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Abstract

Optimal monetary policy is important on a practical level for central banks. Computa-
tional barriers, however, have limited research into important optimal monetary policy ques-
tions. With some important exceptions using computational techniques tailored to specific
cases, most of the applications addressed have been simplified to make them amenable to
solving analytically or to easy computation. This paper brings into the optimal monetary
policy literature recent machine learning techniques that apply to a wide range of practical
applications for which computational barriers have previously been a problem. I illustrate
these techniques as applied to the question of how firm expectations and price distortions
should jointly influence optimal monetary policy. In a fully non-linear New Keynesian Model
with price and labor distortions, I find that price level stabilization around a long-run value
is best when distortions are small. However, the farther we start from the long-run value,
the policy response should be more nonlinear and more aggressive. I show that interest rate
policy should take into consideration both price dispersion and firm expectations on future
costs, the latter directly relating to distortions from monopolistic competition.

JEL Classification: E52
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1 Introduction

There is a long list of open questions in optimal monetary policy that matter to central banks

on a practical level. For example, while both the Bank of Japan and Federal Reserve Board have

both adopted average inflation targeting, the optimal design of this policy is unclear (Bank of

Japan (2016), Federal Reserve Board (2020)). Beyond this, should optimal policy have inertia or

adjust rapidly? How should policy account for non-normal uncertainty, for example with infla-

tion expectations changing over time or being skewed?12 Computational barriers have limited

research into optimal monetary policy on questions like these.

With some important exceptions using computational techniques tailored to specific appli-

cations, most of the applications addressed have been simplified to make them amenable to

solving by hand or to easy computation. In line with this, standard monetary policy research

has traditionally used a framework of a quadratic objective function and linear dynamics, and it

emphasizes a policy of stabilization in the face of small symmetric shocks.3 Although research

on optimal policy in the last two decades, particularly after the Great Recession, has expanded

that framework by breaking one or two of the assumptions, these efforts have only resulted in

highly case-specific approaches.4

This paper brings into the optimal monetary policy literature recent machine learning tech-

niques that apply to a wide range of practical applications for which computational barriers

have previously been important. The standard computation strategies in the literature that try
1More specifically, how forward guidance should take place given endogenous kurtosis of inflation expectations

or uncertainty with regards to the model, or how non-additive uncertainty should influence policy.
2Preferences which respond to worst-case scenarios, rational inattention, or endogenous shock variances are

also important modeling questions. See Mishkin (2010) for a more detailed list of monetary policy questions that
are difficult to address by traditional techniques.

3The now-classic reference on this approach is Woodford (2003). See also Rotemberg and Woodford (1997);
Clarida, Gali, and Gertler (1999); Giannoni and Woodford (2005); Levin, Onatski, and Williams (2005); and
Schmitt-Grohe and Uribe (2005), among many others.

4An exhaustive literature review is impossible here, but see for example Kim and Ruge-Murcia (2019) for a
model with nonlinearities and assymetric shocks, where higher order pertubation around the steady state is used;
Curdia and Woodford (2015) for a modification the NK model to take credit frictions into account without fun-
damentally altering the LQ framework; Wu and Li (2014) for rational inattention implications in a log-linearized
model; Swanson (2006) for monetary policy under parameter uncertainty in a linear model; Faulwasser, T. et al.
(2020) for a nonlinear quadratic model used to study unconventional monetary policy; Nobay and Peel (2000) and
Huh, Lee, and Lee (2009) for monetary policy in the context of a nonlinear Phillips curve; and Bilbiie and Ragot
(2020) and Chale (2020) for an LQ framework modified for heterogenous agents and liquidity constraints, respec-
tively.
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to move beyond simplifications themselves often have fatal issues, like being limited in incorpo-

rating an effective lower bound and having a hard time dealing with anything beyond a small

number of variables in the model.5 Even when looking at a small-scale New Keynesian Model,

the degree of the nonlinearities involved and number of variables makes standard procedures

difficult to apply. Deep learning techniques are convenient because they can approximate any

unknown function6, are less sensitive to good initial guesses, and largely avoid the curse of di-

mensionality (Kang et al 2020, Raissi 2018). This is crucial for them to be practical for other

applications like the ones mentioned at the outset, since a central bank may have no idea what

the function they are searching for looks like and often deal with large models. Other papers

have used neural networks to help solve other economic models,7 but to my knowledge this is

the first paper to make use of these techniques for optimal monetary policy research.

This paper illustrates these techniques as applied to the question of how firm expectations

and price distortions should jointly influence optimal monetary policy. Inspired by the literature

on optimal policy in the lineage of Ramsey (1927) and Stokey and Lucas (1983), I will have the

central bank maximize household welfare, constrained by the optimal choices made by firms

and households in a decentralized economy. This allows analysis beyond a small neighborhood

of the steady state, in a way synergistic with the computational approach discussed later.8 To

think of how firm expectations and price distortions may influence optimal monetary policy,

I will use a small-scale New Keynesian model, since it quite elegantly includes both nominal

rigidity through price dispersion and imperfect competition in the form of price staggering by

monopolistically competitive firms.

What happens to these two distortions in applications? Usually there is an assumption of a

production subsidy provided through a lump sum tax in order to eliminate the mark-up distor-

tion from imperfect competition. When this is done, monetary policy is concerned with the only
5The most glaring examples of these problems are higher order pertubation methods being unable to accom-

modate inequality constraints like an effective lower bound (Swanson et al 2006) and discretation, as well as pro-
jection methods, succumbing to sensitivity to initial conditions and the curse of dimensionality.

6More specifically, any Borel measurable function, by the universal approximation theorem (Bach 2017)
7Recent applications include Scheidegger and Bilionis (2017), Duarte (2018), Maliar et al. (2019), Ferandez-

Villaverde et al. (2020), and Azinovic et al. (2020).
8I also avoid convoluted construction inherent in traditional methods of deriving the objective function that

makes comparisons even between very similar non-standard model environments and substandard policies diffi-
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remaining distortion, relative price dispersion. A significant amount of initial price dispersion

is usually just assumed away (Gali 2003, Woodford 2003). With these assumptions, even with

the countless extensions of the model, the base intuition of optimal monetary policy remains

largely the same: the goal of policy should be to stabilize the price level to keep the economy

at its natural level of output. In stabilizing the price level, a central bank stamps out the nomi-

nal distortions associated with sticky prices, reaching the flexible price equilibrium.9 However,

these are not so innocuous. They require us to already be near the long-run value, and to assume

stabilization policy that we find optimal now to have already been used in the past. What hap-

pens though when, for whatever reason, we find ourselves stranded away from the long run?

You could consider, for example that a central bank decides to change its inflation target. Even

if everything else is optimal before and after besides the target, the bank has to decide the best

transition path. You could also imagine a shock that is not predicted, such as a financial crisis

or a large supply chain blockage, that shifts the environment enough that the bank has to think

about transitioning back to “normal”.

Some papers have broken these assumptions to study what would happen away from the

long-run outcome. Yun (2005), for example, does not assume away initial price dispersion.

Though he confirms the result that complete stabilization of the price level is optimal in the ab-

sence of initial price dispersion, he finds that optimal inflation targets respond to changes in the

level of price distortion otherwise. Because price dispersion in a second order term, Yun cannot

rely on a set of linearly approximated equilibrium conditions. He still maintains, however, a

subsidy to eliminate the inefficiency associated with monopolistic competition. By introducing

an employment subsidy, he ends up with a one-to-one relationship between the growth rates

of inflation and price dispersion. This drastically simplifies the first order conditions of the

firm and he is able to drop all the forward looking parts of the model, which themselves evolve

non-linearly. Yun then drastically simplifies the aggregate supply curve since only current costs

matter. Although including price distortions while assuming an efficient steady state gives clean

analytical results even with non-linearity, including the forward-looking firm expectations that

cult (Benigno & Woodford, 2008).
9See, for example, Goodfried and King (1997), Rotemberg and Woodford (1997); Clarida, Gali, and Gertler
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are necessary without that assumption makes this impossible.

To study both channels of distortion in this model, I directly include the nonlinear sources of

inefficiency, price dispersion and a distorted stead-state, as well as the forward-looking elements

of the firm’s pricing decision. I make use of some of the results of Fernandez-Villaverde et al

(2012), who analyze the dynamics of a fully non-linear New Keynsian model.10 With sufficient

starting inefficiencies in price dispersion and steady state, I confirm the result that stabilization

policy is no longer optimal in the short run, and find that the central bank needs to think in

terms of an optimal transition path to a long run value, which I also determine computationally.

In the short run, the interest rate should be designed to have firm marginal cost be proportional

to a function of both price dispersion and the shadow price on firm expectations on future costs.

Although I confirm the broad conclusion that stabilization policy is not optimal in the short run

in the presence of large distortions and that the central bank should think in terms of optimal

transition, I show that the forward-looking elements of firm decision making are key for deter-

mining optimal policy when both model distortions are present. The reason this shadow price

on firm expectations, and firm expectations themselves, are usually left out is obvious when

looking at my results: they are computationally very difficult to determine. Other papers like

Khan et al (2003) have likewise avoided the analytical simplification at first, including full non-

linearities,11 but then they linearize for the sake of computation, making their approach less

useful for my question.

I show that the interest rate should guide optimal marginal cost in terms of both price dis-

persion and the co-state variable associated with firm expectations of future costs. This co-state

variable has no closed form solution, and must be approximated. To do this, I first figure out

the optimal path of the entire system defined by the first order conditions of the Hamiltonian,

which is a system of ordinary differential equations (ODE’s). This is an open form solution, in

that the choice variables are a function of time and not the other state variables. This technique

(1999), Gali (2003), Woodford (2003).
10They are not interested in the question of monetary policy and allow for a Taylor-rule type policy.
11Their analysis, furthermore, is for a model with money which is different from what is considered in this

application.
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and what follows was first done broadly Nakamura-Zimmerman 2020.12 To get the optimal

paths, I approximate every variable by a neural network with input being time (this is equiv-

alent to thinking of the ODE system as a neural network with vector output, input still time).

To train this neural network, I take all of the equilibrium conditions of the ODE, express them

as f (x) = 0, and try to minimize with randomly chosen time points along the path. In other

words, I try to get all of the neural network variables to run along the paths as close as possible

to the path constraints while satisfying boundary conditions, slowly adjusting the networks to

be more optimal with a batch of time points along the path. Because boundary conditions are

not handled entirely well here (a common problem in the deep learning literature), I follow the

procedure of Lagari et al (2020) to convert the problem into one of “hard boundaries”. This

is really just nesting the neural network into a temporary function of time to get the process

started; it forces the boundary conditions to hold at all times.

I use and modify packages developed out of a team at Brown University (Deep XDE, Lu et al

2021) for solving ODE systems in the way I described. I get multiple paths by randomly selecting

initial starting positions (you can think of these as different initial distortions). I collect 150 of

these paths and I then train the interest rate as a neural network, this time as a function of the

variables in the model. I am converting the open-form solution to a closed-form one. I do this

by seeing what the relationships are between the paths. This, again, is similar to the procedure

of Nakamura-Zimmerman (2020). Because I have commitment, this is valid, since nothing is a

function of time (to use the language of optimal control theory, I have an autonomous solution).

In other words, I am seeing what the interest rate would have to be in order to make the model

evolve as it does. Again, all of this is necessary because it allows me to handle the non-linearities

without a good initial guess. Other global methods fail here, since I have no idea what this value

function looks like given that I do not make all the heavy assumptions on the analytical side. It

also can handle broader problems because it is not held up by the curse of dimensionality in the

same way. Even with my number of variables, things are very computational taxing.

I show, finally, that these two channels of inefficiency, price distortion and monopolistic com-
12They, however, focus on the linear-quadratic case so this also serves as an extension of their method.
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petition, matter for optimal monetary policy, and, furthermore, that this latter channel can be

expressed in terms of firm expectations of future costs. The extent to which one channel matters

more than the other will depend on the parameters of the model and initial conditions. I find

also that policy should be more aggressive when price dispersion increases. More broadly, in

answering the question of how firm expectations and price distortions should influence opti-

mal monetary policy, I am able to avoid the usual assumptions of a quadratic objective function

and linear dynamics, without simplification for the sake of computation, and I move away from

a view of monetary policy as stabilizing the economy around a long-run result in the face of

small Gaussian shocks. In Section 2 of the paper, I will lay out the broad strokes of setting up

the central bank’s problem and its analytical results. In Section 3, I will demonstrate the machine

learning technique used for solving the model. Section 4 concludes.
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2 Analytical Approach and Implications for Monetary Policy

2.1 The Model

In the following analysis, I will first illustrate the important elements and equilibrium con-

ditions of the model environment, a nonlinear New Keynsian Model13 making use of the stag-

gered price-setting of Calvo (1983) with money only playing the role of a unit of account14. I

will then use those equilibrium conditions to both set up the constraint set and rewrite the re-

ward function in a convenient fashion for the central bank’s problem. The policy prescription of

the central bank - an optimal interest rate rule - will be inferred from the optimal dynamics of

the decentralized economy. I will be freely taking from the results of the full underlying model,

only reproducing the results as they are important for the central bank’s problem. The full un-

derlying model can be found in Appendix A. I set the modelling environments in continuous

time, which helps me characterize much of the equilibrium dynamics analytically and to avoid

needing to compute expectations even within a global solution.15

After the problem is posed, I will give the analytical results and their implication for mon-

etary policy. I will show how the optimal dynamics should be thought of in terms of an inter-

est rate policy that most optimally structures marginal cost as an equilibrium function of the

state variables. Although the full result can only be determined numerically, I will demonstrate

through analytical results that with a significant level of price dispersion that stabilization is not

optimal in the short run and that a distorted stead state implies that an inflation target is not op-

timal, though I will confirm the general result of the monetary policy literature that stabilization

around some value will be the optimal long run policy. Finally, I will numerically approximate

the model solution using deep learning techniques. These techniques, though used for this spe-

cific case, can be much more widely applied than what is shown here.

13Consult Fernandez-Villaverde et al (2012) for an articulation, which makes use of more types of shocks than
the ones analyzed in this paper though does not analyze monetary policy, and uses an inertial type Taylor rule.

14This is in the same vein as Woodford (1999) and Gali and Monacelli (2002)
15There is nothing essential, however, about continuous time. This method could be done in discrete time, though
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2.2 Value Function

The objective function is exactly the consumer’s utility function, though this no longer is

expressed in terms of consumption and labor, but in terms rather of marginal utility and the

product of price dispersion and marginal cost. These are derived from the equilibrium condi-

tions of the underlying model. The central bank is thus trying to maximize:

ż 8

0
e´ρt

tln(ct)´ ψ
n1+γ

t
1 + γ

u

Of course, in a decentralized economy consumption and labor are both functions of the under-

lying state variables. We will express them in that form. To do this, consider the first order

conditions of the household. For any interior solution, and when ψ ‰ 0:

1/ct = λt

ψlγ
t = λtwt

ψlγ
t ct = wt

We also have an expression for aggregate production:

yt =
Ant

vt

where vt refers to price dispersion, defined mathematically as:

vt =

ż 1

0
(

pit

pt
)´εdi

vt ě 1

at a much higher computational cost. See Achdou et al. (2017) for an explanation of the advantages of continuous
time in this manner.
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Note that vt = 1 would imply efficiency. Price dispersion acts as the point of inefficiency flowing

from staggered price setting. Price dispersion can also be thought of as a misalignment between

decisions made on the basis of marginal cost and those made on the basis of marginal utility. In

practical terms it acts as a wedge between production in terms of inputs and in terms of output

after aggregation.

Combining together the first order and market conditions:

mct = ψn1+γ
t /vt

mct = ψ(Aλt)
´(1+γ)vγ

t

ct = A(
mct

ψvγ
t
)

where mct =
wt
At

refers to real marginal cost.

One important thing to take away here is that the policy functions of the representative agent

- in this context, optimal consumption and labor as functions of the underlying state variables

- can be analytically expressed in terms of of a function of price dispersion and marginal cost.

This is a partial equilibrium result, and of course in the full New Keynesian model this will

not be enough because firms also take into consideration expected future marginal costs as well

as the current marginal cost when determining their prices. As we will see, the evolution of

price dispersion is defined by a path constraint, but there is no such constraint on marginal cost.

The equilibrium value for marginal cost will end up being an unknown function of the state

variables. Really, marginal cost serves as a still unknown function with solves the equilibrium

conditions and the maximized Bellman equation or Hamiltonian. (Fernandez-Villaverde et al

(2012)).

The traditional approach is to linearize the equilibrium conditions and solve the system of

linear dynamic equations (For an example and discussion of what the traditional approach looks

like, see Appendix B). In contrast, my non-linear approach uses the competitive solution and

the implied general equilibrium value function, which in turn pins down the unknown marginal

costs. Observe that the costate variable depends on the stochastic shocks and price dispersion.
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This is why our approach to solve for the general equilibrium values has been to augment the

vector of state variables of the household’s value function by the law of motions for expectations

and price dispersion.

From the above, I will use the conditions:

ψn1+γ
t = vtmct

ct = 1/λt

I can then rewrite the value function as:

ż 8

0
e´ρt[ln(1/λt)´

vtmct

1 + γ
]dt

2.3 The Problem of the Central Bank

Even though the central bank only directly chooses the interest rate, I expand the choice set

to include inflation and marginal cost. Because these are functions of underlying state variables,

this is mathematically valid in terms of the optimal control problem (see Appendix C). More

generally, you can think of this approach as a Ramsey problem: I will determine the optimal

flow of the overall system and then back out the optimal interest rates as the way to decentralize

the problem. I am just working in reverse: first taking the equilibrium constraints implied by the

decentralized problem and then second having the central bank act as a kind of central planner.

max
rt,πt,mct

ż 8

0
e´ρt[ln(1/λt)´

vtmct

1 + γ
]dt
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s.t.

Σ̇R = (θ ´ (ε´ 1)πt)ΣRt ´ 1 (1)

Σ̇C = (θ ´ επt)ΣCt ´mct (2)

v̇ = θ(1 + πt
1´ ε

θ
)´

ε
1´ε + (επt ´ θ)vt (3)

λ̇ = (ρ´ rt + πt)λt (4)

mct = ψ(Aλt)
´(1+γ)vγ

t (5)

πt =
θ

1´ ε
[(

ε

ε´ 1
ΣCt

ΣRt
)1´ε

´ 1] (6)

ΣRt, ΣCt, mct ě 0, @t

vt ě 1, λt ą 0, @t

ΣR0, ΣC0, v0, given

A quick summary of the variables:

ΣR : Firm expectations about future aggregate demand conditions.

ΣC : Firm expectations about future costs

v : Price dispersion

λ : Marginal Utility of Wealth

π : Inflation

mc : Firm marginal costs

12



A quick summary of parameters:

ρ : Discounting Parameter

θ : Rate of the Calvo Process, an exponential distribution

(1/θ gives the expected wait time until the next price change, θ ą 0)

ε : Elasticity of Substitution

ψ : The Disutility of Labor

γ : Inverse of Frisch Labor Supply Elasticity

My approach is different from than of Yun (2005) because I do not subsidize employment.

Because of this, I cannot ignore the forward-looking pricing equation of the firm:

max
pit

Et

ż 8

t

λτ

λt
e´θ(τ´t)[

pit

pτ
yiτ ´mcτyiτ]dτ

The first order conditions of the firm is as follows. The ratio of the optimal new price, com-

mon across all firms able to reset their prices, and the prices of the final good, is given by:
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pit

pt
=

ε

ε´ 1
ΣCt

ΣRt

where:

ΣRt =

ż 8

t
λτe´θ(τ´t)(

pt

pτ
)1´εyτdτ

represents expected present discounted value of future revenues, which acts as an estimate of

future aggregate demand conditions and

ΣCt =

ż 8

t
λτe´θ(τ´t)mcτ(

pt

pτ
)´εyτdτ

represents expected present discounted value of future costs. Because I am working in con-

tinuous time, how to represent the above pieces of the pricing decision as state variables is more

intuitive.

pit

pt
=

1
vt

πt = v̇

These auxiliary variables are related to inflation in the following way:

πt =
θ

1´ ε
[(

ε

ε´ 1
ΣCt

ΣRt
)1´ε

´ 1

Once we include the definitions of these variables, we can see that the above can be thought of
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as the Aggregate Supply Curve of the model.

πt =
θ

1´ ε
[(

ε

ε´ 1

ş8

t λτe´θ(τ´t)mcτ(
pt
pτ
)´εyτdτ

ş8

t λτe´θ(τ´t)( pt
pτ
)1´εyτdτ

)1´ε
´ 1

2.3.1 The Hamiltonian

I will solve the central bank’s problem using optimal control theory. I construct the Hamil-

tonian as follows:

H =ln(1/λt)´
vtmct

1 + γ

+ ΛΣR [(θ ´ (ε´ 1)πt)ΣRt ´ 1]

+ ΛΣC [(θ ´ επt)ΣCt ´mct]

+ Λv[θ(1 + πt
1´ ε

θ
)´

ε
1´ε + (επt ´ θ)vt]

+ Λλ[(ρ´ rt + πt)λt]

+ µmc[mct ´ ψ(Aλt)
´(1+γ)vγ

t ]

+ µπ[(1 + πt
1´ ε

θ
)

1
1´ε ´

ε

ε´ 1
ΣCt

ΣRt
]

2.3.2 First Order Conditions of the Hamiltonian System

Control variables:

BH
Brt

= 0 = ´Λλλt (7)

BH
Bπt

= 0 = ´ΛΣR(ε´ 1)ΣRt ´ΛΣC εΣCt ´Λv[ε(1 + πt(1´ ε)/θ)´
1

1´ε ´ εvt]

+ Λλλt +
µπ

θ
((1 + πt

1´ ε

θ
)

ε
1´ε (8)

BH
Bmct

= 0 = ´ΛΣC + µmc ´
vt

1 + γ
(9)

Equation (7) may seem strange - after all, if the only tool the central bank has is the interest

rate and the interest rate has not effect, are we done here? The short answer is no. The interest

rate provides structure for the environment. We are finding (through equations (8) and (9))
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that optimal structure, and then backing out the interest rate implied by the optimal dynamics

of the system. It is important to remember that any other choice of interest rate not given by

these implied dynamics will cause the dynamics to be different, and hence worse.

Let us break down equations (8) and (9) further. Equation (8) is the first order condition

for inflation:

(1 + πt
1´ ε

θ
)

1
1´ε µπ

1

=ΛΣR(ε´ 1)ΣRt + ΛΣC εΣCt

2

+Λvε(1 + πt(1´ ε)/θ)´
1

1´ε ´Λvεvt

3

The weighted benefits from raising inflation 1 , represented by the lagrange multiplier µπ, will

have two effects. The first will be through the effect on the optimal firm pricing decision 2 . In-

flation causes expected real revenues and real costs to both decrease. Whether this will cause the

reset price to go up or down will depend on the current values of ΣR and ΣC, which represent the

weight on the reset price by expected future aggregate demand conditions and marginal costs,

respectively. Inflation also has an impact on price dispersion 3 . Generally, inflation causes

price dispersion to increase, though the overall effect of this will depend on the current levels

of inflation and price dispersion. Any model, including Yun (2005), which adds a subsidy to

employment will lose the effects represented by 2 .

Equation (9) is the first order condition for marginal cost:

µmc

1

= ΛΣC

2

+
vt

1 + γ

3

The weighted benefits from raising marginal costs 1 , represented by the lagrange multiplier

µmc, will have two effects. The first will be through the effect on the optimal firm pricing decision

2 . Increase marginal cost also has an effect on labor 3 , since it is equivalent an increase in the

equilibrium wage. This effect will be magnified by the amount of price dispersion in the model,

which decreases the efficiency of labor with respect to output. Again, any model, including Yun

(2005), which adds a subsidy to employment will lose the effects represented by 2 .

Now let us look at the other optimality conditions:
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State variables:

BH
BΣRt

= ´ ˙ΛΣR + ρΛΣR = ΛΣR(θ ´ (ε´ 1)πt) + µπ
ε

ε´ 1
ΣCt

(ΣRt)2 (10)

BH
BΣCt

= ´ ˙ΛΣC + ρΛΣC = ΛΣC(θ ´ επt)´
µπ

ΣRt

ε

ε´ 1
(11)

BH
Bvt

= ´Λ̇v + ρΛv = ´
mct

1 + γ
+ Λv(επt ´ θ)´ µmcγψ(λt A)´(1+γ)vγ´1

t (12)

BH
Bλt

= ´Λ̇λ + ρΛλ = ´
1
λt

+ Λλ(ρ´ rt + πt) + µmc(1 + γ)ψA´(1+γ)λ
´(2+γ)
t vγ

t ] (13)

As well as the transversality conditions, specified in Appendix D.1.

2.4 Determining Optimal Marginal Cost

From (7) and (13), we have:

1
λt

= µmcψ(1 + γ)vγ
t A(λt A)´(2+γ)

1 = µmcψ(1 + γ)vγ
t (λt A)´(1+γ)

(λt A)1+γ = µmcψ(1 + γ)vγ
t (14)

From (9) and the above, we have:

(λt A)1+γ = (ΛΣC +
vt

1 + γ
)ψ(1 + γ)vγ

t

λt =
1
A
[(ΛΣC +

vt

1 + γ
)ψ(1 + γ)vγ

t ]
1

1+γ (15)

Taking now the original equilibrium condition for marginal cost (5) and using the results

above, we get:

mct =
1

(1 + γ)ΛΣC + vt
(16)

This is the most fundamental result of the model, and represents the optimal function for marginal

cost to take in our system. The way to think about the optimal interest rate is precisely to struc-
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ture the environment in such a way to make this marginal cost possible. In Ramsey’s language, it will

be the way to decentralize the solution. It says that marginal firm cost is the inverse of a lin-

ear combination of the shadow price on expectations of future cost and price dispersion. The

shadow price on expected future costs is weighted by a measure of labor supply elasticity. This

effectively shows us that the optimal marginal cost is related to the two inefficiencies of the New

Keynesian Model - inefficient production due to monopolistic competition and price dispersion.

Compare the above equation with the results of Yun (2005):

mct =
1

(1 + η)vt
(17)

where η is the optimal subsidy rate, which would be set to 1/(ε´ 1). Note that because of the

employment subsidy, the long-run steady state value is now efficient, Yun does not have to take

into consideration the evolution of expectations in his model, and the weighted shadow price

of future expectations of cost, (1 + γ)ΛΣC , become irrelevant.
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2.5 Determining the Interest Rate

Let us get an expression of the interest rate.

Taking the time derivative of λt, we arrive at:

λ̇ =
ψ(1 + γ)

A
[(ΛΣC +

vt

1 + γ
)ψ(1 + γ)vγ

t ]
´γ
1+γ [(ΛΣC +

vt

1 + γ
)γvγ´1

t v̇ + vγ
t (

˙ΛΣC +
v̇

1 + γ
)]

Dividing by λt:

λ̇

λt
=

(ΛΣC + vt
1+γ )γvγ´1

t v̇ + vγ
t (

˙ΛΣC + v̇
1+γ )

(ΛΣC + vt
1+γ )v

γ
t

= γ
v̇
vt

+
(1 + γ) ˙ΛΣC + v̇

((1 + γ)ΛΣC + vt)
(18)

Taking the time derivative of marginal cost:

ṁc = ´
(1 + γ) ˙ΛΣC + v̇

((1 + γ)ΛΣC + vt)2 (19)

From (4), the equilibrium condition for λ̇
λt

, and (18), and (19), we arrive at the following

identity defining the interest rate:

rt = ρ + πt ´ γ
v̇
vt

+
ṁc
mct

(20)

Note that this is an equilibrium object, not a rule per se. However, we must remember that

marginal cost is in our system a function of the underlying state variables in an unknown way.

Inflation, also, is a function of state variables, though in a direct, observable way. We can see

this through a re-write of the above as:

rt = ρ +
θ

1´ ε
[(

ε

ε´ 1
ΣCt

ΣRt
)1´ε

´ 1]´ γ
v̇
vt

+
(1 + γ) ˙ΛΣC + v̇

((1 + γ)ΛΣC + vt)
(21)
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Keep in mind that ˙ΛΣC and ΛΣC cannot be determined analytically and must be computed.

I will later demonstrate machine learning techniques for solving this problem that can be ap-

plied to other uses. Before moving on to computation, however, let us analytically compare the

dynamics of our result so far with a rule of the Taylor Rule variety.

2.6 Comparison of Dynamics with Taylor Rule

Consider for example the following Taylor rule. To elaborate more on intuition rather than

realism, I assume the central bank only cares about inflation and that the target level is 0.

rt =φππt (22)

φπ ą 0

I can now plug this value in to the equilibrium conditions of the model to arrive at the dy-

namics of marginal cost, the key variable in our underlying system.

λ̇

λt
= ρ + πt ´ φππt

= γ
v̇
vt
´

ṁc
mct

ñ

ṁc
mct

= ´γ
v̇
vt
´ ((1´ φπ)πt)

Compare the above equation with the results of Yun (2005):

ṁc
mct

= ´
v̇

(1 + η)vt
(23)

where η is the optimal subsidy rate, which would be set to 1/(ε´ 1).

Compare both of these with my fundamental result from before, which was:

ṁc
mct

= ´
(1 + γ) ˙ΛΣC + v̇
(1 + γ)ΛΣC + vt

(24)
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2.7 Comparison of Dynamics of Price Stability Rule

We can also determine a rule that seeks perfect price stability, in other words one that sets

out to:

πt = 0, @t

From this we get:

v̇ = θ(1´ vt)

We also have the following relationship between expectation terms:

ΣCt

ΣRt
=

ε´ 1
ε

This does not imply the two terms are always constant, but it does imply that their growth rates

must be the same to maintain a constant proportion. From the equilibrium dynamics of each

we get that:

Σ̇R = θΣRt ´ 1

Σ̇C = θΣCt ´mct

Which means that:

θΣRt ´ 1 = θΣCt ´mct

So we arrive at an expression of marginal cost:

mct = 1 + θ(ΣCt ´ ΣRt)
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Taking the time derivative:

ṁc = θ(Σ̇C ´ Σ̇R) = 0

Intuitively, this must be zero because the goal of marginal cost in this instance is to make the

expectation of future costs have a specific value to maintain a certain proportion. Once this is

locked into place, there is no more

This allows us to say something about how our result compares. Remember our first order

condition:

ṁc
mct

= ´
(1 + γ) ˙ΛΣC + v̇
(1 + γ)ΛΣC + vt

(25)

Note that even mechanically this cannot be equal to 0 except in steady state, since, from the

dynamics with inflation set to 0 included:

v̇ = θ(1´ vt)

Now, what this does mean is that my optimal result converges to the standard result if v0 = 1, in

other words if we start in the long run equilibrium. This is a confirmation of the results of Yun

(2005), though without the assumption of a subsidy on employment, meaning that the steady

state itself is distorted, then this will not be correct. I will show this explicitly in a later section,

2.9. This, however, requires thinking through possible steady states, which requires me to first

lay out the optimal dynamics of the entire system.

2.8 The System

We arrive thus at the following system of differential equations which define the optimal

evolution of the economy. The border conditions are given by the steady state values of the

relevant variables. Note that our costate variable, the marginal utility of wealth, now vanishes

in the system governing our complete results. Because marginal cost is allowed to freely move,
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the optimal interest rate is what I “back out” of the process controlling the costate term.

˙ΛΣR = (ρ´ (θ ´ (ε´ 1)πt))ΛΣR ´ µπ
ε

ε´ 1
ΣCt

(ΣRt)2 (26)

˙ΛΣC = (ρ´ (θ ´ επt))ΛΣC + µπ
ε

ε´ 1
1

ΣRt
(27)

Λ̇v = (ρ´ επt + θ)Λv +
mct

1 + γ
+

γ

1 + γ

1
vt

(28)

Σ̇R = (θ ´ (ε´ 1)πt)ΣRt ´ 1 (29)

Σ̇C = (θ ´ επt)ΣCt ´mct (30)

v̇ = θ(1 + πt(1´ ε)/θ)´ε/(1´ε) + (επt ´ θ)vt (31)

s.t.

(1 + πt
1´ ε

θ
)

1
1´ε =

ε

ε´ 1
ΣCt

ΣRt
(32)

mct =
1

(1 + γ)ΛΣC + vt
(33)

µπ

θ
(1 + πt(1´ ε)/θ)

ε
1´ε = ΛΣR(ε´ 1)ΣRt + ΛΣC εΣCt

+ Λv[ε[(1 + (1´ ε)πt/θ)]
´1
1´ε ´ εvt] (34)

I will use this system in our numerical computation. The steady state values are also computa-

tionally determined. To see the steady state implied by a specified parameterization, see 3.4.1.

2.9 Non-Optimality of Zero-Inflation Long-Run Target

I will not solve here for the full steady-state allocation, but instead want to point to one result:

the non-optimality of perfect price stability.

From the above, assuming πss = 0 we have first from equation (31):

0 = θ(1´ vss)

ñ vss = 1
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From equations (29) and (30), we have that:

ΣRss =
1
θ

ΣCss =
mcss

θ

From equation (32) and the above results:

1 =
ε

ε´ 1
ΣCss

ΣRss

ñ mcss =
ε´ 1

ε

Using these results, we can take equations (26) and (27) to arrive at:

ΛΣRss =
θµπ

(ρ´ θ)

ΛΣCss = ´
εθµπ

(ε´ 1)(ρ´ θ)

Substituting into equation (34):

µπ

θ
=

(ε´ 1)θµπ

θ(ρ´ θ)
´

ε(ε´ 1)εθµπ

θ(ρ´ θ)ε(ε´ 1)

ñ
1
θ
=

(ε´ 1)
(ρ´ θ)

´
ε

(ρ´ θ)

ñ
(ρ´ θ)

θ
= ´1

ñ ρ´ θ = ´θ

ñ ρ = 0

Thus the parameterization we would need in order to solve the problem would imply that the

discount parameter would equal zero, meaning that the representative does not discount the

future at all. Most of the time the literature assumes that the subjective discount factor is close

enough to zero where approximation does not have to factor this in. Far enough from the steady

state, however, this is no longer the case. Also, unlike Yun (2005), because of a distorted steady
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state we do not converge in the long run to a zero inflation steady state. However, because there

exists a steady state, the central bank will always return to stabilizing around some given steady

state value. For the computationally determined steady state values of a given parameter set,

see 3.4.1.
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3 Numerical Solution: A Deep Learning Approach

In recent years deep learning has been applied to problems of PDEs (Raissi et al 2018). More

recently it has been applied to explicit economics questions (Duarte 2018, Fernandez-Villaverde

et al 2020). My approach follows most closely the method of Nakamura-Zimmerer et. al (2021a,

2021b), who use neural networks to approximate two-part boundary problems by first solving

a system of ordinary differential equations, though in that paper the authors limit themselves to

an LQ framework. I then use this data to train a neural network for approximating the relevant

portions of the value function along the optimal path. The insight is that because I am only

interested in the interest rate, I do not need to fully approximate the entire value function. In

other words, I first numerically compute the optimal path, and then use the optimal path to

train an additional model for the interrelation of state and control variables. This approach of

solving the system of equations defining the monetary policy problem as a boundary problem

and then using the results to train an additional model of the interest rate significantly aids with

computational speed.

As mentioned in the introduction, there are advantages of this deep learning approach com-

pared to more familiar methods. By the universal approximation theorem (Bach 2017), a neural

network can approximate any unknown Borel measurable function, and neural networks are less

sensitive to good initial guesses than collocation methods. A neural network method (largely)

allows one to avoid the curse of dimensionality that define grid based methods, which forms

the bulk of economic numerical methods.

3.1 Deep Learning: A Brief Overview

At the lowest level, a neural network is composed of ”neurons”, functions of the form:

n(x; Θ) ” φ(θ0 +
N

ÿ

i

θixi)

The function takes input x and is paramaterized by the weight vector Θ. The activation function

φ(.) is a nonlinear function. Common functions include the hyperbolic tangent.
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I create a “layer” by stacking N1 neurons on top of each other:

N(x; Θ) ” (n(x; Θ1), ..., n(x; ΘN1))
T

3.2 Deep Learning: Application

Let us now look at how to actually implement the deep learning framework. To get a feel for

the approach, consider a subset of our equilibrium conditions:

0 = ´ ˙ΛΣR + (ρ´ (θ ´ (ε´ 1)πt))ΛΣR ´ µπ
ε

ε´ 1
ΣCt

(ΣRt)2

0 = ´ ˙ΛΣC + (ρ´ (θ ´ επt))ΛΣC + µπ
ε

ε´ 1
1

ΣRt

0 = ´Λ̇v + (ρ´ επt + θ)Λv +
mct

1 + γ
+

γ

1 + γ

1
vt

I will express each variable as a neural network with time as the only input variable. I will

define the error associated with each equilibrium condition in the following way:

errΛΣR
=´

BΛΣR(t, Θ)

Bt
+ (ρ´ (θ ´ (ε´ 1)π(t, Θ)))ΛΣR(t, Θ)

´ µπ(t, Θ)
ε

ε´ 1
ΣC(t, Θ)

(ΣR(t, Θ))2

errΛΣC
=´

BΛΣC(t, Θ)

Bt
+ (ρ´ (θ ´ επ(t, Θ)))ΛΣC(t, Θ)

+ µπ(t, Θ)
ε

ε´ 1
1

ΣR(t, Θ)

errΛv =´
BΛv(t, Θ)

Bt
+ (ρ´ επ(t, Θ) + θ)Λv(t, Θ)

+
mc(t, Θ)

1 + γ
+

γ

1 + γ

1
v(t, Θ)

These error terms relate to deviations in the neural model from the dynamic path constraints

and train the model to trace the optimal path as defined by optimality conditions.
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I can do the same for path equality constraints defining certain variables and associated with

Lagrange multipliers:

errmc =´mc(t, Θ) +
1

(1 + γ)ΛΣC(t, Θ) + v(t, Θ)

errµπ =´
µπ(t, Θ)

θ
(1 + π(t, Θ)(1´ ε)/θ)

ε
1´ε

+ ΛΣR(t, Θ)(ε´ 1)ΣR(t, Θ) + ΛΣC(t, Θ)εΣC(t, Θ)

´Λv(t, Θ)[ε[θ(1 + (1´ ε)π(t, Θ)/θ)]
2ε´1
1´ε + εv(t, Θ)]

As well as for the dynamics of each variable and the constraint defining inflation:

errΣR =´
BΣR(t, Θ)

Bt
+ (θ ´ (ε´ 1)π(t, Θ))ΣR(t, Θ)´ 1

errΣC =´
BΣC(t, Θ)

Bt
+ (θ ´ επ(t, Θ))ΣC(t, Θ)´mc(t, Θ)

errv =´
Bv(t, Θ)

Bt
+ θ(1 + π(t, Θ)(1´ ε)/θ)ε/(1´ε)

+ (επ(t, Θ)´ θ)v(t, Θ)

errπ =´ (1 + π(t, Θ)
1´ ε

θ
)

1
1´ε +

ε

ε´ 1
ΣC(t, Θ)

ΣR(t, Θ)

Finally I define the error at the boundary conditions.

errΣR,0 =ΣR(0, Θ)´ ΣR0

errΣC,0 =ΣC(0, Θ)´ ΣC0

errv,0 =v(t, Θ)´ v0

errΛΣR ,T =e´pTΛΣR(T, Θ)

errΛΣR ,T =e´pTΛΣC(T, Θ)

errΛΣR ,T =e´pTΛv(T, Θ)

For estimation another technique was also used to increase efficiency in cases where error at

the boundaries was unacceptably large. Instead of directly including error terms for the bound-
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ary conditions, I reformulate the neural network as a neural form to incorporate “hard bound-

aries”, as shown in Lagari et al (2020).

A neural form is any construction that is built upon a neural network. For our purposes,

consider for example the neural form associated with inflation:

(
T ´ t

T
)π0 + t(t´ T)π(t, Θ))) + (

t
T
)πss

We can see that for the above at either boundary - the terminal steady state or the initial condition

- the neural form is constructed by design to fit the boundary condition with complete accuracy.

The central component, the actual neural network within the neural form, is what is trained to

fit the path conditions.

The infinite-horizon variation is obtained with the limit T Ñ 8. I will use the error above

defined for a particular value of T, then extend that value as I solve if the terminal errors are

above a certain tolerance.

The total loss is defined as:

loss(t; Θ) =err2
ΛΣR

+ err2
ΛΣC

+ err2
Λv

+ err2
mc + err2

µπ

+ err2
ΣR

+ err2
ΣC

+ err2
π + err2

ΣR,0 + err2
ΣC,0 + err2

v,0

+ err2
ΛΣR ,T + err2

ΛΣR ,T + err2
ΛΣR ,T

To solve the model, I choose the parameter set Θ to minimize the above global loss function

over a set of time points.

1
|D|

|D|
ÿ

i=1

loss(ti; θ)

The solution will be the open loop solution, in other words I will have the optimal path. Once

I have the optimal path, then I can define another neural network to approximate the optimal
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interest rate as a function of the state variables:

r(x) = NN(x; θ)

Note that I had previously defined the optimal interest rate as:

rt = ρ + πt ´ γ
v̇
vt

+
ṁct

mct

I thus already have the optimal interest rate defined on the optimal path. To train the neural

network, I first obtain a set of optimal paths with randomly chosen initial points. I then take a

set of points along these optimal paths and minimize the error to approximate the interest rate

as a function of the state variables. In other words, I convert a set of open loop solutions to a

closed loop one.

errr(x, t) =
1
|D|

|D|
ÿ

i=1

[r(x; θ)´ r(t)]2

3.3 Technical Details

All coding was done in python using the Tensorflow library. For the first round, I construct

a fully connected neural network with 8 hidden layers of 120 neurons each. The library Deep-

XDE was used for the first round (Lu et al 2021). The sigmoid activation function and Adam

stochastic gradient descent-type algorithm are adopted in the neural network. For the second

round, I construct a fully connected neural network with 4 hidden layers of 64 neurons each.

The tanh activation function and Adam stochastic gradient descent-type algorithm are adopted

in the neural network. This work utilized the Summit supercomputer, which is supported by

the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Col-

orado Boulder, and Colorado State University. The Summit supercomputer is a joint effort of the

University of Colorado Boulder and Colorado State University.
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3.3.1 Parameterization and Steady State Values

Table 1: Parameterization

γ 1 Frisch labor supply elasticity

ρ 0.01 Subjective rate of time preference

ψ 1 Preference for leisure

θ 0.65 Calvo parameter

ε 25 Elasticity of substitution for intermediate goods

The following steady state values are computationally determined.

Table 2: Steady State Values

ΛΣRSS -0.0200 Costate, Discounted Future Revenues

ΛΣCSS 0.0208 Costate, Discounted Future Costs

ΛvSS -1.4844 Costate, Price Dispersion

ΣRSS 1.5380 Discounted Future Revenues

ΣCSS 1.4765 Discounted Future Costs

vSS 1.0+1.9472ˆ10´9 Price Dispersion

µπSS 0.0197 Lagrange coefficient, inflation and auxiliary variables

mcSS 0.9600 Marginal Cost

πSS -8.1181 ˆ10´6 Inflation

rSS 0.9992% Interest Rate
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3.4 Computational Results

We arrive then at the computational results. First, I want to give a sample set of transition

paths with a set of initial conditions. Next, I will show what the interest rate looks like in terms

of the other variables of the model.

3.4.1 Sample Transition Paths

The initial conditions are as follows. Note that marginal cost and inflation are functions of

the other three true state variables of the model. I include them for clarity.

Table 3: Initial Conditions

Σ0 1.62 Discounted Future Revenues

Σ0 1.61 Discounted Future Costs

v0 1.62 Price Dispersion

mc0 0.348 Marginal Cost

π0 2.96 ˆ10´6 Inflation
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The first thing to notice is that the central bank wants to get price dispersion down, and

does so on a gliding path. Price dispersion, though inevitable with greater production, is very

damaging to consumer welfare. You can see that the central bank lowers price dispersion nearly

to 1, the long run value. This is very close to, if not essentially, efficient.

For price dispersion to decrease, inflation must also decrease. The central bank essentially

slows down the economy, and does so to such an extent as to cause deflation for a short amount

of time. This deflation, however, is not as extreme as the inflation that the economy started with.

Note that the central bank’s hands are tied with initial inflation. This is the main difference

between my results and Yun (2005). When you assume away production distortions, then you

do not need to include the firm’s pricing decision. When you do not include this pricing decision,

then inflation can freely jump. This is not possible in my setup.
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This is done by having the interest be relatively high at the outset, and then lowering it to

guide inflation back to its long-run value.

You can see the effect through marginal cost as well, which rises before lowering to its long

run value.
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Finally, there are the dynamics of firm expectations. The central bank acts to at first have

high expectations of revenues and costs, with a smaller difference between the two. This lowers

economic output. Then the central bank causes both expectations to fall, though it does so to a

greater extent with expectations of future costs. This causes the gap between the two to increase.

These dynamics, again, are lost if linearization is doen to the model.
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3.4.2 The Interest Rate

I illustrate next the interest rate as a function of relevant state variables. Note that here the

interest rate is given as a function of inflation (π) at particular values of price dispersion (v).

Remember that v=1 implies total efficiency, with v being bounded below by 1.

A few things are of note here. First, is the confirmation that nonlinearities matter. It also sup-

ports the idea that the price dispersion term does in fact influence optimal monetary policy.

Traditionally, this term is considered orthogonal to the policy decision, or at the very least it is

discarded as being second order. The relationship is intuitive: as inefficiencies associated with

price dispersion become more pronounced, then the central bank should be more aggressive

overall.
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4 Conclusion

Although optimal monetary policy is important to central banks for the practical problems

that they face, computational limits have been a barrier. With some important exceptions that

have used computational techniques in a case-by-case basis, most of the applications addressed

have been simplified to make them easier to solve by hand or easier to compute. In this paper, I

applied recent machine learning techniques that may be used to answer a wide range of other

questions where computational limitations have been a major issue. I illustrated these tech-

niques as applied to the question of how firm expectations and price distortions should jointly

influence optimal monetary policy. In a fully non-linear New Keynesian Model with price and

labor distortions, I found that price level stabilization around a long-run value is best when dis-

tortions are small. However, the farther we start from the long-run value, the policy response

should be more nonlinear and more aggressive. I showed that interest rate policy should take

into consideration both price dispersion and firm expectations on future costs, the latter directly

relating to distortions from monopolistic competition. I showed how in the face of a large initial

price distortion, the central bank is aggressive enough to temper the price dispersion, even at

the cost of temporary deflation. This deflation occurs after the initial shock, however, because

the production distortions limit the path inflation can take.

The next step then would be to apply the methods used here to more complex environ-

ments to pose questions that are difficult to answer using the normal assumptions of the optimal

monetary policy literature. Future research could continue to leverage these machine learning

techniques to answer further questions, including, for example, to what extent optimal policy

should display inertia or adjust rapidly, how skewed or non-normal uncertainty should matter,

and how to incorporate more behavioral-style preferences like rational inattention. While my

application is focused on optimal monetary policy, the techniques can be applied to macroeco-

nomics more broadly, industrial organization, finance, labor, and others. It can efficiently solve

models with hundreds of state variables. It can be used for both reduced-form and structural

dynamic models, and can be used to get information from unstructured sources of data like text.

Machine learning methods are particularly promising for multi-agent modeling, efficiently es-
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timating global solutions, business cycle and financial forecasting, and using text data, among

many other things.
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A Underlying Model

The underlying model is a continuous time New Keynesian model with labor as the produc-

tion input, Calvo pricing and monopolistic competition, and no uncertainty. I will summarize

the important aspects of this model for clarity in the ensuing analysis. For fuller derivations,

please reference Fernandez-Villaverde et al (2012), who work out the generaly dynamics of this

kind of model in continuous time, though through specifying a Taylor rule type monetary pol-

icy.

A.1 Consumption

A representative consumer seeks to maximize lifetime utility, represented by a utility func-

tion separable in consumption (c) and hours worked (n).

ż 8

0
e´ρt

tln(ct)´ ψ
n1+γ

t
1 + γ

u

Where ρ is the subjective rate of time preference, ψ is the disultity of labor, and γ is the inverse

of Frisch labor supply elasticity.

The household can trade on Arrow securities and on nominal government bonds bt at a

nominal interest rate rt. The household earns a disposable income of rtbt + ptwtnt + ptΠt, where

pt is the price of the consumption good, wt is the real wage, and Πt represents firm profits.

Household financial wealth evolves as follows. Note that ḃ refers to db
/

dt

ḃ = rtbt ´ ptct + ptwtnt + ptΠt

Inflation is defined as:

πt =
ṗ
pt
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Let us define real financial wealth as at ”
bt
pt

. Real wealth then evolves as follows:

ȧ =
rtbt ´ ptct + ptwtnt + ptΠt

pt
´

bt

p2
t

πt pt

= ((rt ´ πt)at ´ ct + wtnt + Πt

A.2 Production

Final good production is competitive. A representative producer purchases intermediate

goods and produces the final good with the production function:

yt = (

ż 1

0
y

ε´1
ε

it )
ε

ε´1

where ε is the elasticity of substitution.

The input demand functions associated with the final good producer’s problem are given as:

yit = (
pit

pt
)´εyt @i

pt = (

ż 1

0
p1´ε

it di)
1

1´ε

Each intermediate firm i produces differentiated goods out of labor using:

yit = Anit

where nit is the amount of labor rented by firm i and A is a technology paramter. The inter-

mediate good producer is a monopolistic firm and price setting is carried out via the Calvo

formulation. At rate θ, intermediate firm i get the opportunity to reset their price. Any firm

which does not receive such signal does not have the opportunity to change their price. The

probability of receiving such a signal is independent of the timing of the last signal.

Prices are set to maximize expected discounted profits. Note that an expectation operator
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is used because although there is no uncertainty in the aggregate, because the timing of indi-

vidual firm price changes is random there is uncertainty on the individual firm level. Note also

that real marginal cost, mcτ = wτ/A, is common across firms because firms share a common

technological parameter.

The intermediate firm’s problem is:

max
pit

Et

ż 8

t

λτ

λt
e´θ(τ´t)[

pit

pτ
yiτ ´mcτyiτ]dτ

where λτ is the time t value of consumption in period τ to the household.

The first order conditions of the firm is as follows. The ratio of the optimal new price, com-

mon across all firms able to reset their prices, and the prices of the final good, is given by:

pit

pt
=

ε

ε´ 1
ΣCt

ΣRt

where:

ΣRt =

ż 8

t
λτe´θ(τ´t)(

pt

pτ
)1´εyτdτ

represents expected present discounted value of total future revenue, and

ΣCt =

ż 8

t
λτe´θ(τ´t)mcτ(

pt

pτ
)´εyτdτ

represents expected present discounted value of total future costs. In both cases the λ term refers

to the discount factor in terms of consumer valuation. This will refer to a stochastic discount

factor in later sections. I maintain the same framework here for consistency.

This means that the optimal reset price equals the desired markup ε
ε´1 multiplied by the

ratio of the future cost index ΣCt and future revenue index ΣRt. Because any firm has virtually

no effect on aggregate terms, both of these indexes are exogenous to the firm.

The other variable of interest is that for price dispersion, v, which can be viewed as the ineffi-

ciency associated with not all firms having the same price at the same time. In practical terms it
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acts as a wedge between production in terms of inputs and in terms of output after aggregation.

yt =
Ant

vt

where

vt =

ż 1

0
(

pit

pt
)´εdi

Note that 1 ď vt, where vt = 1 would imply efficiency. Price dispersion acts as the point of

inefficiency flowing from staggered price setting. Price dispersion can also be thought of as a

misalignment between decisions made on the basis of marginal cost and those made on the basis

of marginal utility. This theme of a wedge between benefits and costs will be revisited when I

examine the central bank’s problem.

A.3 Equilibrium Results

The equilibrium results from the above model will be used later to formulate the constraints

of the central bank’s problem. These equilibrium results are expressed by the following differ-

ential equations and equality constraints.

Σ̇R = (θ ´ (ε´ 1)πt)ΣRt ´ 1

Σ̇C = (θ ´ επt)ΣCt ´mct

v̇ = θ(1 + πt
1´ ε

θ
)´

ε
1´ε + (επt ´ θ)vt

λ̇ = (ρ´ rt + πt)λt

mct = ψ(Aλt)
´(1+γ)vγ

t

(1 + πt
1´ ε

θ
)

1
1´ε =

ε

ε´ 1
ΣCt

ΣRt

The above conditions correspond to the development of the firm’s revenue and cost expectations,

aggregate price dispersion, the household Euler equation, and equations which determine equi-
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librium marginal cost and inflation. An important point here is that marginal cost acts as a sort

of key. Indeed, for any given level of marginal cost and state variables the partial equilibrium

is determined for consumption and labor (here essentially the consumption and labor decision

is equivalent to a joint determination of marginal utility and marginal cost). This latter point

will be exploited for the central bank’s problem and will continue to act as a guiding principle

throughout all our analysis later on.

There are other points of interest here. The sign of the relationship between the time deriva-

tive of the future cost and revenue indexes and the indexes themselves is dependent on the

current level of inflation. We see that for very low, near zero or negative inflation levels, that

higher current values of these indexes increases the time derivative, and that higher inflation

levels flip that relationship. Note also that there are knife-edge cases of inflation where the time

derivative loses all relationship with current levels.
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B The Traditional Way

Before continuing, it may be useful to compare our approach with what is commonly done in

the legacy of Woodford (2003). The central bank would be attempting to minimize a quadratic

loss function. The following is a typical case:

min
rt

1
2

ż 8

0
e´ρt[αππ2

t + αxx2
t ]dt

subject to:

dπt = (ρπ(πt ´ π̄)´ κxxt)dt + ρπdZt

dxt =
1
γ
[rt ´ r̃´ (πt ´ π̄)] + ρxdZt

Where xt is the output gap and πt is inflation (here it is assumed that the natural rate of inflation

is zero).

A few things are obvious. First, this derivation is dependent on the underlying model in a

way that must be derived and is not apparent a priori. It also relies on shocks being relatively

small and assumes symmetry of effects as well as Gaussian shocks. The approach of this cur-

rent paper maintains generality in these aspects. In addition, if one would like to change the

underlying model, for example to introduce a distorted steady state, non-standard preferences,

or rational inattention, then our approach makes this easier to accommodate in a tractable way.
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C Equivalency of Optimal Control Techniques

I will now prove that treating functions of state variables as controls with a Lagrangian is

equivalent to working directly with them as state variables. This was used implicitly in the

central bank’s problem.

Consider the problem:

maxF(X, Y, Z)

s.t.

ẏ = G(X, Y, Z)

Z = H(Y)

Consider the method of substitution:

maxF(X, Y, H(Y))

s.t.

ẏ = G(X, Y, H(Y))

Take the Hamiltonian:

H = F(X, Y, H(Y)) + ΛG(X, Y, H(Y))

FOC:

x :Fx = 0

y :´ λ̇ + ρΛ = Fy + FH(y)Hy + Λ[Gy + GH(y)Hy]
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Let us take the Lagrangian method:

H = F(X, Y, Z) + ΛG(X, Y, Z) + µ(H(Y)´ Z)

FOC:

x :Fx + ΛGx = 0

z :Fz + ΛGz ´ µ = 0

y :´ λ̇ + ρΛ = Fy + ΛGy + µHy

µ :G(Y) = Z

This implies:

Fz + ΛGz = µ

´ λ̇ + ρΛ = Fy + ΛGy + µHy

´ λ̇ + ρΛ = Fy + ΛGy + [Fz + ΛGz]Hy

´ λ̇ + ρΛ = Fy + FzHy + Λ(Gy + GzHy)

´ λ̇ + ρΛ = Fy + FzHy + Λ[Gy + GzHy]

´ λ̇ + ρΛ = Fy + FH(y)Hy + Λ[Gy + GH(y)Hy]

We see therefore that for the purposes of optimal control analysis that we can consider any

function of the state variables as a control variable without loss.
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D Transversality Conditions

D.1 Deterministic Case

Transversality Conditions for the Deterministic Case:

lim
TÑ8

e´pTΛΣR ě 0

lim
TÑ8

e´pTΛΣC ě 0

lim
TÑ8

e´pTΛvt ě 0

lim
TÑ8

e´pTΛλt ě 0

lim
TÑ8

e´pTΛΣR ΣRt = 0

lim
TÑ8

e´pTΛΣC ΣCt = 0

lim
TÑ8

e´pTΛvtvt = 0

lim
TÑ8

e´pTΛλtλt = 0
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Policy Problems,â NBER working paper no. 12672, revised August 2008.

[5] Bilbiie, Florin O. & Ragot, Xavier. “Optimal monetary policy and liquidity with heteroge-

neous households”, Review of Economic Dynamics, 2020.

[6] Challe, Edouard, “Uninsured Unemployment Risk and Optimal Monetary Policy in a Zero-

Liquidity Economy.” American Economic Journal: Macroeconomics, 12 (2): 241-83, 2020.

[7] Christiano, L., Motto, R., and Rostagno, M. “Notes on ramsey-optimal monetary policy”.

Mimeo, 2007.

[8] Clarida, Richard, Gali, Jordi Gali, and Gertler, Mark, “The Science of Monetary Policy: A

New Keynesian Perspective,” Journal of Economic Literature, vol. 37 (December), pp. 1661-

707, 1999.

[9] Curdia, Vasco & Woodford, Michael, “Credit Frictions and Optimal Monetary Policy,” Jour-

nal of Monetary. Economics, Elsevier, vol. 84(C), pages 30-65, 2016.

[10] Duarte, V. “Machine learning for continuous-time economics”. Working paper, 2018.

[11] El Karoui, N., Peng, S. Peng, and Quenez, M.C. “Backward stochastic differential equations

in finance”, Mathematical Finance, 7, 1-71, 1997.

48



[12] El Karoui, N. & Mazliak, L (editors), “Backward stochastic differential equations”, Pitman

research notes in mathematics series, 1997.

[13] Faulwasser, T. et al. “Unconventional monetary policy in a nonlinear quadratic model.”

Studies in Nonlinear Dynamics and Econometrics, 2020.

[14] Fernandez-Villaverde, Jesus, Hurtado, Samuel, and Nuno, Galo, “Financial Frictions and

the Wealth Distribution,” NBER Working Papers 26302, National Bureau of Economic Re-

search, Inc, 2019.

[15] Fernandez-Villaverdez, Jesus, Posch, Olaf, and Rubio-Ramirez, Juan F.“Solving the new

Keynesian model in continuous time,” Meeting Papers 829, Society for Economic Dynamics,

2012.

[16] Gali, Jordan. “New Perspectives on Monetary Policy, Inflation, and the Business Cycle,” in

Mathias Dewatripont; Lars P. Hansen and Stephen J. Turnovsky, eds, Advances in economics

and econometrics: Theory and applications, Vol. 3. Cambridge: Cambridge University Press, pp.

151-97, 2003.

[17] Gali, Jordi and Monacelli, Tommaso. “Monetary Policy and Exchange Rate Volatility in a

Small Open Economy,” Review of Economic Studies, Vol. 72, pp. 707-734, 2005.

[18] Giannoni, Marc P., and Woodford, Michael, ”Optimal Interest-Rate Rules: I. General The-

ory,” National Bureau of Economic Research Working Paper Series, No. 9419, January 2003

[19] Giannoni, Marc P., and Woodford, Michael, “Optimal Inflation-Targeting Rules,” in Ben S.

Bernanke and Michael Woodford, eds., Inflation Targeting. Chicago: University of Chicago

Press, pp. 93-172, 2005.

[20] Goodfriend, Marvin and King, Robert, “The New Neoclassical Synthesis and the Role of

Monetary Policy,” in Ben S. Bernanke and J. J. Rotemberg, NBER macroeconomics annual 1997,

Vol. 12. Cambridge, MA: MIT Press, pp. 231-83, 1997.

[21] Huh, H., Lee, H.H., Lee, “N. Nonlinear Phillips curve, NAIRU and monetary policy rules”

49



Empirical Econ., 37, pp. 131-151, 2009.

[22] Kahn, Aubhik; King, Robert G. and WOlman, Alexander L. “Optimal Monetary Policy.”

Review of Economic Studies, 70(4), pp. 825-60, 2003.

[23] Kim, Jinill and Ruge-Murcia, Francisco J., “Extreme Events and Optimal Monetary Policy”.

International Economic Review, Vol. 60, Issue 2, pp. 939-963, May 2019

[24] Lagari, Pola Lydia Tsoukalas, Lefteri Safarkhani, Salar Lagaris, Isaac. (2020). Systematic

Construction of Neural Forms for Solving Partial Differential Equations Inside Rectangular

Domains, Subject to Initial, Boundary and Interface Conditions. International Journal on Ar-

tificial Intelligence Tools. 29. 10.1142/S0218213020500098.

[25] Levin, Andrew T., Onatski, Alexei, Williams, John C., and Williams, Noah, “Monetary Pol-

icy Under Uncertainty in Micro-Founded Macroeconometric Models,” in Mark Gertler and

Kenneth Rogoff, eds., NBER Macroeconomics Annual 2005. Cambridge, Mass. MIT Press,

pp. 229-87, 2005.

[26] Lu, X. Meng, Z. Mao, G. E. Karniadakis. DeepXDE: A deep learning library for solving

differential equations. SIAM Review, 63(1), 208â228, 2021.
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