites the integral as an expectation, the last equality holds by combining terms and by
the law of iterated expectations.

Next,

B3 = E[D|D > 0]P(D > 0)dL

= E[D]dL (16)

which holds by the law of iterated expectations. And finally, recall that

B4 = E[D]P(D > 0)dL (17)

Thus, from Equations (14) to (17), it follows that

B1 −B2 +B3 +B4 = E[D2]− E[D]2 = var(D)

which implies the result.

For part (2), the proof is similar as for part (1), but we provide the details here for completeness.
Notice that,

βtwfe = E
[

(D − E[D])

var(D)
(m∆(D)−m∆(0))

]
=

1

var(D)

∑
d∈D

(d− E[D])(m∆(d)−m∆(0))pDd

=
1

var(D)

∑
d∈D

(d− E[D])pDd
∑

dj∈D+

1{dj ≤ d}(m∆(dj)−m∆(dj−1))
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=
1

var(D)

∑
dj∈D+

(m∆(dj)−m∆(dj−1))
∑
d∈D

(d− E[D])1{d ≥ dj}pDd

=
∑

dj∈D+

(m∆(dj)−m∆(dj−1))
(E[D|D ≥ dj ]− E[D])P(D ≥ dj)

var(D)

=
∑

dj∈D+

w1(dj)(dj − dj−1)
(m∆(dj)−m∆(dj−1))

(dj − dj−1)

where the second equality holds by writing the expectation as a summation, the third equality
holds by adding and subtracting m∆(dj) for all dj ’s between 0 and d, the fourth equality holds
by changing the order of the summations, the fifth equality writes the second summation as an
expectation, and the last equality holds by the definition of the weights and by multiplying and
dividing by (dj − dj−1). That w1(dj)(dj − dj−1) > 0 holds immediately since w1(dj) ≥ 0 for all
dj ∈ D+ and dj > dj−1. Further,

∑
dj∈D+

w1(dj)(dj − dj−1) =

 ∑
dj∈D+

E[1{D ≥ dj}D](dj − dj−1)− E[D]
∑

dj∈D+

P(D ≥ dj)(dj − dj−1)

 /var(D)

:= (A−B)/var(D)

We consider each of these terms in turn:

A =
∑

dj∈D+

∑
dk∈D

1{dk ≥ dj}dkpDdk(dj − dj−1)

=
∑
dk∈D

pDdkdk
∑

dj∈D+,dj≤dk

(dj − dj−1)

=
∑
dk∈D

pDdkdk(dk − 0)

= E[D2]

where the first equality holds by writing the expectation for Term A as a summation, the second
equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate
dj terms across summations (and because d0 = 0), and the last equality holds by the definition of
E[D2].

Next,

B = E[D]
∑

dj∈D+

∑
dk∈D

1{dk ≥ dj}pDdk(dj − dj−1)

= E[D]
∑
dk∈D

pDdk

∑
dj∈D+,dj≤dk

(dj − dj−1)

= E[D]
∑
dk∈D

dkp
D
dk

= E[D]2

where the first equality holds by writing the expectation for Term B as a summation, the second
equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate
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dj terms across summations (and because d0 = 0), and the last equality holds by the definition of
E[D].

This implies that A−B = var(D) which implies that the weights sum to 1.

Proof of Theorem 3

Proof. The result holds immediately by plugging in the result in Proposition 3 into the result
in Proposition 4 as well as noting that E[∆Yt|D = dL] − E[∆Yt|D = 0] = ATT (dL|dL) (under
Assumption 4) and that E[∆Yt|D = dL]− E[∆Yt|D = 0] = ATE(dL) (under Assumption 5).

E Proofs of Results from Section 4

This section contains the proofs of results from Section 4 on DiD with a multi-valued/continuous
treatment and with multiple periods and variation in treatment timing.

Proof of Theorems 4 and 6

This section proves Theorem 6; note that Theorem 4, in the main text, corresponds to Part (2a)
of Theorem 6 (under Assumption 5-MP-Extended(a)).

For part (1a), we show the result under Assumption 4-MP(c) which is strictly weaker than
Assumption 4-MP(a). First, notice that,

ATT (g, t, d|g, d) = E[Yt(d)− Yt(0)|G = g,D = d]

= E[Yt(d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|G = g,D = d]

= E[Yt(d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g,D = d] (18)

= E[Yt(d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality is the definition of ATT (g, t, d|g, d), the second equality holds by adding
and subtracting E[Yg−1(0)|G = g,D = d], the third equality holds by adding and subtracting
E[Ys(0)|G = g,D = d] for s = g, . . . , (t− 1), the fourth equality holds under Assumption 4-MP(c),
the fifth equality holds by canceling all the terms involving E[Ys(0)|Wt = 0] for s = g, . . . , (t − 1)
(i.e., from the reverse of the argument for the third equality), and the last equality holds from
writing the potential outcomes in terms of their observed counterparts.

For part (1b), in Equation (18),
∑t

s=g E[Ys(0) − Ys−1(0)|G = g,D = d] =
∑t

s=g E[Ys(0) −
Ys−1(0)|D = 0] under Assumption 4-MP(b). Then, the result holds by otherwise following the
same arguments as in part (1a).

For part (2a), we show the result under Assumption 5-MP-Extended(c) which is strictly weaker
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than Assumption 5-MP-Extended(a). First, notice that

ATE(g, t, d) = E[Yt(g, d)− Yt(0)|G = g]

= E[Yt(g, d)− Yt−1(0)|G = g]− E[Yt(0)− Yt−1(0)|G = g]

= E[Yt(g, d)− Yt−1(0)|G = g,D = d]− E[Yt(0)− Yt−1(0)|G = g]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt−1(0)− Yg−1(0)|G = g,D = d]

−
(
E[Yt(0)− Yg−1(0)|G = g]− E[Yt−1(0)− Yg−1(0)|G = g]

)
= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−

t∑
s=g

E[Ys(0)− Ys−1(0)|G = g] (19)

−
t−1∑
s=g

(
E[Ys(0)− Ys−1(0)|G = g,D = d]− E[Ys(0)− Ys−1(0)|G = g]

)

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality holds by the definition of ATE(g, t, d), the second equality adds and sub-
tracts E[Yt−1(0)|G = g], the third equality holds by Assumption 5-MP-Extended(c), the fourth
equality adds and subtracts both E[Yg−1(0)|G = g,D = d] and E[Yg−1(0)|G = g], the fifth equal-
ity holds by writing “long differences” as summations over “short differences” and by rearranging
terms, the sixth equality holds by Assumption 5-MP-Extended(c) and by canceling terms, the
seventh equality holds by rewriting the sum of short differences as a long difference, and the last
equality holds by writing potential outcomes in terms of their corresponding observed outcomes
and is the result.

The expression for ACR(g, t, d) comes from taking the partial derivative of ATE(g, t, d) = E[Yt−
Yg−1|G = g,D = d]−E[Yt−Yg−1|Wt = 0] with respect to d and by noting that E[Yt−Yg−1|Wt = 0]
does not depend on d.

Finally, for part (2b), in Equation (19),
∑t

s=g E[Ys(0) − Ys−1(0)|G = g] =
∑t

s=g E[Ys(0) −
Ys−1(0)|D = 0] under Assumption 5-MP-Extended(b). The result then follows using the same
subsequent arguments as in part (2a).

E.1 Proofs of Proposition 5, Theorem 5, and Proposition 6

This section contains the proofs for interpreting TWFE regressions in the case with a continuous
treatment, multiple periods, and variation in treatment timing as in Section 4.

Before proving the main results in this section, we introduce some additional notation.

v(g, t) := 1{t ≥ g} − Ḡg (20)

where the term 1{t ≥ g} is equal to one in post-treatment time periods for units in group g and
recalling that we defined Ḡg = T −g+1

T which is the fraction of periods that units in group g are
exposed to the treatment (and notice that this latter term does not depend on the particular time
period t). Further, notice that v(g, t) is positive in post-treatment time periods and negative in
pre-treatment time periods for units in a particular group. Finally, also note that, for the “never-

57



treated” group, g = T + 1 (which we set by convention and is helpful to unify the notation in this
section) so that both terms in the expression for v are equal to 0 for the “never-treated” group.

Furthermore, recall that, for 1 ≤ t1 ≤ t2 ≤ T , we defined

Ȳ
(t1,t2)
i :=

1

t2 − t1 + 1

t2∑
t=t1

Yit

where below (and following the notation used throughout the paper), we sometimes leave the
subscript i implicit.

We next state and prove some additional results that are helpful for proving the main results.
The first lemma re-writes (overall) expected dose experienced in period t adjusted by the overall
expected dose (across periods and units) in a form that is useful in proving later results.

Lemma 1. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

Proof. First, notice that

E[Wt] =
∑
g∈G

∫
D
E[Wt|G = g,D = d] dFD|G(d|g)pg

=
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg (21)

where the first equality holds by the law of iterated expectations and the second equality holds
because, after conditioning on group and dose, Wt is fully determined.

Thus,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg −

1

T

T∑
s=1

∑
g∈G

∫
D
d1{s ≥ g} dFD|G(d|g)pg

=
1

T

T∑
s=1

∑
g∈G

∫
D
d (1{t ≥ g} − 1{s ≥ g}) dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1

T

T∑
s=1

1{t ≥ g} − 1{s ≥ g}

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1{t ≥ g} − T − g + 1

T

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

where the first equality applies Equation (21) to both terms, the second equality combines terms by
averaging the first term across time periods, the third equality re-orders the summations/integrals,
the fourth equality holds because 1{t ≥ g} does not depend on s and by counting the fraction of
periods where s ≥ g, and the last equality holds by the definition of v(g, t).
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The next lemma provides an intermediate result for the expression for the numerator of βtwfe

in Equation (2).

Lemma 2. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[YitẄit] =
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

Proof. Starting with the numerator for βtwfe in Equation (2)

1

T

T∑
t=1

E[YitẄit]

=
1

T

T∑
t=1

{
E[YitWit]− E[YitW̄i]− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{
E[YtD1{t ≥ G}]− E

[
YtD
T −G+ 1

T

]
− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{∑
g∈G

∫
D

(
E[Ytd1{t ≥ g}|G = g,D = d]− E

[
Yt
T − g + 1

T
d
∣∣∣G = g,D = d

])
dFD|G(d|g)pg

− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg − E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg − E[Yt]

∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

where the first equality holds by the definition of Ẅit, the second equality holds by plugging in
for Wit and W̄i, the third equality holds by the law of iterated expectations, the fourth equality
holds by the definition of v(g, t), the fifth equality holds by Lemma 1, and the sixth equality just
combines terms.

Next, based on the result in Lemma 2, we can write the numerator in the expression for βtwfe

as

1

T

T∑
t=1

E[YitẄit]

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}
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=
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg (22)

+
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg (23)

where the first equality holds from Lemma 2 and the second equality holds by adding and subtract-
ing E[Yt|G = g].

The expression in Equation (22) involves comparisons between units in the same group but that
have different doses. The expression in Equation (23) involves comparisons across different groups.
We consider each of these terms in more detail below.

Lemma 3. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
∑
g∈G

{
(1− Ḡg)Ḡgcov

(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)}
pg

Proof.

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
1

T

T∑
t=1

{∑
g∈G

E[Yt(D − E[D|G = g])|G = g]v(g, t)pg

}

=
∑
g∈G

{
1

T

T∑
t=1

E[Yt(D − E[D|G = g])|G = g]v(g, t)

}
pg

=
∑
g∈G

{
− 1

T
(T − g + 1)

T

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

+
1

T
(g − 1)

T

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

}
pg

=
∑
g∈G

{
g − 1

T
(T − g + 1)

T

(
1

T − g + 1

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

− 1

g − 1

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

)}
pg

=
∑
g∈G

{
g − 1

T
(T − g + 1)

T

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

])}
pg

=
∑
g∈G

{
(1− Ḡg)Ḡg

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

])}
pg
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=
∑
g∈G

{
(1− Ḡg)Ḡgcov

(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)}
pg

where the first equality holds by the law of iterated expectations (and combining terms involving
d and Yt), the second equality changes the order of the summations, the third equality holds by
splitting the summation involving t in time period g and plugs in for v(g, t) (which is constant
within group g and across time periods from 1, . . . , g − 1 and from g, . . . , T ), the fourth equality
multiplies and divides by terms so that the inside expressions can be written as averages, the fifth
equality holds by changing the order of the expectation and averaging over time periods, the sixth
equality holds by the definition of Ḡg, and the last equality holds by the definition of covariance.

Lemma 3 shows that part of the TWFE estimator comes from a weighted average of post- vs.
pre-treatment outcomes within group but who experienced different doses. In particular, notice

that, for units in group g, Ȳ
POST (g)
i is their average post-treatment outcome while Ȳ

PRE(g)
i is their

average pre-treatment outcome.
Next, we consider the expression from Equation (23) above which arises from differences in

outcomes across groups. We handle this term over several following results.

Lemma 4. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

Proof. Notice that

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]− E[Yt]

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]−

∑
k∈G

E[Yt|G = k]pk

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G

E[D|G = g]v(g, t)
(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

where the first equality holds by integrating over D, the second equality holds by the law of iterated
expectations, the third equality holds by combining terms, and the last equality holds because all
combinations of g and k occur twice.

Lemma 4 is helpful because it shows that the cross-group part of the TWFE estimator can be
written as comparisons for each group relative to later-treated groups.
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Next, we provide an important intermediate result. Before stating this result, we define the
following weights

w̃g,within(g) := var(D|G = g)(1− Ḡg)Ḡgpgw̃
g,post(g, k) := E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)pkpg

w̃k,post(g, k) := E[D|G = k]2Ḡk(Ḡg − Ḡk)pkpg

w̃long(g, k) := (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)pkpg

which correspond to wg,post, wk,post, and wlong(g, k) in the main text except they do not divide by
T −1

∑T
t=1 E[Ẅ 2

it]. In addition, notice that

E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

=


−E[D|G = g]Ḡg + E[D|G = k]Ḡk for t < g < k

E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk for g ≤ t < k

E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk) for g < k ≤ t
(24)

which holds by the definition of v and is useful for the proof of the following lemma.

Lemma 5. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

(
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ w̃k,post(g, k)

(
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

])
+ w̃long(g, k)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]}

Proof. The result holds as follows

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
1

T

T∑
t=1

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
1

T
(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) g−1∑
t=1

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T
(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) k−1∑
t=g

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T
(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) T∑
t=k

(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[ȲMID(g,k)|G = g]− E[ȲMID(g,k)|G = k]

)
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+ Ḡk
(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g](Ḡg − Ḡk) + (E[D|G = k]− E[D|G = g])Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[ȲMID(g,k)|G = g]− E[ȲMID(g,k)|G = k]

)
+ Ḡk

(
(E[D|G = g]− E[D|G = k])(1− Ḡg)− E[D|G = k](Ḡg − Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
E[D|G = g](1− Ḡg)(Ḡg − Ḡk)

(
E
[(
ȲMID(g,k) − Ȳ PRE(g))|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g))|G = k

])

+ E[D|G = k]Ḡk(Ḡg − Ḡk)

(
E
[(
Ȳ POST (k) − ȲMID(g,k))|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k))|G = g

])
+ (E[D|G = g]− E[D|G = k])Ḡk(1− Ḡg)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

])}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

(
E
[(
ȲMID(g,k) − Ȳ PRE(g))|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g))|G = k

])

+ w̃k,post(g, k)

(
E
[(
Ȳ POST (k) − ȲMID(g,k))|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k))|G = g

])
+ w̃long(g, k)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

])}

where the first equality uses the result in Lemma 4, the second equality changes the order of the
summations (splitting them at g and k where the value of v(g, t) and v(k, t) change) and uses
Equation (24), the third equality holds by averaging over time periods (which involves multiplying
and dividing by g − 1 in the first line, multiplying and dividing by k − g in the second line, and
multiplying and dividing by T −k+1 in the last line), the fourth equality rearranges the expressions
for the weights, the fifth equality holds by rearranging terms with common weights, and the last
equality holds by the definitions of w̃g,post, w̃k,post, and w̃long and by noticing that

pkpg = (pg + pk)2pg|{g,k}(1− pg|{g,k})

which holds by multiplying and dividing both pk and pg by (pg + pk) and by the definition of
pg|{g,k}.

The result in Lemma 5 is very closely related to the result on interpreting TWFE regressions
with a binary treatment and multiple time periods and variation in treatment timing in Goodman-
Bacon (2021).20 In particular, it says that, even with a continuous/multi-valued treatment, the
TWFE regression estimator involves comparisons between (i) the path of outcomes for units that
become treated relative to the path of outcomes for units that are not treated yet, (ii) the path of
outcomes for units that become treated relative to the path of outcomes for units that have already
been treated, and (iii) comparisons of the paths of outcomes across groups from their common pre-
treatment periods to their common post-treatment periods. Intuitively, the first set of comparisons
are very much in the spirit of DiD, but the second and third sets of comparisons are not (except
under additional specialized conditions). We formalize this intuition in the proof of Theorem 5

20One difference worth noting is that the weights are slightly different due to the terms involving E[D|G = g]
and E[D|G = k]. With a binary treatment, these expectations are equal to each other by construction, but with a
continuous treatment these terms are no longer generally equal to each other. This also implies that the third term
does not show up in the case with a binary treatment.
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below.

Lemma 6. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Ẅ 2
it] =

∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
Proof. To start with, notice that E[Ẅ 2

it] = E[WitẄit]. Then, we can apply the arguments of
Lemmas 2 to 5 but with Wit replacing Yit. This implies that

1

T

T∑
t=1

E[Ẅ 2
it]

=
∑
g∈G

w̃g,within(g)
cov(W̄POST (g) − W̄PRE(g), D|G = g)

var(D|G = g)

+
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

E
[
(W̄MID(g,k) − W̄PRE(g))|G = g

]
− E

[
(W̄MID(g,k) − W̄PRE(g))|G = k

]
E[D|G = g]

+ w̃k,post(g, k)
E
[
(W̄POST (k) − W̄MID(g,k))|G = k

]
− E

[
(W̄POST (k) − W̄MID(g,k))|G = g

]
E[D|G = k]

+ w̃long(g, k)
E
[
(W̄POST (k) − W̄PRE(g))|G = g

]
− E

[
(W̄POST (k) − W̄PRE(g))|G = k

]
E[D|G = g]− E[D|G = k]

}
=
∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
where the last equality holds by noting that W̄ = D in post-treatment periods and W̄ = 0 in
pre-treatment periods, and then by canceling terms.

Proof of Proposition 5

Proof. Proposition 5 immediately holds by combining the results in Lemma 2, from Equations (22)
and (23), and by Lemmas 3 to 5 (which all concern the numerator in the expression for βtwfe in
Equation (3)), and then dividing by (1/T )

∑T
t=1 E[Ẅ 2

it] (which corresponds to the denominator in
the expression for βtwfe in Equation (3)). That the weights are all positive holds immediately by
their definitions. That they sum to one holds by the definitions of the weights and by Lemma 6.

Next, we move to proving Theorem 5. To do this we provide expressions for each of the com-
parisons that show up in Proposition 5 in terms of derivatives of paths of outcomes. These results
invoke Assumption 2-MP(b) and (c) and, therefore, use that the treatment is actually continuous,
but they do not invoke any parallel trends assumptions. That said, it would be straightforward to
adapt these results to the case with a discrete multi-valued treatment along the lines of the baseline
two period case considered above.
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It is also useful to note that

∂π
POST (k̃),PRE(g̃)
D (g, d)

∂d
=
∂E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
∂d

∂π
MID(g̃,k̃),PRE(g̃)
D (g, d)

∂d
=

E
[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
∂d

∂π
POST (k̃),MID(g̃,k̃)
D (g, d)

∂d
=
∂E
[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|G = g,D = d

]
∂d

which holds because the second parts of each πD term do not vary with the dose.
Next, we consider a result for the main term in δWITHIN (g) in Equation (4).

Lemma 7. Under Assumptions 1-MP, 2-MP, and 3-MP,

cov
(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)
=

∫
D+

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
P(D ≥ l|G = g)

∂E[Ȳ POST (g) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

Proof. First, notice that

cov
(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)
= E

[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

]
Then, the proof follows essentially the same arguments as in Theorem 3 with Ȳ POST (g) − Ȳ PRE(g)

replacing ∆Y and the other arguments relating to the distribution of the dose holding conditional
on being in group g. The second term, involving dL, in Theorem 3 does not show up here as, by
construction, there are no untreated units in group g.

Lemma 7 says that part of δWITHIN (g) in the TWFE regression estimator comes from a

weighted average of ∂E[Ȳ POST (g)−Ȳ PRE(g)|G=g,D=d]
∂d .

Next, we consider the main term in the expression for δMID,PRE(g, k) in Equation (5). This
term is quite similar to the baseline two-period case considered in Theorem 3 because units in group
k have not been treated yet.

Lemma 8. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

]
=

∫
D+

P(D ≥ l|G = g)
∂E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[ȲMID(g,k) − Ȳ PRE(g)|G = k]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

dL
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Proof. To start with, notice that

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

]
= E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

]
−
(
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

])
=

∫
D+

P(D ≥ l|G = g)
∂E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[ȲMID(g,k) − Ȳ PRE(g)|G = k]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

dL

where the first equality holds by adding and subtracting E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

]
. For

the second equality, notice that

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

]
= E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
+ E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

]
Moreover,

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
=

∫
D+

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = d

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
dFD|G(d|g)

=

∫
D+

∫
D+

1{l ≤ d}
∂E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = l

]
∂l

dl dFD|G(d|g)

=

∫
D+

P(D ≥ l|G = g)
∂E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

where the first equality holds by the law of iterated expectations, the second equality holds by the
fundamental theorem of calculus, and the last equality holds by changing the order of integration
and simplifying.

Combining the above expressions implies the result.

Next, we consider the main term for δPOST,MID(g, k) in Equation (6) which comes from com-
paring paths of outcomes for newly treated groups relative to already-treated groups.

Lemma 9. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

]
=

∫
D+

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − ȲMID(g,k)|G = k,D = l]

∂l
dl
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+ dL
E[Ȳ POST (k) − ȲMID(g,k)|G = k,D = dL]− E[Ȳ POST (k) − ȲMID(g,k)|D = 0]

dL

−
{
E[Ȳ POST (k) − Ȳ PRE(g)|G = g]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

−
(
E[ȲMID(g,k) − Ȳ PRE(g)|G = g]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

)}
Proof. Notice that

E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

]
=

(
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

])

−

(
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

])

=

(
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

])
(25)

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])

−
(
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

])}

=

∫
D+

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − ȲMID(g,k)|G = k,D = l]

∂l
dl (26)

+ dL
E[Ȳ POST (k) − ȲMID(g, k)|G = g,D = dL]− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

]
dL

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])

−
(
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

])}

where the first equality holds by adding and subtracting E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

]
, the

second equality holds by adding and subtracting both E
[
Ȳ PRE(g)|G = g

]
and E

[
Ȳ PRE(g)|D = 0

]
,

and the last equality holds by applying the same sort of arguments as in the proof of Lemma 8.

The expression in Lemma 9 appears complicated and is worth explaining in some more detail.
Consider Equation (25) in the proof of Lemma 9. There are three parts of this expression. The
first part compares the path of outcomes in post-treatment periods relative to some pre-treatment
periods for units in group k to the path of outcomes for units that never participate in the treatment.
This sort of comparison is very much in the spirit of DiD and will correspond to a reasonable
treatment effect parameter under appropriate parallel trends assumptions. Similarly, under suitable
parallel trends assumptions, the terms in the second and third lines will correspond to treatment
effects for group g between periods k and T (the second line) and treatment effects for group g
between periods g and k− 1 (the third line). Therefore, the difference between these terms can be
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thought of as some form of treatment effect dynamics. That means, in general, for this overall term
to correspond to a treatment effect parameter for group k, there needs to be no treatment effect
dynamics for group g. Ruling out treatment effect dynamics is not implied by any sort of parallel
trends assumption and therefore involves an additional (and potentially very strong) assumption.

Finally, we consider the main term for δPOST,PRE(g, k) in Equation (7).

Lemma 10. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
=

∫
D+

(P(D ≥ l|G = g)− P(D ≥ l|G = k))
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

−

{∫
D+

P(D ≥ l|G = k)

(
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
− ∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l

)
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

}

Proof. First, by adding and subtracting terms

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
= E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
−
(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])
Then, using similar arguments as in Lemma 8 above, one can show that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
=

∫
D+

P(D ≥ l|G = g)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

and that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
=

∫
D+

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

Then, the result holds by adding and subtracting
∫
D+

P(D ≥ l|G = k)∂E[Ȳ POST (k)−Ȳ PRE(g)|G=g,D=l]
∂l dl

and combining terms.
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Proof of Part (1) of Theorem 5

Proof. Starting from the result in Proposition 5, the expression for δWITHIN (g) comes from its
definition, the result in Lemma 7, and the definition of the weights wwithin

1 (g, l). The expres-
sion for δMID,PRE(g, k) comes from its definition, the result in Lemma 8, and the definitions
of w1(g, l) and w0(g). The expression for δPOST,MID(g, k) comes from combining its definition
with the result in Lemma 9, and the definitions of w1(k, l) and w0(k). Finally, the expression
for δPOST,PRE(g, k) comes from its definition, the result in Lemma 10, and the definitions of
wacross

1 (g, k, l), w̃across
1 (g, k, l), and w̃across

0 (g, k).
That wwithin

1 (g, d) ≥ 0, w1(g, 0) ≥ 0, w0(g) ≥ 0 for all g ∈ G and d ∈ D+ all hold immediately
from the definitions of the weights. That

∫
D+

wwithin
1 (g, l) dl = 1,

∫
D+

w1(g, l) dl + w0(g) = 1, and∫
D+

wacross
1 (g, k, l) dl = 1 hold from the same sorts of arguments used to show that the weights

integrate to 1 in the proof of Proposition 4.

Notice that none of the previous results have invoked any sort of parallel trends assumption.
Next, we push forward the previous results once a researcher invokes parallel trends assumptions;
in the main text, we considered the case where the researcher invoked Assumption 5-MP, but
here we consider both that assumption and Assumption 4-MP(a). To further understand this, for
1 ≤ t1 < t2 ≤ T define

Ȳ
(t1,t2)
i (g, d) =

1

t2 − t1 + 1

t2∑
t=t1

Yit(g, t, d)

which averages potential outcomes from time periods t1 to t2 for unit i if they were in group g and

experienced dose d. Note that Ȳ
(t1,t2)
i = Ȳ

(t1,t2)
i (Gi, Di). Next, for t1 ≤ t2, define

ATT
(t1,t2)

(g, d|g, d) :=
1

t2 − t1 + 1

t2∑
t=t1

ATT (g, t, d|g, d)

which is the average treatment effect experienced by units in group g who experienced dose d
averaged across periods from t1 to t2. Likewise, define

ATE
(t1,t2)

(g, d) :=
1

t2 − t1 + 1

t2∑
t=t1

ATE(g, t, d)

which is the average treatment effect of dose d among all units in group g averaged across periods

from t1 to t2. An alternative expression for ATT
(t1,t2)

(g, d|g, d) is given by

ATT
(t1,t2)

(g, d|g, d) = E
[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
which holds by the definition of ATT (g, t, d|g, d) and changing the order of the expectation and
the average over time periods; here, E[Ȳ (t1,t2)(0)|G = g,D = d] is the average outcome that units
in group g that experienced dose d would have experienced if they had not participated in the

treatment between time periods t1 and t2. Similarly, for ATE
(t1,t2)

(g, d),

ATE
(t1,t2)

(g, d) = E
[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g

]
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In addition, define

ACRT
(t1,t2)

(g, d|g, d) :=
∂ATT (g, l|g, d)

∂l

∣∣∣
l=d

and ACR
(t1,t2)

(g, d) :=
∂ATE(g, d)

∂d

which are the average causal response to a marginal increase in the dose among units in group g
conditional on having dose experienced dose d (for ACRT (g, d|g, d)) and the average causal response
to a marginal increase in the dose among all units in group g.

The next result connects derivatives of conditional expectations to ACRT and ACR parameters
under parallel trends assumptions.

Lemma 11. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T
(i.e., t1 and t2 are pre-treatment periods for group g, and t3 and t4 are post-treatment periods for
group g), and for d ∈ D+,

(1) If, in addition, Assumption 4-MP(a) holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACRT
(t3,t4)

(g, d|g, d) +
∂ATT

(t3,t4)
(g, d|g, l)

∂l

∣∣∣
l=d

(2) If, in addition, Assumption 5-MP holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACR
(t3,t4)

(g, d)

Proof. For part (1), notice that, for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T (i.e., for group g, t1 and t2 are
pre-treatment time periods while t3 and t4 are post treatment time periods), we can write

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)|G = g,D = d

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
= ATT

(t3,t4)
(g, d|g, d)

− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by adding and subtracting E

[
Ȳ (t3,t4)(0)|G = g,D = d

]
, and

the last equality holds by the definition of ATT
(t3,t4)

(g, d|g, d).
This equation looks very similar to DiD-type equations in simpler cases such as when there

are two periods and two groups. The left hand side is immediately identified. The right hand
side involves a causal effect parameter of interest and an unobserved path of untreated potential
outcomes that would typically be handled using a parallel trends assumption.

In particular, under Assumption 4-MP(a) (though notice that Assumption 4-MP(b) and (c) are
not generally strong enough here),

E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
which, importantly, does not vary across d or g.
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This suggests that, under Assumption 4-MP(a),

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= ATT

(t3,t4)
(g, d|g, d)− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
Taking derivatives of both sides of the previous equation with respect to d implies the result.

For part (2), notice that,

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)|G = g

]
+ E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g

]
= ATE

(t3,t4)
(g, d) + E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by Assumption 5-MP, the third equality holds by adding and

subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by the definition of ATE
(t3,t4)

(g, d)
and by Assumption 5-MP. Taking derivatives of both sides implies the result for part (2).

The result in Lemma 11 says that, under Assumption 4-MP(a), the derivative of the path
of outcomes (averaged over some post-treatment periods) relative to some pre-treatment periods
corresponds to ACRT (g, t, d|g, d) plus the derivative of a selection bias-type term with respect to d
across some post-treatment time periods for units in group g. Similarly, under Assumption 5-MP,
the derivative of the averaged path of outcomes over time in some post-treatment periods relative
to the same average path of outcomes in some pre-treatment periods corresponds to an average of
ACR(g, d) with respect to d across the same post-treatment time periods.

The intuition for this sort of result is very similar to that of Proposition 3 in the baseline case
with two time periods.

Lemma 12. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 < k
(i.e., t1 and t2 are pre-treatment periods for both groups g and k, group g is treated before group k,
and t3 and t4 are post-treatment periods for group g but pre-treatment periods for group k),

(1) If, in addition, Assumption 4-MP(a) holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATT

(t3,t4)
(g, dL|g, dL)

dL

(2) If, in addition, Assumption 5-MP holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATE

(t3,t4)
(g, dL)

dL
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Proof. For part (1), notice that

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)|G = g,D = dL

]
+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]}
= ATT

(t3,t4)
(g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by adding and subtracting E

[
Ȳ (t3,t4)(0)|G = g,D = dL

]
, and

the last equality holds by the definition of ATT
(t3,t4)

(g, dL) and because the difference between
the two terms involving paths of untreated potential outcomes on the second line of the previous
equality is equal to 0 under Assumption 4-MP(a). Then, the result holds by multiplying and
dividing by dL.

For part (2),

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)|G = g

]
+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]}
= ATE

(t3,t4)
(g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by Assumption 5-MP, the third equality holds by adding and
subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by Assumption 5-MP. The result holds
by multiplying and dividing by dL.

Proof of Part (2) of Theorem 5

Proof. The result holds immediately by using the results of Lemmas 11 and 12 in each of the
expressions for δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of
Theorem 5.

Proof of Proposition 6

Proof. For part (a), using similar arguments as in Lemma 8 and then under Assumption 5-MP, it
follows that

E
[
Ȳ POST (k) − Ȳ PRE(g)|G = g

]
− E

[
Ȳ POST (k) − Ȳ PRE(g)|D = 0

]
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=

∫
D+

P(D ≥ l|G = g)ACR
POST (k)

(g, l) dl + dL
ATE

POST (k)
(g, dL)

dL

and that

E
[
ȲMID(g,k) − Ȳ PRE(g)|G = g

]
− E

[
ȲMID(g,k) − Ȳ PRE(g)|D = 0

]
=

∫
D+

P(D ≥ l|G = g)ACR
MID(g,k)

(g, l) dl + dL
ATE

MID(g,k)
(g, dL)

dL

Under Assumption 6(a), ACR(g, t, d) and ATE(g, t, dL) do not vary over time which implies that,

for all g ∈ G and k ∈ G with k > g, ACR
POST (k)

(g, l) = ACR
POST (k)

(g, l) for all l ∈ D+ and

ATE
POST (k)

(g, dL) = ATE
MID(g,k)

(g, dL). This implies that E
[
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
=

E
[
ȲMID(g,k) − Ȳ PRE(g))|G = g

]
which implies the result for part (a).

For part (b), notice that, under Assumption 5-MP,

∂π
POST (k),PRE(g)
D (k, l)

∂l
−
∂π

POST (k),PRE(g)
D (g, l)

∂l
= ACR

POST (k)
(k, l)−ACRPOST (k)

(g, l)

= 0

for l ∈ D+ and where the second equality holds by Assumption 6(b) (which implies that, for a
particular time period, ACR(g, t, d) does not vary across groups).

The same sort of arguments imply that

π
POST (k),PRE(g)
D (k, dL)− πPOST (k),PRE(g)

D (g, dL)

dL
=
ATE

POST (k)
(k, dL)−ATEPOST (k)

(g, dL)

dL
= 0

Finally, for part (c), under Assumption 6(a), (b), and (c), ACR(g, t, d) does not vary across
groups, time periods, or dose; since this does not vary, we denote it by ACR for the remainder of the
proof. Moreover, from Theorem 5, we have that

∫
D+

wwithin
1 (g, l) dl = 1,

∫
D+

w1(g, l) dl+w0(g) = 1,

and that
∫
D+

wacross
1 (g, k, l) = 1. From the first two parts of the current result, we also have that

the nuisance paths of outcomes in δPOST,MID(g, k) and δPOST,PRE(g, k) are both equal to 0 under
Assumption 6(a) and (b). This implies that, under the conditions for part (c), δWITHIN (g) =
δMID,PRE(g, k) = δPOST,MID(g, k) = δPOST,PRE(g, k) = ACR. Finally, from Proposition 5, we
have that βtwfe is a weighted average of δMID,PRE(g, k), δPOST,MID(g, k), δPOST,MID(g, k), and
δPOST,PRE(g, k). That these are all equal to each other implies that βtwfe = ACR = ACR∗,mp.

Next, we provide a version of Theorem 5 extended to the case where Assumption 4-MP(a)
(which is the multi-period version of standard parallel trends that only involves untreated potential
outcomes) holds.
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Theorem 5-Extended. Under Assumptions 1-MP, 2-MP, 3-MP, and 4-MP(a),

δWITHIN (g) =

∫
D+

wwithin
1 (g, l)

(
ACRT

POST (g)
(g, l|g, l) +

∂ATT
POST (g)

(g, l|g, h)

∂h

∣∣∣
h=l

)
dl

δMID,PRE(g, k) =

∫
D+

w1(g, l)

(
ACRT

MID(g,k)
(g, l|g, l) +

∂ATT
MID(g,k)

(g, l|g, h)

∂h

∣∣∣
h=l

)
dl

+ w0(g)
ATT

MID(g,k)
(g, dL|g, dL)

dL

δPOST,MID(g, k) =

∫
D+

w1(k, l)

(
ACRT

POST (k)
(k, l|k, l) +

∂ATT
POST (k)

(k, l|k, h)

∂h

∣∣∣
h=l

)
dl

+ w0(k)
ATT

POST (k)
(k, dL|k, dL)

dL
− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)

δPOST,PRE(g, k) =

∫
D+

wacross
1 (g, k, l)

(
ACRT

POST (k)
(g, l|g, l) +

∂ATT (g, l|g, h)

∂h

∣∣∣
h=l

)
dl

−

{∫
D+

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−
∂π

POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− πPOST (k),PRE(g)

D (g, dL)

dL

)}

where the weights are the same as in Theorem 5 and satisfy the same properties.

Proof. The result holds immediately by plugging in the results of part (1) of Lemmas 11 and 12 for
δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of Theorem 5.
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