
Deep learning for solving dynamic economic models.1

Lilia Maliar, Serguei Maliar¤, Pablo Winantyz

 The Graduate Center, City University of New York and CEPR;
 Santa Clara University;

 ESCP Business School and CREST/Ecole Polytechnique

Received Date; Received in Revised Form Date; Accepted Date

2

Abstract3

We introduce a uni¯ed deep learning method that solves dynamic economic models by casting them into nonlinear regression4

equations. We derive such equations for three fundamental objects of economic dynamics { lifetime reward functions, Bellman5

equations and Euler equations. We estimate the decision functions on simulated data using a stochastic gradient descent method.6

We introduce an all-in-one integration operator that facilitates approximation of high-dimensional integrals. We use neural7

networks to perform model reduction and to handle multicollinearity. Our deep learning method is tractable in large-scale8

problems, e.g., Krusell and Smith (1998). We provide a TensorFlow code that accommodates a variety of applications.9

Keywords: Arti¯cial intelligence; Machine learning; Deep learning; Neural network; Stochastic gradient; Dynamic models; Model Reduction; Dynamic10

programming; Bellman equation; Euler equation; Value function11

JEL classi¯cation: C61, C63, C65, C68, C88, E32, E3712

1. Introduction13

Arti¯cial intelligence (AI) has remarkable applications, such as recognition of images and speech, facilitation of14

computer vision, operation of self-driving cars; see Goodfellow et al. (2016) for a review. At the same time, there are15

many interesting problems that computational economists cannot solve yet, including high-dimensional heterogeneous-16

agent models, large-scale central banking models, life-cycle models, and expensive nonlinear estimation procedures,17

among others. We show that it is possible to solve many challenging economic models by using the same AI technology,18

software and hardware that led to groundbreaking applications in data science. We speci¯cally introduce an econometric-19

style deep learning (DL) method that solves dynamic economic models by reformulating them as nonlinear regression20

equations. Our four novel results are stated below:21

First, we o®er a uni¯ed approach which allows us to cast three fundamental objects of economic dynamics { lifetime22

reward functions, Bellman equations and Euler equations { into objective functions for Monte Carlo simulation. Such23

objective functions are given by a weighted sum of all of the model's equations, so we iterate on the entire model and24

solve for all decision functions at once. To optimize the constructed objective functions, we use deep learning regression25

¤Corresponding author: maliars@stanford.edu
yWe are grateful to Marc Maliar for his help with writing the TensorFlow code for solving Krusell and Smith's (1998) model. We

thank the editor and an annonimous referee for many useful comments and suggestions. The paper also circulated under the title "Will
Arti¯cial Intelligence Replace Computational Economists Any Time Soon?" We also received useful comments from participants of the
2018 Society for Computational Economics (CEF) Conference in Milan (invited session), 2018 Econometric Society Australasian Meeting
(ESAM) in Auckland (invited talk), Oxford University, CEPREMAP, Banque de France, Panorisk Summer School, NYU Abhu Dabi, Paris
Dauphine University, CREST (Ecole Polytechnique), Durham University, Santa Clara University, Rutgers University, PASC conference,
Model comparison conference in Frankfurt, Complutense University of Madrid, Stanford University, Queens College, Stony Brook University,
Columbia University, Deutsche Bundesbank, the Graduate Center, CUNY.

zLilia Maliar and Serguei Maliar acknowledge ¯nancial support from the NSF grants SES-1949413 and SES-1949430, respectively.

Deep learning for solving dynamic economic models. 2

techniques from the ¯elds of econometrics and data science. Once the regression coe±cients are constructed, we infer1

the value and decision functions of the underlying dynamic economic models.2

Second, we show how to adapt a stochastic gradient descent method to training of the three constructed objective3

functions. In each iteration, we use just one or a few (batch) grid points, which are randomly drawn from the state4

space, instead of a ¯xed grid with a large number of grid points used by conventional projection and value iterative5

methods. In small problems, we draw grid points from an exogenous solution domain, but in large problems, we produce6

grid points by stochastic simulation which allows us to focus on the ergodic set in which the solution "lives", avoiding7

the cost of computing solutions in those areas that are never visited in equilibrium. Thus, our DL framework aims not8

only on convergence of decision and value functions along iterations but also on convergence of simulated series to the9

ergodic set.10

Third, we introduce the all-in-one (AiO) expectation operator for e±cient approximation of integrals in Monte Carlo11

simulation. The objective functions, which we derive from economic models, have two types of expectation operators.12

One is with respect to next-period shocks (which appears naturally in stochastic models), and the other is with respect13

to the current state variables (which we created ourselves by drawing grid points randomly from the state space).14

Approximating these two nested expectation operators is costly, especially, in large-scale applications. The AiO method15

merges the two expectation operators into one, reducing the cost dramatically. It possesses a remarkable distributive16

property: a single composite Monte Carlo draw is used both for integration with respect to future shocks and for17

approximation of decision functions.18

The way we construct the AiO operator di®ers for the three objective functions considered. For the lifetime reward19

method, we draw randomly the initial condition, in addition to future shocks. For the Euler-equation method, we use two20

independent random draws (or two independent batches) for evaluating two terms of the squared residual { this method21

eliminates the correlation between the two terms and helps us pull the expectation operator out of the square. Finally,22

for the Bellman-equation method, we introduce a value-iterative scheme that combines a minimization of residuals in23

the Bellman equation with a maximization of the right side of the Bellman equation into a single weighted-sum objective24

function. We use the Fischer-Burmeister function for a smooth approximation of Kuhn-Tucker conditions.25

Our last important contribution is to implement the DL solution framework using the Google TensorFlow data26

platform{the same software that lead to ground-breaking applications in data science. Our implementation is versatile27

and portable to a variety of economic models and applications.128

The solution framework we introduce is not tied to neural networks but can be used with any approximating family29

(e.g., polynomials, splines, radial basis functions). However, neural networks possess several features that make them an30

excellent match for high-dimensional applications; namely, they are linearly scalable, robust to ill-conditioning, capable31

of model reduction and well suited for approximating highly nonlinear environments including kinks, discontinuities,32

discrete choices, switching.33

We ¯rst illustrate our DL solution framework by using a simple one-agent consumption savings problem with a34

borrowing constraint. We implement three versions of the deep learning method based on lifetime reward, Bellman35

equation and Euler equation { they produce very similar solutions. Approximation errors do not exceed a fraction of a36

percentage point { an impressive accuracy level for a model with a kink in decision rules! Moreover, the computational37

expense increases practically linearly with the dimensionality of the state space { another outstanding feature of our DL38

method based on stochastic gradient and the AiO integration operator.39

We then solve Krusell and Smith's (1998) model with heterogenous agents. Our solution procedure is conceptually40

straightforward { we simulate a panel of heterogenous agents, and we feed a distribution of labor productivity and wealth41

into the constructed objective functions for training. But there are two challenges: First, the decision function of each42

agent depends on the state variables of all agents, which makes the problem high dimensional. Second, the agent's state43

variables appear twice in the decision function (as agent's own state variables and as a part of the distribution), which44

leads to perfect collinearity. Fortunately, a neural network can deal with these challenges: First, it performs model45

reduction by extracting and condensing information from high-dimensional distributions into a smaller set of features46

of the hidden layers. Second, it learns to ignore the presence of redundant collinear variables. We again implement47

deep learning methods based on lifetime reward, Bellman equation and Euler equation and show that they produce very48

similar solutions. Our solution method is tractable in models with at least 1,000 agents (2,001 state variables) on a49

serial desktop computer!50

We next propose a cheaper deep learning method that replaces the actual state space composed of distributions51

with a reduced state space composed of some aggregate statistics such the moments of wealth distribution studied in52

Krusell and Smith (1998). Implementing such a method requires no modi¯cations: as before, we simulate a panel of53

1Jupyter notebooks illustrating the method are available from open-source QuantEcon.org site
https://notes.quantecon.org/submission/5ddb3c926bad3800109084bf.

Deep learning for solving dynamic economic models. 3

heterogeneous agents, but we now feed in moments instead of distributions. In contrast, the method proposed by Krusell1

and Smith (1998) is far more complicated: they alternate between constructing individual and aggregate decision rules.2

Also, they rely on a regression of current moments on past moments, which is unnecessary in our case. Having relatively3

few moments, like 10 or 20, implies lower computational expense and allows us to increase the number of agents (at4

least) to 10,000 agents without a visible accuracy loss, so this cheaper method is a useful alternative to our baseline5

method.6

We ¯nally compare the solutions constructed with actual state space to those produced with a reduced state space.7

We ¯nd that the solution constructed by using the ¯rst moment of wealth distribution as in Krusell and Smith (1998)8

is somewhat shifted up relatively to our baseline solution. We tried to add second and third moments, but it did not9

help remove the shift. We then constructed a solution with the actual state space but using only 4 neurons which is10

parallel to 4 state variables in Krusell and Smith's (1998) method with one moment. We ¯nd that the 4-neuron solution11

is also shifted up near the kink area but the shift reduces for larger wealth levels. Furthermore, we ¯nd that having12

more neurons helps one get closer to the reference solution, unlike having more moments. These ¯ndings suggest that13

moments are not the best reduced representation of the actual state space which is not surprising given that the moments14

are selected by a guess, while neural networks are designed to search for the best possible reduced representation.15

Our solution method is related to supervised-learning (because we ¯t the decision and value functions to the data16

which are arti¯cial in our analysis), to unsupervised learning (because the decision and value functions are not explicitly17

labeled) and reinforcement learning (because we attempt to achieve the convergence of simulated series to the ergodic18

set, in addition to convergence of the neural network coe±cients). We are not the only paper that uses machine learning19

tools for analyzing dynamic economic models. There are numerous methods that solve dynamic economic models on20

their ergodic sets approximated via stochastic simulation, such as the indirect inference procedure of Smith (1987) for21

maximizing the lifetime reward, a parameterized expectation algorithm (PEA) by Den Haan and Marcet (1990) for22

minimizing the Euler equation residuals and a value iterative method of Maliar and Maliar (2005) for minimizing the23

Bellman equation residuals. There are also methods that use unsupervised learning in order to aim to re¯ne simulated24

points and determine the irregularly-shaped ergodic sets. In particular, Judd et al. (2011) uses clustering of simulated25

points, Maliar and Maliar (2015) combine simulated points in epsilon-distinguishable sets, Renner and Scheidegger26

(2018) and Scheidegger and Bilionis (2019) use Gaussian process machine learning to identify feasible sets. In turn,27

Jirniy and Lepetyuk (2011) show an early remarkable application of reinforcement learning for solving Krusell and28

Smith's (1998) model.29

Furthermore, machine learning methods for model reduction and dealing with ill-conditioning are analyzed in Judd et30

al. (2011) including a principle component regression, a truncated SVDmethod, Tykhonov regularization and regularized31

least absolute deviation methods. The other methods that use model reduction for solving heterogeneous-agent models32

are Reiter (2010), Ahn et al (2018), Winberry (2018) and Bayer and Luetticke (2020).33

Finally, early applications of neural networks date back to Du®y and McNelis (2001) and more recent applications34

include Duarte (2018), Fern¶andez-Villaverde et al. (2019), Villa and Valaitis (2019) and Lepetyuk et al. (2020). These35

papers use neural networks for interpolation instead of polynomial functions. To the best of our knowledge, we are the36

¯rst to cast an entire economic model into the state-of-the-art DL framework and to construct a solution on simulated37

points by using stochastic gradient descent method. There is also a paper by Azinovic et al. (2020) that uses a related38

Euler-equation method to solve a large-scale OLG problem. Like us, that paper uses deep neural network and random39

grid points but focuses only on the method that minimizes the Euler equation residuals while we o®er a uni¯ed approach40

that applies also to the lifetime reward and Bellman operator. Another di®erence is that Azinovic et al. (2020) assume41

a ¯nite number of shocks in which case integration is exact, while we show how to integrate stochastic processes with42

continuous transition density by using the AiO operator { a key contribution of our analysis. Finally, the techniques we43

developed in the present paper are used in Maliar and Maliar (2020) for constructing a classi¯cation deep learning method44

for modeling non-convex labor choices, and in Gorodnichenko et al. (2020) for solving a version of heterogeneous-agent45

new Keynesian model with uncertainty shocks.46

The rest of the paper is organized as follows: Section 2 shows how to cast three main objects of economic dynamics47

(lifetime reward, Bellman equation and Euler equations) into expectation functions. Section 3 presents a deep learning48

solution method and provides a quick overview of its key ingredients (multilayer neural networks, stochastic gradient49

training method, etc.). Sections 4 and 5 analyze the one-agent consumption-saving model and Krusell and Smith's50

(1998) heterogeneous-agent model, respectively. Finally, Section 7 concludes.51

2. Casting dynamic economic models into DL expectation functions52

Deep learning platforms such as TensorFlow or PyTorch provide e±cient ways of numerically approximating expecta-53

tion functions with large numbers of parameters. In this section, we show how to cast dynamic economic models into the54

Deep learning for solving dynamic economic models. 4

form of expectation functions that can be suitable for deep learning platforms. Speci¯cally, we show how to reformulate1

as expectation functions three key objects of economic dynamics: lifetime reward, Euler equation and Bellman equation.2

2.1. A class of dynamic economic models3

We consider a class of dynamic Markov economic models with time-invariant decision functions { the main frame-4

work in modern economic dynamics. An agent (consumer, ¯rm, government, central bank, etc.) solves a canonical5

intertemporal optimization problem.26

7

De¯nition 3.1 (Optimization problem) An exogenous state +1 2 R
 follows a Markov process driven by an8

i.i.d. innovation process  2 R
 with a transition function  ,9

+1 =( ) (1)10

An endogenous state +1 is driven by the exogenous state  and controlled by a choice  2 R according to a11

transition function ,12

+1 = (  +1) (2)13

The choice  satis¯es the constraint in the form14

 2 ( ) (3)15

The state ( ) and choice  determine the period reward (  ). The agent maximizes discounted lifetime16

reward17

max
f+1g

1
=0

0

"
1X

=0

(  )

#

 (4)18

where  2 [01) is the discount factor and 0 [¢] is an expectation function across future shocks (1 2 ) conditional19

on the initial state (0 0).20

21

Without loss of generality, we assume that the constrained sets are re-mapped into a set of real numbers, so that the22

transition and reward functions are de¯ned for any succession of choices  2 R
 . We focus on recursive Markov23

time-invariant solutions.24

25

De¯nition 3.2 (Decision rules) i) An optimal decision rule is a function  : R £ R ! R such that  =26

( ) 2 ( ) for all  and the sequence f +1g
1
=0 maximizes the lifetime reward (4) for any initial condition27

(0 0)28

ii) A parametric decision rule is a member of a family of functions  (¢; ) parameterized by a real vector  2 £ such29

that for each , we have  : R £R ! R and  = ( ) 2 ( ) for all 30

31

Our goal is to ¯nd a vector of parameters  2 £ under which the parametric decision rule  (¢; ) provides an accurate32

approximation of the optimal decision rule  on a relevant domain. We do not assume a smoothness of the approximation33

function  (¢; ) nor its linearity with respect to coe±cients  and state ( ). But we do require the problem to be34

time consistent, so that its solving amounts to ¯nding time-invariant decision rules.35

2.2. Objective 1: Lifetime-reward maximization36

We ¯rst introduce a method that maximizes the lifetime reward (4) directly.37

38

De¯nition 3.3 (Value function). For a given distribution of shocks (1  ), value function  (0 0) is a maxi-39

mum expected lifetime reward (4) that is attainable from a given initial condition (0 0):40

 (0 0) ´ max
f+1g

1
=0

(1)

"
1X

=0

(  )

#

 (5)41

2A general model formulation in this paper matches standard API used by modeling software Dolo available at
https://github.com/econforge/dolo. This makes it easily feasible to compare various deep-learning approaches described here with more
traditional iterative methods already implemented in Dolo. We leave it for further work.

Deep learning for solving dynamic economic models. 5

where transitions are determined by equations (1), (2) and (3).1

2

For numerical approximation of  , we replace the in¯nite-horizon problem with a ¯nite-horizon problem by truncating3

it at some ¯nite  1. We then simulate time series solution forward under a ¯xed decision rule  (¢; ) and evaluate4

the lifetime reward:5

  (0 0; ) ´ (1)

"
X

=0

(   ( ; ))

#

 (6)6

Our ¯rst method constructs approximation  (¢; ) to the optimal decision rule by searching for a vector of coe±cients7

 that maximizes the lifetime reward (6).8

A potential shortcoming of the objective function (6) depends on a speci¯c initial condition (0 0). If we always start9

simulation from the same initial condition, we get an accurate approximation in a neighborhood of this speci¯c initial10

condition but not for the states further away from this initial condition. Although the simulated series f( )g

=0 may11

pass many values, the contribution of future utility levels to the lifetime reward decreases with time due to discounting,12

so the initial condition still dominates accuracy. A possible way to achieve high accuracy on a larger domain would be13

to construct a solution on a grid of initial conditions f(0 0)g. However, here, we propose an alternative approach14

which is more suitable for Monte Carlo simulation implemented by deep learning tools, namely, we reformulate (6) as15

an expectation function. Instead of a ¯xed grid, we assume that initial condition (0 0) is drawn randomly from the16

domain on which we want the solution to be accurate, which yields the following objective function:17

¥() ´ (00)

(

(1)

"
X

=0

(   ( ; ))

#)

 (7)18

By solving max
2£

¥(), we construct a decision rule  (¢; ) that maximizes the lifetime reward for a given distribution of19

initial conditions.20

A new feature of the objective function ¥() is that it has two types of randomness: one is a random sequence of21

future shocks (1  ), which appears because the model is stochastic, and the other is a random state (0 0), which22

we created ourselves because we converted the initial condition into a random variable. Approximating two nested23

expectation operators, one after the other, is costly, especially in high dimensional applications. That is, if we make24

 draws for evaluating expectation with respect to (0 0) and if we make 0 draws for evaluating expectation with25

respect to (1  ), in total, we must evaluate £ 0 draws.26

To reduce the cost of nested integration, we introduce all-in-one (AiO) expectation operator that combines the two27

expectation operators into one.28

29

De¯nition 3.4 (All-in-one expectation operator for lifetime reward) Fix time horizon   0, parametrize a30

decision rule  (¢; ) and de¯ne the distribution of the random variable  ´ (0 0 1  ). For given , lifetime31

reward (4) associated with the rule  (¢; ) is given by32

¥() =  [ (; )] ´ (001)

"
X

=0

(   ( ; ))

#

 (8)33

where transitions are determined by equations (1), (2) and (3), and  is an integrand.34

35

The AiO operator can signi¯cantly reduce the cost of evaluation expectations. Instead of making £ 0 draws for the36

two random vectors (0 0) and (1  ), we make just  draws for a composite random variable (0 0 1  ).37

Constructing the AiO operator is easy for the lifetime reward maximization studied in this section but it will be more38

challenging for the Euler and Bellman methods studied in next sections.39

2.3. Objective 2: Euler-residual minimization40

We next introduce a DL method that constructs a solution to the Euler equations. We consider a class of economic41

models in which the objective functions are di®erentiable, so that the solution is characterized by a set of ¯rst-order42

conditions (Euler equations). Such equations may follow from an optimal control problem of type (4) or from an43

equilibrium problem and may include ¯rst-order conditions, equilibrium conditions, transition equations, constraints,44

market clearing conditions, etc.45

Deep learning for solving dynamic economic models. 6

1

De¯nition 3.5 (Euler equations) Euler equations are a set of equations written in the form:2

 [ (  0 0 0)] = 0  = 1   (9)3

where the agent's choice satis¯es constraints (1), (2) and (3) expressed in a recursive form 0 = ( ), 0 =4

(  0) and  2 ( ), respectively;  : R
 £R £R £R £R £R ! R and  [¢] is an expectation5

operator with respect to the next-period shock .6

7

Equations (9) are again de¯ned just for a given state ( ). The typical approach in computational economics is to8

solve the Euler equation on a ¯xed grid that covers a relevant area of the state space. Like with lifetime reward, we do9

not follow this approach but assume that states ( ) are drawn randomly from a given distribution. The corresponding10

objective function is de¯ned as an expected squared sum of residuals in the Euler equations for a given distribution of11

states.12

13

De¯nition 3.6 (Euler-residual minimization) Select a decision rule  (¢; ), and de¯ne a distribution of random14

variable ( ). For given , the expected squared residuals in the Euler equations (9) associated with the rule  (¢; )15

are given by16

¥() = ()

8
<

:

X

=1

 ( [ (   ( ; ) 0 0  (0 0; ))])
2

9
=

;
 (10)17

where (1  ) is a vector of weights on  optimality conditions.18

19

Our goal is to construct a decision rule  (¢; ) that solves max
2£

¥().20

Again, the objective function (10) has also two expectation operators, one with respect to the shocks  [¢] and the21

other is with respect to the state () [¢]. In the case of lifetime reward maximization, combining the two expectation22

operators was easy because the expectation operators enter the objective linearly, so the AiO operator just merges them23

together, i.e., (00)

£
(1) (¢)

¤
= (001) [ (¢)]. However, in the Euler equations,  [¢] is squared, so the24

two expectations cannot be naturally merged since () ( [(  )])
2
6= 

£
(  )2

¤
.25

An important contribution of the present paper is to o®er a technique that allows us to combine the expectation26

functions  [¢] and  [¢] in the AiO expectation operator in the presence of squares. The technique is very simple27

but e®ective, namely, instead of using the same random draw  for both terms in the square, we use two independent28

random draws or two batches 1 and 2 which yields29

1 [ (1)]2 [ (2)] = (12) [ (1)  (2)]  (11)30

With this approach, we are able to write the Euler-residual function (10) as an expectation function 12 [¢] of a31

single random vector.32

De¯nition 3.7 (Euler-residual minimization with all-in-one expectation operator) Parametrize a decision
rule  (¢; ), and de¯ne a distribution of random variable  ´ (  1 2). For a given , the squared residuals in the
Euler equations (9) associated with the rule  (¢; ) are given by

¥() =  [ (; )]

´ (12)

8
<

:

X

=1



h
 (  0 0 0)j=1

i h
 (  0 0 0)j=2

i
9
=

;
 (12)

where (1  ) is a vector of weights on  optimality conditions.33

34

The method based on the AiO expectation operator is our main method. However, we also develop and test various35

hybrid methods that construct two expectations separately. For example, we use a Monte Carlo method for constructing36

() [¢], and we use some other methods for constructing  [¢] such as quadrature and monomial rules, sparse grids,37

low-discrepancy sequences { we show these sensitivity results in Section 5. Overall, we ¯nd that such hybrid methods are38

useful for small problems in which the construction of  [¢] is inexpensive but the AiO expectation operator is critical39

for large problems, such as Krusell and Smith (1998) model studied in Section 6.40

Deep learning for solving dynamic economic models. 7

Objective 3: Bellman-residual minimization1

Our last DL method constructs the decision rule to satisfy the Bellman equation.2

3

De¯nition 3.8 (Bellman equation) Value function  : R £R ! R associated with the problem (4) satis¯es:4

 ( ) = max
0

f(  ) +  [ (0 0)]g  (13)5

subject to constraints (1), (2) and (3) expressed in a recursive form 0 =( ), 0 = (  0) and  2 ( ).6

7

Under the standard assumptions about ,  ,  and , the solution to (13) exists and is unique. Similar to the Euler-8

equation method, we can ¯nd an approximate decision rule  (¢; ) by minimizing the squared residuals in the Bellman9

equation (13) on a conventional ¯xed grid but in the spirit of deep learning, we will make () a random variable10

which is drawn from a given distribution.11

In the case of Bellman operator, we face an additional element { a nontrivial "max" operator appears inside the
squared residuals:

¥() = ()

·

 ( )¡max
0

f(  ) +  [ (
0 0)]g

¸2


There are three approaches in the literature for constructing a solution to the maximum operator, namely, the FOCs,
the envelope condition and a direct search of maximum:

FOC: (  ) +  f [0 (
0 0)]g 0

 = 0
Envelope condition: (  ) =  ( ) 
Direct optimization: max

0
f(  ) +  [ (0 0)]g 

FOCs and direct optimization are used in conventional value function iteration, e.g., Rust (1996), Santos (1999), Aruoba12

et al. (2006), Stachurski (2009) while the envelope condition method is introduced in Maliar and Maliar (2013) and13

developed in Arellano et al. (2016).3 Provided that any of these three conditions is enforced, we can eliminate the14

maximum operator from the Bellman equation. Consequently, we can formulate an objective function that solves15

for both value function and decision rule by combining minimization of the residuals in the Bellman equation with16

maximization of the right side of the Bellman equation. We focus on the FOC but the other two conditions can be17

treated in a similar way.418

De¯nition 3.9 (Bellman-residual minimization) Parametrize a value function  (¢; 1) and decision rule  =
 (¢; 2) and de¯ne a distribution of the random variable  ´ (). For given  ´ (1 2), the squared residuals in the
Bellman equations (13) associated with  (¢; 1) and  (¢; 2) are given by

¥() ´ () f ( ; 1)¡ (  )¡  [ (
0 0; 1)]g

2
+

()

½

(  ) +  f [0 (
0 0; 1)]g

0



¾2
 (14)

where   0 is a vector of exogenous relative weights of equations in the two objectives.19

20

Similar to the previous methods, the objective function for the Bellman equation has two expectation operators under21

the square. One expectation is taken with respect to the shocks  [¢] and the other is with respect to the state () [¢].22

Fortunately, we again can use the method of uncorrelated shocks (11) for constructing the AiO expectation operator.23

De¯nition 3.10 (Bellman-residual minimization with all-in-one expectation operator). Select value function
 (¢; 1) and decision rule  =  (¢; 2) and de¯ne the distribution of the random variable  ´ ( ). For given

3There is also a method of reformulating state space in terms of the future endogenous state variables by Carroll (2006), which is known
as endogenous-grid method. It is straightforward to generalize the proposed techniques to include this method as well.

4In the earlier version of the paper, we study a version of the method that relies on direct search of a maximum.

Deep learning for solving dynamic economic models. 8

 ´ (1 2), the squared residuals in the Bellman equations (13) associated with  (¢; 1) and  (¢; 2) are given by

¥() =  [ (; )] ´ (12)

©£
 ( ; 1)¡ (  )¡   (0 0; 1)j=1

¤

£
£
 ( ; 1)¡ (  )¡   (0 0; 1)j=2

¤

+

·

(  ) +  0 (
0 0; 1)j=1

0



¸ ·

(  ) +  0 (
0 0; 1)j=2

0



¸¾

 (15)

where   0 is a vector of exogenous relative weights of equations in the two objectives.24

1

Like for the Euler equation, our main Bellman-equation method is the one based on AiO expectation operator but we2

could also construct hybrid methods based on the objective (14) that would combine Monte Carlo integration for the3

state space with deterministic integration across future shocks.4

3. Deep learning solution method5

In each of the considered cases (lifetime reward, Euler and Bellman equations), we represent an economic model as6

a problem of minimizing an objective function ¥() with respect to a vector of parameters :7

min
2£

¥() = min
2£

 [ (; )] , (16)8

where  ´ ( ) includes exogenous state variables , endogenous state variables  and future shocks . By con-9

struction, ¥() contains all model's equations (Euler and Bellman equations, constraints, market clearing conditions,10

transition equations, multipliers, prices), so by minimizing a single objective function, we solve the entire model.11

In computational economics, a common approach to solving dynamic economic models is to use a ¯xed grid of12

points in the state space ( ) and to approximate expectation functions over future shock  with quadrature nodes,13

see, e.g., a projection method of Judd (1992). A distinctive feature of our analysis is that we interpret (16) not as14

a computational problem but as an estimation / regression model studied in the ¯elds of econometrics and machine15

learning. In particular, we treat  as a vector of random variables, and we make no distinction between its components16

(  ). We simulate the model to produce a set of random draws fg

=1, and we replace the expected risk ¥() with17

empirical risk ¥() { the sample average of  across  random draws { to obtain the following nonlinear regression18

model:19

min
2£

¥() = min
2£

1



X

=1

 (; ) . (17)20

We construct a solution  by training the machine to minimize the empirical risk ¥() on the simulated data. Note that21

our data fg

=1 are being constantly re-sampled during the training process, unlike the data in a typical regression22

model that are assumed to be ¯xed. As a result, a successful training means two types of convergence: ¯rst, the23

parameter vector  converges to a value that minimizes an objective function ¥() on simulated data fg

=1; and24

second, the simulated data themselves, generated via the decision rule  (¢; ), converge to the ergodic set. While our25

optimization problem is not equivalent to the typical data science application, we can still solve it by using the same26

combination of techniques that led to ground breaking applications in data science. Those techniques include deep27

neural networks, Monte Carlo simulation and stochastic optimization and they are discussed below in the context of28

a numerical method for solving dynamic economic models. In Supplement D, we discuss how our solution method is29

related to supervised, unsupervised and reinforcement learning literature.30

Neural network: e®ective approximation on unstructured data. We approximate the decision rules and value31

function with neural networks instead of conventional polynomial functions. Neural networks posses several properties32

that make them preferable to polynomial functions in high dimensional applications with unstructured data; namely, they33

are: (i) linearly scalable, i.e., the number of parameters grows linearly with dimensionality; (ii) robust to multicollinearity34

and can automatically perform model reduction; and (iii) well suited for ¯tting highly nonlinear environments including35

kinks, discontinuities, discrete choices, and switching.36

A neural network is a collection of connected nodes { arti¯cial neurons. Each neuron receives a signal (input) from37

other neurons, processes it and transmits the processed signal to some other neurons connected to it. In Figure 1, we38

show an example of neural network with three layers { an input layer, hidden layer and output layer.39

Deep learning for solving dynamic economic models. 9

Figure 1. A neural network with one hidden layer.

The input layer consists of a constant term +1 and input features (1 2 3) which correspond to state variables40

of an economic model. In that layer, we construct linear polynomial functions 
(2)
1  

(2)
2 and 

(2)
3 on given inputs, for1

example, 
(2)
1 = 

(1)
10 + 

(1)
11 1 + 

(1)
12 2 + 

(1)
13 3, where the coe±cient on a constant term 

(1)
10 is called a bias, and the2

coe±cients on features 
(1)
11  

(1)
12 and 

(1)
13 are called weights. We next pass 

(2)
1 , 

(2)
2 and 

(2)
3 to the hidden layer, where3

we apply to them a transformation 1, such as a sigmoid (logistic) activation function 1() =
1

1+¡ .
5 Finally, in the4

output layer, we combine the activated signals 
(2)
1 = 1(

(2)
1) 

(2)
2 = 1(

(2)
2) and 

(2)
3 = 1(

(2)
3) with a constant term5

+1 into a new polynomial function 
(3)
1 = 

(2)
10 + 

(2)
11 

(2)
1 + 

(2)
12 

(2)
3 + 

(2)
13 

(2)
3 , and we transform it into the ¯nal output6

using another activation function 2 which approximates our decision rule 
(3)
2 = 2(

(2)
1) ¼  (1 2 3; ), where7

 ´
n

(1)
10  

(1)
11   

(2)
13

o
contains all biases and weights. The predicted output is a highly non-linear function of inputs.8

Hidden layers extract information and condense it in a more abstract way which makes neural-network approximations9

more °exible, compared to polynomial functions that relate inputs and outputs directly; see Supplement B for a general10

discussion of neural networks.11

Generating data: solving the model where the solution lives. Judd et al. (2011) argue that stochastic12

simulation methods have a remarkable feature that makes them an ideal candidate for analyzing high dimensional13

applications: they solve the model only in the area of the state space in which the solution "lives" - the ergodic set.14

Figure 2 illustrates this point by showing the ergodic set of a typical representative-agent neoclassical growth model15

(with two state variables, capital and productivity level).16

5This is a convenient choice since it allows for an easy construction of the derivative function 0() = ()(1 ¡ ()). See the online
supplement for examples of other common activation functions such as hyperbolic tangent and leaky relu.

Deep learning for solving dynamic economic models. 10

Figure 2. Ergodic set of a neoclassical growth model.

The ergodic set takes the form of an oval and most of the rectangular area that sits outside of the oval's boundaries17

is never visited. That means that a solution method that operates on a rectangular domain is wasting computational1

resources on evaluating points that never occur in equilibrium. In the two-dimensional case, a circle inscribed within2

a square occupies about 79% of the area of the square, so we save 21% of the total cost. The saving is not big in3

two-dimensional case but Judd et al. (2011) argues that the ratio V of the volume of a ¡dimensional hypersphere to4

the volume of a {dimensional hypercube declines rapidly with the dimensionality of the state space5

V =

8
>><

>>:

(2)
¡1
2

1¢3¢¢ for  = 1 3 5

(2)

2

2¢4¢¢ for  = 24 6

 (18)6

For example, for dimensions three, four, ¯ve, ten and thirty, this ratio is 052, 031, 016, 3¢10¡3 and 2¢10¡14, respectively.7

Thus, when focusing on the ergodic set, we face just a tiny fraction of the cost that we would have faced on a ¯xed8

hypercube grid. The higher is the dimensionality of a problem, the larger is the reduction in cost.9

AiO integration operator: we need just two integration nodes. The AiO operator is a critical technique for
solving models with a large number of stochastic shocks. As an illustration, consider the Euler-equation method in
the model with  heterogeneous agents who face idiosyncratic shocks 1  . In the absence of the AiO operator, the
objective function (10) has the form ¥() = () (1 [(  1  ; )])

2
, so for each state ( ), we need to

approximate integral of  across 1  . If we consider  integration nodes for each of  idiosyncratic shock, we obtain
a tensor product grid with  nodes, running into a severe curse of dimensionality. The AiO method addresses the curse
of dimensionality in a remarkably simple manner. By using two independent random draws (01  

0
) and (

00
1   

00
),

we obtain:

() (1 [(  1  )])
2
= (01

0

001 

00
)
[(  01  

0
)(  001   

00
)] 

Independently of the number of shocks in the economy, we need only two random draws (or two batches) for approxi-10

mating expectation function for each state ( ) considered. Of course, the AiO approximation of the double integral11

is crude in any given iteration, but the approximation is unbiased and thus, converges to the true integral over the12

iterative process. In sum, the AiO method makes numerical integration very cheap.13

Stochastic gradient descent method for training: we need just one grid point. Training of multilayer neural14

network is referred to as deep learning because such networks have interconnected topologies with coe±cients and15

weights buried deeply in multiple layers. In data science application, neural networks are typically trained by using16

variants of a gradient descent method +1 Ã  ¡ r¥(), where  is iteration, r is a gradient of  and  is a17

learning rate. Our de¯nition of (17) means that expectation and gradient operators are commutable, so that we can18

approximate the gradient of the integral r¥() = r [ (; )] with a sample average of the gradient of the integrand19

Deep learning for solving dynamic economic models. 11

1


P
=1r (; ):20

+1 Ã  ¡ 

"
1



X

=1

r (; )

#

 (19)1

The limiting case of  = 1 in (19) corresponds to a stochastic gradient descent (SGD) method that approximates2

the gradient of the integral with the gradient of the integrand evaluated in just one randomly selected point, i.e.,3

r¥() = r [ (; )] ¼ r (; ). While stochastic gradient is very imprecise in each given step, it is an4

unbiased estimate of the true gradient and its cumulative average converges to the true gradient over  iterations5

1


P
=1r (; )!r¥(), provided that the network parameters converge to their true values  ! . Thus, an6

extreme version of our DL method requires just one random grid point for approximation (and just two random nodes7

for integration). There are other versions of the SGD method, in particular, we will be using a method called ADAM8

in our numerical analysis; see Supplement C for a review of SGD methods and their convergence properties.9

DL solution algorithm. We now combine the above numerical techniques into a DL solution algorithm.10

11

Algorithm 1. DL algorithm for solving dynamic economic models.

Step 1. Initialize the algorithm:

i). construct theoretical risk ¥() =  [ (; )] (lifetime reward, Euler/Bellman equations);
ii). de¯ne empirical risk ¥() = 1




=1  (; );

iii). de¯ne a topology of neural network  (¢ );
iv). ¯x initial vector of the coe±cients .

Step 2. Train the machine, i.e., ¯nd  that minimizes the empirical risk ¥():

i). simulate the model to produce data fg

=1 by using the decision rule  (¢ );

ii). construct the gradient r¥() = 1



=1r (; );

iii). update the coe±cients  =  ¡ r¥
() and go to step 2.i);

End Step 2 if the convergence criterion


 ¡ 



   is satis¯ed.

Step 3. Assess the accuracy of constructed approximation  (¢ ) on a new sample.

12

13

14

Algorithm 1 has multiple hyperparameters including the topology of neural network, the learning rate, the number15

of simulation points and integration nodes, and the training method. The algorithm may also include additional hyper-16

parameters such as Tykhonov and Lasso regularization parameters for dealing with over¯tting and ill-conditioning; see17

Judd et al. (2011) for a discussion of numerical stability of stochastic simulation methods. Finally, objective function18

(17) has its own hyperparameters, namely, the relative weights of di®erent model equations. To select the hyperpa-19

rameters, we use the usual validation procedure of assessing the algorithm performance under di®erent hyperparameter20

combinations and by selecting those that dominate others in accuracy and speed.21

Finally, to implement the DL solution method, we use the Python programming language and Google TensorFlow22

data platform. Such a platform represents operations on a computational graph, which is automatically optimized. The23

elements of the graphs, tensors, are multidimensional arrays manipulated by e±cient vectorized symbolic engines. In24

particular, gradient computations are performed using automatic di®erentiation in a numerically stable way, without25

any user input. Moreover, the graph operations are massively parallelizable on multiple CPU and GPU cores. This is a26

particularly useful property for our Monte Carlo simulation, in which we evaluate the same function with many draws27

of shocks for computing conditional expectation functions.28

How our deep learning method di®ers from the conventional projection method. To appreciate the ad-29

vantages of our DL algorithm, let us recall a canonical projection method of Judd (1992). That method approximates30

decision rules (¢; ) ¼  with a tensor product of Chebyshev polynomial basis functions and constructs a solution31

on a ¯xed tensor-product grid of zeros of Chebychev polynomials. The expectation function  [¢] is approximated32

using Gauss-Hermite quadrature. The algorithm ¯nds  by minimizing the squared sum of Euler equation residu-33

als ( [ ( 0 0 0)])
2
using a Newton-style method. The method is remarkably fast for small problems but34

becomes increasingly costly as the dimensionality of the problem increases.35

What makes the canonical projection method expensive in high dimensional applications? i) The volume of a36

hypercube domain increases exponentially with the number of state variables; ii) the number of points in tensor-product37

Deep learning for solving dynamic economic models. 12

grid covering that domain grows exponentially with the number of state variables; iii) the volume of a hypercube set for38

integration across future shocks grows exponentially with the number of shocks; iv) the number of quadrature nodes in1

the tensor product grid grows exponentially with the number of shocks; v) for each grid point in state space, there are2

multiple nodes for approximating expectation functions; vi) for more complex models, the cost is higher because we have3

more equations and more variables to solve for; vii) the number of approximation functions is paired with the number4

of grid points, so the number of coe±cients in  grows exponentially as well; viii) the least square approximation su®ers5

from ill-conditioning and numerical instability; ix) the code written by individual researchers is not always optimized6

for the best performance.7

Our DL analysis addresses all these shortcomings: i) our simulation-based domain focuses on the ergodic set in which8

the solution lives; ii) within that reduced domain, we consider just one or few random grid points on each iteration; iii)9

we approximate integrals with simulated shocks that again come from the ergodic set; iv) we consider only two random10

integration nodes on each iteration; v) our AiO operator reduces the cost of integration even further by using a composite11

random draw for both improving the approximation and evaluating the integral; vi) we collect all the model's equations12

in one objective function, so that we iterate on all decision rules at once; vii) we use a deep learning neural network,13

in which we control the topology and number of coe±cients; viii) neural networks perform the model reduction and14

automatically deal with ill conditioning and multicollinearity. ix) we use the state-of-the-art combination of software15

and hardware that allows for e®ective GPU parallelization and that leads to remarkable applications in data science.16

Taken together, these methods will allow us to analyze problems with much larger dimensionality (thousands of state17

variables) than those studied in the related literature.18

4. Numerical analysis of the consumption-saving problem19

In this section, we solve a one-agent consumption-saving problem with an occasionally binding borrowing constraint.20

We show the deep learning method for three di®erent objective function: the lifetime reward, and the Euler- and21

Bellman-equation residuals. Our experiments are designed to illustrate the role of hyperparameters in the solution, as22

well as to emphasize some useful features of the proposed method, in particular, its ability to accurately approximate23

kinks, its capacity to handle ill-conditioned problems and its scalability.24

4.1. The consumption-saving problem25

We consider a simple consumption-saving problem with a borrowing constraint:

max
f+1g

1
=0

0

"
1X

=0

 ()

#

(20)

s.t. +1 =  ( ¡ ) +   (21)

 ·  (22)

where  and  are consumption and cash-on-hand, respectively;  is a utility function, which is strictly increasing26

and concave;  2 [0 1) is a discount factor;  2
³
0 1

´
is an interest rate, and initial condition 0 is given. Exogenous27

income shock  follows an AR(1) process,28

+1 =  +  and  » N (0 1)  (23)29

where jj  1 and   0. The borrowing limit in (22) is set to zero without loss of generality. We parameterize the30

model by  () = 1¡¡1
1¡ with a risk-aversion coe±cient of  = 2, and we assume  = 09 and  = 104.31

To facilitate the exposition of the algorithm, we make two simplifying assumptions: First, we assume that the income32

shock is temporary  = , where  = 01. Then, we have just one state variable , which is convenient for illustrating33

decision functions on two-dimensional plots. Second, we assume that  is drawn from its ergodic (Normal) distribution,34

but  is drawn from a uniform distribution in an interval [1 2]. That allows us to abstract from the convergence35

of simulated series for  and to concentrate on the convergence of the coe±cients . Later in the paper, we consider36

models with a large number of state variables, and we draw both endogenous and exogenous state variables from their37

ergodic distributions.38

Euler equation The solution to (20){(23) can be characterized by Kuhn-Tucker conditions39

 ¸ 0  ¸ 0 and  = 0, (24)40

Deep learning for solving dynamic economic models. 13

where  =  ¡  and  ´ 0() ¡  [
0 (0)] is a Lagrange multiplier. To construct a DL objective function, we41

rewrite Kuhn Tucker conditions that have inequality constraints (24) as the Fischer-Burmeister (FB) function that holds1

with equality2

ª ( ) = + ¡
p

2 + 2 = 0 (25)3

where  ´ 1¡ 
 and  ´ 1¡

[0(0)]
0() are expressed in unit-free form. The FB function is similar to the minimum4

function min f g = 0 and leads to the same solution (24) as the Kuhn Tucker conditions but it is di®erentiable; see,5

e.g., Jiang (1996) for a discussion. Even though the two terms  and  are in unit free form, it might be necessary6

to add a weight  that re°ects the relative importance of the two objectives  and , i.e., in general, we may need to7

consider ª ( ), where  2 (01).8

Bellman equation The solution to (20){(23) can be also characterized by Bellman equation:9

 () = max
0

f() +  [ (0 0)]g , (26)10

subject to constraints (21) and (22) and transition equation (23) written in recursive form. The maximum operator11

of the Bellman equation is also characterized by the Kuhn-Tucker conditions (24) however the Lagrange multiplier is12

de¯ned here in terms of the derivative of the value function  ´ 0() ¡ 

·
 (00)

0

¸

. Consequently, we can get13

rid of the inequality constraints in the Kuhn-Tucker conditions by using the same FB function (25) as we did for the14

Euler-equation method. The ¯rst term of the FB function is the same, i.e,  ´ 1¡ 
 but the second term will be de¯ned15

in terms of the derivative of the value function  ´ 1¡



 (00)

0



0() .16

4.2. Deep learning solution method17

To implement the lifetime reward, Euler and Bellman methods, we used Algorithm 1 formulated in Section 2. The18

only di®erence between three methods consists in how we simulate the model in Step 2i). We will describe this step19

separately for each of the method considered.20

We construct the solutions using a neural network with two identical hidden layers, composed of (leaky) relu (recti¯ed21

linear units) neurons. We compare the results under four neural networks with 8£8, 16£16, 32£32 and 64£64 neurons22

in two hidden layers, respectively. We parameterize consumption to wealth ratio 

, unit-free Lagrange multiplier 23

and value function :24




=  (0 +  ( ;)) ´  ( ; ) 

 = exp (0 +  ( ;)) ´  ( ; ) 

 = 0 +  ( ;) ´  ( ; ) 

where  (¢;) is a neural network,  ´ (0 ) and  () = 1
1+¡ is a sigmoid transformation. Our lifetime reward25

method will use only  ( ; ), the Euler method will use both  ( ; ) and  ( ; ) and ¯nally, the Bellman26

method will use all three of them.27

Our parametrization is constructed to take into account the properties of economic variables. A sigmoid transfor-28

mation used for 


ensures that the consumption share in wealth  (¢; ) is bounded to be in an interval [0 1] and29

exponentiation used for  ensures that it is always nonnegative; and ¯nally, for value function we used a linear activa-30

tion, i.e., we place no restrictions on  (¢; ) range. We initialize at 0 = 0 for all parametrized functions. The remaining31

parameters  are initialized randomly: we used the "he" and "glorot" uniform distributions for the biases and weights,32

respectively.33

We train the model using a version of the stochastic gradient descent method, called ADAM, with an overall learning34

rate of  = 0001 (in that method, the overall learning rate is optimally adjusted for each coe±cient; see Appendix B for35

details). We perform training over  = 50000 epochs (iterations); and in each epoch, we draw 64 random grid points36

by using the interval for wealth [1 2] = [014]. To evaluate the accuracy, we produce 8 192 random draws and use37

the constructed decision rules to produce the lifetime reward and unit-free Euler equation residuals. To approximate38

integrals in the accuracy test, we use an accurate 10-node Gauss-Hermite quadrature rule. We wrote the code in Python39

using Google TensorFlow platform version 1140, and we use a laptop with Intel(R) Core(TM) i7-7500U (2.70 GHz),40

RAM 16GB with 4 physical (and 8 virtual) cores.41

Deep learning for solving dynamic economic models. 14

4.3. Lifetime reward42

The objective function for the lifetime reward for the model (20){(23) follows directly from our general exposition1

(8). For a random draw  = (0 0 1  ) and time horizon  , the objective function associated with the decision2

rule 

=  ( ; ) is given by3

¥() =  [ (; )] ´ (001)

"
X

=0

 ()

#

 (27)4

To construct (27), i.e., to implement Step 2i) of Algorithm 1, we use the assumed decision rule 

=  ( ; ) and5

simulate the model forward together with transitions (21){(23).6

Figure 3 displays the outcome of training of neural network on the objective function (27) (on the horizontal axis,7

 = 50 000 epochs appears as 4 ¢ log10 5).8

Figure 3. Lifetime reward in the consumption-saving model.

In the ¯rst panel of the ¯gure, we illustrate how the objective function { lifetime reward { changes over the epochs;9

in the second panel, we show the size of the Euler equation residuals constructed on 8 192 test points using the FB10

function (25) and accurate quadrature integration, and ¯nally, in the last panel, we plot the evolution of lifetime reward.11

As is seen from the second panel, the Euler residuals are smaller for a neural network with a larger number of neurons12

(the smallest residuals are for the one with 64£64 neurons in two hidden layers). They are of order 10¡275 (i.e., 018%),13

which is fairly low, given that we solve the model with a kink in the decision rule. In terms of the lifetime reward, all14

the solutions gradually converge to the same level.15

4.4. Euler-equation method with Kuhn-Tucker conditions16

For our model with borrowing constraint, the Euler-residual (10) objective function is given by the Fischer-Burmeister17

function (25):18

()

·

ª

µ

1¡



 1¡

 [
0 (0)]

0 ()

¶¸2
 (28)19

In Section 1.3, we constructed an AiO expectation operator that makes it possible to combine the two expectation20

operators () [¢] and  [¢] in one by approximating  [¢] using two uncorrelated shocks (11). However, the Fischer-21

Burmeister function has expectation term  [
0 (0)] inside of the square root, in addition to the squared residual. To22

extend the AiO operator for the FB function, we introduce a separate approximation for the Lagrange multiplier  and23

rewrite (28) as a composite objective24

()

h
ª

³
1¡




 1¡ 

´i2
+ 

·
 [

0 (0)]

0 ()
¡ 

¸2
 (29)25

Deep learning for solving dynamic economic models. 15

where  is an exogenous weight. Using the technique of two uncorrelated shocks (11), we then arrive to an objective
function with the AiO operator that combines integration with respect to ,  and  :

¥() =  [ (; )] = (12)

½h
ª

³
1¡




 1¡ 

´i2

+

·
 0 (0)j=1

0 ()
¡ 

¸ ·
 0 (0)j=2

0 ()
¡ 

¸¾

 (30)

The objective function (30) is the one that we minimize by deep learning Algorithm 1. To construct the objective26

function ¥() in Step 2i) of Algorithm 1, we produce a random draw  = ( 1 2) and use the decision rules for1

consumption share 
 =  (; ) and Lagrange multiplier  =  (; ) and transition equations (21) and (23).2

The results of training under the objective (30) are shown in Figure 4.3

Figure 4. Euler-equation method in the consumption-saving model.

Again, as in the previous ¯gure, we plot the objective function { Euler residuals, the size of the Euler equation4

residuals on the test data, and the evolution of the lifetime reward in the ¯rst, second and third panels, respectively. As5

is evident from the second panel, the Euler-equation method is slightly more accurate than the lifetime reward method.6

We again observe that the deep learning method with a larger number of neurons is more accurate.7

4.5. Objective 3: Bellman equation8

For the Bellman-equation method, the objective function (14) includes the residuals in the Bellman equation and
the residuals in the Fischer-Burmeister function that characterize the maximum operator in the Bellman equation

() [ (; 1)¡  ()¡  [ (0 0; 1)]]
2

+ ()

"

ª

Ã

1¡



 1¡



£


0 (
0 0; )

¤

0 ()

!#2

 (31)

By following the same approach as in the case of the Euler-equation method, we introduce a separate approximation for
the Lagrange multiplier  and apply the method of two uncorrelated shocks to obtain the following objective function
for the Bellman-equation method:

¥() =  [ (; )] ´ (12)

©£
 (; )¡  ()¡   (0 0; )j=1

¤

£
£
 (; )¡  ()¡   (0 0; )j=2

¤
+ 

h
ª

³
1¡




 1¡ 

´i2

+

"
 

0 (0 0; )
¯
¯
=1

0 ()
¡ 

#"
 

0 (0 0; )
¯
¯
=2

0 ()
¡ 

#)

 (32)

The objective function (32) is the one that we use as an input for deep learning Algorithm 1. To implement Step 2i), i.e,9

to construct the objective function (32), we produce a random draw  = ( 1 2), use the decision rules for value10

function  (; ), consumption share 
 =  (; ) and Lagrange multiplier  =  (; ) and transition equations11

Deep learning for solving dynamic economic models. 16

(21) and (23).12

The choice of weights  and  is a nontrivial problem. While in the previous methods, we expressed the residuals1

in unit free form, so that we could use unit weights, it is not a feasible approach here. Value function for our model has2

the range from negative to positive numbers. If we do it unit free, we will get sometimes a division by numbers close3

to zero. Additionally, the residuals can switch from positive to negative leading to spurious iterations of the gradient4

algorithm. In our application, we choose weights so that the size of the residuals was approximately the same in all5

three equations.6

Figure 5 plots the training process for Objective 3 when neural networks have di®erent number of neurons.7

Figure 5. Bellman-equation method in the consumption-saving model.

Figure 5 displays the changes in the objective function over the epochs (the ¯rst panel), the size of test Euler-equation8

residuals (the second panel), and the size of the lifetime reward (the third panel). The value iterative method is less9

accurate than the two previous methods. This fact is not surprising: Coleman et al. (2018) compare the conventional10

VFI method which solves the Bellman equation by constructing the decision function via direct maximization, as we11

do here, versus otherwise identical methods that use derivatives of the value function via ¯rst-order and envelope12

conditions. They ¯nd that the methods that approximate the derivatives of  are far more accurate than the methods13

that approximate  alone. In the second panel, Euler residuals are higher for this objective function than for the other14

two, although they decrease to 10¡2 (i.e., 1%) when the number of neurons in two hidden layers increases to 64£ 64.15

4.6. Comparing decision rules16

In Figure 6, we plot decision rules for the three methods and simulated series for wealth.17

Figure 6. Comparison of methods in the consumption-saving model.

We observe that the decision rule for the Bellman method appears to be less accurate than the other two methods,18

however, simulated series are remarkably close to one another across the three methods. What is surprising that the19

three methods visually coincide in the area of kink. The second panel shows that there is a substantial variability in20

wealth (cash-on-hand) over a simulation of 100 periods.21

Deep learning for solving dynamic economic models. 17

4.7. Euler-equation method: sensitivity results22

We now limit attention to the Euler-equation method and consider how its performance is a®ected by speci¯c1

techniques used. In Figure 7, we plot the convergence of the objective function.2

Figure 7. Comparison of integration, SGD and activation methods.

In the ¯rst panel, we show the results in which we vary an integration method, namely, we consider the AiO method3

with 2 nodes, Monte Carlo (MC) method with 10 random draws, MC method with 100 random draws and very accurate4

Gauss Hermite quadrature with 10 nodes. We observe that the integration method we use plays a visible role in5

convergence. A very accurate quadrature method leads to the fastest convergence while low accuracy MC leads to6

slower convergence than the AiO method. In the second panel, we consider four training methods, namely, SGD with7

an updating parameter  2 f001 0005 0001g and ADAM. We see that ADAM leads to the fastest convergence even8

though the convergence is noisier at the end with ADAM than with the other methods. Finally, in the last panel, we9

compare the convergence with di®erent activation functions, namely, relu, lrely, sigmoid and tanh, and we document10

that they lead to comparable results.11

In Figure 8, we illustrate the scalability of the Euler-equation method. TensorFlow has a possibility of using batches12

where the same estimation is ran in parallel on multiple virtual cores. We vary the batch size from  = 8 to  = 819213

draws and we document running time and Euler-equation residuals.14

Figure 8. E®ects of the batch size on the accuracy and speed.

In the left panel, we see that the training time changes roughly linearly with the batch size. In the right panel, we15

observe that a larger batch size leads to more accurate solutions although the convergence rate is similar for all batch16

sizes. The same is true for all the methods built on the AiO operator.17

Deep learning for solving dynamic economic models. 18

4.8. Multicollinearity, ill-conditioning and model reduction18

We consider a version of the consumption-saving problem with multiple shocks,

max
f+1g

1
=0

0

"
1X

=0

 ()

#

(33)

s.t. +1 =  ( ¡ ) +   (34)

 ·  (35)

where f   g ´  is a vector of exogenous state variables, which includes a temporary income shock , a long-1

lasting income shock , an interest-rate shock  and a preference shock . We assume that each exogenous state2

variable  2 f   g follows an AR(1) process,3

+1 =  +  and  » N (0 1)  (36)4

where
¯
¯

¯
¯  1 and   0. We parameterize the model by  () = 1¡¡1

1¡ with a risk-aversion coe±cient of  = 2, and5

we assume  = 09,  = 104,  = 09 and  = 01;  = 0999 and  = 0001;  = 02 and  = 0001; and  = 096

and  = 001.7

The lifetime-reward objective function (27) is built on the AiO operator and it is directly suitable for high-dimensional8

applications. In Figure 9, we present the results obtained with reward maximization for the multistate model (20){(23).9

We use 64 relu nodes in each of the two hidden layers, and the training method was ADAM.10

Figure 9. Multicollinearity and model reduction in the multishock model.

Three cases are considered in the ¯gure. The main case is the multi-shock model denoted by "multidim". The other11

two cases, "lowdim" and "multidim0", correspond to a version of the model with only one income shock. But the two12

models di®er in the inputs that we supply to the neural network: in the "lowdim" model, the irrelevant shocks other13

than income shock are not supplied at all, while in "multidim0", they are supplied to the neural network by setting all14

of them equal to zero. Thus, the latter model has perfect multicollinearity, so that the inverse problem is ill-conditioned15

and cannot be solved with conventional regression or approximation methods, such as ordinary-least squares (OLS).16

There are two main results to learn from this experiment: First, neural-network approximations do not su®er from17

multicollinearity and ill conditioning, unlike the conventional polynomial approximation. Training of the model with18

zero shocks leads to the same solution and has roughly the same convergence rate as those of the other two models. This19

experiment illustrates how neural networks can do the model reduction: they learn to ignore the e®ect of nonexisting20

shocks although at some additional initial cost (i.e., the residuals of the last model are slightly larger in the beginning21

of training than those of the other models). Second, training in the multi-shock model has approximately the same22

convergence rate as that of the other models. The cost of iteration in the multi-shock model is slightly larger than in23

the unishock model but this di®erence is relatively small. This ¯nding indicates that the proposed solution method is24

potentially tractable in problems with high dimensionality.25

5. Numerical analysis of Krusell and Smith's (1998) model26

We now use our deep learning method to solve Krusell and Smith's (1998) model. We formulate the model in terms27

of cash-in-hand to make it comparable to the consumption-saving problem studied in Section 4.28

Deep learning for solving dynamic economic models. 19

5.1. Krusell and Smith's (1998) model29

The economy consists of a set of heterogeneous agents  = 1   that are identical in fundamentals but di®er in
productivity and capital. Each agent  solves

max
f+1g

1

=0

0

"
1X

=0


¡


¢
#

(37)

s.t. 
+1 = +1

¡

 ¡ 

¢
++1 exp

¡
+1

¢
 (38)

 · 
 (39)

where , 

, 


, ,  and +1 = 

 ¡  are consumption, cash-on-hand, labor productivity, interest rate, wage and1

next-period capital, respectively. Initial condition
¡
0 


0

¢
is given. The individual productivity evolves as2

+1 = 

 + 


 with  » N (01)  (40)3

The production side of the economy is described by a Cobb-Douglas production function 

 , where  2 (0 1) and 4

is an aggregate productivity shock,5

+1 =  +  with  » N (0 1)  (41)6

Initial condition 0 is given. The equilibrium prices are7

 = 1¡ + ¡1

"
X

=1

exp
¡


¢
#

and  =  (1¡ ) 

"
X

=1

exp
¡


¢
#

 (42)8

where  =
P

=1 

 is aggregate capital, and  2 (0 1] is the depreciation rate. Note that (38) implies that 

 =9



 + exp

¡


¢
. We parametrize the model by  () = 1¡¡1

1¡ with a risk-aversion coe±cient of  = 1 and assume10

 = 096,  = 095,  = 001,  = 09, and  = 02
¡
1¡ 2

¢12
.11

5.2. Deep learning solution algorithm12

Our analysis of Krusell and Smith's (1998) model parallels that of the consumption-saving problem of Section 4. We13

again construct the solution using the lifetime reward, Euler and Bellman objectives.14

State space. The state space consists of the state variables of all agents
©
 




ª

=1
, as well as the aggregate shock15

. Since agents are homogeneous in fundamentals, as in Krusell and Smith (1998), we need just one 2+1{dimensional16

decision and value functions to characterize the choices of all  agents.6 If agents were heterogenous in fundamentals,17

we would need to construct separate decision and value functions for each heterogenous agent; each of such functions18

has 2+ 1 dimensions.19

Parameterization. Like in the consumption-saving problem, we parametrize the consumption to wealth ratio



,20

unit-free Lagrange multiplier  and value function  
 :21





= 
¡
0 + 

¡
 


 ;

¢¢
´  (¢; ) 


 = exp

¡
0 + 

¡
 


 ;

¢¢
´  (¢; ) 

 
 = 0 + 

¡
 


 ;

¢
´  (¢; ) 

where  (¢;) is a neural network,  ´
©
 




ª

=1
is the distribution,  ´ (0 ) and  () = 1

1+¡ .
7

22

6Since the true decision and value functions are invariant to any permutation of

 





=1

, neural networks should eventually learn this
symmetry. In general, a faster learning speed could be achieved if the symmetry is imposed in the solution method. For instance, because
of unequal initial asset levels, some agents are given higher weight in the objective functions than the others. By reshu²ing randomly the
positions of agents, we can prevent over¯tting during the training.

7We do not use a recursive representation for Krusell and Smith's (1998) model but keep the time subscripts which is more appropriate
for describing a solution constructed on stochastic simulation.

Deep learning for solving dynamic economic models. 20

A sigmoid transformation of  (¢; ) ensures that



is in the interval [0 1]; the exponentiation of  ensures that it is23

nonnegative; there is no restriction on the range of  (¢; ). The parameter 0 is calibrated, and the biases and weights1

are initialized randomly by using "he" and "glorot" uniform distributions, respectively. In the baseline case, we use a2

neural network with a sigmoid activation function and two hidden layers of 64£ 64 neurons.3

Simulation. Our implementation of the deep learning solution method follows Algorithm 1 we used for the consumption-4

saving problem. The algorithm is remarkably straightforward: we simulate a panel of heterogeneous agents forward and5

train their decision functions as we go. For the given economy's state (
©
 

ª

=1
 ) and neural network coe±cients6

 ´ (0 ), we do the following calculations to implement the simulation step 2i):7

1. Compute



= 

¡
 


 ; 

¢
and +1 =  ¡  for each agent  = 1  .8

2. Draw +1 for  = 1   and +1 using (40) and (41), respectively.9

3. Compute prices +1 and +1 from (42) given +1 =
P

=1 

+1.10

4. Compute next period cash-in-hand 
+1 = +1


+1 ++1 exp

¡
+1

¢
.11

5. Compute
+1

+1

= 
¡
+1 


+1+1 +1; 

¢
for  = 1  .12

6. Evaluate the objective function (lifetime reward, Euler and Bellman residuals), train the neural networks and go13

to next iteration.14

We simulate the model over  = 300 000 periods, however, we perform the training only each 10th period.8 In each15

iteration, we use 100 simulated points in each iteration. We use ADAM with the learning rate of  = 0001. As the16

machine is trained and the panel is simulated, the decision functions are re¯ned jointly with the ergodic distribution.17

Perfect multicollinearity. To parameterize the decision and value functions, we represent the state space as ( 



©
 




ª

=1
 18

i.e., we list the individual variables twice, as the state variables of a agent  and as a part of the distribution
©
 




ª

=1
.19

A repetition implies perfect multicollinearity in explanatory variables, so that the inverse problem is not well de¯ned.20

Such a multicollinearity would break down a conventional numerical method which solves the inverse problem but neu-21

ral networks can learn to ignore redundant colinear variables, as we saw earlier. Even though it is possible to design22

a transformation that avoids a repetition of variables, it would require cumbersome permutations. We ¯nd it easier to23

keep the repeated variables.24

Model reduction. We solve the models with  = 1 000 agents which corresponds to 2+ 1 = 2 001 state variables.25

How can the DL method deal with such a huge state space? In addition to focusing on the ergodic set, cheap AiO inte-26

gration and stochastic optimization, we invoke the remarkable property of neural networks to perform model reduction.27

When we supply a large number of state variables to the input layer, the neural network condenses the information28

into 64 neurons in two hidden layers, making it more abstract and compact. In a sense, this procedure is similar to29

the photo compression or principal component transformation when a large set of variables is condensed into a smaller30

set of principal components without losing essential information; see Goodfellow et al. (2016) for a discussion of neural31

networks.32

5.3. Lifetime reward33

The objective function for the lifetime reward for the model (37){(41) follows directly from our general exposition34

(8):35

¥() =  [ (; )] ´ (000§)

"
X

=0

 ()

#

 (43)36

where the transitions are determined by (38){(41); 0 =
¡
10  


0

¢
, 0 =

¡
10  


0

¢
and  are the economy's state37

produced over stochastic simulation; § ´
¡
11  


1  

1
   

¢
represents shocks to productivity of all heterogenous38

agents  = 1   over the periods  = 1   ; and ² = (1  ) is the sequence of innovations to aggregate productivity.39

There is an important conceptual question on how to train the objective function (43). We are solving for competitive40

equilibrium so we must maximize the utility of each agent with respect to her own variables but not with respect to41

8Since random variables are autocorrelated in our model, the stochastic gradient is correlated over time and hence, it is biased. To reduce
the bias, we train the model on cross-sections which are su±ciently separated in time instead of using all consecutive periods.

Deep learning for solving dynamic economic models. 21

variables of other agents. In practice, we achieve this by "muting" in TensorFlow the gradient of the objective function42

of a given agent with respect to variables of the other agents.1

Figure 10 displays the outcome of training of neural network on the objective function (43).2

Figure 10. Lifetime reward in Krusell and Smith's (1998) model.

In the ¯rst panel, we illustrate how the loss function changes during training; in second panel, we show the consump-3

tion functions depending on individual wealth under 7 di®erent productivity levels ranging from -2 to 2 of the standard4

deviations of productivity (to produce these decision rules, we set the aggregate state and productivity of all other5

agents to their steady state levels). Finally, in the last panel, we show a simulated wealth series for 5 heterogeneous6

agents selected randomly from the sample. We see that the consumption decision function is similar to the one shown7

in Figure 3 for the one-consumer problem. We also observe that the simulated series for wealth are stationary; they8

°uctuate within a reasonable range, occasionally reaching the borrowing limit.9

5.4. Euler-equation method with Kuhn-Tucker conditions10

The Euler objective function for Krusell and Smith's (1998) model is parallel to the objective (30) of the consumption-
saving problem. Using the technique of two uncorrelated shocks (11) to facilitate the AiO operator, we obtain:

¥() =  [ (; )] = (§1§212)

(·

ª

µ

1¡




 1¡ 

¶¸2

+

"
+1 0

¡
+1

¢¯
¯
§=§1=1

0
¡


¢ ¡ 

#"
+1 0

¡
+1

¢¯
¯
§=§2=2

0
¡


¢ ¡ 

#)

 (44)

where the transitions are determined by (38){(41);  =
¡
1   




¢
and  =

¡
1   




¢
and  are the economy's11

state produced stochastic simulation; §1 =
¡
11  


1

¢
, §2 =

¡
12  


2

¢
are two uncorrelated random draws of individual12

productivity shocks; and 1, 2 are two uncorrelated random draws for the aggregate productivity innovations.13

The results of training under the objective (44) are shown in Figure 11.14

Figure 11. Euler-equation method in Krusell and Smiths (1998) model.

For the Euler-equation method, the residuals are generally below 10¡3 (i.e., a fraction of a percentage point). The15

solutions are very similar to those produced by the lifetime reward maximization method and presented in the previous16

section.17

Deep learning for solving dynamic economic models. 22

5.5. Objective 3: Bellman equation18

The Bellman objective function for Krusell and Smith's (1998) model is also parallel to the objective function (32)
derived for the consumption-saving problem. In particular, using the technique of two uncorrelated shocks (11), we then
arrive to an objective function with the AiO operator:

¥() =  [ (; )] ´ 
(§1§212)

nh


¡
; 

¢
¡ 

¡


¢
¡  

¡
+1; 

¢¯
¯
§=§1=1

i

£
h


¡
; 

¢
¡ 

¡


¢
¡  

¡
+1; 

¢¯
¯
§=§2=2

i
+ 

·

ª

µ

1¡




 1¡ 

¶¸2

+

2

6
4

 


+1


¡
+1; 

¢¯¯
¯
§=§1=1

0
¡


¢ ¡ 

3

7
5

2

6
4

 


+1


¡
+1; 

¢¯¯
¯
§=§2=2

0
¡


¢ ¡ 

3

7
5

9
>=

>;
 (45)

where all the ingredients are de¯ned as in (44).1

The results of training under the objective (45) are shown in Figure 12.2

Figure 12. Bellman-equation method in Krusell and Smith's (1998) model.

To initialize the algorithm, we pre-train the value function during the ¯rst 100,000 iterations holding initial decision3

functions for consumption and multiplier ¯xed { this explains the initial °at area in the loss function. In the ¯gure, we4

also plot the resulting value function under 7 di®erent individual productivity levels ranging from -2 to 2 of the standard5

deviations of productivity. The constructed decision functions and simulated series look very similar to those produced6

by the two previous methods.7

5.6. Comparison of the solutions produced by three methods8

To make a more conclusive judgement, we compare the decision rules produced by the three methods.

Figure 13. Comparison of methods in Krusell and Smith's (1998) model.

In the ¯rst panel, we plot the decision rules of one agent for the thee methods by assuming that all other individual and9

aggregate state variables are in the steady state. In the second panel, we show simulation of individual wealth for all10

three methods under an identical sequence of shocks and in the last panel, we show simulation of aggregate wealth. The11

constructed decision rules and time series solutions are visually close, and they produce very similar statistics such as the12

¯rst and second moments. We should take into account that some of the di®erences between these three solutions are13

explained by randomness that is innate to stochastic optimization, namely, the constructed decision rules may somewhat14

Deep learning for solving dynamic economic models. 23

°uctuate along iterations depending on the speci¯c sequence of random shocks.15

5.7. Euler-equation method: the properties of the solution1

In Table 1, we present some statistics for the model with di®erent number of agents produced by the Euler-equation
version of our solution method.

 () ( ) ()  40%  20%  1% ,  2

1 1.69 0.862 - - - - 522 0.9837
5 1.69 0.681 0.403 0.143 0.446 0.034 678 0.9910
10 1.64 0.671 0.443 0.115 0.469 0.037 805 0.9934
50 1.64 0.681 0.447 0.113 0.473 0.036 1721 0.9898
100 1.66 0.708 0.430 0.123 0.460 0.036 3297 0.9936
500 1.63 0.699 0.438 0.119 0.467 0.037 21823 0.9965
1000 1.66 0.707 0.430 0.118 0.465 0.037 43241 0.9977

Table 1. Selected statistics for Krusell and Smith's (1998) model.

In the ¯rst column, we show that all the studied models have practically the same standard deviation of output2

equal to () ¼ 164. This is because we normalize the mean of individual shocks to one in every period to eliminate3

the e®ect on idiosyncratic shocks on the aggregate economy. In the second column, we provide the correlation between4

output and aggregate consumption, which visibly decreases with the number of agents. There is literature that tries5

to understand why real business cycle models overstate the correlation between these two variables and our analysis6

suggests that the heterogeneity can be a clue.7

Columns 3{6 report the Gini coe±cient of the wealth distribution and the share of income by quantiles. Here,8

the numbers are comparable across the models and are similar to those obtained in Aiyagari (1994). This fact is not9

particularly surprising since our calibration closely follows the one used in that paper. We di®er from that paper in10

that we also introduce the aggregate shocks but this is not a su±ciently strong mechanism to change the distributional11

implications of the baseline Aiyagari's (1994) model.12

Column 7 reports the running time. We see that the time varies from 522 to 43 241 seconds which is not prohibitively13

large. We conclude that much larger models can be solved using a more powerful hardware beyond a laptop. In fact,14

the bottleneck is actually not the running time but memory: manipulating large neural networks becomes increasingly15

expensive as the number of agents increases.16

Finally, column 8 contains the most interesting and controversial statistic which is 2 of Krusell and Smith's (1998)17

style regression:18

ln (+1) = 0 + 1 ln () + 2 ln ()  (46)19

i.e., a regression of aggregate capital on the past aggregate capital and aggregate productivity; see Den Haan (2010)20

for a discussion. Krusell and Smith (1998) ¯nd that 2 in their model was in excess of 099999, which means that the21

aggregate capital +1, and hence, the prices, can be accurately predicted by using just aggregate state variables  and22

. This result is referred to as approximate aggregation. In Table 1, we see that 2 is also relatively large, e.g., it is23

in excess of 098 for all models. However, it is not as large as the one reported by Krusell and Smith (1998) and other24

papers that implemented related methods, e.g., Maliar et al. (2010).25

However, our analysis is not exactly identical to the one studied by Krusell and Smith (1998). They had two26

aggregate shocks and solve for two state-contingent rules ln (+1) = 0 + 1 ln () and ln (+1) = 0+ 1 ln (), where27

"" and "" denote the good and bad aggregate-productivity states. In their state-contingent regressions, the sampling28

errors are associated only with the aggregate capital. We have a more complicated setup with a continuum of aggregate29

states. Our sampling errors in (46) are driven by both the aggregate capital and aggregate productivity. Possibly, if we30

split the data by the level of aggregate productivity to mimic Krusell and Smith's (1998) state-contingent regressions,31

we would get 2 which is closer to theirs.32

5.8. Deep learning method with a reduced state space33

To reduce the computational expense, Krusell and Smith (1998) came up with a simple and e®ective idea of replacing34

the distributions of state variables  ´
©
 




ª

=1
by a set of moments . To implement this idea, they designed a35

¯xed-point iterative procedure that alternates between constructing the individual decision rules on a grid (by taking36

the law of motion of the moments as given) and solving for the law of motion for the moments (by taking the individual37

Deep learning for solving dynamic economic models. 24

decision rules as given). An essential part of their solution method is a regression of moments on lagged moments shown38

in Table 1. If such regression has a high explanatory power, the agents can accurately predict future prices without1

knowing the distributions which reduces the individual state space to just four state variables
¡
 


 

¢
if only2

¯rst moment is used. Krusell and Smith's (1998) approach proved to work remarkably well in a variety of models and3

applications.94

Our deep learning framework provides a simple way to incorporate Krusell and Smith's (1998) idea of using a5

reduced state space. As before, we simulate a panel of heterogeneous agents but we feed moments in the decision6

functions instead of distributions. Under our implementation, there is no need to alternate between constructing the7

individual and aggregate solutions as we solve the entire model at once. Moreover, the regression step of Krusell and8

Smith's (1998) analysis is also unnecessary, which allows us to use our method in those models in which the explanatory9

power of such regression is insu±cient. Our deep learning method admits any other statistics instead of and in addition10

to moments and provides a cheap alternative to our baseline deep learning operating on the actual state space. Having11

relatively few moments, like 10 or 20, makes our method tractable even with larger number of agents, in particular, we12

are able to increase the number of agents to 10,000. To save on space, we do not show the results since the statistics13

and ¯gures are practically the same as in the baseline case.14

5.9. Deep learning versus moments15

Krusell and Smith (1998) discovered that a single statistic { the mean of the wealth distribution { can e®ectively
characterize the state space of their heterogeneous-agent economy. An interesting question is how their solution compares
to our analysis. To address this question, we compare a solution produced when using the ¯rst moment of wealth
distribution (KS1) with our baseline solution produced when using the actual state space (64 £ 64 neurons). We ¯nd
that the one-moment KS1 solution is systematically shifted up relative to our baseline 64 £ 64 solution (although the
di®erence is not quantitatively important). We then compute a deep learning solution with two hidden layers composed
of 64 and 4 neurons, respectively, so that the second hidden layer has same dimensionality as the one-moment solution.
We ¯nd that the 64£4{neuron solution is also shifted up near the kink but it gradually approaches our reference solution
for larger levels of capital; see Figure 14.

Figure 14. Comparison of one-moment, 64£ 64 and 64£ 4 neuron solutions.

We tried to add second and third moments but it did not help remove the shift (we explore both ordinary and orthogonal16

Hermite polynomials). In fact, a Krusell and Smith's (1998) solution constructed using two moments of the wealth17

distribution, KS2, was even further away from our reference 64 £ 64 solution than the one-moment solution KS1. We18

next consider a solution with seven neurons in the hidden layer 64 £ 7 which has the same dimensionality as Krusell19

and Smith's (1998) solution with ¯rst and second moments KS2, and we ¯nd that additional neurons do help get closer20

to the reference solution, see Figure 15.21

9Other early approaches to solving heterogeneous agent models are o®ered by Den Haan (1997), Judd (1997) and Reiter (2009); see Den
Haan (2010) for a review.

Deep learning for solving dynamic economic models. 25

Figure 15. Comparison of two-moment, 64£ 64 and 64£ 7 neuron solutions.

Why does adding neurons help but adding more moments does not? This is because the second moments do not have22

additional explanatory power relative to the ¯rst moment, for example, they do not increase 2 of Krusell and Smith's1

(1998) regression. Adding such redundant moments does not increase the ¯t but does increase the variance In contrast,2

neural network is designed to perform model reduction: it considers many possible ways of extracting the information3

contained in the distribution and condensing it into a relatively small set of hidden layers. Not surprisingly, it can ¯nd4

representations that are more e±cient than a set of moments postulated ad-hoc and it can use additional neurons to5

improve on the quality of representation.6

6. Discussion: Deep learning in economic dynamics7

In this section, we discuss a broad set of issues related to applying deep learning in economic dynamics and explain8

how these issues di®er from those arising in data science.9

The main novelty: computational technology! There is not much methodological novelty in the canonical AI10

analysis. The gradient descent method is known since Newton and its stochastic optimization version was developed11

in early 1950s. Neural networks were also discovered long ago (Rosenblatt, 1958). There are even remarkable early12

applications of neural networks to solving dynamic economic models (Du®y and McNelis, 2001).13

However, machine learning is so technology intensive that DL methods were put aside until platforms like TensorFlow14

and Pytorch were developed to facilitate their implementation. Google has developed its own TPU units too. High-end15

GPUs feature thousands of powerful CUDA cores, which can all operate at the same time. Also, commercial interest is16

high and the surge of cloud computing has made it possible to rent vast amounts of computing power, e.g., Amazon.17

Learning is always deep in economic models. In data science, learning is called "deep" because neural networks18

have interconnected topologies with multiple layers of coe±cients. In economic dynamics, there is another reason for19

calling learning "deep". Speci¯cally, objective functions derived from dynamic economic models contain variables of20

multiple periods and nested decision functions which lead to multilayer interconnected topologies and approximation21

coe±cients buried in several layers of intertemporal optimization, similar to those observed in multilayer neural network.22

In that sense, learning is always "deep" in dynamic economic models, even for simple one-layer approximating functions23

such as polynomial or piecewise linear functions.24

Data are truly random in economic dynamics. In data science, a data set is usually ¯xed and batches are not25

really random but a pseudo-random bootstrap of the given data. In such applications, we split the available data into26

3 samples, namely, for construction of a solution, validation and accuracy assessment. When solving dynamic models,27

we do not use real-world economic data but generate arti¯cial data by simulating the model. In this case, we just need28

to ¯x the distribution for random draws. We then are able to simulate the model at will and we can generate as much29

arti¯cial data as we want. In that sense, our data are truly random.30

Antithetic variates improve e±ciency of Monte Carlo integration. Monte Carlo integration has a low square-31

root rate of convergence. We can increase the e±ciency of SGD by using variance reduction techniques; see Cheng32

(1982). One simple method is antithetic variates: assuming a zero mean, for every realization (1  0), we also33

consider its antithetic realization (¡1 ¡0). Another possibility is a tensor-product antithetic variates, i.e., to34

Deep learning for solving dynamic economic models. 26

consider all possible combinations (§1 §0). In the lifetime reward function, the sequence (§1 §) may35

be expensive to analyze, so we can consider a truncated sequence with antithetic variates just for the ¯rst  periods,1

namely, (§1 §  +1  ). The distant future terms are discounted so that making the ¯rst few draws antithetic2

can still bring a considerable increase in accuracy.3

Lifetime reward maximization with deterministic integration of shocks. For the Euler- and Bellman-equation4

methods, we had two versions: one in which we compute integrals with respect to state variables and future shocks sep-5

arately and the other is the AiO expectation version. For the lifetime reward, we only have the version with the AiO ex-6

pectation operator. But we can also implement a method that computes the two expectation functions separately, for ex-7

ample, one that uses Monte Carlo integration for evaluating (00) [¢], and the other that uses deterministic integration8

for evaluating (1), i.e., we compute sequentially the two expectation operators in (00)

h
(1)

P
=0 

(¢)
i
.9

To evaluate (1), we can use a deterministic integration method suggested in Adjemian and Juillard (2013). In10

each period , we construct  integration nodes (by using quadrature, monomials, etc.) This leads to an exploding11

tensor-product tree. For example, a tree with just 2 Gaussian nodes §, results in sequence §0§1§2  that has12

exponentially growing number of nodes 2, 4, 8,.... But Adjemian and Juillard (2013) propose a clever re¯nement that13

makes the problem tractable by eliminating those branches of the tree whose probabilities are low.14

Nested local approximations and deterministic models. Each of the three constructed objective functions15

contains two nested models: One is the model in which the solution is approximated locally around the given state,16

and the other is the deterministic model. In the former case, state () is ¯xed in (8), (10), (12), (14), and (15) and17

expectation is computed only with respect to exogenous shocks . Such a solution may be interesting per se, for example,18

for studying transitions of a developing economy to the steady state because the solution constructed just in the ergodic19

set may be insu±ciently accurate. In turn, the deterministic model is the one in which a realization of shocks  is ¯xed20

and the state ( ) is random.21

Accuracy tests in economic dynamics are indirect. In a canonical supervised learning regression, we assess the22

quality of approximation by looking at the di®erence between the true and predicted output out-of-sample. In a logistic23

regression (e.g., the problem of handwritten digits classi¯cation), the success can be also measured by the fraction of24

times the machine classi¯es the digits correctly, e.g., it recognizes the handwritten digits correctly in 80 percent of the25

cases.26

In the context of economic dynamics, a parallel direct accuracy test would require us to compare approximate27

and exact solutions. This is generally infeasible since the exact solutions are unknown. One way to deal with this28

complication is to construct a more accurate reference solution by using more °exible approximation functions, more29

precise solvers and more accurate numerical integration methods. However, such a reference solution may be infeasible30

or excessively costly; see Judd et al. (2017) for a discussion and examples of cheaper direct testing methods that rely31

on numerical construction of the error bounds.32

Following the economic literature, we concentrate on indirect approaches to the accuracy evaluation. Speci¯cally,33

we will check certain properties that an accurate solution is known to satisfy, such as zero residuals in the Euler or34

Bellman equation. Indirect accuracy tests are simple to design and they can be implemented in an out-of-sample way35

which is characteristic for AI applications. Moreover, we can de¯ne indirect accuracy measures to re°ect the economic36

signi¯cance of accuracy. For example, we can express approximation errors in percentage terms of consumption.37

7. Concluding comments38

In the paper, we propose an AI technology that is tractable in large scale applications { a deep learning method39

based on Monte Carlo simulation. Our analysis is technology driven: we do not aim to design AI approaches that would40

work best for a certain class of economic models but rather we adapt the economic models themselves to available AI41

technologies. The modern data-science tools are ubiquitous, well developed, free of errors and optimized { these may42

be su±cient to compensate for potential ine±ciencies. We have shown the promise of the DL approach by solving the43

Krusell and Smith (1998) model with thousands of state variables without resorting to a simplifying assumption about44

the economy's state space { such analysis has been infeasible up to now. Consequently, it seems to be a promising45

direction to explore.46

Our solution framework was designed to take advantage of existing DL technology. "Is this the best possible47

technology for solving dynamic economic models?" { the answer to this question is not clear.48

Deep learning for solving dynamic economic models. 27

First, neural networks are powerful universal approximators, but their training is expensive and their convergence49

to the solutions is not guaranteed. It is actually an open question whether there is much value in using deep neural1

networks for approximating decision rules in economics which often can be well approximated by simple functions like2

polynomials and splines.3

Second, Monte Carlo simulation lying at the basis of DL framework has a low square-root rate of convergence. It is4

possible to improve on the Monte Carlo method by engineering sequences that deliver more accurate approximations to5

integrals (e.g., quadrature, monomials, quasi-random sequence, sparse grids, clusters, epsilon-distinguishable sets), as6

well as by applying variance-reduction techniques such as antithetic variates; see Maliar and Maliar (2014) for a review.7

Third, instead of stochastic optimization, we can use other numerical solvers, e.g., ¯xed-point iteration, conventional8

GD methods, Gauss-Jacobi, Gauss-Siedel and linear programming; see Judd (1998). These techniques are commonly9

used in computational economics, and we expect them to be useful alternatives to our baseline SGD in some applications.10

Finally, there are other AI-style methods that can be used for solving economic models, in particular, unsupervised11

and reinforcement learning methods. These methods o®er a possibility of online learning and additional powerful12

approximation techniques such as alternating of learning, exploration or exploitation { such techniques are absent in13

our static o²ine supervised learning framework.14

References15

Adjemian, S., Juillard, M., 2013. Stochastic extended path approach. Manuscript.16

Ahn, S., Kaplan, G., Moll, B., Winberry, T., Wolf, C., 2018. When inequality matters for macro and macro matters for17

inequality. NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), 1-75.18

Arellano, C., Maliar, L., Maliar, S., and Tsyrennikov, V., 2016. Envelope condition method with an application to19

default risk models. Journal of Economic Dynamics and Control 69, 436-459.20

Aruoba, S. B., Fern¶andez-Villaverde, J., Rubio-Ram¶³rez, J., 2006. Comparing solution methods for dynamic equilibrium21

economies. Journal of Economic Dynamics and Control 30, 2477{2508.22

Azinovic, M., Luca, J., Scheidegger, S., 2020. Deep equilibrium nets. SSRN: https://ssrn.com/abstract=339348223

Bayer, C., Luetticke, R., 2020. Solving discrete time heterogeneous agent models with aggregate risk and many idiosyn-24

cratic states by perturbation. Quantitative Economics 11, 1253-1288.25

Carroll, C., 2006. The method of endogenous gridpoints for solving dynamic stochastic optimization problems. Economics26

Letters 91(3), 312-320.27

Cheng, R., 1982. The use of antithetic variates in computer simulations. Journal of the Operational Research Society28

33 (3), 229-237.29

Coleman, C., Lyon, S., Maliar, L., Maliar, S., 2018. Matlab, python, julia: what to choose in economics? CEPR working30

paper DP 13210. Computational Economics, forthcoming.31

Den Haan, W., 1997. Solving dynamic models with aggregate shocks and heterogeneous agents. Macroeconomic Dy-32

namics 1(02), 355-386.33

Den Haan, W., 2010. Comparison of solutions to the incomplete markets model with aggregate uncertainty. Journal of34

Economic Dynamics and Control 34, 4{27.35

Den Haan, W., Marcet, A., 1990. Solving the stochastic growth model by parameterized expectations. Journal of Business36

and Economic Statistics 8, 31{34.37

Duarte, V., 2018. Machine learning for continuous-time economics. SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract id=30138

Du®y, J., McNelis, P., 2001. Approximating and simulating the real business cycle model: parameterized expectations,39

neural networks, and the genetic algorithm, Journal of Economic Dynamics and Control 25(9), 1273-1303.40

Fern¶andez-Villaverde, J., Hurtado, S., Nu~no, G., 2019. Financial frictions and the wealth distribution. NBER Working41

paper 26302.42

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. Massachusetts Institute Technology Press.43

Deep learning for solving dynamic economic models. 28

Gorodnichenko, Y., Maliar, L., Maliar, S., Naubert, C., 2020. Household savings and monetary policy under individual44

and aggregate stochastic volatility. CEPR working paper 15614.1

Jiang, H., 1996. Smoothed Fischer-Burmeister equation methods for the complementarity problem. Manuscript.2

Jirniy, A., Lepetyuk, V., 2011. A reinforcement learning approach to solving incomplete market models with aggregate3

uncertainty. SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract id=18327454

Judd, K. L., 1992. Projection methods for solving aggregate growth models. Journal of Economic Theory 58, 410{452.5

Judd, K. L., 1998. Numerical methods in economics. MIT Press.6

Judd, K. L., Maliar, L., Maliar, S., 2011. Numerically stable and accurate stochastic simulation approaches for solving7

dynamic models. Quantitative Economics 2, 173{210.8

Judd, L., Maliar, L., Maliar, S., 2017. Lower bounds on approximation errors to numerical solutions of dynamic economic9

models. Econometrica 85 (3), 991-1020.10

Lepetyuk, V., Maliar, L., Maliar, S., 2020. When the U.S. catches a cold, Canada sneezes: a lower-bound tale told by11

deep learning. Journal of Economic Dynamics and Control 117, 103926.12

Krusell, P., Smith, A., 1998. Income and wealth heterogeneity in the macroeconomy. Journal of Political Economy 106,13

868{896.14

Maliar, L., Maliar, S., 2005. Parameterized expectations algorithm: how to solve for labor easily. Computational Eco-15

nomics 25, 269{274.16

Maliar, L., Maliar, S., 2013. Envelope condition method versus endogenous grid method for solving dynamic program-17

ming problems. Economics Letters 120, 262-266.18

Maliar, L., Maliar, S., 2014. Numerical methods for large scale dynamic economic models in: Schmedders, K. and K.19

Judd (Eds.), Handbook of Computational Economics, Volume 3, Chapter 7, Amsterdam: Elsevier Science.20

Maliar L., Maliar, S., 2015. Merging simulation and projection approaches to solve high-dimensional problems with an21

application to a new Keynesian model. Quantitative Economics 6, 1-47.22

Maliar, L., Maliar,S., 2020. Deep learning classi¯cation: Modeling discrete labor choice. CEPR working paper DP 15346.23

Maliar, L., Maliar, S., Valli, F., 2010. Solving the incomplete markets model with aggregate uncertainty using the24

Krusell-Smith algorithm. Journal of Economic Dynamics and Control 34 (special issue), 42{49.25

Reiter, M., 2010. Approximate and almost-exact aggregation in dynamic stochastic heterogeneous-agent models. IHS26

Working Paper 258.27

Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization in the brain.28

Psychological Review 65 (6), 386-408.29

Rust, J., 1996. Numerical dynamic programming in economics. In: Amman,H., Kendrick,D., Rust, J. (Eds.), Handbook30

of Computational Economics. Elsevier Science,Amsterdam, pp. 619{722.31

Santos, M., 1999. Numerical solution of dynamic economic models. In: Taylor, J.,Woodford, M. (Eds.), Handbook of32

Macroeconomics. Elsevier Science, Amsterdam, pp. 312{382.33

Smith, A., 1993. Estimating nonlinear time-series models using simulated vector autoregressions. Journal of Applied34

Econometrics 8, S63{S84.35

Stachurski, J., 2009. Economic dynamics: theory and computation. MIT Press.36

Villa, A., Valaitis, V., 2019. Machine learning projection methods for macro-¯nance models. SSRN:37

https://papers.ssrn.com/sol3/papers.cfm?abstract id=3209934.38

Winberry, T., 2018. A method for solving and estimating heterogeneous agent macro models, Quantitative Economics39

9(3), 1123{1151.40

Supplement to "Deep learning for solving dynamic economic

models".

Lilia Maliar, Serguei Maliar∗, Pablo Winant†‡

 The Graduate Center, City University of New York, CEPR and Hoover Institution, Stanford University;
 Santa Clara University;

 ESCP Business School and CREST/Ecole Polytechnique

Received 11 March 2020; Revised 16 July 2021; Accepted 19 July 2021.

A. Canonical supervised learning and its generalization

In this section, we describe canonical supervised learning framework, and we show how it can be generalized for estimating

the objective functions derived from economic models.

A machine attempts to learn a function that maps inputs to output given a collection of input-output pairs. Formally,

let  ∈ R be input data, called features, and let  ∈ R be output data. The goal of the machine is to learn an
approximation function (also, referred to as a hypothesis or prediction function)  : R → R such that, given , the

value  () provides an accurate prediction about the true output . The function  is selected within a given family of

parametric functions
©
 (·; ) :  ∈ Rª, where  is a parameters vector.

In order to construct , we minimize losses from inaccurate predictions. We define a loss function  : R −→ R as
the difference between a true output  and predicted output  (; ) minimizing the expected loss, called expected risk

∗Corresponding author: maliars@stanford.edu

†We are grateful to Marc Maliar for his help with writing the TensorFlow code for solving Krusell and Smith’s (1998) model. We

thank the editor and an annonimous referee for many useful comments and suggestions. The paper also circulated under the title "Will

Artificial Intelligence Replace Computational Economists Any Time Soon?" We also received useful comments from participants of the

2018 Society for Computational Economics (CEF) Conference in Milan (invited session), 2018 Econometric Society Australasian Meeting

(ESAM) in Auckland (invited talk), Oxford University, CEPREMAP, Banque de France, Panorisk Summer School, NYU Abhu Dabi, Paris

Dauphine University, CREST (Ecole Polytechnique), Durham University, Santa Clara University, Rutgers University, PASC conference,

Model comparison conference in Frankfurt, Complutense University of Madrid, Stanford University, Queens College, Stony Brook University,

Columbia University, Deutsche Bundesbank, the Graduate Center, CUNY.
‡Lilia Maliar and Serguei Maliar acknowledge financial support from the NSF grants SES-1949413 and SES-1949430, respectively.

1

Ξ(),

Ξ() ≡
Z
R×R

 ( (; )  )  ( ) =  [ ( (; )  )]  (1)

where  : R × R −→ [0 1] is a joint probability distribution function, and  [·] is an expectation operator. That
is, Ξ() gives expected loss, for a given  (·; ) with respect to  . The goal of minimizing Ξ() is generally unattainable
because there is incomplete information on  .

In practice, we solve the minimization problem by using a finite set of draws from  . We define an estimate of the

expected risk, called empirical risk Ξ(),

Ξ() ≡ 1



X
=1

 ( (; )  )  (2)

where {( )}=1 ⊆ R × R is a set of  independently drawn input-output pairs. The goal of the machine is to
learn  that minimizes (2) — this step is referred to as training.

A well-known example of supervised learning is a linear regression model  = , in which we have  (; ) =  and

the loss function is  ( ) = ( − )
2
. However, many other approximating functions  (·; ) can be used instead of

linear regression model , in particular, it works for linear functional spaces (e.g., polynomials, splines) and nonlinear

functions alike (e.g., radial basis functions, neural networks).

The above framework is called supervised because for each data point , the machine is given correct output  to

check its prediction (; ). We now generalize this framework to the case when correct output  is not given but

defined implicitly in the objective function (1). Denoting an input-output pair ( ) by , we rewrite the theoretical

risk (1) and empirical risk (2), respectively, as

Ξ() =  [ (; )] , and Ξ() =
1



X
=1

 (; )  (3)

where {}=1 denotes the given set of input-output pairs {( )}=1 and  ( ) ≡  ( (; )  ). This change of

variables converts supervised learning into generic optimization of expectation functions.

The optimization framework (3) is more suitable for the purpose of solving dynamic economic models than the original

supervised-learning framework because correct output values (i.e., the true values  of decision function (; )) are

generally unknown to computational economists).

Finally, the implicit optimization framework (3) can also be viewed as a version of unsupervised learning. Generally,

unsupervised learning analysis focuses on how to extract and effectively represent information available in the data, for

example, by assigning data into clusters, by constructing principal components for dimensionality reduction. In terms

of framework (3), an unsupervised machine attempts to learn the value of  that captures regularities in the data , as

specified in the objective function Ξ(). In that sense, our representation (3) provides a connection between supervised

and unsupervised learning.

B. Neural networks

Neural networks are designed to mimic neurons in the human brain. A human neuron consists of a cell body connected to

other neurons through input and output wires; an input wire, called dendrite, carries information, impulses of electricity,

from another neuron, while an output wire, called axon, sends impulses to another neuron.

Perceptron. The first simplified model of a biological neuron — a perceptron — was invented by a psychologist Frank

Rosenblatt (1957). An example of artificial neuron is represented in Figure S.1.

2

Figure S.1. An artificial neuron.

The circle represents an artificial neuron, and the arrow represents a connection from the output of one neuron to the

input of another. An th input (i.e., a received signal) is denoted by  = (0  ), with 0 = 1 (by convention)

and  = 3 in the figure. Signal processing consists of linearly weighing of  by a coefficients vector  = (0  ) ∈ R+1
to obtain the non-activated output  = 00 +  +  and activating  with an activation function  (·), i.e.,
 (). The coefficient  controls the strength of a signal passing from one node to another. Under some activation

functions, only signals that exceed a certain threshold are passed on to subsequent layers.

Activation functions. There is a variety of possible activation functions: (i) heaviside step function: () = 1≥0;
(ii) sigmoid (logistic): () = 1

1+− ; (iii) tanh (hyperbolic tangent); (iv) () =
−−
+− ; relu (rectified linear units):

() = max(0 ); (v) leaky relu: () = max( ),  ≤ 0; (vi) maxout: () = max(1 + 1 2 + 2 3 + 3).
1

Figure S.2 plots three of such functions, namely, a sigmoid, hyperbolic tangent (tanh), and leaky relu.

Figure S.2. Common activation functions.

Neural network: general notation. Let us consider a fully connected feed-forward neural network. Such a network

consists of  layers of nodes — an input layer 1 and an output layer  , as well as intermediate layers — hidden layers,

between the input and output layers. (In Figure 1 of the main text, we show an example of a neural network with three

layers). An th layer  ∈ {1 2 } consists of  nodes, with  being the layer’s width. The nodes of the input layer

1, denoted  = (0  1), are referred to as input features (by convention, 0 = 1). The nodes of an th hidden

layer, labeled () =
¡
0  




¢
, are called activation units, where  is an activation of a unit  in a layer .

Omitting an th observation subscript, let us denote by () an input of a layer   1. It is a linear combination of

the activation units of the previous layer , i.e., () = (−1)(−1), where () ∈ +1 × +1. Note that (1) =  and

() = (−1)(−1). A non-activated input () is transformed into an activated one by applying an activation function
  ∈ T , such that

() =  

³
()()

´


where   is applied element-wise, i.e., in such a way that the dimension of its argument is the same as the dimension of its

output. Distinct layers may use different activation functions (i.e., they can perform different kinds of transformations

of their inputs). The predicted output is the result of a hypothesis function  (; ) = 
¡
()

¢
= 

³
(−1)(−1)

´
.

1 In applications, it is convenient that 0() = ()(1− ()).

3

Denoting by T the set of all activation functions, we define a feedforward neural network of depth  by its topology

((1 1)     ( )) ∈ (T ×R).
The parameters vector  is obtained by minimizing Ξ() =

P
=1

( − (0  1 ; ))
2
, i.e., mean squared error

between the data — the given output features — denoted by  = (0  ) and the predicted output nodes given by

 (; ).

Backpropagation algorithm. Given the assumption on Ξ(), we are to compute 


()



Ξ(). For this purpose, one can

use a backpropagation algorithm. Given the data (called a training set in machine learning) {( )}
0

=1, we perform

the following steps for a neural network with  layers:

• Initially, set an error 4()
 to 0 for all (  ). This variable will be used for accumulating the gradient.

• For each observation , set activated output of the first layer to , i.e., (1) = . Apply forward activation

to compute the activated output () for  = 2 3  , as () =  

³
()()

´
where the non-activated output is

() = (−1)(−1). This computation is performed for the assumed values of the parameters vector .

• For each {}
0

=1,

— compute the error value for the last layer as the difference between the actual result in the last layer and the

true output,

() = () − ;

— Compute the error of cost for () in all the layers before the last one, i.e., (−1)  (2) as follows:

() = ()0(+1) ·  0
³
()
´


where · denotes the element-wise multiplication;
— update the new error matrix as

4() = 4() + (+1)()0

• The unknown gradient is given by the partial derivative of the th layer for the parameter () ,




()


Ξ =
1

0
4()
 

Neural networks as universal approximators. Multilayer feedforward networks with hidden layers provide a

universal approximation framework.

(Hornik’s et al. (1989) universal approximation theorem). Whenever the activation function is bounded and non-

constant, a standard multilayer feedforward network can approximate any (Borel) measurable function arbitrarily well,

given that sufficiently many hidden units are considered.2 Given that any continuous function on a closed and bounded

subset of R is Borel measurable, the above theorem establishes that any continuous function on a compact set can be

approximated by a neural network. In addition, a neural network can approximate arbitrarily well any function that

maps from any finite dimensional discrete space to another.

Leshno et al. (1993) generalize Hornik’s et al. (1989) theorem to provide necessary and sufficient conditions for

universal approximation. In particular, they show that a standard multilayer feedforward network can approximate any

continuous function arbitrarily well if and only if the activation function is nonpolynomial (including rectified linear

units). They emphasize the role of the threshold values without which the result does not hold. A threshold is an element

that should be added to an activation function if it is not dense in  (R). For example,  () = sin () cannot be used
to approximate cos () in [−1 1] because sin ( · ),  ∈ R is not dense in  ([−1 1]). This can be changed by adding
a threshold 

2
, i.e., sin

¡
+ 

2

¢
= cos (). Activation functions need not be smooth or continuous — nonpolynomiality

is the only restriction on he activation functions required. Leshno’s et al. (1993) results just specify that a sufficiently

2Hornik et al. (1990) also demonstrate that the derivatives of a function can be approximated to any desired degree of accuracy by the

derivatives of the feedforward network.

4

wide network could represent any function without addressing the questions of the network’s depth or efficiency. In

other words, the theory tells us that a large neural network will be able to represent any function. However, there is no

guarantee that the training algorithm will be actually able to learn that function.

In particular, a failure can occur due to the following two reasons. First, the optimization algorithm we use to

train the neural network may fail to find parameters values corresponding to the desired function. Second, the training

algorithm may overfit which leads to finding a wrong function. A no-free-lunch result applies therefore: there exists no

universally superior machine learning algorithm. Barron (1993) shows that although a single-layer network is sufficient

to approximate a broad class of functions, an exponential number of hidden units may be required in the worse-case

scenario.

C. Training methods in machine-learning literature

In this section, we discuss some training methods used in machine-learning literature. Let us remind that in data science,

data are normally fixed and batches are pseudo-random (they are obtained by bootstrapping of the given data). In

contrast, in economic dynamics, data are truly random.

Stochastic and batch gradient descent methods. Recall that the basic gradient descent method is given by

+1 ←  − ∇Ξ(). Computing the gradient of the expectation function ∇Ξ
() can be expensive when the data

size  is large. A stochastic batch gradient descent (BGD) method is a popular approach to reduce the cost of computing

∇Ξ
(). It constructs the gradient on a small random subset of data with 0 ¿  data points,

+1 ←  − ∇Ξ() with ∇Ξ
0() ≈ ∇

⎡⎣ 1
0

0X
=1

 (; )

⎤⎦  (4)

where a subset (1  0) is called batch, ∇ is a gradient operator,  and  are a parameter vector and a parameter

step on iteration , respectively.

Two limiting cases of the BGD method are 0 =  and 0 = 1. The former corresponds to the conventional gradient
descent (GD) method in which all data points are used for constructing the gradient. The latter corresponds to a

stochastic gradient (SGD) method which approximates the expectation function with the value of such a function in

one randomly chosen data point , i.e., ∇ [ (; )] ≈ ∇ (; ).

Under SGD and BGD methods, {} is not a uniquely determined sequence but a stochastic process that depends
on the realized sequence {}. While such approximation can be very imprecise on each given step, SGD and BGD

are unbiased and the cumulative average converges to the true gradient 1


P
=1∇ (; )→∇Ξ() over  updates,

provided that the coefficients are stabilized,  ≈ . In other words, each direction should not be necessarily descent,

however, if it is descent in expectation, we can find a minimum of Ξ() over a large number of iterations.

SGD and BGD methods have different trade-offs in terms of per iteration costs and expected per-iteration im-

provement. Because of the sum structure in the coefficients updating, a full BGD algorithm greatly benefits from

parallelization. However, the SGD algorithm uses information about the gradient more efficiently than BGD. To un-

derstand, create a new sample by copying the original sample multiple times. By construction, the optimum of the

larger set coincides with that of the original smaller set. The full BGD algorithm that uses the larger set will be more

expensive than its version that uses a smaller set. The SGD performs the same computation and has the same costs

in both scenarios. Although in practice samples are not obtained by creating multiple copies of the original sample,

there is plenty of redundancy in the data. This observation suggests that it is inefficient to use the whole sample on

every iteration, as is done under the full batch approach, and that working with small samples, even one observation,

as in the case of the SGD method, might be more beneficial. In practice, however, the SGD is characterized by fast

improvements on initial iterations but dramatic posterior slowdowns (see Bertsekas, 2015) for an intuitive explanation of

such behavior. This issue is addressed by a steady reduction in the stepsize as iterations progress. Although in theory,

the basic SGD has a slower rate of convergence than the full BGD does, SGD’s per iteration costs is independent of

the sample size . A mini BGD method still has gains from parallelization and is also more efficient than a full-batch

version.

There are other more sophisticated versions of the SGD method that ensure faster convergence and have stronger

convergence properties such as Nesterov and ADAM methods; see Goodfellow et al. (2016). There is a trade-off between

using lots of parallel simulations with a large  so that the last term is a close approximation of the expected gradient

and going for faster updates. These training algorithms feature time-varying learning rates and/or parameter specific

5

updates rules (so that higher variance parameters are updated slower). In the paper, we use some of these training

methods, in particular, ADAM. Below we provide some details on this training method.

ADAM was proposed by Kingma and Ba (2014); its name is an abbreviation from "adaptive moments". It is a

combination of two other extensions of stochastic gradient descent, namely, Root Mean Square Propagation, RMSProp,

and momentum. RMSProp includes

 ← 1

0

0X
=1

∇ ( ( )) 

+1 ←  + (1− )  ¯ 

4+1 = − p
 + +1

¯ 

+1 ←  +4+1

where  is a small constant;  ∈ (0 1). Here, the learning rates of all parameters are adjusted individually by making a
step that is inversely proportional to the square root of the exponentially moving average of the previous squared values

 ¯  of the gradient . RMSProp also includes an estimate of the second-order moment  ¯ . In a momentum

algorithm, there are two additional parameters, a velocity vector  and a hyperparameter  ∈ [0 1); the latter determines
how quickly the effect of the previous gradients  decreases,

 ← 1

0

0X
=1

∇ ( ( )) 

+1 ←  − 

+1 ←  + +1

ADAM applies momentum to the rescaled gradients. The algorithm calculates an exponential moving average of the

gradient and the squared gradient, and the parameters 1 and 2 control the decay rates of these moving averages,

 ← 1

0

0X
=1

∇ ( ( )) 

+1 ← 1 + (1− 1) 

+1 ← 2 + (1− 2)  ¯ b+1 ← +1

1− 1


b+1 ← +1

1− 2


4+1 = − b+1
 +
√
+1



+1 ←  +4+1

Thus, ADAM incorporates bias corrections for the first—order-moment estimate  and for the second—order-moment

estimate  ¯ . In contrast, RMSProp only includes a correction for the second—order-moment estimate (and not the

first-order moment estimate) and does not have a correction factor 1− 2.

Convergence of the SGD method. In our minimization (maximization) problems, objective functions should not

be necessarily convex (concave) in parameters . Such functions may have multiple local minima (maxima) and other

stationary points. It turns out that one can still provide some guarantees that the basic SGD method converges in

nonconvex (nonconcave) settings.

Below, we provide the proof of this result for the case of a constant learning rate. In this proof, we follow Bottou,

Curtis and Nocedal (2018). The proof works interchangeably for both the expected risk Ξ() and empirical risk Ξ().

6

Therefore, to represent both of them, we denote the objective by  : R → R,

 () =

⎧⎨⎩ Ξ() =  [ ( (; ))] 

or

Ξ() = 1


P
=1  ( (; )) 

(5)

where  denotes a loss function equal to the difference between a true output  and predicted output  (; ) when

minimizing either expected or empirical risks. The difference between these two cases depends on how the SGD chooses

the samples in each iteration. If  () = Ξ(), then it is done uniformly from a finite set of observations. If  () = Ξ(),

it is done using the probability distribution  : R −→ [0 1].

Denote by  (; ) a stochastic vector of gradients that covers, respectively, both the basic SGD and a mini BGD

methods,

 (; ) =

⎧⎨⎩
∇ ( (; ))

or
1
0
P0

=1∇ ( (; )) 
Below, we provide a general discussion of the steps for the gradient descent (GD) algorithms studied.

Algorithm 1. (a GD algorithm):

• Make an initial guess on the parameters vector, i.e., 1.
• For  = 1 2 , do the following:

— draw a random realization for .

— compute a stochastic vector of gradients  (; ).

— choose a learning rate   0.

— compute the new parameters vector as +1 ←  −  (; ).

• End iterations when convergence is achieved.
The proof of convergence relies on two assumptions, one is about a Lipschitz-continuous objective gradient, and the

other is about the first and second moments of the gradients.

Assumption 1. (Lipschitz-continuous objective gradients). (1) The objective function  : R → R is

continuously differentiable.

(2) The gradient of  denoted ∇ : R → R is Lipschitz continuous with a constant   0 :°°∇ ()−∇ ¡¢°°
2
≤ 

°° − 
°°
2
for all

©
 
ª ⊂ R. (6)

Note that Assumption 1 is equivalent to the following property:

 () ≤ 
¡

¢
+∇ ¡¢0 ¡ − 

¢
+
1

2

°° − 

°°2
2
for all

©
 
ª ⊂ R. (7)

The equivalence of (6) and (7) is verified in Bottou et al. (2018). Moreover, this assumption leads to the following useful

result for all iterations  ∈ {1 }:

 [ (+1)−  ()] ≤ −∇ ()0 [ (; )] +
1

2
2

h
k (; )k22

i
 (8)

which follows directly by Assumption 1.

One can achieve convergence of the studied GD methods by including additional requirements on the first and

second moments of  (; ). These requirements help us bound the right-hand side of the inequality (8). We define

the variance of  (; ) as follows:

 [ (; )] ≡ 

h
k (; )k22

i
− k (; )k22  (9)

To be specific, assume that our optimization problem is a minimization problem.

7

Assumption 2. (Limits on the first and second moments). The objective function  in (5) and Algorithm 1

satisfy the following three properties:

(a) (Objective function). The sequence {} is in an open set where the objective function  is bounded from below by

a scalar inf , i.e.,  () ≥ inf for all  ∈ {1 }.
(b) (First moment). There exist scalars  and  such that  ≥   0 and for all , we have

∇ ()0 [ (; )] ≥  k∇ ()k22  (10)

k (; )k2 ≤  k∇ ()k2  (11)

(c) (Second moment). There exist scalars  ≥ 0 and  ≥ 0 such that for all , we have

 [ (; )] ≤  + k∇ ()k22  (12)

Given Assumptions 1 and 2, we prove the following convergence result for Algorithm 1.

Theorem (Nonconvex objective and a fixed learning rate). Suppose Assumptions 1 and 2 hold. Assume

 =   0 (constant) for all  and it satisfies

 ≤ 



 (13)

Then, the expected sum of squares of the gradients of  () satisfies



"
X
=1

k∇ ()k22
#
≤ 


+
2 (1)− inf


 (14)

and the expected average squared gradients of  () satisfies



"
1



X
=1

k∇ ()k22
#
≤ 


+
2 [ (1)− inf]


(15)

−→
−→∞




 (16)

Proof.

• From (8) and (10), we have

 [ (+1)−  ()]

≤ −∇ ()0 [ (; )] +
1

2
2

h
k (; )k22

i
≤ − k∇ ()k22 +

1

2
2

h
k (; )k22

i
 (17)

• The definition of the second moment in (9), together with Assumption 2 in (12), yields



h
k (; )k22

i
≤  +

£
 + 2

¤| {z }
≡≥2

· k∇ ()k22  (18)

• Combining the last two equations (17) and (18) yields

 [ (+1)−  ()] ≤ −
µ
− 1

2


¶
 k∇ ()k22 +

1

2
2 (19)

8

• Taking the total expectation of (19), we obtain

 [ (+1)]− [ ()] ≤ −
µ
− 1

2


¶
 k∇ ()k22 +

1

2
2

• Imposing now that  =  and that  ≤ 


, we get

 [ (+1)]− [ ()] ≤ −1
2
 k∇ ()k22 +

1

2
2

• Summing up the latter expression over all iterations  ∈ {1 } and recalling that the sequence {} is such
that  () ≥ inf for all , we obtain

inf −  (1) ≤  [ (+1)]−  (1) ≤ −1
2


X
=1

 k∇ ()k22 +
1

2
2

• Re-grouping the terms in the last expression leads to (14). The division of the resulting equation by  implies

(15). ¤

According to Assumption 2 about the second moment in (12), when  = 0, there is no noise or the noise goes down

proportionally to k∇ ()k22, so that equation (16) implies that the sum of squared gradients is finite and that the

sequence {k∇ ()k2} −→ 0 as  −→ ∞. When   0, there is an interaction between the learning rate  and the

variance of the stochastic directions. Result (15) provides a bound on the average squared gradient of the objective

function observed over  iterations. As  increases, this average squared gradient becomes smaller, implying that a

GD method spends increasingly more time in regions where the objective function has a (relatively) small gradient.

According to (16), when  6= 0, noise in the gradients prevents further progress in convergence (as the presence of

nonzero term 


indicates). However, the average squared gradient can be reduced by choosing a small learning rate;

the drawback of a smaller  would be a lower speed of convergence.

One can also prove the convergence result for the case of non-constant learning rate . We state this result without

proving it in the theorem below.

Theorem (Nonconvex objective and a diminishing learning rate). Suppose Assumptions 1 and 2 hold.

Assume a sequence {} satisfies

∆ ≡
X
=1

 =∞ and

X
=1

2 ∞ (20)

Then, the expected sum of squares of the gradients of  (), weighted by , satisfies



"
X
=1

 k∇ ()k22
#
∞ (21)

and the expected average squared gradients of  (), weighted by , satisfies



"
1

∆

X
=1

 k∇ ()k22
#
−→

−→∞
0 (22)

Proof. See Bottou et al (2018).

D. Connection to supervised, unsupervised and reinforcement learning

literature

Our solution method is related to the fields of supervised, unsupervised and reinforcement learning. First, nonlinear

regression equations, which we estimate using artificial data, can be viewed as a generalization of canonical supervised

learning; see Supplement A for the formal results. Second, since the decision and value functions are not known in

economic models, we can also interpret our solution method as a version of unsupervised learning. Finally, given that

9

our method approximates not only the decision and value functions but also the ergodic set, it has a connection to

reinforcement learning. Interestingly, there are numerous AI-like approaches in computational economics that were

discovered independently or even preceded similar AI approaches in the data science. We discuss some of related

approaches in our literature review.3

Supervised learning

Essentially, all solution methods in economics use regression or interpolation techniques for approximating policy and

value functions off the grid — such techniques can be classified as supervised learning. The typical approximation family

is polynomials (ordinary, Chebyshev, Hermite, etc.) but other families were also considered, including neural networks.

The first application of neural networks to economic dynamics dates back to Duffy and McNelis (2001) who use neural

networks for parametrizing decision functions in a growth model. Recently, multilayer neural networks are used by Duarte

(2018) for approximating value functions which solve Hamilton-Jacobi-Bellman equations; by Fernández-Villaverde et

al. (2019) for approximating an aggregate law of motion in a continuous-time version of the Krusell and Smith (1998)

model; by Villa and Valaitis (2019) for dealing with ill-conditioning in a parameterized expectations algorithm (PEA)

of Den Haan and Marcet (1990); by Lepetyuk et al. (2020) for solving a large-scale central banking model.

However, interpolation does not fully utilize the capacities of the existing AI technology. In that case, AI technology

does not solve the entire economic model but serves as one of the ingredients of the conventional solution method. We

differ from that literature in that we generalize supervised learning to cast the entire economic model into a single

objective function, so that AI produces the entire solution — we do so for three key objects of economic dynamics:

lifetime reward, Bellman equation and Euler equation.

There are papers on computational economics that propose numerical approaches related to ours. The lifetime-

reward maximization method is related to the indirect inference procedure of Smith (1987). The Euler-equation method

is related to seminal contributions to numerical solution methods in economics, namely, a projection method of Judd

(1992) and PEA of Den Haan and Marcet (1990). In particular, PEA also approximates expectations from simulated

data but it does so via a different mechanism, namely, when iterating on the current decision functions, PEA takes the

expectation functions from the previous iteration as given. A shortcoming of PEA is that it requires long time-series

simulation for accurate solutions; by contrast, we need only few random grid points. A recent paper by Azinovic et al.

(2020) uses a solution method, similar to our Euler-equation method, to solve a life-cycle model. Maliar and Maliar

(2020) introduce a deep learning classification method for modeling non-convex choices (e.g, indivisible labor choice,

rent versus buy), and Gorodnichenko et al. (2020) use deep learning to solve a heterogeneous-agent new Keynesian

model.

Finally, our Bellman-equation method is related to conventional value and policy function iteration (see e.g., Rust,

1996, Judd, 1998, Santos, 1999, Aruoba et al., 2006, Stachurski, 2009) but we differ in two respects: first, we combine

the minimization of Bellman equation residuals with maximization of the right side of the Bellman equation into a

single optimization step, and second, we implement integration with two uncorrelated shocks in a way that facilitates

a construction of expectation functions. However, our most important contribution consists in showing that large-scale

dynamic economic models can be treated by using the same model-free DL technologies that the scientific community

uses in other fields, leading to truly break-ground applications.

Unsupervised learning

Unsupervised learning literature focuses on how to effectively represent information that is available in a given set

of features. For example, it clusters closely situated data, it reduces dimensionality of collinear features by principal

component analysis, etc. There are numerous applications of unsupervised learning in the economic literature. In

particular, Judd et al. (2011) analyze a variety of model reduction techniques for dealing with ill conditioning, including

a principle component regression, a truncated SVD method, Tykhonov regularization and regularized least absolute

deviation methods. Furthermore, several papers use model reduction for simplifying the analysis of equilibrium in

heterogeneous-agent models, including Reiter (2010), Ahn et al (2018), Winberry (2018) and Bayer and Luetticke

(2020).

There is also a literature that uses unsupervised learning to determine ergodic sets of economic models, in particular,

Judd et al. (2011) and Maliar and Maliar (2015) use clusters techniques; Judd et al. (2017) and Coleman et al. (2018)

3See Goodfellow et al. (2016) for a review of supervised and unsupervised learning in the computer science literature, in particular, deep

learning; see Sutton and Barto (2018) for a review of reinforcement learning literature, and see Powell (2008) for a review of the related field

of approximate dynamic programming.

10

use low-discrepancy (quasi-Monte Carlo) sequences, and Renner and Scheidegger (2018) and Scheidegger and Bilionis

(2019) use Gaussian-process machine learning.

Finally, there are papers that combine supervised learning with unsupervised learning. In particular, Lepetyuk et

al. (2020) use clusters to refine the solution domain and use neural network for parameterizing decision functions. The

neural network itself can actually deal with ill conditioning and reduce dimensionality instead of unsupervised learning

methods; see Villa and Valaitis (2019). However, again the existing literature uses unsupervised learning just as an

ingredient of the conventional solution methods, whereas we use DL methods to produce the entire solution to the

model. In fact, Azinovic et al. (2020) interpret a related Euler-equation method as a version of unsupervised learning

which is another possible interpretation given a tight connection between supervised and unsupervised learning discussed

in Supplement A.

Reinforcement learning

Reinforcement learning (RL) is a field that focuses on solving dynamic problems with a delayed, often discounted, reward.

For instance, the game-playing engine Alphazero, gets a positive reward when a game is won, and zero otherwise; see

Jirniy and Lepetyuk (2012) for early remarkable application of RL for solving Krusell and Smith (1998) model.

A characteristic feature of RL methods is that they explore the state space. In that respect, our simulation-based

method is similar to RL. However, much of RL research focuses on aspects that are absent in our analysis. For instance, an

interesting element of RL is the ability to learn online and the trade-off during the learning, exploration or exploitation

phases. In contrast, in our case, learning is fully offline in the sense that there is no economic cost associated with

suboptimal decisions taken during the training phase. For the same reason there is no tradeoff between exploitation and

exploration, a usual feature of RL approaches. Furthermore, RL approaches allow for model-free learning. In contrast,

we assume full knowledge of the model and the ability to simulate trajectories. The Euler-equation method sets us

further apart from the RL agenda, limited to the optimal control problems. But our Euler-equation method can be

adapted to online optimization learning so the frontiers are not fully watertight.

References

[1] Ahn, S., Kaplan, G., Moll, B., Winberry, T., Wolf, C., 2018. When inequality matters for macro and macro matters

for inequality. NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), 1-75.

[2] Aruoba, S. B., Fernández-Villaverde, J., Rubio-Ramírez, J., 2006. Comparing solution methods for dynamic equi-

librium economies. Journal of Economic Dynamics and Control 30, 2477—2508.

[3] Azinovic, M., Luca, J., Scheidegger, S., 2020. Deep equilibrium nets. SSRN: https://ssrn.com/abstract=3393482

[4] Barron, A., 1993. Universal approximation bounds for superpositions of a sigmoid function. IEEE Transactions on

Information Theory 39, 930-945.

[5] Bayer, C., Luetticke, R., 2020. Solving discrete time heterogeneous agent models with aggregate risk and many

idiosyncratic states by perturbation. Quantitative Economics 11, 1253-1288.

[6] Bertsekas, D., 2015. Convex optimization algorithms. Athena Scientific, Nashua, NH, USA.

[7] Bottou, L., Curtis, F., Nocedal, J., 2018. Optimization methods for large-scale machine learning. Manuscript.

[8] Coleman, C., Lyon, S., Maliar, L., Maliar, S., 2018. Matlab, python, julia: what to choose in economics? CEPR

working paper DP 13210. Computational Economics, forthcoming.

[9] Den Haan, W., Marcet, A., 1990. Solving the stochastic growth model by parameterized expectations. Journal of

Business and Economic Statistics 8, 31—34.

[10] Duarte, V., 2018. Machine learning for continuous-time economics. SSRN:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3012602

[11] Duffy, J., McNelis, P., 2001. Approximating and simulating the real business cycle model: parameterized expecta-

tions, neural networks, and the genetic algorithm, Journal of Economic Dynamics and Control 25(9), 1273-1303.

[12] Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. Massachusetts Institute Technology Press.

11

[13] Gorodnichenko, Y., Maliar, L., Maliar, S., Naubert, C., 2020. Household savings and monetary policy under

individual and aggregate stochastic volatility. CEPR working paper 15614.

[14] Fernández-Villaverde, J., Hurtado, S., Nuño, G., 2019. Financial frictions and the wealth distribution. NBER

Working paper 26302.

[15] Hornik, K. (1989). Multilayer feedforward networks are universal approximators. Neural networks 2, 359-366.

[16] Kingma, D. and J. Ba, (2014). Adam: a method for stochastic optimization. https://arxiv.org/pdf/1412.6980.pdf

[17] Krusell, P., Smith, A., 1998. Income and wealth heterogeneity in the macroeconomy. Journal of Political Economy

106, 868—896.

[18] Jirniy, A., Lepetyuk, V., 2011. A reinforcement learning approach to solving incomplete market models with

aggregate uncertainty. SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1832745

[19] Judd, K. L., 1992. Projection methods for solving aggregate growth models. Journal of Economic Theory 58,

410—452.

[20] Judd, K. L., Maliar, L., Maliar, S., 2011. Numerically stable and accurate stochastic simulation approaches for

solving dynamic models. Quantitative Economics 2, 173—210.

[21] Lepetyuk, V., Maliar, L., Maliar, S., 2020. When the U.S. catches a cold, Canada sneezes: a lower-bound tale told

by deep learning. Journal of Economic Dynamics and Control 117, 103926.

[22] Leshno, M., V. Lin, A. Pinkus, S. Schocken, (1993). Multilayer feedforward networks with a nonpolynomial activa-

tion function can approximate any function. Neural Networks 6, 861-867.

[23] Maliar L., Maliar, S., 2015. Merging simulation and projection approaches to solve high-dimensional problems with

an application to a new Keynesian model. Quantitative Economics 6, 1-47.

[24] Maliar, L., Maliar,S., 2020. Deep learning classification: Modeling discrete labor choice. CEPR working paper DP

15346.

[25] Powell, W., 2010. Approximate dynamic programming. Wiley, A. John Wiley & Sons.

[26] Reiter, M., 2010. Approximate and almost-exact aggregation in dynamic stochastic heterogeneous-agent models.

IHS Working Paper 258.

[27] Renner, P., Scheidegger, S., 2018. Machine learning for dynamic incentive problems. SSRN:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3282487

[28] Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization in the brain.

Psychological Review 65 (6), 386-408.

[29] Rust, J., 1996. Numerical dynamic programming in economics. In: Amman,H., Kendrick,D., Rust, J. (Eds.),

Handbook of Computational Economics. Elsevier Science,Amsterdam, pp. 619—722.

[30] Santos, M., 1999. Numerical solution of dynamic economic models. In: Taylor, J.,Woodford, M. (Eds.), Handbook

of Macroeconomics. Elsevier Science, Amsterdam, pp. 312—382.

[31] Scheidegger, S., Bilionis, I., 2019. Machine learning for high-dimensional dynamic stochastic economies. Journal of

Computational Science 33, 68—82.

[32] Smith, A., 1993. Estimating nonlinear time-series models using simulated vector autoregressions. Journal of Applied

Econometrics 8, S63—S84.

[33] Stachurski, J., 2009. Economic dynamics: theory and computation. MIT Press.

[34] Sutton R., Barto, A., 2018. Reinforcement Learning: An Introduction. The MIT Press, Cambridge, Massachusetts,

London, England.

[35] Villa, A., Valaitis, V., 2019. Machine learning projection methods for macro-finance models. SSRN:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3209934.

[36] Winberry, T., 2018. A method for solving and estimating heterogeneous agent macro models, Quantitative Eco-

nomics 9 (3), 1123—1151.

12

	JmeFinal
	JMEfinalSupplement

