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Abstract

We construct a peer effects model of consumption where mean expenditures of con-

sumers in one’s peer group affects one’s utility through perceived consumption needs.

We show model identification with standard household-level consumer expenditure sur-

vey microdata, even when most members of each peer group are not observed. We find

that in India, each additional rupee spent by one’s peers increases one’s perceived

needs, thereby reducing money metric utility, by 0.5 rupees. One implication is that

welfare gains of hundreds of billions of rupees per year might be possible by replacing

private government transfers with the provision of public goods.
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I Introduction

It is well established that there are substantial peer effects in income and consumption.

People’s evaluation of their own income depends on the income of their peers (Kahneman

1992; Luttmer 2004; Clark Frijters, and Shields 2008). Their consumption choices also

depend on those of their peers (Boneva 2013; de Giorgi, Frederiksen, and Pistaferri 2016),

their evaluation of those consumption choices depends on the consumption of those in their

peer groups (Gali 1994, Maurer and Meier 2008), and the perceived value of individual goods

or brands depends on the consumption of those goods in relevent reference groups (Rabin

1998, Kalyanaram and Winer 1998, Chao and Schor 1998).

Despite the strong evidence showing the existence of peer effects in consumption, there

has been much less work evaluating their economic costs in lost welfare. In this paper we

study the effect of changes in peer mean expenditures on money metric utility, asking how

much one’s own expenditure would have to increase to compensate for a one unit change in

peer expenditures. The results have very large implications for redistribution policies, e.g.,

we find with data from India that welfare gains on the order of billions of US dollars per

year might be possible by modifying just one existing India government transfer program.

One way to measure the economic costs of peer effects would be to directly regress an

observed utility measure (i.e., stated well being data) on own and peer expenditures, as in

Luttmer (2005). This has the drawback of relying on coarse self-reports of well-being which

may suffer from framing biases, measurement errors and problems of interpretation.

Most empirical consumption peer effects studies instead directly model individual con-

sumption as a function of average peer group consumption and other covariates. See, e.g.,

Chao and Schor (1998) or Boneva (2013). However, while such regressions can reveal behav-

ioral responses to peer expenditures, without a structural model they say nothing about the

utility and welfare implications of these peer effects.

We propose a structural model that uses revealed preference methods to recover the utility

implications of peer expenditures on consumption behavior. As in classical demand analysis,

this model relates observable consumption decisions to underlying money metric utility,

but additionally allows peer expenditure to affect welfare. By studying how consumption

decisions vary across and within peer groups with different mean expenditures, the model

backs out an estimate of the money-metric cost of peer consumption.

Much progress has been made in overcoming the endogeneity of peer effects by the use

of detailed social network information. For example, de Giorgi, Frederiksen and Pistaferri

(2016) instrument for peer consumption with information on friend-of-friend consumption.

However, in our application we use only standard repeated cross section consumer expen-
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diture survey data, of the type that is commonly collected by many governments all over

the world. As a result, we cannot make use of detailed network information like variation

in peer group sizes (as in Lee 2007) to obtain identification. Indeed, most members of each

group are not observed in our data. This gives rise to some unusual econometric issues that

must be overcome.

In our keeping-up-with-the-Joneses type model, one’s perceived required expenditures, or

“needs,” depend on, among other things, the average expenditures of one’s peer group. The

higher are these perceived needs, the more one must spend to attain the same level of utility.

Consistent with other empirical evidence (e.g., Luttmer 2005, Ravina 2008, and Clark and

Senik 2010), our model implies that consumers lose utility from feeling poorer when their

peers get richer. One feels that one needs more when one’s peers have more.

We estimate the model using consumption data from India. Our main finding is that an

average decrease in spending by one’s peers of two rupees has the same effect on one’s utility

as an increase in one’s own expenditures of about one rupee.

This result has enormous implications for tax and redistribution policy. It suggests that

consumption or income taxes may be far less costly in terms of social welfare and utility than

is implied by standard demand model estimates that ignore peer effects (see, e.g., Boskin

and Shoshenski 1978). To illustrate, suppose you experience a two rupee tax increase. If

your peers also have their taxes increase by the same amount, then your loss in utility will

be equivalent to that of just a one rupee tax increase. If the utility associated with public

goods are not subject to these peer effects, then government can increase welfare at far lower

cost by using taxes to increase expenditures on public goods instead of by redistributing via

transfers of money or private goods.

To assess the magnitude of these effects, we perform a rough calculation which shows that

replacing India’s ”Public Distribution System” food subsidy program with more generous

provision of public goods, such as education or cleaner air and water, could increase money

metric welfare by over 300 billion rupees (4.4 billion US dollars) per year at no additional

cost.

We also find some evidence that these peer effects may be smaller for lower socio-economic

status groups. If so, then transfers from higher to lower status groups can also increase total

welfare, by reducing peer effect externalities. The usual argument for transfers of money from

rich to poor (and more generally for progressive tax rates) is the belief that the poor have a

higher marginal utility of money, but that is hard to verify and quantify. Our results suggest

potentially large gains from such transfers and from progressive taxes, even if all consumers

have the same marginal utility of money, and even if social welfare is inequality-neutral.

The remainder of this introduction lays out our peer effects model more explicitly, and
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describes the econometric obstacles to identification and estimation that our model must

address.

I.A Modeling Needs, Consumption Decisions and Utility

Consider a model where i indexes consumers, g indexes groups of consumers, overbars indi-

cate true within-group means, and hats indicate sample averages. Let qi be the vector of

quantities of goods that consumer i consumes (in continuous quantities). There is a long

history going back to Samuelson (1947) of modeling needs in utility functions as analogous

to fixed costs or overheads in production,

Ui = U(qi − fi) (1)

where Ui is the attained utility level of consumer i, U is a utility function, and fi is a vector

of needs. The vector fi is a quantity vector, equal to the minimum quantity consumer i

must consume of each good before he or she starts to get any utility from consumption. For

now, let the utility function U be common to all consumers, though in our actual model we

will introduce both observed and unobserved heterogeneity at both the individual and group

levels.

In the context of a linear model, Samuelson (1947) defines the quantity vector fi as the

“necessary set” of goods. The Stone (1954) and Geary (1949) linear expenditure system is

just Cobb-Douglas utility function U with constant needs f . Gorman (1976) introduced the

general model of equation (1) for arbitrary utility functions U , letting fi depend on a vector

of demographic variables or other taste shifters zi. In our model, we let needs fi also depend

on qg, the mean value of the expenditure vector q among the members of consumer i’s peer

group g. The model therefore has1

fi = f
(
zi,qg

)
for a given needs function f . Let p be the price vector corresponding to qi, and let xi be

consumer i’s budget (total expenditures). Assuming consumer i chooses the vector qi to

maximize his or her utility function U
(
qi − f

(
zi,qg

))
under the linear budget constraint

p′qi ≤ xi, we can calculate the consumer’s resulting demand functions, expressing qi as a

function of p, xi, and f
(
zi,qg

)
.

Given these demand functions, we can answer the question: If peer spending qg increases,

how much poorer does consumer i feel? More precisely, how much more would consumer i

1It is of course possible that peer group expenditures matter in other ways than just though group means
qg. We only consider group means here because of data limitations and other econometric issues discussed
later.
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need to spend (how much would his or her budget xi need to increase) to give that consumer

the same level of utility she had before qg increased? This conception of how peer con-

sumption affects individual utility generalizes the existing literature, which typically models

utility as being affected by mean peer expenditure p′qg (e.g., Luttmer 2005). In our empiri-

cal implementation we find that this parsimonious specification does a good job of capturing

how peer consumption affects utility, and so we focus our attention on this model.

I.B Econometric Obstacles

Starting from the utility function with needs defined by equation (1), and introducing suit-

able unobserved heterogeneity across consumers, by revealed preference we derive demand

equations to estimate of the general form

qi = h
(
p, xi − p′f

(
zi,qg

))
+ f

(
zi,qg

)
+ vg + ui. (2)

Here h is a vector valued function (quadratic in our empirical application) that is based on

the utility function U , vg is a vector of group level fixed effects or random effects, and ui is

a vector of idiosyncratic errors. This is an example of a social interactions model, since it

includes the group mean qg as a vector of regressors.

Our model differs from standard social interactions models (e.g., Manski 1993, 2000,

Brock and Durlauf 2001, Lee 2007, and Blume, Brock, Durlauf, and Ioannides 2010), in a

variety of ways. First, our model is nonlinear and vector-valued while most such models are

linear and scalar-valued. This nonlinearity helps to overcome the reflection problem in peer

effect models like ours. However, while this nonlinearity is a necessary consequence of utility

maximization with empirically plausible demand functions, it exacerbates and complicates

the effect of measurement error on coefficient estimates.

The issue of measurement error interacts with a second, larger, difference between our

work and the previous literature. We estimate our model from standard consumer expen-

diture survey data, which is the type of data that many countries collect for constructing

consumer price indices. Since such surveys do not contain social network data, we define

peer groups based on demographic characteristics. And as a result of this being survey data,

we can only observe a small number of the members in each peer group.

Most analyses of social interactions models use network information to help identify the

model. Examples include the use of exogenous variation in group composition or size (e.g.,

Lee 2007, Carrell, Fullerton and West 2009, and Duflo, Dupas and Kremer 2011), or the use

of detailed network structure data like intransitive triads, where essentially data on friends

of friends provides instruments for identification (e.g., Bramoullé, Djebbari and Fortin 2009;
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de Giorgi, Frederiksen, and Pistaferri 2016).

In contrast, we don’t observe group sizes and don’t observe network information like

friends of friends, and so we cannot make use of these existing methods of identifying and

estimating the model. We also do not observe most members of each group, and so do not

come close to observing qg. We can at best construct an estimate q̂g, by averaging across

the small number of members that we do observe in each group. This greatly complicates

identification and estimation of our model, because replacing qg with q̂g introduces group

level measurement error into the model, and this measurement error q̂g − qg is endogenous

and correlated with other components of the model. The measurement error is further

exacerbated by potential nonlinearity of h, resulting in errors that contain interaction terms

like
(
q̂g − qg

)
xi.

Our main econometric contribution in this paper is to show how these identification issues

can be solved, and how consistent estimates of peer effects can be extracted from ordinary

consumer expenditure data. We find that these group mean measurement error issues are

so large that ignoring them results in underestimating the true peer effect by up to 70% in

some specifications.

The remainder of the paper proceeds as follows. In Section II we expand on the structural

model of utility, demand and peer effects introduced in Section I.A. Section III illustrates

our general procedure for dealing with the above econometric issues in the main text using a

simple quadratic model. This procedure should be of independent interest to others wishing

to estimate peer effects using survey data. We prove in the appendix that the procedure

also works for our more general demand functions. Results are presented in Section IV, and

policy implications in Section V. Section VI concludes.

II Utility and Demand With Peer Effects in Needs

There is a long literature that connects utility and well-being to peer income or consumption

levels (see, e.g., Frank 1999, 2012). The Easterlin (1974) paradox asserts an empirical

connection between well-being and national average incomes. Though the strength of this

connection is debated (Stevenson and Wolfers 2008), the correlation between utility and

national-level consumption, ceteris paribus, is negative. Ravina (2007) and Clark and Senik

(2010) regress self-reported utility on own budgets and national average budgets, and other

correlated aggregate measures like inequality, and find that the negative correlation still

stands. Similar results hold for much smaller reference groups; Luttmer (2005) finds that an

increase of the average income in one’s neighbors reduces self-reported well being.

The possible mechanisms for this are varied. Veblen (1899) effects make consumers value
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consumption of visible status goods. Reference-dependent utility functions hinge preferences

on own-endowments (Kahneman and Tversky 1979). More recent work on these models has

led to reference-dependence that is “other-regarding,” where utilities depend on reference

points that are driven by other agents’ decisions or endowments. Models of “keeping up

with the Joneses” have one’s own consumption feel smaller when one’s peers consume more.

Surveys of this literature include Kahneman (1992) and Clark, Frijters, and Shields (2008).

Taken together, this literature suggests that the utility of consumer i should depend

on both qi and qg, and that utility is increasing in qi and decreasing in qg.
2 If we could

observe utility, we could directly test this. Luttmer (2005) estimates an approximation of

this relationship, by regressing a crude measure of utility (reported life satisfaction on a

coarse ordinal scale) not on qi and qg, but on xi and xg. In a preliminary data analysis we

estimate a similar regression using data from India and groups that are roughly comparable

to those in our main empirical analysis. Our preliminary analyses agree with Luttmer (2005)

in support of our model’s underlying assumption that increases in peer expenditures decrease

rather than increase utility. Our main model will not depend on crude utility measures, but

will instead identify comparable structural parameters obtained from utility-derived demand

functions via revealed preference.

A number of papers relate consumption choices to peer consumption levels, although

these analyses are essentially nonstructural (Chao and Schor 1998, Boneva 2013, de Giorgi,

Frederiksen and Pistaferri, 2016). All these papers suggest that the magnitudes of peer

effects in consumption choices are large. In our notation, these papers are analogous to

regressing qi on xi and qg. However, establishing how much consumption qi changes when

peer consumption qg changes does not answer the welfare question of how qg affects utility,

and hence how much xi would need to increase to compensate for the loss of utility from

an increase in qg. Answering this type of welfare question requires linking expenditures to

utility, which is what our structural model does.

II.A The Model

Ignoring unobserved preference and demand heterogeneity for now, we begin with utility

given by

Ui = U (qi − fi) where fi = f
(
zi,qg

)
. (3)

2One could imagine alternative models where utility is increasing in qg, such as being happy for the
success of your peers. But the empirical evidence, including Luttmer (2005) and the results we present
below, is that the effect is negative.
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One can equivalently represent preferences using an indirect utility function, defined as the

maximum utility attainable with a given budget xi when facing prices p. Gorman (1976)

shows that for a utility function in the form of equation (3), given any U function that

satisfies standard regularity conditions of utility maximization,3 there exists a corresponding

indirect utility function V such that

Ui = V
(
p, xi − p′f(zi,qg)

)
(4)

Blackorby and Donaldson (1994) show that indirect utility functions of the form Ui =

V (p, xi − p′fi) have a desirable property for social welfare calculations known as Absolute

Equivalence Scale Exactness (AESE). AESE structures interpersonal comparisons of utilities.

Equation (4) invokes equality, rather than just ordinal equality, of indirect utility across

differing values of the arguments of f . For preferences that satisfy AESE, Blackorby and

Donaldson (1994) define equivalent income as xi− p′fi and show that the sum of equivalent

income across consumers is a valid money-metric based social welfare function. Gorman

(1976) and Blackorby and Donaldson (1994) obtained their results without the presence of

qg in fi, but one can immediately verify that their same derivations go through with qg

included along with zi.

Blackorby and Donaldson (1994) and Donaldson and Pendakur (2006) show that the

function f without qg is uniquely identified up to location from consumer behaviour. The

responses of f to changes in zi can therefore be identified from consumer behavior. We show

below that we can also identify, from consumer demand data, how f responds to changes in

qg. We can therefore show how money metric social welfare responds to changes in average

peer group expenditure levels.

Luttmer (2005) directly estimates a simplified version of equation (4) where each Ui is a

self-reported measure of happiness. His model sets self reported Ui equal to a function of a

linear index in xi, zi and xg (the within-group average income). Under the assumption that

these reported happiness measures are ordinally fully comparable, which is a strong form

of interpersonal comparability, his method recovers the welfare cost of group expenditures,

scaled against the welfare gain of own expenditures.4

Luttmer’s model specification implies that, in equation (4), f(zi,qg) = aqg + Czi where

a is a scalar (since xg = p′qg). In our work, we will allow for the possibility that the needs

function takes this form. Luttmer finds that a is 0.76, meaning that a 100 dollar increase in

3See Deaton and Muellbauer (1980) for a summary of the regularity conditions associated with direct
and indirect utility functions.

4Our welfare calculations, which do not assume ui can be observed, instead rely on a weaker notion of
comparability, ratio scale comparability. See Blackorby and Donaldson (1994).
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group-average income has the same effect on utility as a 76 dollar reduction in own-income,

motivating his title “Neighbors as Negatives.” We estimate an object analogous to Luttmer’s

a coefficient, but instead of assuming that Ui equals an observed happiness measure, we let

Ui be unobserved. We derive demand equations from the associated utility function and

recover the implied peer effects on utility using revealed preference methods.

The demand functions that result from maximizing the utility function in equation (3)

can be obtained by applying Roy’s (1947) identity to the indirect utility function of equation

(4). The resulting demand functions have the form

qi = h(p, x− p′fi) + fi,

where fi = f(zi,qg) and the vector valued function h is defined by h(p, x) = −∇pV (p,x)

∇xV (p,x)
.

This structure is called demographic translation (Pollak and Wales 1981) or quantity shape

invariance (Pendakur 2005).

We take the function f to be linear, so

fi = Aqg + Czi (5)

for some matrices of parameters A and C. Linearity of fi in zi is commonly assumed in

empirical demand analysis; we extend that linearity to the additional variables qg. If A

is restricted to be diagonal with all elements equal to the scalar α, we then get demand

equations analogous to those that would come from Luttmer’s (2005) utility model.

To allow for unobserved heterogeneity in behavior, we append the error term vg + ui to

the above set of demand functions, where vg is a J−vector of group level fixed or random

effects and ui is a J−vector of individual specific error terms that are assumed to have zero

means conditional on all xl, zl, and p with l ∈ g.

The terms vg + ui can be interpreted either as departures from utility maximization by

individuals, or as unobserved preference heterogeneity. Assuming that the price weighted

sum p′ (vg + ui) equals zero suffices to keep each individual on their budget constraint. Under

this restriction, if desired one could replace Czi with (Czi + vg + ui) in the indirect utility

function above, and treat error terms as unobserved preference heterogeneity parameters. In

our analysis we do not take a stand on whether vg + ui represents preference heterogeneity

or departures from utility maximization.

In both the fixed and random effects specifications, vg is allowed to vary by time as well as

by group. In the fixed effects model, the group level fixed effect vg is permitted to correlate

with other regressors like p and qg. As is familiar from other contexts, the random effects

model is much more efficient at the cost of the additional restriction that vg is independent
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of regressors.

The above derivations yield demand functions of the general form

qi = h(p, xi − p′Aqg − p′Czi) + Aqg + Czi + vg + ui. (6)

What remains in the demand specification is to choose the indirect utility function V , which

then determines the vector-valued function h.

A long empirical literature on commodity demands finds that observed demand functions

are close to polynomial (Lewbel 1991, Banks, Blundell, and Lewbel 1997). Gorman (1981)

shows that any polynomial demand system must have a maximum rank of three. Lewbel

(1989) provides the tractable classes of indirect utility functions that yield rank three poly-

nomials. The most commonly assumed rank three models in empirical practice are quadratic

(see the above references and the Quadratic Expenditure System of Pollak and Wales 1978).

The resulting class of indirect utility functions that yield rank three, quadratic in x demand

functions have the form

V (p, x) = − (x−R (p))−1B (p)−D (p) (7)

for some differentiable functions R, B and D. Applying Roy’s identity to obtain the function

h and equation (6), we obtain demand equations

qi =
(
xi −R (p)− p′(Aqg + Czi)

)2 ∇D (p)

B (p)
(8)

+
(
xi −R (p)− p′(Aqg + Czi)

) ∇B (p)

B (p)
+∇R (p) + Aqg + Czi + vg + ui.

We assume homogeneity—the absence of money illusion— which is a necessary condition

for rationality of preferences. This requires that R (p) and B (p) be homogeneous of degree

1 in p and that D (p) be homogeneous of degree 0 in p. Specifications of the price functions

that satisfy these restrictions and yield price flexible (in the sense of Diewert 1974) demand

functions are R (p) = p1/2′Rp1/2 where R is a symmetric matrix, lnB (p) = b′ ln p with

b′1 = 1, and D (p) = d′ ln p with d′1 = 0. See Lewbel (1997) for a survey of these demand

function properties.

For each good j, the resulting demand model is

qji = Qj

(
p, xi,qg, zi

)
+ vjg + uji, (9)
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where each Qj function is given by

Qj

(
p, xi,qg, zi

)
=
(
xi − p1/2′Rp1/2 − p′Aqg − p′Czi

)2

e−b
′ lnpdj

pj

+
(
xi − p1/2′Rp1/2 − p′Aqg − p′Czi

) bj
pj

+Rjj +
∑
k 6=j

Rjk

√
pk/pj + A′jqg + C′jzi (10)

Here A′j is row j of A and C′j is row j of C. These quantity demand functions are quadratic

in the budget xi.

As is standard in the estimation of continuous demand systems, we only need to estimate

the model for goods j = 1, ..., J − 1. The parameters for the last good J are then obtained

from the adding up identity that qJi =
(
xi −

∑J−1
j=1 pjqji

)
/pJ .

In our empirical application, some of the characteristics zi are group level attributes, that

is, they vary across groups but are the same for all individuals within a group. Where it is

relevant to make this distinction, we write C as C =
(
C̃ : D

)
for submatrices C̃ and D ,

and replace Czi with Czi = C̃z̃i + Dz̃g, where z̃i is the vector of characteristics that vary

across individuals in a group and z̃g are group level characteristics.5

In all of the above, different consumers can be observed in different time periods (no

consumer is observed more than once). Prices vary by time, and also vary geographically.

Assume that our data spans T different price regimes (time periods and/or geographic re-

gions). Each individual i is observed in some particular price regime t ∈ {1, 2, ..., T}, so we

add a t subscript to every group level variable above.

While we report some results using J = 4 goods, most of our analyses will be based

on J = 2, with the two goods being luxuries and necessities. In this case, we only need

to estimate the demand equation for good 1 (luxuries). Much of our analyses will also

assume A and R are both diagonal.6 In fact, our baseline specification assumes that all

diagonal elements of A are equal, and the non-diagonal elements are zero. This specification

parsimoniously captures the effect of total peer group expenditure on welfare, following

5There is one more extension to the above model that we consider in our estimates, but do not include
above to save on notation. We allow a few discrete characteristics (education dummies) to interact with
qg. This is equivalent to letting A vary with these discrete characteristics. Identification of the model with
this extension follows immediately from identification of the model with A constant, since the the same
assumptions used to identify the above model with fixed A can just be applied separately for each value of
these characteristics.

6Like most modern continuous demand models (e.g., Banks, Blundell, and Lewbel, 1997; Lewbel and
Pendakur, 2009), our theoretical model includes a quadratic function of prices given by the matrix R, to
allow for general cross price effects. However, in our data the geometric mean of prices turns out to be highly
collinear with individual prices, leading to a severe multicollinearity problem when R is not diagonal. We
therefore restrict R to be diagonal. Note that, because of the presence of additional price functions in our
model, imposing the constraint that R be diagonal is not restrictive when J ≤ 3, in the sense that our model
remains Diewert-flexible (see, e.g., Diewert 1974) in own and cross price effects even with this restriction.

11



previous work on the topic.

With these simplifications, equation (10) reduces to a single equation7:

Q1

(
p, xi,qg, zi

)
= X2

i e
−(b1 ln p1t+(1−b1) ln p2t)d1/p1t +Xib1/p1t +R11 + A11qg1t + C′1zi,

where

Xi = X(pt, x,qgt, zi) = xi −R11p1t −R22p2t −
(
A11qg1t + C′1zi

)
p1t −

(
A22qg2t + C′2zi

)
p2t.

(11)

As is common in empirical work in demand analysis, we recast quantity demand equa-

tions as spending equations by multiplying by price. Substituting the above into (9) and

multiplying by p1t yields our primary estimation model:

p1tq1i = X2
i e
−(b1 ln p1t+(1−b1) ln p2t)d1+Xib1+R11p1t+A11p1tqg1t+C′1p1tzi+p1tv1gt+p1tu1i. (12)

The goal will be estimation of the set of parameters {A, C, R, d, b}. In particular, the

matrix A embodies the impact of peer effects on needs, and hence on social welfare.

III Identification and Estimation: Econometric Issues

There are many obstacles to identifying and estimating our model. These issues stem from:

1) model nonlinearity (which arises from utility maximization); 2) the presence of fixed or

random effects vg without panel data; 3) the possible absence of an equilibrium among group

members; 4) the fact that qg is endogenous (as in the Manski 1993 reflection problem); and,

5) qg cannot be directly observed nor consistently estimated, because the data only contain

a small number of members of each group.

To illustrate how we overcome these econometric issues, we first consider a very simple

model that suffers from all these same problems. We show how we can identify and estimate

this simple, generic model. Formal proofs of the identification and estimator consistency of

this simple generic model are provided in the Appendix, along with the extension of these

methods to the identification and estimation of our full consumer demand model given by

(12).

We have repeated cross section data. In each of a small number of time periods, we

observe a sample of individuals. Each individual i is only observed once, so different individ-

uals are observed in each time period. To save on notation, we drop the time subscript for

now. Assume each individual i is in a peer group g ∈ {1, ...G}. The number of peer groups

7Since J = 2, Q2 does not need to be estimated because its parameters are given by Q2 = (xi − p1Q1) /p2,
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G is large, so we assume G → ∞. In our data we will only observe a small number ng of

the individuals who are actually in each peer group g, so asymptotics assuming ng →∞ are

inapplicable. We therefore assume ng is fixed and so does not grow with the sample size.

Our simple illustrative, generic model relates a scalar outcome yi for person i in group g

to yg, where yg = E (yj | j ∈ g), so yg is the population mean value of yj over all people j

in person i’s peer group g. For simplicity, the generic model assumes we have a single scalar

covariate xi that affects yi. A typical peer specification with such data would be linear, e.g.,

yi = yga+ xib+ ui (13)

where ui is an error term uncorrelated with xi, and the pair of constants (a, b) are parameters

to estimate (see, e.g., Manski 1993, 2000 and Brock and Durlauf 2001). However, to account

for nonlinearity and heterogeneity issues associated with our demand model, consider the

more general specification

yi =
(
yga+ xib

)2
d+

(
yga+ xib

)
+ vg + ui (14)

where the term vg is a group level fixed or random effect, and the constants (a, b, d) are the

parameters to identify and estimate.

We are not claiming that the functional form of equation (14) is in some way fundamental

or essential (though it does include the standard linear model as a special case). Rather, it

is just a simple nonlinear specification that can be used to demonstrate all the issues (and

solutions) associated with identification and estimation of our utility derived demand model.

Because of its simplicity, it may also be useful to other researchers working on peer effects

models in other contexts.

Equation (14) differs from equation (13) in two important ways. First, it allows for

nonlinearity. In our application, potential nonlinearity is an unavoidable consequence of

utility maximization with empirically plausible demand functions. Our generic model has

this nonlinearity in the form of a squared linear index because that is a simple specification

that resembles the nonlinearity in our real demand equation (12).

The second way equation (14) differs from equation (13) is with the inclusion of a group-

level fixed or random effect vg. In social interaction models, typical ways of obtaining

identification in the presence of such effects is to exploit specialized data that includes

observable network structures like “intransitive triads” (Bramoullé, Djebbari, and Fortin

2009, Jochmans and Weidner 2016, and de Giorgi, Frederiksen, and Pistaferri 2016). We do

not have access to such network information in our data. Alternatively, one might obtain

identification using common panel data methods, such as by differencing out fixed effects
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over time. However, we only have repeated cross section rather than true panel data, and it

is important to allow the fixed or random effects vg to vary by time, because many demand

determinants vary by time.

Next, because we only have survey data with a modest number of observations for each

group, we do not assume we can observe the true yg even asymptotically. We therefore

replace yg with an estimate ŷg making equation (14) equal to

yi = (ŷga+ xib)
2 d+ (ŷga+ xib) + vg + ui + εgi (15)

where error term εgi is an additional error term. By construction, εgi is given by

εgi =
(
y2
g − ŷ2

g

)
a2d+ 2

(
yg − ŷg

)
xiabd+

(
yg − ŷg

)
a. (16)

Note that this εgi error depends on yg, ŷg and on xi, which creates endogeneity issues.

Inspection of equations (15) and (16) shows many of the obstacles to identifying and

estimating the model parameters a, b, and d. First, vg can be correlated with yg and ŷg.

Second, since ng does not go to infinity, if ŷg contains yi then ŷg will correlate with ui.

Third, again because ng is fixed, εgi doesn’t vanish asymptotically, and is by construction

correlated with functions of ŷg and xi. Equivalently, we can think of
(
yg − ŷg

)
and

(
y2
g − ŷ2

g

)
as measurement errors in yg and y2

g, leading to the standard measurement error problem

that mismeasured regressors are correlated with errors in the model.

The primary obstacles to identification and estimation will be dealing with the above

correlations between observed covariates like ŷg and xi, and the model unobservables like vg

and εgi. In contrast, two additional problems that are common in social interactions and

network models will be more readily overcome. One is the Manski (1993) reflection problem,

which does not arise here primarily because the group mean of xi does not appear in the

model.8 Another possible problem is that the model might not have an equilibrium. For

example, it could be that some members increasing their spending by one dollar causes others

to spend more by two dollars, making the original members feel the need to increase further

to three dollars, etc. In the Appendix we show that a single inequality ensures existence of

an equilibrium. Roughly, an equilibrium exists as long as the peer effects are not too large.

We employ two somewhat different methods for identifying and estimating this model,

depending on whether each vg is assumed to be a fixed effect or a random effect. For each

8The group mean xg does not appear in our model because our underlying utility theory of revealed
preference with needs only gives rise to group quantities (corresponding to yg in the generic model) in the
model. When vg is a fixed effect the reflection problem could still arise, in that vg could be correlated with
xg, but in that case we exploit the nonlinear structure of the model to overcome this issue. See the Appendix
for details.
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case, we construct a set of moment conditions that suffice to identify the coefficients, and

are used for estimation via GMM.

III.A Generic Model With Group-Time Fixed Effects

In the fixed effects model, we make no assumptions about how vg may correlate with other

covariates, or about how vg might vary over time. Identification and estimation will therefore

require removing these fixed effects in some way. As a result, identification will depend on

specific features of our functional form, and so for example will require that d 6= 0. In

contrast, our later random effects model will make additional assumptions regarding vg, but

will be applicable to any linear or quadratic specification.

We cannot difference across time to remove vg, so we begin by looking at the difference

between the outcomes of two people i and i′ observed in the same time period and in the same

group g. In addition, to remove remaining correlation issues, we define the leave-two-out

group mean estimator

ŷg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

yl

This ŷg,−ii′ is just the sample average of y for everyone who is observed in group g in the

given time period, except for the individuals i and i′. Let ŷg from equations (15) equal the

estimator ŷg,−ii′ . Then differencing equations (15) and (16) between the individuals i and i′

gives

yi − yi′ = 2ŷg,−ii′ (xi − xi′) abd+
(
x2
i − x2

i′

)
b2d+ (xi − xi′) b+ ui − ui′ + εgi − εgi′ . (17)

where

εgi − εgi′ = 2
(
yg − ŷg,−ii′

)
(xi − xi′) abd. (18)

We can then show that (see Theorem 1 in the Appendix), with these definitions along with

some standard regression assumptions,

E (ui − ui′ + εgi − εgi′ | xi, xi′) = 0, (19)

which we can then use to construct moments for estimation of equation (17).

The intuition for this result can be seen by reexamining the obstacles to identification

listed earlier. The correlation of vg with yg and hence with ŷg,−ii′ doesn’t matter because vg

has been differenced out. ŷg,−ii′ does not correlate with ui or ui′ because individuals i and

i′ are omitted from the construction of ŷg,−ii′ . Finally, εgi − εgi′ is linear in xi − xi′ , with a

coefficient that, given some exogeneity assumptions can be shown to be conditionally mean
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zero.

Equation (17) contains functions of ŷg,−ii′ , xi, and xi′ as regressors, and equation (19)

shows that we can use functions of xi and xi′ as instruments. An obvious candidate instru-

ment for ŷg,−ii′ would be some estimate x̂g of xg, the reason being that yi depends on xi and

therefore the average within group value of y should be correlated with the average within

group value of x. The problem is that, although E (εgi − εgi′ | xi, xi′) = 0, the error εgi− εgi′
will in general be correlated with xl for all observed individuals l in the group other than

the individuals i and i′. Note that this problem is due to the assumption that ng is fixed. If

it were the case that ng →∞, then εgi − εgi′ → 0, and this problem would disappear.

To overcome this final obstacle to identification in the fixed effects model (finding an

instrument for ŷg,−ii′), we require some other source of group level data. Fortunately, we

have repeated cross section data. No particular consumer is sampled more than once, but we

have observations of other consumers in the same group from different time periods. These

consumers may or may not have different fixed effects vg and different mean expenditures

yg, but all we need to assume about them is the exogeneity assumption that each xi is

independent of the idiosyncratic error ui′ of every person i′ in person i′s group, and that

the average group value x̂g is autocorrelated over time (see the derivation of Theorem 1 in

the appendix for details). We take (functions of) these observations of x̂g from other time

periods to be the instruments for (functions of) ŷg,−ii′ that we require.

Note that even if our survey data only came from a single cross section, other data sets

might also provide these group level data. For example, if xi is a demographic variable, then

census data could provide the needed group level data. Similarly, if xi is a consumption

budget as in our application, then average group level income data from wage or income

surveys could suffice.

Let rg denote the vector of observations of x̂g for every time period in our data other

than the time period of the cross section under consideration (or include group level variables

that correlate with x̂g from other data sources). Let rgii′ denote the vector of xi, xi′ , rg, and

squares and cross products of these variables. We then obtain the unconditional moments

E
[(
yi − yi′ − 2ŷg,−ii′ (xi − xi′) abd−

(
x2
i − x2

i′

)
b2d− (xi − xi′) b

)
rgii′
]

= 0. (20)

Based on equation (20), the parameters a, b, and d, can now be estimated using Hansen’s

(1982) GMM estimator. Each observation consists of a pair of individuals observed in a given

group in a given time period, so our data consists of all such pairs i and i′. The estimator is

equivalent to regressing each yi−yi′ on the variables ŷg,−ii′ (xi − xi′), (x2
i − x2

i′), and (xi − xi′),
using GMM with instruments rgii′ , and then recovering the parameters a, b, and d, from the
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estimated coefficients. By construction, the errors in this model are correlated across all

pairs of individuals within each group, so we must use clustered standard errors, clustered

at the group level, to obtain proper inference.

Theorem 1 in Appendix A.2 describes these results formally and extends this model to

a vector xi, provides formal conditions for proving that an equilibrium exists, and shows

that the parameters of the model are identified by GMM using these moments. We then

further extend this result in Appendix A.3 to allow for a J vector of outcomes yi, replacing

the scalar a with a J by J matrix of own and cross equation peer effects. Theorem 2 in

the Appendix A.5 then gives a final extension of these results, showing identification and

consistent estimation of our utility derived demand model, given by equations (9) and (10)

for each good j. This demand model has a more complicated functional form than the

generic model and, e.g., includes prices that vary by time but not necessarily by group, but

the method for obtaining identification and constructing the associated GMM estimator is

the same.

III.B Generic Model With Group-Time Random Effects

A drawback of the fixed effects model is that differencing across individuals, which was

needed to remove the fixed effects, results in a substantial loss of information. So in this

section we add the additional assumptions that vg is homoskedastic and independent of xi,

and provide moments for a GMM estimator that does not entail differencing.

Another drawback of the fixed effects model is that it depends on specific features of

the functional form for identification, e.g, it requires the nonlinearity of d 6= 0. In contrast,

our random effects model identification and estimation works with linear models (i.e., with

d = 0), and can also be shown to hold for a general quadratic model, though for simplicity

we will stick with the specification of equation (14) here, since our utility derived demand

model has a similar structure.

To describe the random effects estimator it will be convenient to rewrite equation (14)

as

yi = y2
ga

2d+ (a+ 2xiabd) yg +
(
xib+ x2

i b
2d
)

+ vg + ui. (21)

As before, we will need to replace the unobserved yg with some estimate, and this replacement

will add an additional epsilon term to the errors. However, in the fixed effects case, when

we pairwise differenced this model, the quadratic term y2
g dropped out. Now, since we are

not differencing, we must cope not just with estimation error in yg, but also in y2
g (recall also

that since ng is fixed, this estimation error is equivalent to measurement error which does not

disappear asymptotically). To obtain valid moment conditions, we employ a variant of the
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trick we used before. Again let i′ denote an individual other than i in group g, and construct

ŷg,−ii′ as before. Now suppose we replace yg with ŷg,−ii′ as before, again introducing the

additional error εgi as in the previous section. The problem now is that the term ŷ2
g,−ii′ − y2

g

in εgi is not differenced out, and this term would in general be correlated with xl for every

individual l in the group, including i and i′.

To circumvent this problem, we replace the linear term yg with the estimate ŷg,−ii′ as

before, but we now replace the squared term ŷ2
g,−ii′ with ŷg,−ii′yi′ . This latter replacement

might seem problematic, since a single individual’s yi′ provides a very crude estimate of yg.

However, we repeat this construction for every individual i′ (other than i) in the group, and

use the GMM estimator to essentially average the resulting moments over all individuals i′ in

g, thereby once again exploiting all of the information in the group. With this replacement,

equation (21) becomes

yi = ŷg,−ii′yi′a
2d+ (a+ 2xiabd) ŷg,−ii′ +

(
xib+ x2

i b
2d
)

+ vg + ui + ε̃gii′

where by construction the error ε̃gii′ has the form

ε̃gii′ =
(
y2
g − ŷg,−ii′yi′

)
a2d+ (a+ 2xiabd)

(
yg − ŷg,−ii′

)
.

In Appendix A.4 we show that E(ε̃gii′ |xi, rg) = −da2V ar (vg) and so equals a constant. Our

constructions in estimating the group mean eliminates correlation of the error ε̃gii′ with xi.

But ε̃gii′ still does not have conditional mean zero, because both ŷg,−ii′ and yi′ contain vg, so

the mean of the product of ŷg,−ii′ and yi′ includes the variance of vg.

It follows from these derivations that

E
[
yi − ŷg,−ii′yi′a2d− (a+ 2xiabd) ŷg,−ii′ −

(
xib+ x2

i b
2d
)
− v0 | xi, rg

]
= 0 (22)

where v0 = E (vg)− da2V ar (vg) is a constant to be estimated along with the other parame-

ters, and rg are the same group level instruments we defined earlier. Letting rgi be functions

of xi and rg (such as xi, rg, x
2
i , and xirg), we immediately obtain unconditional moments

E
[(
yi − ŷg,−ii′yi′a2d− (a+ 2xiabd) ŷg,−ii′ −

(
xib+ x2

i b
2d
)
− v0

)
rgi
]

= 0 (23)

which we can estimate using GMM exactly as before, treating as observations every pair of

individuals in every group and time period, and using group level clustered standard errors.

As with the fixed effects model, in the Appendix we extend the above model to allow for a

vector of covariates xi, and to allow for a J vector of outcomes yi, replacing the scalar a with
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a J by J matrix of own and cross equation peer effects. Appendix A.4 provides the formal

proof of identification and associated GMM estimation for the random effects generic model

as discussed above (and for the extension to multiple equations), and Appendix A.6 proves

that this identification and estimation extends to our full utility derived demand model with

random effects.

IV Empirical Results

IV.A Preliminary Analysis: Well-being, Consumption, and Luxuries

Our model makes several assumptions about how peer consumption affects welfare. First,

we assume that the effects of peer expenditures on utility have observable implications in

the corresponding demand functions (via Roy’s identity). This could be violated if, e.g.,

utility were additively separable in qg and q. Second, we assume that an increase in peer

expenditures causes a decrease in utility. Before proceeding with our main structural results,

we implement two preliminary data analyses to examine these key assumptions, and also to

check other modeling assumptions (e.g., that qi is quadratic in xi). Details of the data

construction and empirical results of these preliminary data analyses are given in Appendix

B. Here we just briefly summarize our main findings from these empirical analyses.

Our first preliminary analysis uses all observations from the 61st round (conducted in 2004

and 2005) of the National Sample Survey (NSS) of India, a nationally representative survey

on, among other things, household spending patterns (more description of these data are

below). We estimate the generic model fixed-effects model given by equation (17), letting yi

equal expenditures on luxuries and letting xi equal total household expenditure. Groups are

defined by education level and district (analogous to counties in the USA). The main results

of this analysis, in Appendix Table B2, confirm that precise coefficient estimates can be

obtained using the generic model, that peer-average luxury expenditures significantly affect

demands for luxury demands, that both linear and quadratic terms in the budget xi are

statistically significant, and that a linear index structure in peer effects and the budget (as is

implied by the structural model assumption that needs are linear in mean peer expenditures)

appears to adequately capture the effects of both. The fixed effects results anticipate the

main structural results; in column 8 of Appendix Table B2 we find that a one rupee increase

in peer expenditure makes individuals behave as if they were 0.59 rupees poorer. We discuss

these preliminary results in full in Appendix Section B.1.

Our second preliminary analysis addresses head-on the question of whether higher peer

consumption reduces own utility. As we discuss in Section B.2, the structural finding that

19



higher peer expenditures makes consumers behave as if they were poorer could alternatively

be consistent with some positive network effects (e.g., from cellphones) so this is key for

correctly interpreting the welfare consequences of our model. We use a completely different

data set from India, the 5th (2006) and 6th (2014) waves of the World Values Surveys (WVS).

The WVS asks respondents about their subjective well-being with the question “All things

considered, how satisfied are you with your life as a whole these days?”and codes the response

on a five-point scale. It also includes information on household income bins. Putting these

together, we directly test whether this crude, self-reported measure of utility is decreased by

higher peer expenditure.

We regress self-reported well-being (both linearly and by ordered logit) on income based

approximations of the budget and peer expenditures in Appendix Table B3. We find that the

resulting coefficient estimates have signs that are consistent with our theory (own expendi-

tures increase utility while peer expenditures decrease utility). We would expect a marginal

rate of substitution between the two to have a value between zero and one. Our point esti-

mate of 1.45 (see column 2 of Table B3) is outside this range, but with a standard error of

0.85, so we cannot reject any value between zero and one. Luttmer (2005) performs a similar

exercise with an American data set, with the same results regarding coefficient signs. He

finds a marginal rate of substitution of 0.76, meaning that an increase in peer expenditures

of 100 dollars has the same effect on utility as a decrease in one’s consumption budget of

76 dollars. Finally, we include an interaction term (the product of the budget and peer ex-

penditures) in the regression in columns 3 and 6, and find its coefficient to be insignificantly

different from zero, which is consistent with our linear index modeling assumption.

IV.B Data

For our main empirical analyses, we use household consumption data from the 59th through

62nd rounds of the NSS, which were conducted between 2003 and 2007. The NSS are large

annual surveys, with roughly 30,000 to 100,000 observations of household-level data in each

round. They collect data on household demographics and household spending patterns. The

latter data are used to compute, among other things, the consumer price indices that are

commonly used in India.

In our baseline empirical work, we include only non-urban Hindu households to minimize

within-group heterogeneity.9 We further exclude scheduled caste/scheduled tribe (SC/ST)

9Urban households are typically immigrants from many different areas and varying sub-castes, and so
even Hindus of similar caste living near to each other in the same city may not be similar enough to treat
as a peer group.
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households (even if Hindu).10 We consider only households that are between the 1st and 99th

percentiles of household expenditure in each state/year. We use only non-urban households

whose state-identifier is not masked and with 12 or fewer members whose head is aged 20 or

more.

Our peer groups are defined by education (3 categories: illiterate or barely literate;

primary or some secondary; completed secondary or more) and by district (575 districts

across 33 states), allowing each group to be observed up to four times (once in each of the

four NSS rounds). We require each group to have at least 10 observations in each of at least

two time periods. Roughly 18 per cent of households are dropped with this restriction.11

Even with this restriction we are still left with relatively few observations per group. The

average number of members observed in each peer group is 24 households, and the median is

15. These small group sizes illustrate the importance of showing identification and consistent

estimation without assuming that the number of observed members per group goes to infinity,

and without assuming that most or all of the members of each group are observed.

For our main sample of non-urban Hindu non-SC/ST households, we have a total of 1111

distinct groups that are observed in at least 2 time periods each, for a total of 2354 period-

groups. Each group is seen in either two, three or four time periods, but most groups are

observed only twice. Our resulting dataset has 56,516 distinct households. Our estimators

use all unique household-pairs within each period-group, and we have a total of 2,055,776

such pairs.

The NSS collects item-level household spending for 76 items, and collects quantities for

roughly half of these. We consider only the 48 nondurable consumption items, and compute

total expenditure xi as the sum of spending on these nondurable consumption items. We

automate the classification of items into luxuries versus necessities by regressing the budget

shares of each of these 48 nondurable items on the log of total expenditure, and classify

those items with positive slopes as luxuries and the rest as necessities. Note that these are

poor households, so typical luxuries here are goods and services like sweets, ghee, processed

foods, transportation, shampoo, and toothpaste.

We let t index price regimes. Our observed prices vary by 4 time periods and by 33

states, so t ranges from 1 to T = 4× 33 = 132. Each individual household i is only observed

once, in one price regime and belonging to one group. We construct prices of our demand

10Below, we report additional results for samples of non-urban non-Hindu households and samples of
non-urban SC/ST households, which we find have some significant behavioral differences from our main
sample.

11Our theorems show that identification is possible with as few as three observed members per group, but
when very few group members are actually observed, estimates of group means become extremely noisy,
resulting in a substantial decrease in estimation precision.
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aggregates as follows. In a first stage, following Deaton (1998), we compute state-item-level

local average unit-value prices for the subset of items for which we have quantity data, to

equal the state-level sum of spending divided by the state-level sum of quantities. Then, in a

second stage, we aggregate these state-item-level unit value prices into state-level luxury and

necessity prices using a Stone price index, with weights given by the overall sample average

spending on each item. In a typical state and period, these prices are computed as averages

of roughly 2000 observations, so we do not attempt to instrument for possible measurement

errors in these constructed price regressors.

We condition on 7 demographic variables z. These are household size less 1 divided by

10; the age of the head of the household divided by 120; an indicator that there is a married

couple in the household; the natural log of one plus the number of hectares of land owned

by the household; an indicator that the household has a ration card for basic foods and

fuels; and indicators that the highest level of education of the household head is primary or

secondary level (they are both zero for uneducated or illiterate household heads).

Table 1 shows summary statistics for the our NSS sample. We provide summary statistics

at the level of the household, and at the level of the household-pairs used for estimation.

Table 1 also reports summary statistics for prices and quantities of visible and invisible

subcomponents of luxuries and necessities, using the categorization of Roth (2014) to classify

goods as visible versus invisible. We use these later on, when we consider the question of

whether social interaction effects differ for goods that are visible to other consumers in

comparison to those that are not visible.

Total expenditures, and its components of luxury and necessity spending, are expressed

in units of average household expenditure in round 59, so the average total expenditure of

1.12 reported in Table 1 shows that household spending was 12% higher in our overall sample

than in the first round of the data. Roughly one-quarter of household spending is classified as

luxury spending (0.31/1.12). Scanning Table 1 reveals that in our non-urban Hindu sample,

only 6 per cent of households have high school education (high education) and almost all

households have married household heads. Roughly one-quarter of households have ration

cards entitling them to subsidized basic foods.

IV.C Baseline Structural Model Estimates

We estimate all models by GMM. For the 2-good system (luxuries and necessities), we use the

model or equation (12) and employ the associated moment conditions (20) and (23) for the

fixed- and random-effects specifications, respectively. Both models use pairwise data formed

of all unique pairs of observations within each group, and are clustered at the group-year
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level to obtain valid inference.

Our fixed-effects approach involves substituting the leave-two-out within-group sample

average quantity q̂gjt,−ii′ for the within-group mean qgjt, and differencing across people within

groups. Thus, we substitute q̂gjt,−ii′ for qgjt in the definition of Xi (eq. (11)) to create X̂i:

X̂i = xi −R11p1t −R22p2t − (A11q̂g1t,−ii′ + C′1zi) p1t − (A22q̂g2t,−ii′ + C′2zi) p2t,

and substitute q̂gjt,−ii′ and X̂i into the demand equation (12). Then, we difference the demand

equation across individuals within groups to generate a moment condition analogous to (20):

E[(p1tiq1ti−p1ti′q1ti′−(X̂2
i−X̂2

i′)e
−(b1 ln p1t+(1−b1) ln p2t)d1−(X̂i−X̂i′)b1+C′1p1t (zi − zi′))rgtii′ ] = 0.

Notice that, as in the generic model, many group-varying terms, including A11p1tqg1t, drop

out as a result of this differencing. Further, since
(
X̂i − X̂i′

)
= xi − xi′ −C′1 (zi − zi′) p1t −

C′2 (zi − zi′) p2t, these terms are present only in the quadratic term
(
X̂2

i − X̂2
i′

)
via interac-

tions between group-average quantities qg1t and other elements of X̂i (e.g., xi). The formal

derivation of these moments for GMM estimation is given in Appendix A.5.

Our random-effects approach, derived in Appendix A.6, involves substituting the within-

group sample average quantity and another group member’s quantity for the within-group

means. We use the above definition of X̂i for the linear term in the demand equation (12)

and compute a new variable X̃ii′ for the squared term as follows:

X̃ii′ = X̂i[xi −R11p1t −R22p2t − (A11qg1ti′ + C′1zi) p1t − (A22qg2ti′ + C′2zi) p2t].

Finally, we substitute q̂g1t,−ii′ , X̂i and X̃ii′ into the demand equation (12) to generate a

moment condition analogous to (23):

E[(p1tq1t−X̃ii′e
−(b1 ln p1t+(1−b1) ln p2t)d1−X̂ib1−R11p1t−A11p1tq̂g1t,−ii′−C′1p1tzi−p1tv0)rgti] = 0.

These moments use pair-specific instruments which differ between our fixed- and random

effects models. To instrument for q̂gjt, we use group-averages from other time periods. Let

the subscript −t indicate averages from all other time periods. For both fixed- and random-

effects instruments, we create a group-level instrument q̌gjt equal to the OLS predicted value

of q̂gjt conditional on x̂g,−t, x̂2
g,−t,

√
x̂g,−t, x̂

2
g,−t, ẑg,−t.

12 Additionally, let z̃it and z̃gt be the

12This is similar to including these values as instruments for qgt, but reduces the dimensionality of the
instrument vector. This dimensionality reduction is quite significant because q̌gt is multiplied by the demo-
graphic controls to generate the final instrument vector.
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individually-varying and group-level, respectively, subvectors of zi. In our baseline model, z̃it

includes 5 household-level variables, and z̃gt includes just the remaining 2 variables: dummy

variables for primary- and secondary-school education levels. Letting · denote element-wise

multiplication, our instrument list for the fixed-effects model is:

rgtii′ =
(
x2
it − x2

i′t

)
, (xit − xi′t)·(1,pt · q̌gt,pt · z̃gt) ,pt·(z̃it − z̃i′t)·(1,pt · q̌gt) , xitpt·(z̃it − z̃i′t) .

Our instrument list for the random-effects model is:

rgti = (1,pt,pt · q̌gt,pt · zit) , xit · (1,pt, xit,pt · q̌gt,pt · zit) , pt · pt.

The last term provides instruments for v0.

Our primary focus is estimation of peer effects given by elements of the matrix A, but first

we consider the general reasonableness of our coefficients in the context of demand system

estimation. Complete estimates for our baseline models (corresponding to Tables 2 and 3)

are given in Appendix Tables B4 and B5. Our estimated quantity demand for luxuries has

positive curvature. All four baseline specifications have d1, the coefficient on the squared

budget term, being statistically significantly positive and of large magnitude, as expected for

luxuries. Regarding demographic covariates, it is reasonable to expect that needs would rise

with household size. In all four baseline specifications we find that this is indeed the case,

specifically, the parameters Cj,hhsize, are statistically significant and positive. Additionally,

their magnitudes are reasonable: an additional household member increases the needs for

luxuries by roughly 0.06 and the needs for necessities by roughly 0.15, where the units are

normalized to equal 1 for the average income in 2009.

Table 2 gives estimates of the spillover (peer effects) parameter matrix A using the fixed

effects estimator for the 2-good system (luxuries and necessities). We consider 2 cases here:

the left panel, labeled “A same,” gives estimates for the case where A is equal to a scalar, a,

times the identity matrix, so A = aIJ . The right panel of Table 2, labeled “A diagonal” gives

estimates for the case where A is a general diagonal matrix. Later we consider cross-effects,

allowing A to have non-zero off diagonal elements.

In the “A same” case, spending on needs is given by p′F i = axgt + p′Czi, so a gives the

response of spending on needs to a change in the average total expenditure in the group.

This baseline model is a revealed preference derived demand function analog to regressing

measured utility on total peer expenditures, as in Luttmer (2005) and our preliminary analy-

sis that used WVS data. This is also the most parsimonious version of our structural model.

The estimate of the scalar a in Table 6 is 0.50, meaning that a 100 rupee increase in group-

average income xgt increases perceived needs (and therefore decreases equivalent income) by
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50 rupees. The standard error of a is 0.11 so we can reject a = 0, which would correspond

to no peer effects. We can also reject a = 1 which would correspond to peer effects so large

that there are no increases in utility associated with aggregate consumption growth. This

estimate roughly comparable to Luttmer’s (2005) estimate of 0.76 using stated well-being

data.

In the bottom of Table 2 we test, and reject, the hypothesis that the two elements on

the diagonal of A are equal to each other. However, when we estimated the model allowing

the two elements to differ (see the right panel of Table 2), we obtain estimates that lie far

outside the plausible range of [0, 1]. These estimates are also very imprecise, with standard

errors that are roughly triple those in the left panel. The explanation for this imprecision

and corresponding wildness of the estimates in this A varying case is multicollinearity. More

preciesely, in the FE model, varying parameters in A are identified from the (xi − xi′)qgt

interaction terms (recall here and below that the actual qgt elements are unobserved and

are replaced by estimates q̂gt,−ii′). In our data, the elements of our estimate of qgt are

highly correlated with each other across groups and time, with a correlation coefficient of

0.85, resulting in a large degree of multicollinearity.13 The result is that the estimated

first element of A is implausibly low, offset by the second diagonal element of A that is

implausibly high by a similar magnitude. We take this as evidence that the data are only

rich enough to support the fixed effects implementation of the “A same” specification.

This problem of multicollinearity is considerably reduced in the random effects model,

with its stronger assumptions. In particular the RE model contains an additive qgt term

which is differenced out in the FE model. This is in addition to a now undifferenced xiqgt

interaction term, with both terms helping to identify A in the RE model. At the bottom

of Table 2, we report the results of a Hausman test comparing the FE and RE models.

The additional restrictions of the RE model are not rejected in the “A same” baseline

specification, but are rejected in the more general “A diagonal” specification.

The estimates of A in the RE model are reported in Table 3. The RE estimate of

the scalar a in the “A same”model is 0.55, while for diagonal A the estimate of the luxuries

spillover coefficient (the first element on the diagonal of A) is 0.46 and the necessities spillover

coefficient is 0.57. The standard errors of these estimates are around 0.02, far lower than in

the fixed effects model. While similar in magnitude, we reject the hypothesis that the two

elements of A in the RE model are equal.

The interpretation of these separate coefficients is slightly more complicated than in

13A possible reason for this multicollinearity is that, for this population, the differences between luxuries
and necessities is not large (see the examples of luxuries given earlier). Perhaps in a wealthier country these
differences would be larger. This may also explain the relatively small empirical difference between visible
and invisible goods that we report later.
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the “A same” case. To compare these estimates to the scalar a, suppose group average

expenditures xgt increased by 100 rupees. Then group average luxury quantities, q1gt would

increase by about 30/p1 (since, in Table 1, luxuries are about 30% of total spending), and

so spending on needs in the luxury category (p1A11q1gt) would increase by about 14 rupees

(p1 × 0.46× 30/p1). Similarly, spending on needs in the necessities category would increase

by about 40 rupees (p2×0.57×70/p2). This yields a total increase in spending on perceived

needs of 54 rupees, which is very close to the estimate one gets with a scalar a (50 rupees in

the FE model or 54 rupees in the RE model).

In the rightmost panel of Table 3, we report RE estimates where the matrix A is unre-

stricted, allowing for nonzero cross-effects, e.g., allowing peer group consumption of neces-

sities to directly impact one’s demand for luxuries. The estimates display a similar (though

less extreme) wildness to that of the FE model with diagonal A. The reason is similar, in

that now we are trying to estimate four coefficients primarily from the four highly correlated

terms xiq1gt, xiq2gt, q1gt, and q2gt. So although we formally prove identification of the model

with a general A, one would either require a larger data set or more independent variation

in group quantities and within group total expenditures to overcome these multicollinearity

issues and obtain reliable estimates with an unrestricted A matrix.

IV.D Small Group Sizes

One of our main model innovations is obtaining consistent estimates of peer effects using

standard survey data. This required dealing with the measurement error in group means

that results from only observing a relatively small number of the members of each peer

group. Both our FE and RE estimators account for the fact that most group members are

unobserved, and that the number of group members sampled in each group is small and

fixed (does not tend to infinity). This results in observed group mean-expenditures in each

group that are endogenous, and have correlated measurement errors. Our estimators dealt

with this problem by a combination of pairing observations, using a leave-two-out estimator

of the group means, and appropriate construction of instruments.

Table 4 considers whether or not these measurement error corrections matter empirically.

To see why accounting for these errors might be important, it is helpful to return to the

simple generic model moment equations for the FE and RE models given in equations (20)

and (23), respectively. Consider first the moment conditions for the random-effects model

given by equation (23). If we didn’t correct for measurement error, we would instrument

for ŷg,−ii′ with contemporaneous group-level averages of regressors (rather than group-level

averages from other time periods), as is common in linear social-interactions models. But,

26



this instrument would be polluted with correlated measurement errors leading to bias in the

estimated parameters. This moment equation is linear in the variables (though nonlinear in

the parameters), so we can think of measurement error in ŷg,−ii′ through two channels: 1)

standard attenuation bias on the reduced form effects of ŷg,−ii′ and its interactions; and 2)

bias induced by the fact that the measurement error gets squared and interacted with other

variables. For the RE model, the first order effect comes through the attenuation bias on a

multiplying ŷg,−ii′ . This should shrink the estimated a towards zero when we don’t correct

for the small group size measurement error.

The impacts of squared and interacted measurement errors are more complex, running

through parameters multiplying the interaction terms ŷg,−ii′yi′ and ŷg,−ii′xi. Attenuation of

these coefficients would multiply products of a and other parameters, so the direction of bias

induced on the estimated a is uncertain. Similarly, the bias induced on a from the fact that

measurement error itself gets squared and interacted with other variables has an uncertain

effect.

Turning to the moment condition for the fixed-effects model given by equation (20), we

have similar biases from the interaction terms ŷg,−ii′ (xi − xi′), but no first order attenuation

bias because the ŷg,−ii′ term is differenced out in the fixed effects moment equation. The

biases induced from squared and interacted measurement errors are also present in the fixed-

effects moment equation, but are again of uncertain direction. Thus, we expect a first-order

attenuation bias plus smaller unsigned bias in the random effects model, and an unsigned

bias of uncertain magnitude in the fixed effects model.

Columns 1 and 3 of Table 4 give estimates of the FE and RE models do not correct

for these measurement errors. These are estimates that would be consistent if the within-

group observed sample sizes went to infinity. The model here is the “Same A” specifi-

cation that instruments for q̂gjt,−ii′ using q̌gjt estimated conditional on contemporaneous

x̂g,t, x̂2
g,t,
√
x̂g,t, x̂

2
g,t, ẑg,t (rather than their −t analogs). Here, we see that the estimated

value of a for the FE model is equal to 0.79 which is somewhat larger than the measurement-

corrected estimate given in column 4. This suggests that the combined effects of attenuation

bias in the interaction terms involving q̂gjt,−ii′ and the biases from the squared and inter-

acted measurement errors, are to bias a away from zero. In contrast, the estimate of a in the

RE model is 0.17. This estimate additionally includes first-order attenuation bias from the

level term q̂g1t,−ii′ , suggesting that this first-order attenuation bias dominates the estimated

coefficient, and drives it close to zero, as expected.

To summarize these results, we found earlier that measurement-error corrected fixed and

random effects models both yield estimated values of a near 0.5 for our baseline “Same

A”specification. This is no longer the case when we fail to account for the measurement
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errors induced by only observing a small number of members of each peer group. Correcting

for these errors is empirically important. This is especially true for the random-effects

estimator, where failure to correct results in an estimate of a that is severely attenuated.

IV.E Alternative Structural Model Estimates

In Table 5, we turn to the question of whether consumption externalities vary depending on

whether or not goods are visible or invisible to one’s peers, according to the characterisation

of Roth (2014). The idea is that peer effects may be larger for visible goods, both because

they are more conspicuous, and because of potential Veblen (1899) effects. By this theory we

would expect larger consumption externalities for visible goods than for invisible goods. We

might additionally expect this to be particularly true for luxuries, as opposed to necessities.

Dividing both luxuries and necessities into visible and invisible components yields a demand

system with J = 4 goods (of which we estimate 3 equations, with the fourth equation

coefficients being obtained by the adding up constraint).

The first and second columns of Table 5 give the fixed- and random-effects estimates of

the scalar a in the “A same” model, where now four elements of the diagonal of A are all

constrained to be equal. The estimates of the scalar a are 0.71 and 0.65, respectively. These

are rather higher than the 0.50 to 0.55 estimates we obtained with J = 2 goods, but are

closer to Luttmer’s (2005) estimate of 0.76 using stated well-being data. The estimates of

the scalar a with J = 4 goods have smaller standard errors than in the case with J = 2

goods, because now there are more equations being used to estimate the same parameter.

The rightmost column of Table 5 give the RE estimates of the “diagonal A” model. As

before, we find that luxuries have somewhat smaller externalities than necessities. However,

the estimated element of A for visible luxuries is smaller than that for invisible luxuries,

while the estimated value for visible necessities is larger than for invisible necessities. So the

Veblen or conspicuous consumption story for visible goods is supported for necessities, but

not for luxuries. Since necessities make up about 70% of total spending, this implies that

the overall peer effect is larger for visible than invisible consumption.

In Table 6, we consider how consumption externalities vary across group-level character-

istics. In the left-hand panel, we provide fixed effects estimates of the scalar a in the “A

same,” J = 2 goods model on three different subsamples of the non-urban population: Hindu

non-SC/ST households, SC/ST households, and non-Hindu SC/ST households. There are

roughly one-quarter as many Hindu SC/ST households as Hindu households, and roughly

one-fifth as many non-Hindu households as Hindu households, so separate regressions are

feasible. For Hindu non-SC/ST households, the estimate of a is 0.50 (the same as in our
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baseline model) but for SC/ST households and for non-Hindu non-SC/ST households, the

point estimates of a are closer to zero, though with larger standard errors. This means that

peer effects may vary by caste and religion. Interestingly, the peer effects are largest among

the largest and most dominant social group, suggesting that some density of the peer group

may be necessary to detect peer effects.

The right hand panel of Table 6 reports differences in the scalar a across three education

groups: illiterate/barely literate, primary or some secondary education, and complete sec-

ondary or more education. We initially ran this model on three different subsamples based

on these education levels, but unlike the case with caste and religion, we found that the bj

and dj coefficient estimates did not differ much across the groups. Further, only 6 per cent

of households have high education, so separate estimation for this group is not tenable due

to sample size limitations. For efficiency we therefore pooled the data, just letting the scalar

a be a linear index in the three education levels. Here we find very low and insignificant peer

effect for the illiterate/barely literate groups. In contrast, the estimate of a is 0.56 for the

middle education group, and lower (but not significantly different from 0.56) in the highest

education group. We take this to mean that the very poorest households in India are close

enough to subsistence that it is more costly to engage in status competitions.

The results in Table 6 are striking in that they show that poorer demographics, SC/ST

and illiterate/barely literate, have much smaller peer effects than others. This finding is

similar to Akay and Martinsson’s (2011) finding for very poor Ethiopians. In Table 7, we

further investigate this possibility by splitting the baseline (Hindu non-SC/ST) sample into

households whose real income is below the district-year median real income and households

whose real income is above the district-year median real income. The implicit assumption

of this specification is that the poorer and richer halves of each education group within each

district correspond to different peer groups. We present fixed-effects estimates for the model

with a scalar a, and random-effects estimates for the model with scalar a and diagonal A,

since these were the most precisely estimated models in our baseline specifications.

The fixed-effects estimates of a for poorer and richer households are 0.26 and 0.59, re-

spectively. This difference is marginally statistically significant (z-stat of 1.86) but large in

magnitude, implying peer effects that are almost twice as large among the rich groups as

among the poor groups. We find a slightly larger difference in the random-effects estimates

of a, which are 0.32 and 0.78 for poor and rich households, respectively. The random-effects

estimates pass a Hausman test against the fixed-effects alternative for both poor and rich

households. Finally, turning to the random-effects estimates with diagonal A matrices, we

again find estimated spillovers that are much smaller for poor than for rich households. In-

terestingly, for poor households we find consumption externalities that are a bit larger on
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luxuries vs necessities, which is the opposite of what we found in other specifications, where

necessities spillovers were a little larger.

IV.F Summary of Empirical Results

We draw the following lessons our empirical work. First, we find that overall, peer effects

are of similar magnitudes for luxuries and necessities, suggesting that the matrix A can

be reasonably approximated by a scalar a times the identity matrix (the “A same” speci-

fications). This implies that the consumption externalities component of needs is close to

equaling the scalar a times group-average total expenditures. This was not a priori obvious,

but means that a parsimonious model relating peer group expenditure to utility captures

the most important aspects of peer consumption effects.14

Second, fixed effects estimation results in a considerable loss of efficiency relative to

random effects estimation. In the “A same” model, the added restrictions implied by random

effects over fixed effects are not rejected, and yield similar point estimates of the peer effects.

Third, the measurement error corrections we propose to account for only observing a small

number of the members of each peer group are empirically important. These corrections

are what allow us to analyze peer effects with standard survey data, instead of data that

includes most or all members of each peer group. Both fixed and random effects estimators

show bias without this correction, and in particular, our otherwise more efficient random

effects estimates show severe attenuation bias when we do not account for this measurement

error in our estimation method.

Fourth, our baseline estimates of the scalar a are at or a little above 0.5. However,

alternative model specifications, and nonstructural estimates based on reported life satisfac-

tion, suggest potentially higher peer effects of up to around 0.7. We also find evidence that

particular subgroups, especially poorer subgroups, have peer effects lower than 0.5.

V Implications for Tax and Transfers Policy

Our peer effects finding that needs rise with group-average consumption (with a coefficient of

0.5 or more in most groups) has significant implications for policies regarding redistribution,

transfer systems, public goods provision, and economic growth. Like consumption rat race

models and “keeping up with the Jones” models, our model is one where consumption has

14This result may be due to the relative similarity of luxuries vs necessities in this population, as discussed
earlier. It seems likely that in a wealthier population, variation in peer effects across different types of goods
would be larger and more significant.
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negative externalities, in our case, increasing perceived needs and thereby reducing the util-

ities of peers. Boskin and Shoshenski (1978) consider optimal redistribution in models with

general consumption externalities. They show that distortions due to negative externalities

from consumption onto utility can generally be corrected by optimal taxation. In particular,

their results imply that negative consumption externalities make the marginal cost of public

funds lower than it would otherwise be, so the optimal amount of redistribution is greater

than it would otherwise be. Here we apply the Boskin and Shoshenski (1978) logic to our

estimated consumption peer effects, and in particular show how potentially large free lunch

gains are possible.

As discussed in Section II, the sum (over households) of income less the sum of spending

on needs as we define them is a valid money-metric social welfare index. This means that

if needs go down, ceteris paribus, social welfare goes up. Consider the money metric costs

in lost utility of, say, an across-the-board tax increase. This tax increase lowers average

expenditures by households, which in turn lowers perceived needs, thereby offsetting some

of the utility that was lost by having to pay the tax. For example, suppose you experience

a two rupee tax increase. If your peers also have their taxes increase by the same amount,

then (with a = 0.5) your loss in utility will only be equivalent to that of a one rupee tax

increase.

However, we must also consider the potential peer effects in how the government uses

the additional tax revenue. If the money is transferred to other groups of consumers who

also have peer effect spillovers of a = 0.5, then the welfare gains from reduced expenditures

on needs by the taxed consumers will be exactly offset by the welfare losses associated with

increased perceived needs by the recipients of those transfers.

There are two ways we can reduce or eliminate these offsetting welfare losses, thereby

exploiting the potential free lunch associated with the reduced perceived needs from taxing

peers. One way is to transfer the funds to groups that have smaller peer effect spillovers,

and the other is to spend the additional tax revenue on public goods.

We found that the size of the peer effect spillovers may be smaller for poorer and the

least educated groups than for other consumers. If so, then transfers from richer groups to

poorer ones will lead to an overall increase in social welfare, by reducing the total negative

consumption externalities of the peer effects. This is true even with an inequality-neutral

social welfare function. Similarly, our estimates suggest social welfare gains to progressive

vs flat taxes, even if, ceteris paribus, the marginal utility of money were the same for all

consumers.

An alternative way to exploit the potential free lunch associated with the reduced per-

ceived needs from taxing peers is to spend the resulting tax revenues on public goods. To
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the extent that jealousy or envy are the underlying cause of the peer externalities we iden-

tify, public goods would not invoke those effects (or should at least induce smaller effects),

because by definition public goods are consumed by all members of the group. This along

with the Boskin and Shoshenski theorems suggests that public goods may be a partially free

lunch.

To illustrate the magnitude of these potential welfare gains, we consider just one existing

transfer program in India. This is the Public Distribution System (PDS), as currently funded

by the National Food Security Act of 2013. This program is estimated to cost roughly 1.35%

of GDP when fully implemented (Puri 2017; Ministry of Consumer Affairs 2018). The PDS

aims to provide subsidized cereals to roughly 75 per cent of Indian households at roughly 1/3

of market price, and so, in our framework aims to increase the consumption of necessities.

Our estimates imply that the resulting increased consumption would result in increased

perceived needs, and so would not raise utility as much as an alternative policy that did

not induce these negative externalities. Such alternatives could be provision of public goods,

i.e., policies that provide resources to the poor but are equally available to all households.

Such public goods might include clean water, public sanitation, better air quality, or better

schools.

A rough back-of-the-envelope calculation of the magnitude of these potential gains pro-

ceeds as follows. The entitlement of rice under the PDS is up to 5 kg (kilograms) per month

per person at 3 rupees per kg. Suppose the market price of rice is 15 rupees per kg (as it

was in 2016). Thus, the public cost of providing this rice subsidy is about 12 rupees per

kg, or 60 rupees per month per person. We can bound each consumer’s behavioral response

to the subsidy by noting that necessities consumption could rise by as much as 60 rupees

per month per person, or at the other extreme, the consumer could choose to keep their

rice consumption unchanged and spend the 60 rupees per month on luxuries. The actual

response would likely be somewhere in between.15

For simplicity in constructing bounds, suppose that within each peer group either ev-

eryone or nobody qualifies for (or takes up) the PDS entitlement. At one extreme, suppose

every consumer who gets the entitlement increases their necessities spending by 60 rupees

per person per month. Then, taking our baseline random-effects estimate of the spillover

from necessities of 0.57, we would have that the needs of every group member rises by 34

(0.57 times 60) rupees, resulting in an increase of only 60 - 34 = 26 rupees per consumer

per month in their money-metric utility. At the other extreme, if all consumers who get the

15We could use our model to estimate what portion would be spent on luxuries vs necessities based on the
distribution of prices and budgets in the population, but that complication turns out to not be necessary for
our rough calculations. Note that a portion of the gain could also be saved, but that just implies spending
it on luxuries or necessities at some future date.
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entitlement use all of the extra resources provided to buy luxuries, then the corresponding

spillover estimate is 0.46, which by a comparable calculation results in a 28 rupees increase

in needs and therefore a 60 - 28 = 32 rupees gain in utility per consumer. Thus the govern-

ment’s expenditures of 60 rupees only increases money metric utility by 26 to 32 rupees per

person per month. This is in contrast to a full benefit of 60 rupees per person per month

that might be obtained by provision of public goods.16 The PDS program targets roughly 1

billion people, yielding potential money-metric welfare gains (of switching from rice subsidies

to a public goods program) of roughly 336 billion to 408 billion rupees per year.

Note that this calculation used our estimates of 0.57 and 0.42 for the peer effects of

necessities and luxuries. Since it is poorer households that receive the PDS ration cards,

it may be that the more appropriate estimate of peer effects to use is 0.26 or 0.32, the

estimates we obtained for just poorer households (albeit with larger standard errors). In

that case the benefits of switching to public goods we calculated above may be halved, but

that still corresponds to money metric savings of over 160 billion rupees per year. Also, if the

difference in peer effects between rich and poor is that large, then the NFSA program itself is

much less expensive in money metric terms than it appears. This is because, as noted above,

the money metric utility loss due to peer effects among the program’s recipients would be

smaller than the corresponding gains among the richer groups who pay most of the taxes

that fund the program.

VI Conclusion

We show identification and GMM estimation of peer effects in a generic quadratic model,

using ordinary survey (not panel) data where most members of each group might not be ob-

served. The model allows for peer group level fixed or random effects, and allows the number

of observed individuals in each peer group to be fixed asymptotically. This means we obtain

consistent estimates of the model even though peer group means cannot be consistently es-

timated. Unlike most peer effects models, our model can be estimated from standard cross

section survey data where the vast majority of members of each peer group are not observed,

and detailed network structure is not provided.

We provide a utility derived consumer demand model, where one’s perceived needs for

16An important caveat is that the benefits of this alternative might be reduced to the extent that some
households derive less utility from the public good than others, but may also be increased to the extent that
people in groups that did not qualify for or take up the rice entitlement might also benefit from the public
good. The relative benefits could also be reduced or increased if peer expenditures have positive or negative
externalities that we are not measuring. Examples could include positive network effects from increased cell
phone ownership, or negative congestion effects from increased use of public roads.
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each commodity depend in part on the average consumption of one’s peers. We show how

this model can be used for welfare analysis, and in particular to identify what fraction of total

expenditure increases are spent on “keeping up with the Joneses” type peer effects. This

demand model, in which peer expenditures affect perceived needs, has a structure analogous

to our generic peer effects model, and so can be identified and estimated in the same way.

We apply the model to consumption data from India, and find large peer effects. Our

estimates imply that an increase in group-average spending of 100 rupees would induce an

increase in needs of roughly 50 rupees or more in most peer groups. In this model, an

increase in needs is, from the individual consumer’s point of view, equivalent to a decrease in

total expenditures. These results could therefore at least partly explain the Easterlin (1974)

paradox, in that income growth over time, which increases people’s consumption budgets,

likely results in much less utility growth than standard demand models (that ignore these

peer effects) would imply.

These results also suggest that income or consumption taxes have far lower negative

effects on consumer welfare than are implied by standard models. This is because a tax that

reduces my expenditures by a dollar will, if applied to everyone in my peer group, have the

same effect on my utility as a tax of only 50 cents that ignores the peer effects. In short,

the larger these peer effects are, the smaller are the welfare gains associated with tax cuts

or mean income growth. We show this is particularly true to the extent that taxes are used

to provide public goods (that are less likely to induce peer effects) rather than transfers.

We provide some calculations showing that the magnitudes of these peer effects on social

welfare calculations, which are ignored by standard models of government tax and spending

policies, can be very large. For example, we find potential free lunch welfare gains of hundreds

of billions of rupees may be available in just a single existing government transfer program in

India. We find similarly that the welfare gains in transfers from richer to poorer households

(and more generally from progressive vs flat taxes) may be much larger than previously

thought, if those poorer households do indeed have smaller peer effect spillovers.
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VIII Tables

Table 1: Summary statistics for NSS consumption data

Observations Pairs
(N=56,516) (N=2,055,776)

Mean SD Min Max Mean SD Min Max
xi 1.12 0.66 0.10 8.75 1.08 0.64 0.10 8.75
qi luxuries 0.31 0.37 0.00 7.96 0.30 0.36 0.00 7.96
qi necessities 0.83 0.40 0.03 4.32 0.79 0.38 0.03 4.32
q̂g,−ii′ luxuries 0.26 0.15 0.02 1.78
q̂g,−ii′ neccessities 0.74 0.17 0.26 1.83
p luxuries 0.98 0.08 0.81 1.29 0.99 0.08 0.81 1.29
p neccessities 0.99 0.07 0.86 1.34 1.00 0.07 0.86 1.34
Educ med 0.48 0.50 0.00 1.00 0.50 0.50 0.00 1.00
Educ high 0.06 0.24 0.00 1.00 0.03 0.17 0.00 1.00
(hhsize-1)/10 0.40 0.22 0.00 1.10 0.39 0.22 0.00 1.10
headage/120 0.40 0.11 0.17 0.94 0.40 0.11 0.17 0.94
married 0.87 0.34 0.00 1.00 0.87 0.34 0.00 1.00
ln(land+1) 0.60 0.58 0.00 2.30 0.53 0.55 0.00 2.30
ration card 0.23 0.42 0.00 1.00 0.26 0.44 0.00 1.00
qi vis luxuries 0.13 0.23 0.00 7.54 0.13 0.23 0.00 7.54
qi invis luxuries 0.18 0.22 0.00 5.07 0.17 0.21 0.00 5.07
qi vis necessities 0.13 0.09 0.00 2.37 0.12 0.08 0.00 2.37
qi invis necessities 0.70 0.34 0.01 3.98 0.67 0.32 0.01 3.98
q̂g,−ii′ vis luxuries 0.11 0.08 0.00 1.12
q̂g,−ii′ inv luxuries 0.16 0.08 0.01 1.35
q̂g,−ii′ vis necessities 0.11 0.04 0.02 0.49
q̂g,−ii′ inv necessities 0.63 0.14 0.22 1.53
p vis luxuries 0.95 0.11 0.64 1.33 0.95 0.11 0.64 1.33
p invis luxuries 0.98 0.08 0.82 1.28 1.00 0.08 0.82 1.28
p vis necessities 0.98 0.14 0.70 1.50 1.01 0.15 0.70 1.50
p invis necessities 0.99 0.06 0.86 1.34 1.00 0.06 0.86 1.34

Summary statistics for estimation sample. Includes all 2354 group-rounds
with 10 or more obs of Hindu non-SC/ST households. Groups defined as
the cross of education (less than primary, primary, secondary or more)
and district.
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Table 2: Structural demand model, fixed effects estimates

A Same A Diagonal

A (own luxuries) 0.50 -2.63
(0.11) (0.40)

A (own necessities) 0.50 2.99
(0.11) (0.28)

χ2 A same 80
P-value [0.00]
Hausman test (A luxuries) -0.31 -7.8
P-value [0.76] [0.00]
Hausman test (A necessities) 8.8
P-value [0.00]

Selected estimates for structural demand model. Table dis-
plays effect of group consumption on needs. χ2 A same
tests whether the diagonal A coefficients in the second col-
umn are the same. Hausman tests are for the FE coefficient
against the RE coefficient.
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Table 3: Structural demand model, random effects effects estimates

A Same A Diagonal A Full

A (own luxuries) 0.55 0.46 0.20
(0.02) (0.02) (0.09)

A (own necessities) 0.55 0.57 1.09
(0.02) (0.02) (0.10)

A (cross luxuries) 0.42
(0.08)

A (cross necessities) -0.33
(0.11)

χ2 A same 43
P-val [0.00]

Selected estimates for structural demand model. Table
displays effect of group consumption on needs. χ2 statistic
tests the first-column model that constrains the diagonal
elements of A to be the same for necessitities and luxuries
against the diagonal A in the second column.
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Table 4: Estimated peer effects by measurement error correction

RE FE

(1) (2) (3) (4)
Naive Baseline Naive Baseline

A (own consumption) 0.17 0.55 0.79 0.50
(0.081) (0.016) (0.14) (0.11)

Observations 2,055,776 2,055,776 2,055,776 2,055,776

Selected estimates for structural demand model, with and without cor-
rection for measurement error in group averages.
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Table 5: Structural demand model, four consumption categories

Fixed effects Random effects

A same A same A diagonal

A (visible luxuries) 0.71 0.65 0.54
(0.05) (0.01) (0.01)

A (invisible luxuries) 0.71 0.65 0.62
(0.05) (0.01) (0.01)

A (visible necessities) 0.71 0.65 0.761
(0.05) (0.01) (0.01)

A (invisible necessities) 0.71 0.65 0.66
(0.05) (0.01) (0.01)

Hausman test RE 1.26
[0.21]

χ2 A same 658
[0.00]

Selected estimates for structural demand model. Table displays
effect of group consumption on needs.
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Table 6: Structural demand model, fixed effects estimates

Religion Education

A (Hindu, non-SC/ST) 0.50
(0.11)

A (SC/ST) 0.13
(0.18)

A (non-Hindu) -0.06
(0.23)

A (less than primary) 0.08
(0.15)

A (primary) 0.56
(0.12)

A (secondary) 0.37
(0.22)

Selected estimates for structural demand model. Re-
ligion models are estimated separately by demo-
graphic subgroup. Table displays effect of group con-
sumption on needs.
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Table 7: Structural demand model, by above/below median expenditure

Fixed effects Random effects

A same A same A diagonal

Panel A: Below median expenditure
A (luxuries) 0.26 0.32 0.42

(0.05) (0.01) (0.01)
A (necessities) 0.26 0.32 0.37

(0.05) (0.01) (0.02)
Panel B: Above median expenditure

A (luxuries) 0.59 0.78 0.65
(0.17) (0.03) (0.04)

A (necessities) 0.59 0.78 0.86
(0.17) (0.03) (0.04)

Selected estimates for structural demand model. Reli-
gion models are estimated separately by demographic
subgroup. Table displays effect of group consumption
on needs.
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Appendix A: Derivations

A.1 Peer Effects as a Game

The interactions of peer group members may be interpreted as a game. We assume that group

members have utility functions that depend on peers only through the true mean of the peer

group’s outcomes. If group members also all observe each other’s private information and

make decisions simultaneously (corresponding to a complete information game), then each

individual’s actual behavior will only depend on others through the group mean. Estimation

of complete games typically depend on having data on all members of each observed group.

An example is Lee (2007). However, in our case we only observe a small number of members

of each group. An alternative model of group behaviour is a Bayes equilibrium derived from

a game of incomplete information, in which each individual has private information and

makes decisions based on rational expectations regarding others. In either type of game

there is the potential problem of no equilibrium or multiple equilibria existing, resulting in

the problems of incompleteness or incoherence and the associated difficulties they introduce

for identification as discussed by Tamer (2003).

We do not take a stand on whether the true game in our model is one of complete

or incomplete information. We assume only that players are basing their behavior on the

true group means. This is most easily rationalized by assuming that consumers either have

complete information, or can observe a sufficiently large number of members in each group

that their errors in calculating group means are negligible.17

A.2 Generic Model Identification and Estimation With Fixed Ef-

fects

Let yi denote an outcome and xi denote a K vector of regressors xki for an individual i. Let

i ∈ g denote that the individual i belongs to group g. For each group g, assume we observe

ng =
∑

i∈g 1 individuals, where ng is a small fixed number which does not go to infinity. Let

yg = E (yi | i ∈ g), ŷg,−ii′ =
∑

l∈g,l 6=i,i′ yl/(ng − 2), and εyg,−ii′ = ŷg,−ii′ − yg, so yg is the true

group mean outcome and ŷg,−ii′ is the observed leave-two-out group average outcome in our

data, and εyg,−ii′ is the estimation error in the leave-two-out sample group average. Define

xg = E (xi | i ∈ g), xx′g = E (xix
′
i | i ∈ g), and similarly define x̂g,−ii′ , x̂x′g,−ii′ , εxg,−ii′ and

17A more difficult problem would be allowing for the possibility that group members may, like the econo-
metrician, only observe group means with error. We do not attempt to tackle this issue. Doing so would
require modeling how individuals estimate group means, how they incorporate uncertainty regarding group
mean estimates into their purchasing decisions, and showing how all of that could be identified in the presence
of the many other obstacles to identification that we face.

48



εxxg,−ii′ analogously to ŷg,−ii′ , and εyg,−ii′ .

Consider the following single equation model (the multiple equation analog is discussed

later). For each individual i in group g, let

yi =
(
yga+ x′ib

)2
d+

(
yga+ x′ib

)
+ vg + ui (24)

where vg is a group level fixed effect and ui is an idiosyncratic error. The goal here is

identification and estimation of the effects of yg and xi on yi, which means identifying the

coefficients a, b, and d.

We could have written the seemingly more general model

yi =
(
yga+ x′ib + h

)2
d+

(
yga+ x′ib + h

)
k + vg + ui

where h and k are additional constants to be estimated. However, one can readily check that

this model can be rewritten as

yi =
(
yga+ x′ib

)2
d+ (2cd+ k)

(
yga+ x′ib

)
+ c2d+ ck + vg + ui.

If 2cd + k 6= 0 then this equation is identical to equation (24), replacing the fixed effect vg

with the fixed effect ṽg = c2d+ ck+vg, and replacing the constants a, b, d, with constants ã,

b̃, d̃ defined by ã = (2cd+ k) a, b̃ = (2cd+ k) b, and d̃ = d/ (2cd+ k)2. If 2cd+ k = 0, then

by letting ṽg = c2d+ ck+ vg, this equation becomes yi =
(
yga+ x′ib

)2
d+ ṽg +ui. Since this

pure quadratic form equation is strictly easier to identify and estimate, and is irrelevant for

our empirical application, we will rule it out and therefore without loss of generality replace

the more general model with equation (24).

We assume that the number of groups G goes to infinity, but we do NOT assume that

ng goes to infinity, so ŷg,−ii′ is not a consistent estimator of yg. We instead treat εyg,−ii′ =

ŷg,−ii′−yg as measurement error in ŷg,−ii′ , which is not asymptotically negligible. This makes

sense for data like ours where only a small number of individuals are observed within each

peer group. This may also be a sensible assumption in many standard applications where

true peer groups are small. For example, in a model where peer groups are classrooms,

failure to observe a few children in a class of one or two dozen students may mean that the

observed class average significantly mismeasures the true class average.

Formally, our first identification theorem makes assumptions A1 to A5 below.

Assumption A1: Each individual i in group g satisfies equation (24). xi is a K-

dimensional vector of covariates. For each k ∈ {1, ..., K}, for each group g with i ∈ g and

i′ ∈ g, Pr (xik 6= xi′k) > 0. Unobserved vg are group level fixed effects. Unobserved errors
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ui are independent across groups g and have E(ui |all xi′ having i′ ∈ g where i ∈ g) = 0.

The number of observed groups G → ∞. For each observed group g, we observe a sample

of ng ≥ 3 observations of yi,xi.

Assumption A1 essentially defines the model. Note that Assumption A1 does not require

that ng → ∞. We can allow the observed sample size ng in each group g to be fixed, or to

change with the number of groups G. The true number of individuals comprising each group

is unknown and could be finite.

Assumption A2: The coefficients a, b, d are unknown constants satisfying d 6= 0, b 6= 0,

and [1− a(2b′xgd+ 1)]2 − 4a2d[db′xx′gb + b′xg + vg] ≥ 0.

In Assumption A2 d 6= 0 is needed to identify the parameter a in the fixed effects identi-

fication, because if d = 0 making the model linear, then after differencing, the parameter a

would drop out of the model. This nonlinearity will not be required later for random effects

model. Having b 6= 0 is necessary since otherwise we would have nothing exogenous in the

model.

Note that the inequality in Assumption A2 takes the form of a simple lower or upper

bound (depending on the sign of d) on each fixed effect vg. This inequality must hold to

ensure that an equilibrium exists for each group, thereby avoiding Tamer’s (2003) potential

incoherence problem. To see this, plugging equation (24) for yi into yg = E (yi | i ∈ g), we

have

yi = y2
gda

2 + a(2dx′ib + 1)yg + b′xix
′
ibd+ x′ib + vg + ui (25)

Taking the within group expected value of this expression gives

yg = y2
gda

2 + a(2db′xg + 1)yg + db′xx′gb + b′xg + vg. (26)

so the equilibrium value of yg must satisfy this equation for the model to be coherent. If

a = 0, then we get yg = db′xx′gb + b′xg + vg which exists and is unique. If a 6= 0, meaning

that peer effects are present, then equation (26) is a quadratic with roots

yg =
1− a(2b′xgd+ 1)±

√
[1− a(2b′xgd+ 1)]2 − 4a2d[db′xx′gb + b′xg + vg]

2a2d
. (27)

Note that regardless of whether a = 0 or not, yg is always a function of xg, xx′g, and

vg.If the inequality in Assumption A2 is satisfied the this yields a quadratic in yg, which, if

a 6= 0, has real solutions and having a solution means that an equilibrium exists. If a does

equal zero, then the model will trivially have an equilibrium (and be identified) because in
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that case there aren’t any peer effects. We do not take a stand on which root of equation

(27) is chosen by consumers, we just make the following assumption.

Assumption A3: Individuals within each group agree on an equilibrium selection rule.

The equilibrium of yg therefore exists under Assumption A2 and is unique under As-

sumption A3.

For identification, we need to remove the fixed effect from equation (24), which we do by

subtracting off another individual in the same group. For each (i, i′) ∈ g, consider pairwise

difference

yi − yi′ = 2adygb
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′) + ui − ui′

= 2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′) + ui − ui′ − 2adεyg,−ii′b

′(xi − xi′),

(28)

where the second equality is obtained by replacing yg on the right hand side with ŷg,−ii′ −
εyg,−ii′ . In addition to removing the fixed effects vg, the pairwise difference also removed

the linear term ayg, and the squared term da2y2
g. The second equality in equation (28)

shows that yi − yi′ is linear in observable functions of data, plus a composite error term

ui − ui′ − 2adεyg,−ii′b
′(xi − xi′) that contains both εyg,−ii′ and ui − ui′ . By Assumption A1,

ui − ui′ is conditionally mean independent of xi and xi′ . It can also be shown that

εyg,−ii′ = ŷg,−ii′ − yg =
1

ng − 2

∑
l∈g,l 6=i,i′

(
2adygb

′(xl − xg) + db′(xlx
′
l − xx′g)b + b′(xl − xg) + ul

)
= 2adygb

′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′ ,

where

εxg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

(xl − xg) ; εxxg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

(
xlx

′
l − xx′g

)
.

Substituting this expression into equation (28) gives an expression for yi − yi′ that is linear

in ŷg,−ii′(xi − xi′), (xix
′
i − xi′x

′
i′), (xi − xi′), and a composite error term.

In addition to the conditionally mean independent errors ui− ui′ and ûg,−ii′ , the compo-

nents of this composite error term include εxg,−ii′ and εxxg,−ii′ , which are measurement errors

in group level mean regressors. If we assumed that the number of individuals in each group

went to infinity, then these epsilon errors would asymptotically shrink to zero, and the the

resulting identification and estimation would be simple. In our case, these errors do not go
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to zero, but one might still consider estimation based on instrumental variables. This will

be possible with further assumptions on the data.

In the next assumption we allow for the possibility of observing group level variables rg

that may serve as instruments for ŷg,−ii′ . Such instruments may not be necessary, but if such

instruments are available (as they will be in our later empirical application), they can help

both in weakening sufficient conditions for identification and for later improving estimation

efficiency.

Assumption A4: Let rg be a vector (possibly empty) of observed group level instru-

ments that are independent of each ui. Assume E
(
(xi − xg) | i ∈ g,xg,xx′g, vg, rg

)
= 0,

E
((

xix
′
i − xx′g

)
| i ∈ g, rg

)
= 0, and that xi − xg and xix

′
i − xx′g are independent across

individuals i.

Assumption A4 corresponds to (but is a little stronger than) standard instrument validity

assumptions. A sufficient condition for the equalities in Assumption A4 to hold is to let

εix = xi − xg be independent across individuals, and assume that E(εix | xg,xx′g, vg, rg for

i ∈ g) = 0 and E (εixε
′
ix | xg, rg for i ∈ g) = E (εixε

′
ix | i ∈ g). To see this, we have

E(xix
′
i − xx′g | i ∈ g,xg, rg) = E[(εix + xg)(εix + xg)

′ | i ∈ g,xg, rg]− xx′g

= E(εixε
′
ix | i ∈ g,xg, rg) + E(xi|i ∈ g)E(x′i|i ∈ g)− E(xix

′
i|i ∈ g)

= E(εixε
′
ix | i ∈ g,xg, rg)− E(εixε

′
ix|i ∈ g).

A simpler but stronger sufficient condition would just be that εix are independent across

individuals i and independent of group level variables xg,xx′g, vg, rg. Essentially, this corre-

sponds to saying that any individual i in group g has a value of xi that is a randomly drawn

deviation around their group mean level xg. The first two equalities in A4 are used to show

that E (εyg,−ii′ | rg) = 0, and the independence of measurement errors across individuals is

used to show E (εyg,−ii′(xi − xi′) | rg,xi,xi′) = (xi − xi′)E (εyg,−ii′ | rg) = 0, so that xi and

xi′ are valid instruments. Given Assumptions A1 and A4, one can directly verify that

E [yi − yi′ − (2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′)) | rg,xi,xi′ ] = 0.

(29)

Under Assumptions A1 to A4, (xi − xi′)E(ŷg,−ii′|rg,xi,xi′) is linearly independent of

(xi − xi′) and (xix
′
i − xi′x

′
i′) with a positive probability. These conditional moments could

therefore be used to identify the coefficients 2adb, b1db,...bKdb, and b, which we could then

immediately solve for the three unknowns a, b, d. Note that we have K + 2 parameters

which need to be estimated, and even if no rg are available, we have 2K instruments xi
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and xi′ . The level of xi as well as the difference xi − xi′ may be useful as an instrument

(and nonlinear functions of xi can be useful), because (27) shows that yg and hence ŷg,−ii′ is

nonlinear in xg, and xi is correlated with xg by xi = εix + xg.

The above derivations outline how we obtain identification, while the formal proof is

given in Theorem 1 below. To simplify estimation, we construct unconditional rather than

conditional moments for identification and estimation. Let rgii′ denote a vector of any

chosen functions of rg, xi, and xi′ , which we will take as an instrument vector. It then

follows immediately from equation (29) that

E

[(
yi − yi′ − (1 + 2adŷg,−ii′)

K∑
k=1

bk(xki − xki′)− d
K∑
k=1

K∑
k′=1

bkbk′(xkixk′i − xki′xk′i′)

)
rgii′

]
= 0.

(30)

Let

L1gii′ = (yi−yi′), L2kgii′ = (xki−xki′), L3kgii′ = ŷg,−ii′(xki−xki′), L4kk′gii′ = xkixk′i−xki′xk′i′ .

Equation (30) is linear in these L variables and so could be estimated by GMM. This linearity

also means they can be aggregated up to the group level as follows. Define

Γg = {(i, i′) | i and i′ are observed, i ∈ g, i′ ∈ g, i 6= i′}.

So Γg is the set of all observed pairs of individuals i and i′ in the group g. For ` ∈
{1, 2k, 3k, 4kk′ | k, k′ = 1, ..., K}, define vectors

Y`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1
.

Then averaging equation (30) over all (i, i′) ∈ Γg gives the unconditional group level moment

vector

E

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑
k=1

bkY3kg − d
K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)
= 0. (31)

Suppose the instrumental vector rgii′ is q dimensional. Denote the q× (K2 + 2K) matrix

Yg = (Y21g, ...Y2Kg,Y31g, ...Y3Kg,Y411g, · · · ,Y4KKg). The following assumption ensures

that we can identify the coefficients in this equation.

Assumption A5: E(Y′g)E(Yg) is nonsingular.
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Theorem 1: Given Assumptions A1-A5, the coefficients a, b, d are identified from

(b′, 2adb′, db1b
′, · · · , dbKb′)

′
=
[
E(Y′g)E(Yg)

]−1 · E(Y′g)E (Y1g) .

As noted earlier, Assumptions A1 to A4 should generally suffice for identification. Assump-

tion A5 is used to obtain more convenient identification based on unconditional moments.

Assumption A5 is itself stronger than necessary, since it would suffice to identify arbitrary

coefficients of the Y variables, ignoring all of the restrictions among them that are given by

equation (31).

Given the identification above, based on equation (31) we can immediately construct a

corresponding group level GMM estimator

(
â, b̂1, ...̂bK , d̂

)
= arg min

[
1

G

G∑
g=1

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑
k=1

bkY3kg − d
K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)]′

· Ω̂

[
1

G

G∑
g=1

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑
k=1

bkY3kg − d
K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)]
(32)

for some positive definite moment weighting matrix Ω̂. In equation (32), each group g

corresponds to a single observation, the number of observations within each group is assumed

to be fixed, and recall we have assumed the number of groups G goes to infinity. Since this

equation has removed the vg terms, there is no remaining correlation across the group level

errors, and therefore standard cross section GMM inference will apply. Also, with the number

of observed individuals within each group held fixed, there is no loss in rates of convergence

by aggregating up to the group level in this way.

One could alternatively apply GMM to equation (30), where the unit of observation

would then be each pair (i, i′) in each group. However, when doing inference one would then

need to use clustered standard errors, treating each group g as a cluster, to account for the

correlation that would, by construction, exist among the observations within each group. In

this case,

(
â, b̂1, ...̂bK , d̂

)
= arg min

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)′
Ω̂

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)
, (33)
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where

mgii′ =

(
L1gii′ −

K∑
k=1

bkL2kgii′ − 2ad
K∑
k=1

bkL3kgii′ − d
K∑
k=1

K∑
k′=1

bkbk′L4kk′gii′

)
rgii′ .

The remaining issue is how to select the vector of instruments rgii′ , the elements of which

are functions of rg,xi,xi′ chosen by the econometrician. Based on equation (30), rgii′ should

include the differences xki − xki′ and xkixk′i − xki′xk′i′ for all k, k′ from 1 to K, and should

include terms that will correlate with ŷg,−ii′(xki − xki′). Using equation (27) as a guide for

what determines yg and hence what should correlate with ŷg,−ii′ , suggests that rgii′ could

include, e.g., xki(xki − xki′).
We might also have available additional instruments rg that come from other data sets.

A strong set of instruments for ŷg,−ii′(xki−xki′) could be (xki−xki′)rg, where rg is a vector of

one or more group level variables that are correlated with yg, but still satisfy Assumption A4.

One such possible rg is a vector of group means of functions of x that are constructed using

individuals that are observed in the same group as individual i, but in a different time period

of our survey. For example, we might let rg include x̂gt· =
∑

s 6=t

∑
i∈gs xi/

∑
s 6=t

∑
i∈gs 1 where

s indicates the period and t is the current period. In our empirical application, since the

data take the form of repeated cross sections rather than panels, different individuals are

observed in each time period. So x̂gt· is just an estimate of the group mean of xg, but based

on data from time periods other than one used for estimation. This produces the necessary

uncorrelatedness (instrument validity) conditions in Assumption A4. The relevance of these

instruments (the nonsingularity condition in Assumption A5) will hold as long as group

level moments of functions of x in one time period are correlated with the same group level

moments in other periods.

In our empirical application, what corresponds to the vector xi here includes the total

expenditures, age, and other characteristics of a consumer i, so Assumptions A4 and A5

will hold if the distribution of income and other characteristics within groups are sufficiently

similar across time periods, while the specific individuals within each group who are sampled

change over time. The nonlinearity of yg in equation (27) shows that additional nonlinear

functions of x̂gt·, could also be valid and potentially useful additional instruments.

A.3 Multiple Equation Generic Model With Fixed Effects

Our actual demand application has a vector of J outcomes and a corresponding system of J

equations. Extending the generic model to a multiple equation system introduces potential

cross equation peer effects, resulting in more parameters to identify and estimate. Let
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yi = (y1i, ..., yJi) be a J-dimensional outcome vector, where yji denotes the j’th outcome for

individual i. Then we extend the single equation generic model to the multi equation that

for each good j,

yji = (y′gaj + x′ibj)
2dj +

(
y′gaj + x′ibj

)
+ vjg + uji, (34)

where yg = E(yi|i ∈ g) and aj = (a1j, ..., aJj)
′ is the associated J-dimensional vector of

peer effects for jth outcome (which in our application is the jth good). We now show that

analogous derivations to the single equation model gives conditional moments

E
(
(yji − yji′ − 2djŷ

′
g,−ii′aj(xi − xi′)

′bj − djb′j(xix
′
i − xi′x

′
i′)bj − (xi − xi′)

′bj) | rg,xi,x
′
i

)
= 0.

Construction of unconditional moments for GMM estimation then follows exactly as before.

The only difference is that now each outcome equation contains a vector of coefficients aj

instead of a single a. To maximize efficiency, the moments used for estimating each outcome

equation can be combined into a single large GMM that estimates all of the parameters for

all of the outcomes at the same time.

From

yji = dj(y
′
gaj)

2 + 2y′gajdjx
′
ibj + b′jxix

′
ibjdj + y′gaj + x′ibj + vjg + uji,

we have the equilibrium

yjg = dj(y
′
gaj)

2 + 2djy
′
gajx

′
gbj + b′jxx′gbjdj + y′gaj + x′gbj + vjg

and the leave-two-out group average

ŷjg,−ii′ = dj(y
′
gaj)

2 + 2djy
′
gajx̂

′
g,−ii′bj + b′jx̂x′g,−ibjdj + y′gaj + x̂′g,−ii′bj + vjg + ûjg,−ii′ .

Therefore, the measurement error is

εyjg,−ii′ = ŷjg,−ii′ − yjg = 2djy
′
gajε

′
xg,−ii′bj + b′jεxxg,−ii′bjdj + ε′xg,−ii′bj + ûjg,−ii′ .

Using the same analysis as in Appendix A.2,

yji − yji′ = 2djŷ
′
g,−ii′aj(xi − xi′)

′bj + djb
′
j(xix

′
i − xi′x

′
i′)bj + (xi − xi′)

′bj + uji − uji′

− 2djε
′
yg,−ii′aj(xi − xi′)

′bj.
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Therefore, for j = 1, ..., J , we have the moment condition

E
(
(yji − yji′ − (xi − xi′)

′bj − 2djŷ
′
g,−ii′aj(xi − xi′)

′bj − djb′j(xix
′
i − xi′x

′
i′)bj)|rgii′

)
= 0.

Denote

L1jgii′ = (yji−yji′),L2kgii′ = (xki−xki′),L3jkgii′ = ŷjg,−ii′(xki−xki′),L4kk′gii′ = xkixk′i−xki′xk′i′ .

For ` ∈ {1j, 2k, 3jk, 4kk′ | j = 1, ..., J ; k, k′ = 1, ..., K}, define vectors

Y`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1

and the identification comes from the group level unconditional moment equation

E

(
Y1jg −

K∑
k=1

bjkY2kg − 2dj

J∑
j′=1

K∑
k=1

ajj′bjkY3j′kg − dj
K∑
k=1

K∑
k′=1

bjkbjk′Y4kk′g

)
= 0,

where bjk is the kth element of bj and ajj′ is the j′th element of aj.

Let the q×(K2+2K) matrix Yg = (Y21g, ...Y2Kg,Y311g,Y312g, ...Y3JKg,Y411g, · · · ,Y4KKg)

as before. If E (Yg)
′E (Yg) is nonsingular, for each j = 1, ..., J , we can identify

(b′j, 2aj1djb
′
j, ..., 2ajJdjb

′
j, djbj1b

′
j, ..., djbjKb′j)

′ =
[
E (Yg)

′E (Yg)
]−1 · E (Yg)

′E (Y1jg) .

Then, bj, dj, and aj can be identified for each j = 1, ..., J .

For a single large GMM that estimates all of the parameters for all of the outcomes at

the same time, we construct the group level GMM estimation based on

(
â′1, ..., â

′
J , b̂

′
1, ...b̂

′
J , d̂1, ..., d̂J

)′
= arg min

(
1

G

G∑
g=1

mg

)′
Ω̂

(
1

G

G∑
g=1

mg

)
,

where Ω̂ is some positive definite moment weighting matrix and

mg =


Y11g

...

Y1Jg

−


K∑
k=1

b1kY2kg

...
K∑
k=1

bJkY2kg

−2


d1

J∑
j′=1

K∑
k=1

a1j′b1kY3j′kg

...

dJ
J∑

j′=1

K∑
k=1

aJj′bJkY3j′kg

−


d1

K∑
k=1

K∑
k′=1

b1kb1k′Y4kk′g

...

dJ
K∑
k=1

K∑
k′=1

bJkbJk′Y4kk′g


is a qJ−dimensional vector.
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Alternatively, we can construct the individual level GMM estimation using the group

clustered standard errors

(
â′1, ..., â

′
J , b̂

′
1, ...b̂

′
J , d̂1, ..., d̂J

)′
= arg min

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)′
Ω̂

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)
,

where

mgii′ =


L11gii′rgii′

...

L1Jgii′rgii′

−


K∑
k=1

b1kL2kgii′rgii′

...
K∑
k=1

bJkL2kgii′rgii′

− 2


d1

J∑
j′=1

K∑
k=1

a1j′b1kL3j′gii′rgii′

...

dJ
J∑

j′=1

K∑
k=1

aJj′bJkL3j′gii′rgii′



−


d1

K∑
k=1

K∑
k′=1

b1kb1k′L4kk′gii′rgii′

...

dJ
K∑
k=1

K∑
k′=1

bJkbJk′L4kk′gii′rgii′

 .

A.4 Multiple Equation Generic Model With Random Effects

Here we provide the derivation of equation (22), thereby showing validity of the moments

used for random effects estimation. As with fixed effects, we here extend the model to allow

a vector of covariates xi. We begin by rewriting the generic model with vector xi, equation

(24).

yi = y2
ga

2d+ a (1 + 2b′xid) yg + b′xi + b′xix
′
ibd+ vg + ui, (35)

We now add the assumption that vg is independent of x and u, making it a random effect.

Taking the expectation of this expression given being in group g gives

yg = y2
gda

2 + a(2db′xg + 1)yg + db′xx′gb + b′xg + µ, (36)

where µ = E(vg). Hence, the group mean yg is an implicit function of xg and xx′g.

Define measurement errors εxl = xl − xg, εxxl = xlx
′
l − xx′g, and εyg,−ii′ = ŷg,−ii′ − yg.

For any i′ ∈ g, the measurement error εyi′ = yi′ − yg is

εyi′ = 2adygb
′εxi′ + db′εxxi′b + b′εxi′ + ui′ + vg − µ
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and so the measurement error εyg,−ii′ = ŷg,−ii′ − yg is

εyg,−ii′ = ŷg,−ii′ − yg = 2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′ + vg − µ.

Therefore, we can write

yi = ŷg,−ii′yi′a
2d+ a (1 + 2b′xid) ŷg,−ii′ + b′xi + b′xix

′
ibd+ vg + ui + ε̃gii′ , (37)

where

ε̃gii′ =
(
y2
g − ŷg,−ii′yi′

)
a2d+ a (1 + 2b′xid)

(
yg − ŷg,−ii′

)
= −(εyg,−ii′ + εy,i′)yga

2d− εyg,−ii′εy,i′a2d− a (1 + 2b′xid) εyg,−ii′ .

Formally, we make the following assumptions.

Assumption A6: For any individual l, vg is independent of (xl,xg,xx′g), the error term

ul, and measurement errors εxl and εxxl.

Assumption A7: For each individual l in group g, conditional on (xg,xx′g) the mea-

surement errors εxl and εxxl are independent across individuals and have zero means.

Assumption A8: For each group g, vg is independent across groups with E(vg|x,xg,xx′g) =

µ and we have the conditional homoskedasticity that V ar(vg|x,xg,xx′g) = σ2.

Let v0 = µ−da2σ2. It follows from Assumptions A6-A8 that, for any l 6= i, E(ygεyl|xi,xg,xx′g) =

0 and E(εylxi|xi,xg,xx′g) = 0. Hence, E(ε̃gii′|xi,xg,xx′g) = −da2E(εyg,−ii′εy,i′|xi,xg,xx′g) =

−da2V ar (vg) and

E(vg + ui + ε̃gii′ | xg,xx′g,xi) = µ− da2σ2 = v0. (38)

By construction vg+ui+ ε̃gii′ is also independent of rg. Given this, equation (22) then follows

from equations (37) and (38).

A.5 Identification and Estimation of the Demand System With

Fixed Effects

Here we outline how the parameters of the demand system are identified. This is followed

by the formal proof of identification, based on the corresponding moments we construct for

estimation. As with the generic model, equation (9) entails the complications associated
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with nonlinearity, and the issues that the fixed effects vg correlate with regressors, and that

qg is not observed. As before, let ng denote the number of consumers we observe in group

g. Assume ng ≥ 3. The actual number of consumers in each group may be large, but we

assume only a small, fixed number of them are observed. Our asymptotics assume that the

number of observed groups goes to infinity as the sample size grows, but for each group g,

the number of observed consumers ng is fixed. We may estimate qg by a sample average of qi

across observed consumers in group i, but the error in any such average is like measurement

error, that does not shrink as our sample size grows.

We show identification of the parameters of the demand system (9) in two steps. The first

step identifies some of the model parameters by closely following the identification strategy of

our simpler generic model, holding prices fixed. The second step then identifies the remaining

parameters based on varying prices. We summarize these steps here, then provide formal

assumptions and proof of the identification in the next section.

For the first step, consider data just from a single time period and region, so there

is no price variation and p can be treated as a vector of constants. Let α = A′p, β =

p1/2′Rp1/2, γ̃ = C̃′p, κ = D′p, δ = b/p, Czi = C̃z̃i + Dz̃g, rj = rjj + 2
∑

k>j rjkp
−1/2
j p

1/2
k ,

and m =
(
e−b

′ lnp
)
d/p with constraints of b′1 = 1 and d′1 = 0. Then equation (9) reduces

to the system of Engel curves

qi =
(
xi − β − α′qg − γ̃′z̃i − κ′z̃g

)2
m +

(
xi − β − α′qg − γ̃′z̃i − κ′z̃g

)
δ (39)

+ r + Aqg + C̃z̃i + Dz̃g + vg + ui,

This has a very similar structure to the generic multiple equation system of equations (34),

and we proceed similarly.

Define ṽg =
(
α′qg + β + κ′z̃g

)2
m −

(
α′qg + β + κ′z̃g

)
δ + r + Aqg + Dz̃g + vg. Then

equation (39) can be rewritten more simply as

qi = (xi − γ̃′z̃i)
2
m− 2 (xi − γ̃′z̃i)

(
α′qg + β + κ′z̃g

)
m + (xi − γ̃′z̃i) δ+ C̃z̃i + ṽg + ui, (40)

Here the fixed effect vg has been replaced by a new fixed effect ṽg. As in the generic fixed

effects model, we begin by taking the difference qji − qji′ for each good j ∈ {1, ..., J} and

each pair of individuals i and i′ in group g. This pairwise differencing of equation (40) gives,

for each good j,

qji − qji′ =
(

(xi − γ̃′z̃i)
2 − (xi′ − γ̃′z̃i′)

2
)
mj + c̃′j(z̃i − z̃i′)

+
[
δj − 2mj

(
α′qg + β + κ′z̃g

)]
[(xi − γ̃′z̃i)− (xi′ − γ̃′z̃i′)] + (uji − uji′) ,
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where c̃′j equals the j’th row of C̃. Then, again as in the generic model, we replace the

unobservable true group mean qg with the leave-two-out estimate q̂g,−ii′ = 1
ng−2

∑
l∈g,l 6=i,i′

ql,

which then introduces an additional error term into the above equation due to the difference

between q̂g,−ii′ and qg.

Define group level instruments rg as in the generic model. In particular, rg can include z̃g,

group averages of xi and of zi, using data from individuals i that are sampled in other time

periods than the one currently being used for Engel curve identification. Define a vector of

instruments rgii′ that contains the elements rg, xi, z̃i, xi′ , z̃i′ , and squares and cross products

of these elements. We then, analogous to the generic model, obtain unconditional moments

0 = E{[(qji − qji′)−
(

(xi − γ̃′z̃i)
2 − (xi′ − γ̃′z̃i′)

2
)
mj − c̃′j(z̃i − z̃i′)

− (δj − 2mj(α
′q̂g,−ii′ + β + κ′z̃g)) ((xi − γ̃′z̃i)− (xi′ − γ̃′z̃i′))]rgii′}. (41)

Combining common terms, we have

0 = E{[(qji − qji′)− (x2
i − x2

i′)mj + 2 (xiz̃i − xi′ z̃i′)
′ γ̃mj − γ̃′(z̃iz̃

′
i − z̃i′ z̃

′
i′)γ̃mj

−
(
c̃′j − (δj − 2mjβ)γ̃′

)
(z̃i − z̃i′)− (δj − 2mjβ) (xi − xi′)

+ 2mj (α′q̂g,−ii′ + κ′z̃g) (xi − xi′)− 2 (z̃i − z̃i′)
′ γ̃mj (α′q̂g,−ii′ + κ′z̃g)]rgii′}. (42)

From the above equation, for each j = 1,...,J − 1, mj can be identified from the variation

in (x2
i − x2

i′), γ̃mj can be identified from the variation in xi (z̃i′ − z̃i), δj − 2mjβ and c̃′j −
(δj − 2mjβ)γ̃′ can be identified from the variation in xi − xi′ and z̃i − z̃i′ ; mjα and mjκ

are identified from the variation in q̂g,−ii′ (xi − xi′) and z̃g (xi − xi′) . To summarize, γ̃, α,

κ mj, δj − 2mjβ, and c̃′j are identified for each j = 1,...,J − 1, given sufficient variation in

the covariates and instruments. Let η = δ−2mβ. As
∑J

j=1 mjpj =
(
e−b

′ lnp
)∑J

j=1 dj = 0

and
∑J

j=1 ηjpj =
∑J

j=1 bj = 1, m and η are identified. Also c̃J can be identified from

c̃J =
(
γ̃ −

∑J−1
j=1 c̃jpj

)
/pJ and hence C̃, γ̃, α, κ, m, and η = δ−2mβ are identified. We

now employ price variation to identify the remaining parameters.

Assume we observe data from T different price regimes. Let P be the matrix consisting

of columns pt for t = 1, ..., T . The above Engel curve identification can be applied separately

in each price regime t, so the Engel curve parameters that are functions of pt are now given

t subscripts.

Denote the parameters to be identified in R as (r11, ..., rJJ , r12, ..., rJ−1,J) and b as

(b1, ..., bJ−1). This is a total of [J − 1 + J(J + 1)/2] parameters. Given T price regimes,

we have (J − 1)T equations for these parameters: δjt = bj/pjt, mjt =
(
e−b

′ lnpt
)
dj/pjt and

βt = p
1/2′
t Rp

1/2
t for each j and T , since mjt and δjt − 2mjtβt are already identified. So for
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large enough T , that is, T ≥ 1 + J(J+1)
2(J−1)

, we get more equations than unknowns, allowing

R and b to be identified given a suitable rank condition. Once b is identified, dj is then

identified from dj = pjmje
b′ lnp for j = 1, ..., J − 1 and dJ = −

∑J−1
j=1 dj. In our data, prices

vary by time and region, yielding T much higher than necessary.

We now formalize the above steps, starting from the Engel curve model without price

variation. This Engel curve model is

qi = x2
im + (γ̃′z̃iz̃

′
iγ̃) m + m

(
α′qg + κ′z̃g + β

)2 − 2m
(
α′qg + κ′z̃g + β

)
(xi − γ̃′z̃i)

− 2mγ̃′z̃ixi +
(
xi − β − α′qg − γ̃′z̃i − κ′z̃g

)
δ + r + Aqg + C̃z̃i + Dz̃g + vg + ui,

from which we can construct

qg = x2
gm +

(
γ̃′zz′gγ̃

)
m + m

(
α′qg + κ′z̃g + β

)2 − 2m
(
α′qg + κ′z̃g + β

)
(xg − γ̃′zg)

− 2mγ̃′xzg +
(
xg − β − α′qg − γ̃′zg − κ′z̃g

)
δ + r + Aqg + C̃zg + Dz̃g + vg;

q̂g,−ii′ = x̂2
g,−ii′m + (γ̃′ẑz′g,−ii′ γ̃)m + m(α′qg + κ′z̃g + β)2 − 2m(α′qg + κ′z̃g + β) (x̂g,−ii′ − γ̃′ẑg,−ii′)

−2mγ̃′ẑxg,−ii′ + (x̂g,−ii′ − β − α′qg − γ̃′ẑg,−ii′ − κ′z̃g)δ + r + Aqg + C̃ẑg,−ii′ + vg + ûg,−ii′ .

Hence,

εqg,−ii′ = q̂g,−ii′ − qg = εx2g,−ii′m + γ̃′εzzg,−ii′ γ̃m−2m
(
α′qg + κ′z̃g + β

)
(εxg,−ii′ − γ̃′εzg,−ii′)

−2mγ̃′εzxg,−ii′ + δεxg,−ii′ + (C̃−δγ̃′)εzg,−ii′ + ûg,−ii′ .

Pairwise differencing gives

qi − qi′ = (x2
i − x2

i′)m + [γ̃′ (z̃iz̃
′
i − z̃i′ z̃

′
i′) γ̃]m− 2m (α′q̂g,−ii′ + κ′z̃g + β) [(xi − xi′)− γ̃′(z̃i − z̃i′)]

− 2mγ̃′(z̃ixi − z̃i′xi′) + δ(xi − xi′) + (C̃−δγ̃′)(z̃i − z̃i′) + Uii′ ,

where the composite error is

Uii′ = ui − ui′ + 2mα′εqg,−ii′ [(xi − xi′)− γ̃′(z̃i − z̃i′)].

Make the following assumptions.

Assumption B1: Each individual i in group g satisfies equation (39). Unobserved errors

ui’s are independent across groups and have zero mean conditional on all (xl, zl) for l ∈ g,

and vg are unobserved group level fixed effects. The number of observed groups G → ∞.
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For each observed group g, a sample of ng observations of qi, xi, zi is observed. Each sample

size ng is fixed and does not go to infinity. The true number of individuals comprising each

group is unknown.

Assumption B2: The coefficients A,R,C = (C̃,D),b,d are unknown constants satis-

fying b′1 = 1, d′1 = 0, d 6= 0. There exist values of qg that satisfy

qg = x2
gm +

(
γ̃′zz′gγ̃

)
m + m

(
α′qg + κ′z̃g + β

)2 − 2m
(
α′qg + κ′z̃g + β

)
(xg − γ̃′zg)

− 2mγ̃′xzg +
(
xg − β − α′qg − γ̃′zg − κ′z̃g

)
δ + r + Aqg + C̃zg + Dz̃g + vg. (43)

Assumption B1 just defines the model. Assumption B2 ensures that an equilibrium exists

for each group, thereby avoiding Tamer’s (2003) potential incoherence problem. To see this,

observe that if A 6= 0 then qg has the solution

qg =
1

2m (Ap)2{(2mAp(xg − γ̃
′zg − κ′z̃g − β) + 1− A+ pAδ)± [(2mAp(xg − γ̃′zg − κ′z̃g − β)

+ 1− A+ pAδ)2 − 4m (Ap)2
(
mx2

g +mγ′zz′gγ +m(κ′z̃g + β)2 − 2m(κ′z̃g + β)(xg − γ̃′zg)

−2mγ̃′xzg + (xg − β − γ̃′zg − κ′z̃g) δ + r + C̃zg +Dz̃g + vg)
)

]1/2}, (44)

while if A does equal zero, then the model will be trivially identified because in that case

there aren’t any peer effects. From equation (44), we can see qg is an implicit function of

x2
g, xg, zg, z̃g, zz′g, xzg, and vg. In the case of multiple equilibria, we do not take a stand on

which root of equation (43) is chosen by consumers, we just make the following assumption.

Assumption B3: Individuals within each group agree on an equilibrium selection rule.

Assumption B4: Within each group g, the vector (xi, z̃i) is a random sample drawn from

a distribution that has mean (xg, zg) = E ((xi, z̃i) | i ∈ g) and variance Σxzg =

(
σ2
xg σxzg

σ′xzg Σzg

)
where σ2

xg = V ar(xi | i ∈ g), σxzg = Cov(xi, z̃i | i ∈ g) and Σzg = V ar(z̃i | i ∈ g). Denote

εix = xi − xg and εiz = z̃i − zg. Assume E
(

(εix, εiz)|zg, z̃g, xzg, zz′g, xg, x2
g,vg, rg

)
= 0 and

is independent across individual i’s.

To satisfy Assumption B4, we can think of group level variables like xg, zg and vg as

first being drawn from some distribution, and then separately drawing the individual level

variables (εix, εiz) from some distribution that is unrelated to the group level distribution, to

then determine the individual level observables xi = xg +εix and z̃i = zg +εiz. It then follows

from Assumption B4 that E(εxg,−ii′ | xi, zi, xi′ , zi′ , rg) = 0 and E(εzg,−ii′ | xi, zi, xi′ , zi′ , rg) =
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0. With similar arguments in the generic model, Assumption B4 suffices to ensure that

E(εqg,−ii′ [(xi − xi′), (z̃i − z̃i′)
′]|xi, xi′ , zi, zi′ , rg) = E(εqg,−ii′|rg) · [(xi − xi′), (zi − zi′)

′] = 0.

Then we have the moment condition

E{[qi − qi′ + 2m (α′q̂g,−ii′ + κ′z̃g) [(xi − xi′)− γ̃′(z̃i − z̃i′)]− (x2
i − x2

i′)m−γ̃′ (z̃iz̃
′
i − z̃i′ z̃

′
i′) γ̃m

(45)

+2mγ̃′(z̃ixi − z̃i′xi′)− η(xi − xi′) + (ηγ̃′−C̃)(z̃i − z̃i′)]|xi, xi′ , zi, zi′ , rg} = 0

for the Engel curves, where η = δ−2mβ, and so

E

[(
qi − qi′ + 2e−b

′ lnpt
d

pt

(p′tAq̂gt,−ii′ + p′tDz̃g) [(xi − xi′)− p′tC̃(z̃i − z̃i′)]− e−b
′ lnpt

d

pt

[(x2
i − x2

i′) + p′tC̃ (z̃iz̃
′
i − z̃i′ z̃

′
i′) C̃′pt − 2p′tC̃(zixi − zi′xi′)]−

(
b

pt

− 2e−b
′ lnpt

d

pt

p
1/2′
t Rp

1/2
t

)
·(xi − xi′) + [(

b

pt

− 2e−b
′ lnpt

d

pt

p
1/2′
t Rp

1/2
t )C̃′pt − C̃](z̃i − z̃i′)|xi, xi′ , zi, zi′ , rg

]
= 0. (46)

for the full demand system.

We define the instrument vector rgii′ to be linear and quadratic functions of rg, (xi, z
′
i)
′,

and (xi′ , z
′
i′)
′. Denote

L1jgii′ = (qji − qji′), L2jgii′ = q̂jg,−ii′(xi − xi′), L3jkgii′ = q̂jgt,−ii′(z̃ki − z̃ki′),

L4k2gii′ = z̃k2g(xi − xi′), L5kk2gii′ = z̃k2g(z̃ki − z̃ki′), L6gii′ = x2
i − x2

i′ , (47)

L7kk′gii′ = z̃kiz̃k′i − z̃ki′ z̃k′i′ , L8kgii′ = z̃kixi − z̃ki′xi′ , L9gii′ = xi − xi′ , L10kgii′ = z̃ki − z̃ki′ ,

For ` ∈ {1j, 2j, 3jk, 4k2, 5kk2, 6, 7kk
′, 8k, 9, 10k | j = 1, ..., J ; k, k′ = 1, ..., K, k2 = 1, ..., K2},

define vectors

Q`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1
.

Then for each good j, the identification is based on

E

(
Q1jg + 2mj

J∑
j′=1

αj′Q2j′g − 2mj

J∑
j′=1

K∑
k=1

αj′ γ̃kQ3j′kg + 2mj

K2∑
k2=1

κk2Q4k2g − 2mj

K∑
k=1

K2∑
k2=1

γ̃kκk2Q5kk2g

−mjQ6g −mj

K∑
k=1

K∑
k′=1

γ̃kγ̃k′Q7gkk′ + 2mj

K∑
k=1

γ̃kQ8kg − ηjQ9g +
K∑
k=1

(ηj γ̃k − c̃jk)Q10kg

)
= 0,
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where γ̃k is the kth element of γ̃ = C̃′p, κk2 is the k2th element of κ = D′p, and c̃jk is the

(j, k)th element of C̃.

Assumption B5: E
(
Q′g
)
E (Qg) is nonsingular, where

Qg = (Q21g, ...,Q2Jg,Q311g, ...,Q3JKg,Q41g, ...,Q4K2g,Q511g, ...,Q5KK2g,

Q6g,Q711g, ...,Q7KKg,Q81g, ...,Q8Kg,Q9g,Q101g, ...,Q10Kg).

Under Assumption B5, we can identify

(−2mjα
′
, 2mjα1γ̃

′, ..., 2mjαJ γ̃
′,−2mjκ

′, 2mjκ1γ̃
′, ..., 2mjκK2 γ̃

′,mj,mj γ̃1γ̃
′, ...,mj γ̃K γ̃

′,

−2mj γ̃
′, ηj, c

′
j − ηj γ̃′)′ =

[
E
(
Q′g
)
E (Qg)

]−1
E
(
Q′g
)
E (Q1jg)

for each j = 1, ..., J − 1. From this, α, κ, γ̃, C̃, m, and η = δ−2mβ are identified. To

identify the full demand system, let pt denote the vector of prices in a single price regime t.

Let

P = (p1, ...,pT )′ and Λ = (Λ′1, ...,Λ
′
T )′

with the (J − 1)× [J − 1 + J(J + 1)/2] matrix

Λt =


1
p1t

0 · · · 0 −2m1tp
′
t −4m1tp

1/2
1t p

1/2
2t · · · −4m1tp

1/2
J−1,tp

1/2
Jt

0 1
p2t
· · · 0 −2m2tp

′
t −4m2tp

1/2
1t p

1/2
2t · · · −4m2tp

1/2
J−1,tp

1/2
Jt

. . .
...

...
...

...

0 · · · 0 1
pJ−1,t

−2mJ−1,tp
′
t −4mJ−1,tp

1/2
1t p

1/2
2t · · · −4mJ−1,tp

1/2
J−1,tp

1/2
Jt

 .

Then we have

PA = (α1, ..., αT )′, PD = (κ1, ..., κT )′, and Λ (b1, ...bJ−1, r11, ..., rJJ , r12, ..., rJ−1,J)′ =


η1

...

ηT

 ,

where ηt = (η1t, ..., ηJ−1,t)
′. Hence, we need the T × J matrix P has full column rank to

further identify parameters in A and D; need the (J − 1)T × [J − 1 + J(J + 1)/2] matrix Λ

has full column rank to identify b and R. Once b is identified, we can identify d. Using the

groups that are observed facing this set of prices, from above we can identity all parameters

in A, C̃, D, b, d, and R.

Assumption B6: Data are observed in T price regimes p1, ..., pT such that the T × J
matrix P = (p1, ...,pT )′ and the (J − 1)T × [J − 1 + J(J + 1)/2] matrix Λ both have full
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column rank.

Given Assumption B6, A and D are identified by

A = (P′P)−1P′(α1, ..., αT )′ and D = (P′P)−1P′(κ1, ..., κT )′;

R and b are identified by

(b1, ...bJ−1, r11, ..., rJJ , r12, ..., rJ−1,J)′ = (Λ′Λ)−1Λ′(η′1, ..., η
′
T )′;

d is identified by dj = pjtmjte
b′ lnpt for j = 1, ..., J and dJ = −

∑J−1
j=1 dj.

To illustrate, in the two goods system, i.e., J = 2, this means that we can identify A and

D if the T × 2 matrix

P =


p11, p21

...

p1T , p2T


has rank 2 and the T × 4 matrix

Λ =


1
p11
, −2e−b

′ lnp1 d1
p11
p11, −2e−b

′ lnp1 d1
p11
p21, −4e−b

′ lnp1 d1
p11
p

1/2
11 p

1/2
21

...
...

...
...

1
p1T
, −2e−b

′ lnpT d1
p1T
p1T , −2e−b

′ lnpT d1
p1T
p2T , −4e−b

′ lnpT d1
p1T
p

1/2
1T p

1/2
2T


has rank 4.

The above derivation proves the following theorem:

Theorem 2: Given Assumptions B1-B5, the parameters C̃, α, γ̃, κ, m, and η = δ−2mβ

in the Engel curve system (39) are identified. If Assumption B6 also holds, all the parameters

A, b, R, d, C̃ and D in the full demand system (9) are identified.

For the full demand system, the GMM estimation builds on the above, treating each

value of gt as a different group, so the total number of relevant groups is N =
∑G

g=1

∑T
t=1 1

where the sum is over all values gt can take on. Define

Γgt = {(i, i′) | i and i′ are observed, i ∈ gt, i′ ∈ gt, i 6= i′}

So Γngt is the set of all observed pairs of individuals i and i′ in the group g at period t. Let

the instrument vector rgtii′ be linear and quadratic functions of rgt, (xi, z
′
i)
′, and (xi′ , z

′
i′)
′.
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The GMM estimator, using group level clustered standard errors, is then(
Â′1, ..., Â

′
J , b̂1, ...,̂bJ−1, d̂1, ...,d̂J−1,̂̃c′1, ...̂̃c′J , , D̂′1, ...D̂′J , r11, ...rJJ , r12, ..., rJ−1J

)′
= arg min

(∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

mgtii′∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

1

)′
Ω̂

(∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

mgtii′∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

1

)
,

where the expression of mgtii′ = (m′1gtii′ , ...,m
′
J−1,gtii′) is

mjgtit′ = [(qji − qji′)−
(

(xi − γ̃′tz̃i)
2 − (xi′ − γ̃′tz̃i′)

2
)
mjt − c̃′j(z̃i − z̃i′)

− (δjt − 2mjt(α
′
tq̂g,−ii′ + βt + κ′tz̃gt)) ((xi − γ̃′tz̃i)− (xi′ − γ̃′tz̃i′))]rgtii′

with

mjt = e−b
′ lnpt

dj
pjt
, αt = A′pt, γ̃t = C̃′pt, κt = D′pt, βt = p

1/2′
t Rp

1/2
t , δjt =

bj
pjt
.

For estimation, we need to establish that the set of instruments rgt provided earlier are

valid. For any matrix of random variables w, we have ŵgt· defined by

ŵgt· =

∑
s6=t

∑
i∈gs wi∑

s6=t

∑
i∈gs 1

From Assumption B4, we can write ŵgt· = wgt· + εwgt·, where εwgt· is a summation of

measurement errors from other periods. Assume now that εwgt ⊥ (εwgt·,wgt·).

As discussed after assumption B4, we can think of (xi, zi) as being determined by having

(εix, εiz) drawn independently from group level variables. As long as these draws are inde-

pendent across individuals, and different individuals are observed in each time period, then

we will have εwgt ⊥ (εwgt·,wgt·) for w being suitable functions of (xi, zi). Alternatively, if we

interpret the ε’s as being measurement errors in group level variables, then the assumption is

that these measurement errors are independent over time. In contrast to the ε’s, we assume

that true group level variables like xgt and zgt are correlated over time, e.g., the true mean

group income in one time period is not independent of the true mean group income in other

time periods.

Given εwgt ⊥ (εwgt·,wgt·), we have

0 = E(εqgt,−ii′ [(xi − xi′)− γ′gt(z̃i − z̃i′)] | ŵgt·, xit, xi′t, zit, zi′t),
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because

E
(
qgt[(xi − xi′)− γ′gt(z̃i − z̃i′)](x̂∗gt,−ii′ − x∗gt) | x∗gt,x∗x∗′gt,vgt,wgt·, εwgt·,x

∗
it,x

∗
i′t

)
= 0,

and

E
(
[(x∗i − x∗i′)](x̂

∗
gT,−ii′ − x∗gt)

′ | wgt·, εwgt·,x
∗
it,x

∗
i′t

)
= 0;

E
(

[(x∗i − x∗i′)](x̂
∗x∗′gt,−ii′ − x∗x∗′gt)

′ | wgt·, εwgt·,x
∗
it,x

∗
i′t

)
= 0,

where x∗ = (x, z′)′. It follows that
(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·

)
is a valid instrument for q̂gt,−ii′ .

The full set of proposed instruments is therefore rgii′ = rg ⊗ (x∗i − x∗i′ ,x
∗
ix
∗′
i − x∗i′x

∗′
i′ ),

where

rg =
(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·,x

∗
i + x∗i′ , x

2
i + x2

i′ , x
1/2
i + x

1/2
i′

)
,

for the Engel curve system, and rgtii′ = rgt ⊗ (x∗i − x∗i′ ,x
∗
ix
∗′
i − x∗i′x

∗′
i′ ), where

rgt = p′t ⊗
(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·,x

∗
i + x∗i′ , x

2
i + x2

i′ , x
1/2
i + x

1/2
i′

)
.

for the full demand system.

A.6 Identification and Estimation of the Demand System with Ran-

dom Effects

The Engel curve model with random effects is

qi = x2
im + (γ̃′z̃iz̃

′
iγ̃) m− 2mγ̃′z̃ixi + m

(
α′qg + κ′z̃g + β

)2 − 2m
(
α′qg + κ′z̃g + β

)
(xi − γ̃′z̃i)

+
(
xi − β − α′qg − γ̃′z̃i − κ′z̃g

)
δ + r + Aqg + C̃z̃i + Dz̃g + vg + ui,

Therefore,

εqi′ = qi′ − qg = εx2i′m + γ′εzzi′γm− 2mγ′εzxi′−2m
(
α′qg + κ′z̃g + β

)
(εxi′ − γ̃′εzi′)

+ δεxi′ + (C− δγ̃′)εzi′ + vg − µ+ ui′ ;

εqg,−ii′ = q̂g,−ii′ − qg = εx2g,−ii′m + γ′εzzg,−ii′γm− 2mγ′εzxg,−ii′−2m
(
α′qg + κ′z̃g + β

)
· (εxg,−ii′ − γ′εzg,−ii′) + δεxg,−ii′ + (C− δγ̃′)εzg,−ii′ + vg − µ+ ûg,−ii′ .

68



By rewriting qji as

qji = mj(xi − γ̃′z̃i)
2 +mj

(
α′qg

)2
+mj (κ′z̃g + β)

2 − [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α
′ −A′j]qg

−2mj (κ′z̃g + β) (xi − γ̃′z̃i) + δj(xi − β − γ̃′z̃i − κ′z̃g) + rj + c′j z̃i + D′j z̃g + vjg + uji

= mj(xi − γ̃′z̃i)
2 +mjα

′q̂g,−ii′α
′qi′ +mj (κ′z̃g + β)

2 − [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α
′ −A′j]

·q̂g,−ii′ − 2mj (κ′z̃g + β) (xi − γ̃′z̃i) + δj(xi − β − γ̃′z̃i − κ′z̃g) + rj + c′j z̃i + D′j z̃g + vjg + uji + ε̃jgii′ ,

where

ε̃jgii′ = mjα
′(qgq

′
g − q̂g,−ii′q

′
i′)α− [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α

′ −A′j](qg − q̂g,−ii′)

= −mjα
′[(εqg,−ii′ + εqi′)q

′
g + εqg,−ii′ε

′
qi′ ]α− [A′j − (2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α

′]εqg,−ii′ .

and letting Ujii′ = vjg + uji + ε̃jgii′ , we have the conditional expectation

E(Ujii′ |zi, xi, rg) = E(vjg|zi, xi, rg)−mjα
′E(εqg,−ii′ε

′
qi′|zi, xi, rg)α = µj −mjα

′Σvα,

where µj = E(vjg|zi, xi, rg) = E(vjg) and Σv = V ar(vg|zi, xi, rg) = V ar(vg). From this, we

can construct the conditional moment condition

E
[
qji −mjα

′q̂g,−ii′α
′qi′ −mj(xi − γ̃′z̃i)

2 −mj(κ
′z̃g + β)2 + [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α

′

−A′j]q̂g,−ii′ + 2mj(κ
′z̃g + β)(xi − γ̃′z̃i)− δj(xi − β − γ̃′z̃i − κ′z̃g)− rj − c̃′j z̃i −D′j z̃g|xi, zi, rg

]
= vj0,

where vj0 = µj −mjα
′Σvα is a constant.

Let the instrument vector rgi be any functional form of rg and (xi, z
′
i)
′. Then for any

i, i′ ∈ g with i 6= i′, the following unconditional moment condition holds

E
[(
qji −mjα

′q̂g,−ii′α
′qi′ −mj(xi − γ̃′z̃i)

2 −mj(κ
′z̃g + β)2 + [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α

′

−A′j]q̂g,−ii′ + 2mj(κ
′z̃g + β)(xi − γ̃′z̃i)− δj(xi − β − γ̃′z̃i − κ′z̃g)− rj − c̃′j z̃i −D′j z̃g − vj0

)
rgi
]

= 0 .

We can sum over all i′ 6= i in the group g. Using the property of 1
ng−1

∑
i′∈g,i′ 6=i q̂jg,−ii′ = q̂jg,−i,

then for any i ∈ g,

E{rgi[qji−mjα
′ 1

ng − 1

∑
i′∈g,i′ 6=i

q̂g,−ii′q
′
i′α−mjx

2
i −mj γ̃

′z̃iz̃
′
iγ̃ −mjκ

′z̃gz̃
′
gκ+ 2mj γ̃

′z̃ixi + 2mjκ
′z̃gxi

+ 2mjxiα
′q̂g,−i − 2mj γ̃

′z̃iq̂
′
g,−iα− 2mjκ

′z̃gq̂
′
g,−iα− 2mj γ̃

′z̃iz̃
′
gκ+ q̂′g,−i[(δj − 2mjβ)α−Aj]

+(2mjβ − δj)xi + z̃′i[(δj − 2mjβ)γ̃−cj] + z̃′g[(δj − 2mjβ)κ−Dj]−mjβ
2 + δjβ − rj − vj0} = 0 .
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Denote

L1jgi = qji, L2jj′gi =
1

ng − 1

∑
i′∈g,i′ 6=i

q̂jg,−ii′qj′i′ , L3gi = x2
i , L4kk′gi = z̃kiz̃k′i, L5k2k′2gi

= z̃k2gz̃k′2g,

L6kgi = z̃kixi, L7k2gi = z̃k2gxi, L8jgi = q̂jg,−ixi, L9jkgi = q̂jg,−iz̃ki, L10jk2gi = q̂jg,−iz̃k2g,

L11kk2gi = z̃kiz̃k2g, L12jgi = q̂jg,−i, L13gi = xi, L14kgi = z̃ki, L15k2gi = z̃k2g, L16gi = 1.

For ` ∈ {1j, 2jj′, 3, 4kk′, 5k2k
′
2, 6k, 7k2, 8j, 9jk, 10jk2, 11kk2, 12j, 13, 14k, 15k2, 16 | j, j′ =

1, ..., J ; k, k′ = 1, ..., K; k2, k
′
2 = 1, ..., K2}, define group level vectors

H`g =
1

ng − 1

∑
i∈g

L`girgi.

Then for each good j, the identification is based on

E

H1jg −mj

J∑
j=1

J∑
j′=1

αj′αjH2jj′g −mjH3g −mj

K∑
k=1

K∑
k′=1

γ̃kγ̃k′H4kk′g −mj

K2∑
k2=1

K2∑
k′2=1

κk2κk′2H5k2k′2g

+ 2mj

K∑
k=1

γ̃kH6kg + 2mj

K2∑
k2=1

κk2H7k2g + 2mj

J∑
j′=1

αj′H8j′g − 2mj

J∑
j′=1

K∑
k=1

aj′ γ̃kH9j′kg

− 2mj

J∑
j′=1

K2∑
k2=1

aj′κk2H10j′k2g − 2mj

K∑
k=1

K2∑
k2=1

γ̃kκk2H11kk2g +
J∑

j′=1

[(δj − 2mjβ)αj′ − Ajj′ ]H12j′g

+(2mjβ − δj)H13g +
K∑
k=1

[(δj − 2mjβ)γ̃k − cjk]H14kg +

K2∑
k2=1

[(δj − 2mjβ)κk2 −Djk2 ]H15k2g − ξjH16g

)
= 0,

where ξj = mjβ
2 − δjβ + rj + vj0.

Assumption B7: E
(
H′g
)
E (Hg) is nonsingular, where

Hg = (H211g, ...,H2JJg,H3g,H411g, ...,H4KKg,H511g, ...,H5K2K2g,H61g, ...,H6Kg,

H71g, ...,H7K2g,H81g, ...,H8Jg,H911g, ...,H9JKg,H1011g, ...,H10JK2g,H1111g, ...,H11KK2g,

H121g, ...,H12Jg,H13g,H141g, ...,H14Kg,H151g, ...,H15K2g,H16g).

Under Assumptions B1-B4 and Assumption B7, we can identify

(mjα1α
′, ...,mjαJα

′,mj,mj γ̃1γ̃
′, ...,mj γ̃K γ̃

′,mjκ1κ
′, ...,mjκK2κ

′,−2mj γ̃
′,−2mjκ

′,−2mjα
′,

2mj γ̃1α
′, ..., 2mj γ̃Kα

′, 2mjκ1α
′, ..., 2mjκK2α

′, 2mjκ1γ̃
′, ..., 2mjκK2 γ̃

′,A′j − (δj − 2mjβ)α′, δj − 2mjβ,

cj−(δj − 2mjβ)γ̃,Dj−(δj − 2mjβ)κ,mjβ
2 − δjβ + rj + vj0)′ =

[
E
(
H′g
)
E (Hg)

]−1
E
(
H′g
)
E (H1jg) .
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for each j = 1, ..., J − 1. From this, γ̃, κ, α, m, η = δ−2mβ, Aj, c̃j, Dj, and mjβ
2 −

δjβ + rj + vj0 for j = 1, ..., J − 1 are all identified. Then, AJ =
(
α−
∑J−1

j=1 Ajpj

)
/pJ ,

c̃J = (γ̃ −
∑J−1

j=1 c̃jpj)/pJ , and DJ = (κ−
∑J−1

j=1 Djpj)/pJ are identified. Here without price

variation, we can identify A and D. This is different from the fixed effects model because

the key term for identifying A is Aqg, which is differenced out in fixed effects model, and

only C̃ can be identified from the cross product of qg and (xi, z̃i). Furthermore, to identify

the structural parameters b, d, and R, we need the rank condition in Assumption B6(2).

With our data spanning multiple time regimes t, we estimate the full demand system

model simultaneously over all values of t, instead of as Engel curves separately in each t

as above. To do so, in the above moments we replace the Engel curve coefficients α, β, γ̃,

κ, δ, rj, and m with their corresponding full demand system expressions, i.e., α = A′p,

β = p1/2′Rp1/2, etc, and add t subscripts wherever relevant. The resulting GMM estimator

based on these moments (and estimated using group level clustered standard errors), is then

(Â′1, ..., Â
′
J , b̂1, ...,̂bJ−1, d̂1, ...,d̂J−1,̂̃c′1, ...̂̃c′J , , D̂′1, ...D̂′J , R̂11, ...R̂JJ , R̂12, ..., R̂J−1J ,

µ̂, Σ̂v,11, ..., Σ̂v,JJ , Σ̂v,12, ..., Σ̂v,J−1,J , )
′

= arg min

(∑T
t=1

∑G
g=1

∑
i∈Γgt

mgti∑T
t=1

∑G
g=1

∑
i∈Γgt

1

)′
Ω̂

(∑T
t=1

∑G
g=1

∑
i∈Γgt

mgti∑T
t=1

∑G
g=1

∑
i∈Γgt

1

)
,

where the expression of mgti = (m′1gti, ...,m
′
J−1,gti) is

mjgti = {qji −mjtα
′
tq̂gt,−ii′α

′
tqi′ −mjt(xi − γ̃′tz̃i)

2 −mjt(κ
′
tz̃gt + βt)

2

+ [(2mjt (xi − γ̃′tz̃i − κ′tz̃gt − βt) + δjt)α
′
t −A′j]q̂gt,−ii′ + 2mjt(κ

′
tz̃g + βt)(xi − γ̃′tz̃i)

− δjt(xi − βt − γ̃′tz̃i − κ′tz̃gt)− rjt − c̃′j z̃i −D′j z̃g − vjt0}rgti

with

mjt = e−b
′ lnpt

dj
pjt
, αt = A′pt, γ̃t = C̃′pt, κt = D′pt, βt = p

1/2′
t Rp

1/2
t ,

ηjt =
bj
pjt
−2mjtp

1/2′
t Rp

1/2
t , δjt =

bj
pjt
, rjt = Rjj + 2

∑
k>j

Rjk

√
pkt/pjt,

vjt0 = µjt − e−b
′ lnpt

dj
pjt

J∑
j1=1

J∑
j2=1

J∑
j=1

J∑
j′=1

Aj1jpj1tAj2j′pj2tΣvt,jj′ .

Note that vjt0 are constants for each value of j and t, that must be estimated along with

the other parameters. In our data T is large (since prices vary both by time and district).

To reduce the number of required parameters and thereby increase efficiency, assume that
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µ = E(vgt) and Σv = V ar(vgt) do not vary by t. Then we can replace vjt0 with

vjt0 = µj − e−b
′ lnpt

dj
pjt

J∑
j1=1

J∑
j2=1

J∑
j=1

J∑
j′=1

Aj1jpj1tAj2j′pj2tΣv,jj′

Moreover, since vgt represents deviations from the utility derive demand functions, it may

be reasonable to assume that µ = 0. With these substitutions we only need to estimate the

parameters Σv instead of all the separate vjt0 constants.
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Appendix B: Preliminary Data Analyses

B.1 Generic Model Estimates

Our first empirical is to estimate the generic peer effects model presentedin Section III. We

do so using the 61st round of the NSS.

As in the presentation in (14), yi is expenditures on luxuries, yg is the true group-mean

expenditure on luxuries, ŷg is the observed sample average, and xi is total expenditures.

We provide estimates using random-effects unconditional moments (23) and fixed-effects

unconditional moments (20). Define xg,−t to be the group-average expenditure in other time

periods. Fixed-effects instruments rgii′ are: xg,−t, (xi − xii′), (xi − xii′)xg,−t, (x2
i − x2

ii′), (zi −
zk), (zi−zk)xg,−t, zg, zg(xi−xi′), 1. Random-effects instruments rgi are: xg,−t, xi, xixg,−t, x

2
i , zi, 1.

These instruments are constructed to mirror the sources of identification in the FE and RE

cases, respectively. Resulting GMM estimates of the parameters are given in Table B2.

In the fixed, but not random effects specifications, peer luxury expenditure has a sig-

nificant and substantial effect on own luxury expenditure. Higher levels of peer luxury

expenditure work in the opposite direction of higher levels of own expenditure, effectively

making the household behave (in a demand sense) as if it was poorer when peer expendi-

tures rise. However, the magnitude of the peer effects varies dramatically across RE and

FE specifications (although they do not vary much with different controls). Equality of peer

effects is decisively rejected by Hausman tests. This is a natural consequence of the group-

level unobservable taste for an expenditure category vg being correlated with expenditure

in that category. In our preferred FE estimate of column 8, a 100 rupee increase in peer

luxury expenditures makes households behave as if they are over 50 rupees poorer (in terms

of luxury demand), controlling for group level characteristics.

In both models, the estimated values of b and d are positive. As a result, the first and

second derivatives of luxury consumption with respect to total expenditures xi are positive,

which is sensible for luxury goods.

While the results here are consistent with our theoretical model, this analysis has sev-

eral shortcomings. First, it only shows how peer’s spending affects one’s own spending on

luxuries, but it cannot tell us if these spillovers are bad in the sense of lowering one’s utility

when one’s peers spend more (though the results do suggest this is the case, since they show

that one acts as if one is poorer when one’s peers spend more). Second, although we control

for prices by including them as covariates, the model does not do so in a way that is consis-

tent with utility maximization, because the model is not derived from utility theory. Third,

the model does not allow for the possibility that group-average non-luxury spending affects

luxury demands. This can most easily be seen by noting that b is typically smaller (albeit
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insignificantly) than a in the FE specifications, meaning that group expenditure has a larger

effect on behavior than xi. We showed in Appendix Section A.2 that this is inconsistent

with a peer-spending equilibrium, and is a natural consequence of excluding group-average

non-luxury spending from the right hand side. Fourth, it is not possible to derive welfare or

utility implications of the resulting estimates.

In order to address the first of these issues, we now turn to a brief analysis of well-being

data from a different survey. Dealing with the remaining issues requires our full structural

model, which we present in the main paper.

B.2 Subjective well-being and peer consumption

Our generic model estimates above are consistent with a theory in which increased peer

consumption decreases the utility one gets from consuming a given level of luxuries, as

suggested by our theoretical model of needs. However, the generic model only reveals the

effect of peer consumption on one’s own consumption, not on one’s utility. For example,

it is possible that the success of my peers makes me happy rather than envious. Or peer

consumption could increase the utility I obtain from my own consumption, e.g., my own

telephone becomes more useful when my friends also have telephones. In short, our needs

model implies that peer expenditures induce negative rather than positive consumption

externalities.

To directly check the sign of these peer spillover effects on utility, we would like to

estimate the correlation between utility and peer expenditures, conditioning on one’s own

expenditure level. While we cannot directly observe utility, here we make use of a proxy,

which is a reported ordinal measure of life satisfaction.

Appendix Table B1 summarizes 3,236 observations from the 5th (2006) and 6th (2014)

waves of the World Values Survey, two recent waves with most consistent income reporting.

In each year the surveyor asks the question, “All things considered, how satisfied are you

with your life as a whole these days?” Answers are on a 5-point ordinal scale in the 5th wave,

and a 10-point scale in the 6th, which we collapse to a 5-point scale.

Neither wave of the survey reports actual income or consumption expenditures. What

this survey does report is position on a ten-point income distribution that corresponds to

the deciles of the national income distribution. We use this response to impute individual

total expenditure levels by taking the corresponding decile-specific expenditure mean from

the NSS data. We also obtain group level total expenditures from the NSS data. For

this analysis we define groups by religion (Hindu vs non-Hindu), education level (less than

primary, primary, secondary or more) and state of residence (20 states and state groupings).
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These are much larger, more coarsely defined groups than we use for all of our other analyses.

Much larger groups are needed here because the WVS sample size is much smaller than the

NSS, and because we have no asymptotic theory to deal with small group sizes in this part

of the analysis.

Our measures of total expenditures are deflated using the CPI index for India. Average

expenditure is 2,200 rupees per month (which deflates to 1999 rupees), or about 50 US

dollars. This is lower than the average for India at this time, which appears to be due to

sample composition issues in the WVS. For example, only 1.6% of households in the WVS

are in the top decile of income.

Table 3 presents estimates of well-being as a function of both own total expenditures and

group total expenditures, specified as

Ui = β1x̂igt + β2x̂gt + Zigtα + γg + φt + εigt, (48)

where Ui is the z-normalized well-being indicator, x̂igt is imputed individual expenditures, x̂gt

is imputed group expenditures, Zigt is vector of individual level controls, γg is a group level

fixed effect (groups are defined within states, so this effectively includes a state fixed effect

as well), and φt is a year fixed effect. Identification of β2 comes from group-level changes in

expenditure between rounds, and corresponds to the change in self-reported utility as group

income is rising versus falling, holding own income constant. We also repeat this analysis

using an ordered logit specification.

Results in the second column of Appendix Table B3 imply that a 100 rupees increase in

individual expenditures x̂igt increases satisfaction by 0.13 standard deviations, while a 100

rupees increase in group expenditure x̂gt decreases satisfaction by 0.19 standard deviations.

Other specifications in Table B3 give similar results. The signs of these effects are consistent

with our model of peer expenditures as negative consumption externalities. They are also

consistent with Luttmer’s (2005) finding of “neighbours as negatives” with US data, where

increases in group income holding individual income constant reduces individual’s reported

well-being.

The ratio of the peer-expenditure and own-expenditure effects, −β2/β1 = 19/13 = 1.45,

says that one must increase one’s own expenditures by 145 rupees to compensate for the

loss of utility that results from a 100 rupees increase in group expenditure levels. This point

estimate is unreasonably large, as we show in Appendix Section A.2 that equilibrium requires

that this ratio be less than 1. However, the standard error of this estimate is 0.85, meaning

that we cannot reject any value in the reasonable range of zero to one. The corresponding

ratio estimate in Luttmer (2005) is 0.76.
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Since well-being is reported on an ordinal scale, to check the robustness of these results,

we estimate the same regression as an ordered logit (see columns 4 and 5 of Table B3). The

results are qualitatively the same, suggesting that our results are not being determined by

the normalizations implicit in z-scoring the satisfaction responses.

Finally, we include an interaction term (the product of the budget and peer expenditures)

in the regression in columns 3 and 6, and find its coefficient to be insignificantly different

from zero, which is consistent with our linear index modeling assumption.

This analysis support our structural model assumptions that utility is increasing in house-

hold expenditure and decreasing in group average expenditure. Moreover, we cannot reject

the assumption that the marginal rate of substitution between the two lies between zero and

one, consistent with our main structural model finding in the neighborhood of 1/2.
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Table B1: Subjective well-being summary statistics

Mean SD Min Max

Life satisfaction 3.07 1.22 1.00 5.00
Imputed expenditure, CPI deflated 2.20 1.44 0.70 9.51
Group expenditure, CPI deflated 3.86 1.30 1.70 10.60
Household size 4.06 1.85 1.00 10.00
Age 40.81 14.53 18.00 93.00
Married (=1) 0.84 0.37 0.00 1.00
Non-Hindu (=1) 0.24 0.42 0.00 1.00
Primary education (=1) 0.10 0.29 0.00 1.00
Secondary education (=1) 0.14 0.35 0.00 1.00

Observations 3236

Life satisfaction variable from World Values Survey. Participants asked
“All things considered, how satisfied are you with your life as a whole
these days?,” and asked to point to a position on a ladder. Coded as 1-5
in 2006, and 1-10 in 2014. We collapsed to a 1-5 scale in 2014. Income
measured in thousands of Rs/month. Excluded categories are less than
primary education, and Hindu religion.
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Table B2: Luxury spending as a function of group spending, generic model estimates

RE Peer group FE

(1) (2) (3) (4) (5) (6) (7) (8)
a (peer mean expenditure) 0.002 -0.068 -0.107 -0.112 -0.053 -0.324∗∗∗ -0.657∗∗∗ -0.586∗∗∗

(0.038) (0.117) (0.114) (0.107) (0.047) (0.124) (0.157) (0.132)
b (own expenditure) 0.187∗∗∗ 0.439∗∗∗ 0.436∗∗∗ 0.428∗∗∗ 0.205∗∗∗ 0.445∗∗∗ 0.446∗∗∗ 0.379∗∗∗

(0.013) (0.011) (0.011) (0.011) (0.013) (0.011) (0.011) (0.025)
d (curvature) 2.263∗∗∗ 0.289∗∗∗ 0.295∗∗∗ 0.308∗∗∗ 1.847∗∗∗ 0.289∗∗∗ 0.302∗∗∗ 0.413∗∗∗

(0.420) (0.032) (0.034) (0.036) (0.314) (0.029) (0.030) (0.071)
-a/b -0.010 0.156 0.245 0.261 0.258 0.727 1.474 1.546

(0.203) (0.266) (0.259) (0.247) (0.225) (0.267) (0.328) (0.342)
P(a = -b) 0.000 0.001 0.003 0.002 0.001 0.299 0.157 0.110
Hausman for a 4.400 3.644 12.470 13.885
P-value 0.036 0.056 0.000 0.000
Individual controls No Yes Yes Yes No Yes Yes Yes
Group controls No No Yes Yes No No Yes Yes
Price controls No No No Yes No No No Yes
Number of groups 2,354 2,354 2,354 2,354 2,354 2,354 2,354 2,354
Number of pairs 2,055,776 2,055,776 2,055,776 2,055,776 2,055,776 2,055,776 2,055,776 2,055,776

Model estimated is yi = d(ŷga+ xib+Xβ)2 + (ŷga+ xic+Xβ). Dependent variable is household luxury spending. Individual
controls include household size, age, marital status and amount of land owned. Group controls include religion indicators and
education indicators. Price controls are laspeyres indices for luxury and nonluxury spending. Standard errors in parentheses
and clustered at the group level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B3: Satisfaction on household and peer income

OLS (SDs) Ordered logit

(1) (2) (3) (4) (5) (6)

Imputed expenditure 0.068∗∗∗ 0.179∗∗∗

(0.013) (0.031)

Group expenditure -0.100∗∗ -0.203∗

(0.049) (0.115)

Imputed expenditure, CPI deflated 0.131∗∗∗ 0.141∗ 0.335∗∗∗ 0.359∗

(0.025) (0.079) (0.058) (0.198)

Group expenditure, deflated -0.190∗ -0.182 -0.424∗ -0.407
(0.107) (0.114) (0.256) (0.285)

Own X group expenditure -0.003 -0.006
(0.018) (0.044)

Year FEs Yes Yes Yes Yes Yes Yes

Ratio 1.47 1.45 1.29 1.13 1.27 1.13
(0.764) (0.850) (1.249) (0.684) (0.803) (1.202)

P(Own + group = 0) 0.528 0.588 0.799 0.848 0.734 0.908
Dependent mean 0.00 0.00 0.00 3.07 3.07 3.07
Dependent SD 1.00 1.00 1.00 1.22 1.22 1.22
Observations 3236 3236 3236 3236 3236 3236

Dependent variable as noted in column header, in SD. Subjective well being data from World Values
Survey, imputations from NSS. Peer groups defined as intersection of education (below primary, primary
or partial secondary, secondary+) and religion (Hindu and non-Hindu). All columns include controls for
household size, age, sex, marital status and education. Standard errors in parentheses and clustered at
the group level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B4: Structural demand model, full estimates for fixed effects model

Same A Diagonal A
est std err est std err

A luxuries 0.502 0.110 -2.628 0.395
necessities 0.502 0.110 2.992 0.276

R luxuries 8.228 4.228 6.936 2.387
necessities -1.899 2.462 -17.609 3.418

C luxuries (hhsize-1)/10 0.607 0.049 0.317 0.030
headage/120 0.013 0.085 0.054 0.044
married 0.070 0.030 0.010 0.016
ln(land+1) 0.021 0.016 -0.010 0.012
ration card 0.047 0.027 -0.020 0.013
Educ med -0.604 0.792 0.655 0.857
Educ high -1.754 1.062 0.165 1.592

C necessities (hhsize-1)/10 1.476 0.053 1.138 0.037
headage/120 0.102 0.095 0.129 0.051
married 0.093 0.031 0.030 0.018
ln(land+1) 0.088 0.017 0.051 0.013
ration card 0.030 0.031 -0.050 0.015
Educ med 0.323 0.773 -0.858 0.868
Educ high 1.211 1.041 -0.350 1.607

b luxuries 1.466 0.233 -0.870 0.154
d luxuries 0.073 0.004 0.070 0.004
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Table B5: Structural demand model, full estimates for random effects model

Same A Diagonal A
est std err est std err

A luxuries 0.547 0.015 0.461 0.019
necessities 0.547 0.015 0.572 0.016

R luxuries -0.101 0.180 -0.766 0.409
necessities -3.674 0.348 -0.197 1.517

C luxuries (hhsize-1)/10 0.596 0.058 0.598 0.059
headage/120 -0.058 0.080 -0.074 0.080
married 0.005 0.030 0.008 0.028
ln(land+1) 0.055 0.016 0.056 0.016
ration card -0.054 0.021 -0.053 0.020
Educ med -0.112 0.027 -0.100 0.026
Educ high -0.205 0.042 -0.208 0.046

C necessities (hhsize-1)/10 1.505 0.070 1.480 0.068
headage/120 0.034 0.095 0.024 0.091
married 0.026 0.035 0.031 0.031
ln(land+1) 0.114 0.019 0.113 0.019
ration card -0.095 0.025 -0.092 0.023
Educ med -0.127 0.033 -0.119 0.031
Educ high -0.210 0.043 -0.231 0.044

b luxuries -0.176 0.036 0.352 0.325
d luxuries 0.091 0.004 0.085 0.005
v luxuries 1.022 0.554 -2.898 0.845

necessities 4.119 1.406 -2.165 3.656
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