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Abstract. We develop a class of tests for time series models such as multiple

regression with growing dimension, infinite-order autoregression and nonparametric

sieve regression. Examples include the Chow test, Andrews and Ploberger (1994)-

type exponential tests, and general linear restriction tests, all of growing rank p.

Employing such increasing p asymptotics, we introduce a new scale correction to

conventional test statistics. This accounts for a high-order long-run variance that

emerges as p grows with sample size. We propose a bias correction via a null-

imposed bootstrap to alleviate finite sample bias without sacrificing power unduly.

A simulation study shows the importance of robustifying testing procedures against

the high-order long-run variance even when p is moderate. The tests are illustrated

with an application to the oil regressions in Hamilton (2003).
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Forneron, Šárka Hudecová, Yuichi Kitamura, Joon Park, Pierre Perron, Zhongjun Qu and Yixiao

Sun, audiences at Yale, Boston University, GOFCP 2019 (Trento), MEG 2019 (Columbus), LAMES

2019 (Puebla), Cambridge, ESWC 2020 and Binghamton. We are grateful to Joel Tropp for guiding

us to useful results and Ekaterina Oparina for excellent research assistance.
z Department of Economics, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.

Email: a.gupta@essex.ac.uk. Research supported by British Academy/Leverhulme Trust grant

SRG\170956.
§ Corresponding author. † Department of Economics, Seoul National University, Gwan-Ak Ro 1,

Seoul, Korea. Email: myunghseo@snu.ac.kr. Research supported by the Ministry of Education of

the Republic of Korea, National Research Foundation of Korea (NRF-2018S1A5A2A01033487) and

LG Yonam Foundation, and partly written while visiting the Cowles Foundation at Yale University,

whose hospitality is greatly acknowledged.

1



1. Introduction

This paper develops asymptotically valid tests for inference on infinite-order and

growing dimensional time series regression models, revealing the presence of an hith-

erto undetected nonlinear serial dependence or high-order long-run variance (HLV)

factor. This factor depends on the model error and regressors in a nonlinear fashion,

and can appear in limit distributions when the data exhibit dependence and the num-

ber of restrictions grows. Chow tests, tests for linear restrictions and stability tests

with unknown change point are all covered. Our theory, simulations and empirical

results show the deleterious effect of ignoring the HLV term, and we propose a test-

ing procedure that is robust to its presence. This is shown to possess desirable finite

sample properties. While the HLV factor is revealed by our increasing dimension

asymptotics, it can contaminate inference even in multiple regressions with a moder-

ate number of covariates. Such specifications are ubiquitous in practice. Thus, the

findings and recommendations of this paper are important for practitioners wishing

to make correct inferences when data are dependent.

Models of infinite or growing dimension have been widely studied in the recent

econometric literature, reflecting modern applications with rich sets of variables. For

example, the asset pricing literature has suggested hundreds of potential risk factors

to explain returns, see Feng et al. (2020). With a larger number of observations accu-

mulating over time, it is natural to include more of these variables as covariates even

without resorting to penalized estimation methods. In fact, an attitude that permits

the number of covariates to grow as a function of sample size is tacitly adopted in the

literature. In a survey, Koenker (1988) observed that the number of regressors in em-

pirical work increases as the sample size n increases, roughly like n1/4, suggesting that

practitioners implicitly treat model complexity as a function of sample size. Finally,

nonparametric methods such as series estimation have found wide applications in the

economics and finance literature, see e.g. Jordà (2005), Chen (2007), Chen and Chris-

tensen (2015). These methods involve the approximation of an infinite-order model

with a sequence of growing dimensional models. Taken together, this proliferation
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of models highlights the importance of developing appropriate techniques for their

study.

Our approach is to develop tests for null hypotheses that involve a growing number

of restrictions p in time series regression, with p increasing slower than sample size.

As a leading example, we consider the Chow test, due to Chow (1960), to test for

a structural break at a prescribed time. This has the advantage of being a simple

exclusion restriction test with wide applicability. After examining the key issues in

this simple context, we present extensions to more general structural break testing

with an unknown break date and testing of general linear restrictions. This extends

specification tests with slowly growing p, see e.g. Hong and White (1995) and Gupta

(2018), to time series regression. However, our testing problem is distinct from the so-

called many restrictions setting in e.g. Calhoun (2011), Anatolyev (2012, 2019), Kline

et al. (2020), amongst others, where the number of restrictions grows proportionally

to sample size.

We derive the asymptotic distribution of the Chow test Wald statistic centered by

p and normalized by
√

2p. This yields asymptotic normality with an unknown as-

ymptotic variance V , which we term the HLV, provided that p meets certain growth

conditions. The HLV factor V captures high-order autocovariances of the regressors

and disturbances, echoing the long-run variance that appears in fixed dimensional

time series regression, and vanishes under simplifying assumptions that remove these

high-order autocovariances. The new HLV factor V does not appear in fixed p asymp-

totic regimes, nor does it appear in the independent data setting of Hong and White

(1995), who use the same transformation and obtain asymptotic standard normality.

We robustify the Chow test against the HLV in the spirit of heteroskedasticity auto-

correlation robust (HAR) inference, see e.g. Kiefer and Vogelsang (2002), Sun (2014),

and Lazarus et al. (2018), just to name a few. The resulting asymptotic distribution

is mixed normal and pivotal. However, unlike conventional HAR inference, where

the standard Wiener process characterizes mixed normality, our limit distribution is

represented by two dependent centered Gaussian processes W (r) and W̄ (r) such that
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EW (r)2 = r2 and EW̄ (r)2 = (1− r)2. Although pivotal, the asymptotic distribution

depends on the location of the hypothesized break date and thus we provide R code

to compute the p-values.

The finite sample bias in the Wald statistic, or in quadratic statistics more generally,

is a serious issue when p is large. See e.g. Kline et al. (2020) for more discussion and

a bias correction proposal that works well even when p is proportional to the sample

size but under independent sampling. Our simulations document that the problem

is even worse in time series regression. Thus, we propose a bootstrap bias correction

which imposes the null hypothesis in the resampling so as not to sacrifice power

unduly. Even a small number of bootstrap iterations appear sufficient to reduce the

bias, making computation easily manageable. Based on these findings, we recommend

a bias-corrected and HLV-robust test to practitioners.

Our findings apply to more general settings. We present two extensions: struc-

tural break testing with an unknown break date and the testing of general linear

restrictions of rank p. The HLV appears in both. In break testing, we index the

statistic with an unidentified parameter under the null hypothesis and establish the

weak convergence of this stochastic process as both n and p grow to infinity simul-

taneously. We then employ an exponential averaging of the process that is suitably

modified from Andrews and Ploberger (1994) to account for the growing dimension

p. Thus, we also contribute to the hitherto rather small nonparametric structural

stability testing literature (see e.g. Wu and Chu (1993), Chen and Hong (2012) and

Mohr and Neumeyer (2020)).

In simulations for a range of settings across regression with many covariates, long

AR fits and sieve regression, we demonstrate that our statistic exhibits excellent size

control without sacrificing power excessively. Failure to correct for the HLV can

seriously affect inference, in general leading to over-rejection and often severely so.

Such a pattern is shown to persist for the three types of tests that we provide: Chow,

exclusion restrictions and structural break testing. In an empirical example based

on Hamilton (2003, 2009), we show that using our bias-corrected and HLV-robust
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tests can yield inferences that lead to new conclusions when considering the relation

between oil prices and economic activity.

The paper is organized as follows. Section 2 introduces the model and the Chow

test, along with some basic assumptions and examples. In Section 3 we provide an

asymptotic theory and verify our high-level conditions for several examples. Section

4 presents the correction for the HLV discussed above by means of the HAR inference

literature. Extensions to general structural break testing with an unknown break

date and to the testing of general linear restrictions are given in Section 5. Section

6 contains a Monte Carlo study of finite sample performance, and Section 7 demon-

strates our test with real data. All the proofs of theorems and lemmas are collected

in two further appendices, the second of which is available online. Throughout the

paper, cross-referenced items prefixed with ‘S’ can be found in this online supplemen-

tary appendix. An R-package to replicate the simulations and empirical example is

available on the authors’ websites.1

2. Structural Break in Infinite-Order Regression

We consider the issue of testing for a structural break at a known point in the con-

ditional mean function of yt given the information available up to t−1, ie E (yt|Ft−1) ,

where Ft−1 denotes the filtration up to time t− 1. In nonparametric regression, Ft−1

typically consists of a finite number of observable covariates zt. In the context of the

infinite order autoregressive AR(∞) model, Ft−1 is the collection of all the lagged

dependent variables, {yt−j}j≥1. Alternatively, it can be viewed as a genuine high-

dimensional regression model which may contain an infinite number of covariates and

their lags. We allow for array structure but we do not introduce further notation to

denote it unless necessary.

Given a sample size n, we estimate the unknown regression function via a growing-

dimensional (or truncated) linear regression

(2.1) yt = x′ntβn + ent,

1sites.google.com/site/myunghseo/research, sites.google.com/site/abhimanyugupta85/research.
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where xnt and βn are p-dimensional vectors and p → ∞ as n → ∞ to estimate

E (yt|Ft−1) consistently. To be more precise, let

εt = yt − E (yt|Ft−1) ,

βn be the best linear predictor of yt given xnt, and rnt = E (yt|Ft−1)− x′ntβn. Then,

ent = rnt + εt. Throughout the paper, let C (c) denote a generic finite constant,

arbitrarily large (small) but independent of n, and ‘a.s.’ stand for ‘almost surely’.

Introduce the following assumptions:

Assumption 1. The martingale difference sequence {εt} satisfies σ2
t ≤ C, where

E (ε2
t |Ft−1) = σ2

t , and E (ε4
t |Ft−1) ≤ C, a.s.

The theory presented in the paper may not hold if in fact we only have E (xntεt) = 0

as the long run variance of xntεt will then appear in the type of quadratic statistics

that we consider.

Assumption 2. For a = 1, 2,

(2.2) sup
t
E
(
r2a
nt

)
= o

(
n−1
)
.

We discuss this assumption on the negligibility of the approximation error in more

detail in Section 6, where specific examples are introduced. The subscript n will now

usually be dropped, although we will emphasize this occasionally to remind the reader

of the n-dependence of certain quantities.

Introduce a potential structural break for these models at a given time, say t = [nγ],

γ ∈ Γ ⊂ (0, 1), Γ compact and [·] denoting the integer part of the argument. That is,

β = β1 if t/n ≤ γ and β = β2 if t/n > γ. We write the model as

(2.3) yt = x′tβ11 {t/n ≤ γ}+ x′tβ21 {t/n > γ}+ et = x′tδ1 + x′tδ21 {t/n > γ}+ et,

where δ1 = β1, δ2 = β2 − β1, and 1 {·} denotes the indicator function. Consider the

Wald test for the exclusion restriction δ2 = 0, namely the Chow test for the presence
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of a structural break at a known date. We will examine the case where the break

date is unknown a priori in Section 5.

Let δ̂ (γ) and êt (γ) denote the OLS estimate and the OLS residuals, respectively,

and xt (γ) := (x′t, x
′
t1 {t/n > γ})′. Also, let M̂ (γ) = n−1

∑n
t=1 xt (γ)xt (γ)′ , and

Ω̂ (γ) denote an estimator of Eε2
txt (γ)x′t (γ). For instance, Ω̂ (γ) can be set as

n−1
∑n

t=1 xt (γ)xt (γ)′ êt (γ)2 (the Eicker-White formula) or, assuming conditional ho-

moskedasticity, it can be σ̂ (γ)2 M̂ (γ), where σ̂2 (γ) = n−1
∑n

t=1 êt (γ)2. The choice

depends on the case being considered. Then, the Wald statistic for the familiar Chow

test is defined as

(2.4) Wn (γ) := nδ̂2 (γ)′
(
RM̂ (γ)−1 Ω̂ (γ) M̂ (γ)−1R′

)−1

δ̂2 (γ) ,

where R = (0p×p : Ip) is a selection matrix.

When the dimension p of xt grows with the sample size n, the Wald statistic

diverges as it is approximately chi-squared distributed with degree of freedom p.

Thus, a conventional approach, as used e.g. by de Jong and Bierens (1994) and Hong

and White (1995) in the cross-sectional (independent data) framework is to introduce

a new centering and scaling to define

(2.5) Qn (γ) := (Wn (γ)− p) /
√

2p,

since the mean and variance of a chi-square distribution with p degrees of freedom

are p and 2p, respectively. Furthermore, it has been established that the standard

normal approximation of Qn is valid in their settings. Subsequent sections investigate

how this conventional approach fails in the context of growing or infinite dimensional

time series models, mirroring the failure of time series inference procedures without

heteroskedasticity and autocorrelation correction or robustification.
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3. Asymptotic Distribution of Qn

This section provides the asymptotic distributions of the test statistic under the

null and also shows that the statistic has non-trivial power against local alternatives

at an appropriate nonparametric rate.

There has been some recent interest in the so-called many regressor setting where

p is allowed to be proportional to n, see e.g. Cattaneo et al. (2018) and Kline et al.

(2020). We do not permit such a large p as our hypothesis of interest concerns a

p-dimensional restriction and the design matrix of time series data faces more diffi-

culties in satisfying the rank condition. In this regard, Chen and Lockhart (2001)

provide an interesting example from an ANOVA design where the weak convergence

of the empirical distribution of residuals from the linear regression with growing di-

mension fails when the dimension p is of order n1/3. They compare various growth

conditions for p in the literature and conclude that p3 log2 p = o (n) is nearly neces-

sary for a general stochastic design. Heuristically, a hypothesis represented through

the empirical distribution function imposes an infinite number of restrictions, like our

structural break testing also does, and valid testing of such a hypothesis demands a

tighter control on the growth rate of p.

3.1. Asymptotic Null Distribution. Define ‖A‖ =
{
λ(A′A)

} 1
2 for a generic ma-

trix A, where λ (respectively λ) denotes the smallest (largest) eigenvalue of a sym-

metric nonnegative definite matrix. Any limit stated as ‘n → ∞’ is taken as both n

and p grow to infinity simultaneously unless specified otherwise. We also introduce

the p× p non-stochastic matrix sequences M and Ω and define

M(γ) =

 M (1− γ)M

(1− γ)M (1− γ)M

 , Ω(γ) =

 Ω (1− γ)Ω

(1− γ)Ω (1− γ)Ω

 .
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Assumption 3. (i) supi,tEx
4
ti <∞.

(ii)

sup
γ∈Γ∪{1}

∥∥∥∥∥∥n−1

[nγ]∑
t=1

xtx
′
t − γM

∥∥∥∥∥∥+ sup
γ∈Γ∪{1}

∥∥∥∥∥∥n−1

[nγ]∑
t=1

xtx
′
tσ

2
t − γΩ

∥∥∥∥∥∥ = Op (κp) ,

sup
γ∈Γ

∥∥∥Ω̂ (γ)− Ω (γ)
∥∥∥ = Op (vp) ,

λ (M) > λn, λ (Ω) > λn,

for some positive sequences of numbers κp, vp and λn satisfying

(3.1) λ−4
n

√
p
(
λ−1
n κp + vp

)
→ 0 and λ4

np→∞.

(iii) limn→∞ λ (M) <∞, limn→∞ λ (Ω) <∞.

Several factors determine the bound κp for nonparametric series regression. It is

proportional to
√
p/n or p/

√
n up to logarithmic factors with iid data, depending

on the choice of basis functions. For dependent data, the mixing decay rate also

contributes to κp. The exact rate vp depends on a particular example. We formally

introduce our examples of multiple linear regression, AR(∞) and nonparametric sieve

regression in Section 6. Primitive conditions and expressions for κp and vp are given

in Propositions SP.1 and SP.2 in Section S.D of the online supplementary appendix,

using the results of Peligrad (1982), Newey (1997), Gonçalves and Kilian (2007) and

Chen and Christensen (2015).

Recall that the eigenvalues of the Kronecker product of two symmetric matrices are

the products of their eigenvalues, and γ is bounded away from zero and one. Thus,

M(γ) and Ω(γ) inherit the eigenvalue restrictions on M and Ω in Assumption 3 (ii)

and (iii) uniformly in γ, up to positive constants.

To develop the distributional limit of Qn(γ) where both n and p diverge simultane-

ously, we introduce more conditions. Now, for convenience we denote ξt = Ω−1/2xtεt,

Υt = E (ξtξ
′
t|Ft−1), and Ξs =

∑s−1
t1=1

∑s−1
t2=1 ξt1ξ

′
t2

. The next assumption introduces the

HLV factor V formally.
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Assumption 4. Suppose that limn→∞ λ (Υt) < C a.s., max1≤t≤nE((ξ′tξt)
2|Ft−1) =

O(p2) a.s., max1≤s,t≤n,t 6=sE (ξ′sξt)
4 = O (p2),

∑n
t=1

∑t−1
s=1 cov (tr (ΥtΞt) , tr (ΥsΞs)) =

o(n4p2), and there exists V such that for m that is proportional to n,

(3.2)

lim
m,p→∞

 1

mp
tr

m∑
t1=1

[mr]∑
t2=1

E
[
Ω−1xmx

′
mε

2
mΩ−1xt1x

′
t2
εt1εt2

] = rV , uniformly in r ∈ (0, 1].

Note that under the special case where {xtεt} is an iid sequence, we have V =

limm,p→∞
(
m−1

∑m−1
t=1 p−1trE (Ω−1xmx

′
mε

2
m)E (Ω−1xtx

′
tε

2
t )
)

= 1, thus V is an extra

factor that appears in the limit due to nonlinear dependence in the data. In particular,

it captures a high-order serial correlation of xtεt, while xtεt itself does not have serial

correlation since it is an martingale difference sequence.

The restriction on the summability rate of cov (tr (ΥtΞt) , tr (ΥsΞs)) is related to the

dimension p. To gain some insight, consider the case where the conditional moment

Υt is homogeneous, so that Υt = Ip for all t. Then, some tedious algebra yields

that cov (tr (ΥtΞt) , tr (ΥsΞs)) = O(n2p) uniformly over all s, t with s < t. This

implies that the double sum of the covariances is O (n4p) and thus meets the required

condition as p→∞. Our assumption says that more generally this double sum over

covariances must be o (n4p2) as n, p→∞.

For mean zero random variables a1i, a2j, a3k, a4l, let cumijkl (a1i, a2j, a3k, a4l) denote

the fourth cumulant.

Assumption 5. {xtiεt}t∈Z is fourth order stationary for all i = 1, . . . , p. Further-

more, supi,j=1,...,p

∑∞
t=−∞ |cij(t)| <∞, where cij(t) = E (xr,iεrxr+t,jεr+t) for integer r,

and supi,j,k,l=1,...,p

∑∞
t1,t2,t3=−∞ |cumijkl (x0,iε0, xt1,jεt1 , xt2,kεt2 , xt3,lεt3)| = O (n2).

This assumption controls the temporal dependence in {xtεt} and is discussed in

Andrews (1991b), for example, wherein sufficient conditions for it to hold are also

provided. Then, the following theorem establishes the marginal convergence for a

given γ, which is extended to weak convergence of the process in Theorem ST.2 in

the online appendix.
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Theorem 3.1. Let Assumptions 1- 5 and H0 hold. Then Qn(γ)
d→ N (0,V), for a

given γ ∈ Γ.

Theorem 3.1 highlights a distinctive feature of testing growing number of restric-

tions in time series regressions. Unlike the independent cross-sectional case, we have

to robustify the test against the HLV term V . The provenance of this term can be

illustrated by some formulae, details of which are contained in the full proofs. These

proofs first establish (Theorem SL.6) that

(3.3)
Wn(γ)− p√

2p
=
Rn(γ)− p√

2p
+ op(1),

where

Rn(γ) = [γ (1− γ)n]−1

 [nγ]∑
t=1

εtxt − γ
n∑
t=1

εtxt

′Ω−1

 [nγ]∑
t=1

εtxt − γ
n∑
t=1

εtxt


=

(
n−1/2

n∑
t=1

ψt(γ)xtεt

)′
Ω−1

(
n−1/2

n∑
t=1

ψt(γ)xtεt

)
,(3.4)

and ψt(γ) = (1 (t/n ≤ γ)− γ) /
√
γ(1− γ). Also note that n−1

∑n
t=1 ψt(γ)2 → 1.

Thus, just as for the familiar Wald statistic, we have a quadratic form structure for

Rn(γ). When p is fixed and there is no approximation error, we note that (3.3) has

also been established by Andrews (1993), Cho and Vogelsang (2017) and Sun and

Wang (2021).

This then yields the approximation

(3.5)
Rn(γ)− p√

2p
= Sn(γ) + op(1),

where

Sn(γ) =
2√
2p

1

n

n∑
t=2

(
Ω−

1
2ψt(γ)xtεt

)′∑
s<t

(
Ω−

1
2ψs(γ)xsεs

)
=

√
2√
n

n∑
t=2

vt(γ),

say, by Lemma SL.8. Then V = limn,p→∞ 2n−1
∑n

s,t=2 cov (vs(γ), vt(γ)), i.e. the

limiting variance of Sn(γ). Note that the vt(γ) are defined as products of terms of

the type xtεt and the cumulative sum of their lags, implying that the variances of the
11



vt(γ) themselves contain high-order covariance terms. This explains why we call V a

HLV despite the mds property of the vt(γ), which implies that {vt(γ)} is uncorrelated.

The next section establishes that the test based on Qn has nontrivial local power

under suitable sequences of local alternatives, following which we study more detailed

characteristics of V and develop a HLV-robust test.

3.2. Local Alternatives. We consider a sequence of local alternatives that converge

to the null at p1/4/
√
n-rate to study the local power properties of the test. This is

slower than the usual 1/
√
n parametric rate and has been employed by a number

of other authors, e.g. de Jong and Bierens (1994), Hong and White (1995), Gupta

(2018). It is a cost of the nonparametric nature of the problem. Our sequence of local

alternatives is:

(3.6) H` : δ2` = 21/4τp1/4/
√
n,

where τ is a unit length p× 1 vector.

Theorem 3.2. Suppose that Assumptions 1- 5 and H` hold and let τ∞ =

limn→∞ τ
′MΩ−1Mτ . Then, Qn(γ)

d→ N (τ∞γ(1− γ),V).

Note that |τ ′MΩ−1Mτ | ≤ ‖τ‖ ‖M‖2 ‖Ω−1‖ = λ(M)2/λ(Ω) < C, for any n, by As-

sumptions 3, justifying an assumption on the existence of τ∞ = limn→∞ τ
′MΩ−1Mτ .

Also, the noncentrality term is positive, implying nontrivial power of the test since

the critical region is formed by Qn(γ) being greater than equal to a critical value.

4. V Robust Testing

In this section we provide a detailed study of the HLV V that our analysis has

discovered. In particular, we present some alternative representations of V that shed

more light on its structure.

4.1. Discussion. We first examine the relevance of V . Specifically, we analyze the

‘pre-limiting’ quantity Vn = 2var
(
n−1

∑n
t=2 x

′
tΩ
−1εtp

−1/2
∑t−1

s=1 xsεs
)
. This can be

12



rewritten as

Vn = 2n−1

n−1∑
i=1

(
γ (i, 0) (n− i)/n+ 2

n−i∑
j=1

γ (i, j) (n− i− j)/n

)
,

where γ (i, j) = p−1E (x′tΩ
−1xt−ix

′
tΩ
−1xt−i−jε

2
t εt−iεt−i−j) . This is a high-order auto-

covariance and captures a nonlinear serial dependence in the sequence xtεt, which

disappears entirely for j > 0 in independent cross sectional data. We encounter

Vn → V 6= 1 when n−1
∑n−1

i=1

∑n−i
j=1 γ (i, j) (n − i − j)/n has a nonzero limit, with

terms arising that are fourth-order cross-moments of the εt. Thus, the behaviour of

such cross-moments, which are of the form E (ε2
t εt−iεt−i−j), is the key to obtaining

non-unity V . Robinson (1991), studying time series specification testing, encountered

a similar term in the form of E (ε2
t εt−iεt−i−j) but imposed conditions that nullify it

when j > 0.

A referee has pointed out that the Wald statistic is a quadratic form in the moment

process. To establish the limit of the Wald statistic when the number of variables

(i.e., the number of moments) grows with the sample size, we need to account for the

variance of the quadratic form, hence the appearance of fourth-order dependence of a

certain type in the moment process. A form of fourth-order dependence has also been

encountered in HAR testing, see e.g. Lobato et al. (2002). In Section 6, we present

some figures to show how V can vary for various designs and deviate significantly

from unity.

4.2. HLV-Robust Test Statistic. Heteroskedasticity and autocorrelation consis-

tent (HAC) or HAR inference has been a main focus of time series inference, see e.g.

Newey and West (1987), Andrews (1991b), Kiefer and Vogelsang (2002), just to name

a few, and Lazarus et al. (2018) for a recent review. Although the asymptotic variance

of the test statistic Qn depends on the HLV, we may still utilize the fixed-bandwidth

kernel approach to obtain an asymptotically pivotal and mixed-normal test.

Introduce a kernel function k(·) that meets the following conditions.
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Assumption 6. (1) For all x ∈ R, k(x) = k(−x) and |k(x)| ≤ 1; k(0) = 1; k(x)

is continuous at zero and almost everywhere on R;
∫
R |k(x)| dx < ∞. (2) For any

b ∈ (0, 1] and ρ ≥ 1, kb (x) = k (x/b) and kρ (x) are symmetric, continuous, piecewise

monotonic, and piecewise continuously differentiable on [−1, 1]. (3)
∫

[0,∞)
k̄(x) <∞,

where k̄(x) = supy≥x |k(y)|.

Since εt and Ω are not directly observable in practice, we replace them with the

least squares estimates as in Section 2 and introduce qt = (np)−1/2 x′tΩ̂
−1êt

∑t−1
s=1 xsês

and its demeaned version, q̄t = qt − n−1
∑n

t=2 qt. Then, define a feasible estimate of

V by

(4.1) V̂ =
2

n

n∑
t=2

n∑
s=2

k

(
t− s
nb

)
q̄sq̄t.

Thus, we have a seemingly long-run variance estimate, analogous to traditional

HAC/HAR inference, of a nonlinear transformation of the primitive variables.

The choice of bandwidth b has been a topic of much discussion in the HAC litera-

ture. Since V captures high-order autocovariances in the growing dimensional vector

xtεt, the finite sample variation in the estimate V̂ is generally larger than in more

familiar long-run variances, and the moment condition is more expensive. Motivated

by this, we follow a fixed bandwidth approach, as in Sun (2014).

Our estimator is based on the weighting function Kh (r, s) = k (h (r − s)),

where h = 1/b. We present numerical results in this paper with k (u) =

(1− |u|)h 1 {|u| < 1}, employing the Bartlett kernel case with h = 1. Sun (2014)

terms this the sharp kernel estimator. Other options include the steep quadratic ker-

nel estimator and the orthonormal series estimator with K basis function, of which

Sun (2014) contains a more detailed discussion. Sun (2014) also shows that the cen-

tering in q̄t can be conveniently represented through a centered version of Kh(·), that

is, K∗h (r, s) = Kh (r, s)−
∫ 1

0
Kh (τ, s) dτ −

∫ 1

0
Kh (r, τ) dτ +

∫ 1

0

∫ 1

0
Kh (τ1, τ2) dτ1dτ2.

Building on the representation in Lemma 1 of Sun (2014), where the estimate V̂ is

not consistent, we characterize the joint weak limit of V̂ and Qn(γ). For real numbers
14



a and b, let a ∨ b (a ∧ b) denote their maximum (minimum), and introduce a process

(4.2) Q(γ) =
W (γ)

γ
+

W̄ (γ)

(1− γ)
−W (1),

where
(
W (r) , W̄ (r)

)′
, r ∈ [0, 1], is a bivariate Gaussian process that does not depend

on any model parameters including the break point γ, and has covariance kernel

(4.3) C (r1, r2) =

 (r1 ∧ γ2)2 1 {r1 > r2} (r1 − r2)2

1 {r1 < r2} (r1 − r2)2 (1− (r1 ∨ r2))2

 .

For any given γ ∈ Γ, the marginal distribution of Q(γ) is standard normal. Thus, the

conclusion of Theorem 3.1 can be expressed as Qn(γ)
d→ Q(γ), pointwise in γ ∈ Γ.

By taking a suitable ratio, we obtain a pivotal variable as in the following theorem,

which is the basis of our test statistic.

Theorem 4.1. Let Assumptions 1-6 hold, together with

(4.4) λ−2
n p

(
vp +

p√
n

)
→ 0 as n→∞.

Under H0, we have V̂ d→ V
∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s) and

Tn(γ) :=
Qn(γ)√
V̂

d→ Q(γ)√∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s)

.

The numerator in the limit becomes Q(γ) + τ∞γ(1− γ) under H`.

The asymptotic null distribution is mixed normal and pivotal. The critical values

can be tabulated for each γ via Monte Carlo simulation and the authors’ websites

provide R code. A result when γ is unknown is given in Section 5.1. Note that the

same Gaussian process W (·) occurs in both the limiting numerator and denominator,

and this process is different from the Brownian motion in Sun (2014). In fact, it can

be represented by the partial sum of
√
t/n times an iid normal sequence. Since the

limit also involves another variable W̄ (·), the critical values will be different from

those previously tabulated in the literature.
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4.3. Bias Correction. The degrees of freedom p provide a correct centering for

Wn(γ) in first order asymptotic analysis. However, in the finite sample experiments

given in Section 6, e.g. Figure 2 and Figure 5, we find that the bias in Qn(γ) gets

bigger for typical values of p in nonparametric regression. Therefore, we propose a

bootstrap bias correction of Qn(γ). To estimate the bias, we implement the null-

imposed wild bootstrap by generating

(4.5) y?t = x′tδ̂1(γ) + êt(γ)ξt, t = 1, ..., n,

where ξt is an iid sequence of centered and normalized variables, e.g. the Rademacher

variables, to compute Q?n(γ). It is worthwhile to note that the bootstrap DGP (4.5)

imposes the null hypothesis δ2 = 0, so as not to sacrifice the power of the test. See also

Gonçalves and Kilian (2007) for a thorough discussion on the wild bootstrap for infi-

nite order autoregression. Iterating this B times, we obtain Q̄?n(γ) = B−1
∑B

j Q?,jn (γ),

the bootstrap estimate of the bias. In our experiment, B = 200 suffices and thus the

bootstrap is not computationally expensive. Therefore, we suggest the following bias

corrected test statistic:

(4.6) T bn (γ) :=
Qn(γ)− Q̄?n(γ)√

V̂
.

The numerical experiments in Section 6 show that the bootstrap bias corrected test

controls the type I error reliably without sacrificing power unduly.2 Now, with the

superscript ? indicating the bootstrap analogue, we have the following result.

Theorem 4.2. Under Assumptions 1-3 and H0,

sup
γ∈Γ
|E?W ?

n(γ)− p| = op
(
p1/2

)
.

Details of the components of W ?
n(γ) are left to Section S.C of the online supplement.

2It is worth noting that the wild bootstrap may not be valid to approximate the quantiles of Qn(γ)
as it does not capture the high-order dependence embodied in V.
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5. Extensions

This section considers two useful extensions. One is a more general structural

break test that does not assume a known break date, as considered by Andrews and

Ploberger (1994) among many others. The other is the Wald test for general linear

restrictions of growing ranks.

5.1. Testing with Unknown Break Date. The instability of an economic model

over time is a major concern in empirical studies, leading to a commensurately large

literature that is largely focussed on parametric models, see Perron (2006) for a review.

In a parametric setting, Andrews (1993) considered testing with generalized method

of moments (GMM) estimation, spawning contributions that widen the scope of this

approach, such as Hidalgo and Seo (2013) and Qu and Perron (2007). Andrews and

Ploberger (1994) and Elliott and Müller (2006) explore certain optimality properties

of parametric tests.

In this case, the null hypothesis is specified as

H0 : δ2 = 0, for any γ ∈ Γ,

where Γ is a closed interval in the interior of the unit interval. Extending Andrews

and Ploberger (1994), we introduce a class of weighted exponential statistics:

(5.1) ExpTn(c) =

√
2

c
log

∫
Γ

exp

(
c√
2
T bn (γ)

)
dJ (γ)

for a positive c and a bounded weight function J such that
∫

Γ
dJ (γ) = 1, where

T bn (γ) is defined as in Section 4.3, and for which we set δ̂1 = δ̂1(γ̂) and êt = êt(γ̂) in

(4.5), where γ̂ = arg min σ̂2(γ) and σ̂2(γ) is the sum of squared residuals as defined

in Section 2. Since

(5.2) lim
c→0

ExpTn(c) =

∫
Γ

T bn (γ)dJ(γ), and lim
c→∞

ExpTn(c) = sup
γ∈Γ
T bn (γ),

we may extend the definition of ExpTn(c) for c ∈ [0,+∞].
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The asymptotic distributions under both hypotheses follow from the continuous

mapping theorem given the weak convergence of the stochastic process Qn(γ) on

Γ that is established in Theorem ST.2. The main result is stated in the following

theorem.

Theorem 5.1. Let Assumptions 1-6 hold, together with (4.4). Then,

ExpTn (c)
d→
√

2

c
log

∫
Γ

exp

 cQ (γ)√
2
∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s)

 dJ (γ) ,

under H0, and

ExpTn (c)
d→
√

2

c
log

∫
Γ

exp

 cQ (γ) + cτ∞
(γγ0−(γ∧γ0))2

γ(1−γ)√
2
∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s)

 dJ (γ) ,

under H` as specified in (3.6), with γ0 denoting the true break point.

The asymptotic distribution here is a natural generalization of that for the Chow

test through stochastic equicontinuity of the underlying empirical process. The non-

centrality term is also positive for any γ ∈ Γ to make the test nontrivial.

Remark 1. The test procedure can also be used if interest lies in testing for the

stability of the coefficient of x1t, where xt = (x′1t, x
′
2t)
′ and the dimension p1 of x1t is

less than p with p1 →∞. Then, we can test δ2 = 0 in

(5.3) yt = x′tδ1 + x′1tδ21(t/n > γ) + et.

The asymptotic theory in Theorem 5.1 can still be used, as p1 → ∞ with n → ∞,

setting qt = (np1)−1/2 x′tΩ̄
−1
1 êt

∑t−1
s=1 xsês, where Ω̄1 = Ω̂−1M̄1(M̄ ′

1Ω̂−1M̄1)−1M̄ ′
1Ω̂−1

with M̄1 = n−1
∑n

t=1 xtx
′
1t.

5.2. General Linear Restrictions. For a linear regression model yt = x′tβ + εt,

we consider testing a linear restriction He
0 : Reβ = r, where Re is a matrix of rank

p ≤ dim(β). For the usual Wald statistic

(5.4) W e
n := n

(
Reβ̂ − r

)′ (
ReM̂−1Ω̂M̂−1R′e

)−1 (
Reβ̂ − r

)
,
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M̂ = n−1
∑

t xtx
′
t and Ω̂ is an estimator of Eε2

txtx
′
t, define Qen := (W e

n − p) /
√

2p. Al-

though the test statistic appears to be very similar to the Chow test, the next theorem

shows that the numerator and denominator in our corrected test statistic are related

differently, calling for different critical values. Furthermore, the HLV is now obtained

by replacing Ω−1 in Assumption 4 with L = M−1Re′ (ReM−1ΩM−1Re′)
−1
ReM−1,

and the resulting limit denoted Ve.

To estimate Ve and employ bootstrap bias correction, it is convenient to refor-

mulate the restriction as an exclusion restriction of growing dimension, without loss

of generality. Indeed, let S be the orthogonal complement of Re and Q = (S,Re).

Then, let x̊t = Q′−1xt, δ = Qβ − (0′, r′)′ such that δ = (δ′1, δ
′
2)′, with x̊t = (̊x′1t, x̊

′
2t)
′

conformably partitioned, δ2 = Reβ − r and ỹt = yt − x̊′2tr. We can now test the null

hypothesis He
0 : δ2 = 0 in the regression of ỹt on x̊t.

This transformation makes it particularly convenient to impose the null in the boot-

strap resampling at the bias correction stage. Let Q̄?n denote the bootstrap bias cor-

rection factor for W e
n. This yields the bias-corrected statistic T e,bn =

(
Qen − Q̄?n

)
/
√
V̂e,

where V̂e is defined analogously to V̂ , but now with qt = (np)−1/2 x̃′2tΩ̂
e−1êt

∑t−1
s=1 x̃2tês,

where x̃2t denotes the residuals from the regression of x̊2t on x̊1t and Ω̂e =

n−1
∑

t x̃2tx̃
′
2tê

2
t . Then, with W (·) defined in (4.3), we have the following theorem:

Theorem 5.2. Let Assumptions 1-6 hold with the following modifications: (1) L

replacing Ω−1 in Assumption 4 and the resulting limit denoted Ve. (2) The conditions

on the partial sums to [nγ] are omitted in Assumption 3(ii). Also suppose that (4.4)

holds. Then, under He
0,

(5.5) T e,bn =
Qen − Q̄?n√
V̂e

d→ W (1)√∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s)

.

Under He
` : Reβ − r = 21/4τp1/4/

√
n, the numerator in the limit becomes W (1) + τ e∞,

where τ e∞ = limn→∞ τ
′ (ReM−1ΩM−1Re′)

−1
τ .

The limiting distribution is mixed normal and pivotal but different from the limit

in Theorem 3.1. This is because the Chow test considers a quadratic form in
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n−1/2
∑n

t=1 ψt(γ)xtεt, which differs from this section by introducing a trend into the

regressors via the factor ψt(γ). Due to this difference, the partial sum processes con-

verge to Gaussian processes with different covariance kernels. An R code to compute

the critical values is available from the author’s website.

6. Monte Carlo

This section examines the finite sample properties of our bias corrected HLV-robust

test T bn compared to the standard chi-square test Wn, which does not account for

growing p, and the unscaled Qn statistic with standard normal critical values, which

does not account for V , in terms of bias, size and power.

We will consider the examples below in our Monte Carlo experiments.

E1 (Multiple Regression of Growing Dimension). Koenker (1988) found through his

metastudy that it is common practice in econometrics to increase the number of re-

gressors as the sample size n grows, at a rate of roughly O
(
n1/4

)
. In this case, the

approximation error rt is not explicitly modeled and may be set as zero. Practitioners

thus adopt a flexible approach to modelling, where the assumed model becomes richer

with more covariates and with more lagged terms to account for the dynamic effect in

the spirit of the distributed lag model, as illustrated in e.g. Stock and Watson (2015).

E2 (Infinite-Order Autoregression). This model is one of the most fundamental mod-

els in time series analysis, see e.g. Brockwell et al. (1991) or Hamilton (2020).

For the process to be stationary, the coefficients {bj} in the AR(∞) model yt =

b0 +
∑∞

j=1 bjyt−j + εt are assumed to obey a certain decay rate. Specifically, the tail

sum of the coefficients satisfies Assumption 2 if
∑∞

j=p |bj| = o
(
n−1/2

)
. While we take

p as given in our analysis, for practical purposes various methods based on infor-

mation criteria are available to choose the truncation lag p, see e.g. Shibata (1980)

and references therein. Wang et al. (2007) propose a lasso-based autoregressive order

selection rule while Lee et al. (2018) propose a lag selection rule in an infinite order

panel autoregression. For expositional ease, we assume that the observations begin

from t = 1− p and x1 = (1, y0, ..., y1−p).
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E3 (Nonparametric Series Regression). In case of the nonparametric series least

squares estimation of E (yt|zt), there exists a sequence of transformations of the

covariates zt given by xnt := xn (zt) : Rk 7→ Rp, and coefficients βn such that

E (yt|Ft−1) = f (zt) = x′ntβn + rn (zt) , where rnt = rn (zt) meets Assumption 2 for

a broad class of functions f , see e.g. Andrews (1991a), Newey (1997), Chen (2007)

and Lee and Robinson (2016). By Lemma 1 of Lee and Robinson (2016), it is met if

|rt|∞ = O(pα) for some α < 0 and p2α ≤ n−1. Depending on the smoothness of the

nonparametric function f(·), the regressor support dimension k, and the type of basis

functions used, different values of α may be implied, see e.g. Newey (1997), Chen

(2007), p. 5573, for examples and further references. Often, the condition (2.2) holds

under the so-called undersmoothing selection of p. Another closely related example is

the partially linear regression model, e.g. Engle et al. (1986) and Robinson (1988).

Again, while we do not consider data-dependent p, for practical purposes the literature

proposes methods for the choice of p using cross validation or information criteria,

see e.g. p. 5623 of Chen (2007) for a list of references.

The tests are applied to the setting of the Chow test, break test with unknown

break date, and testing a general linear restriction. We consider various sample sizes

n and dimensions p from the three examples, E1-E3, with the error generated from a

bounded ARCH process

(6.1) εt = σtξt, σ2
t = (1− α) + αφ(εt−1),

where φ(x) = x21{|x| ≤ c} + c21{|x| > c}, ξt = (ηt − Eηt) /
√
var (ηt), and

{ηt} is an iid sequence from the Marron and Wand (1992) normal mixture dis-

tributions of type 1-3, which we refer to as error 1, 2 and 3. Their error 1 is

standard normal. For a standard normal vector (Z1, ..., Zk) and multinomial vec-

tor (d1, ..., dk) with probability (1/5, 1/5, 3/5), error 2 skewed unimodal variate is

ηt = Z1d1 + (2Z2/3 + 1/2) d2 + d3 (5Z3/9 + 13/12), while error 3 strongly skewed

variate is ηt =
∑7

l=0 dl+1

(
Zl+1 (2/3)l + 3

(
(2/3)l − 1

))
with equally likely di’s. We
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report results using (6.1) with α ∈ {0.3, 0.4, 0.5, 0.55, 0.577} and c = 2.5. Results

from c = 3 and ∞ are similar and omitted.

More specifically, for multiple regression, E1, the regressors xt consist of inde-

pendent AR(1) processes with coefficient αx and ARCH innovation as in (6.1) and

their lags of order up to 3. That is, we consider the distributed lag model with

a growing number of variables. The first five elements of β in (2.1) are set as

d0

(
5−1/2, ..., 5−1/2

)
p1/4n−1/2 and the others as zeros. When there is a break, all the

values become zero after the break so that the value d0 controls the magnitude of the

change. We vary p ∈ {5, 9, 13} to examine the effect of the dimension on our tests.

For the infinite order AR regression, E2, we generate the sample from the MA(1)

model yt = εt + θ1 {t ≤ µ} εt−1, µ = [nγ], and estimate the AR(p) model with

p = 9 for n = 250 and p = 13 for n = 500. For the sieve regression, E3,

we consider two variables ζ1t and ζ2t and their lags ζ1,t−1 and ζ2,t−1 as regres-

sors, denoted by z1t, · · · , z4t, after transforming them as 2 arctan (ζit) /π. Each

ζit follows an AR(1) process with ARCH error. The regression function is set as

f (z1, · · · , z4) = d0

(
1, z1, · · · , z4, z

2
1 , ..., z

p1−1
4

) (
1−2, ..., p−2

2

)′
+
√
|z1| /n with p1 =⌊

10001/4
⌋

and p2 = 4p1. To estimate the regression function, we construct xt from

polynomial basis functions and its dimension p as in E2.

We first employ these DGPs to simulate values of V with n = 1000, which are

plotted in Figure 1, reporting averages from 2500 iterations. This serves as a useful

illustration to observe visually that V deviates from unity for various specifications.

A broad observation we make is that the deviation is bigger with larger ARCH coef-

ficients and bigger autocorrelation in xt, although this feature is not monotone. To

conclude, we observe that the nonlinear serial autocorrelation factor V can induce se-

rious distortion in inference without a suitable robustifying treatment, as we provide

in section 4.2.

6.1. Chow Test. We consider three candidate break points as proportions of the

sample sizes, γ ∈ {0.2, 0.3, 0.5}. We begin by examining the bias of Qn(γ), conven-

tionally centered by the degrees of freedom p, under the null hypothesis. Note that
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a severe bias in Qn(γ) also implies that the size of the Wald test Wn(γ) can be dis-

torted severely. We report the results in Figure 2, in which the line with dot markers

shows the bias in Qn(γ) for n = 250 and n = 500. For E1, (Figures 2a, 2d), each

vertical partition (marked by a dotted vertical line) corresponds to a specific value of

p. Within each vertical partition the DGP parameters change along the horizontal

axes as (error type, α), in lexicographic order. As p grows, we observe that the Qn (γ)

statistic exhibits severe finite sample bias for all values of the DGP parameters.

A similar visualization of bias inQn(γ) for E2 is presented in Figures 2b, 2e. Rather

than report values for different p, here we focus on the case p = 9 for n = 250 and

p = 13 for n = 500 and allow the values of α and θ to vary along the horizontal axis

lexicographically as (error type, α or θ), as detailed in the caption. A substantial

bias in Qn(γ) is observed for all cases, regardless of n = 250 or n = 500, albeit the

biases are generally smaller in the latter case. Finally, Figures 2c, 2f show the bias in

Qn(γ) for E3, with the same p as for E2, to mimic the asymptotic regime of a sieve

regression, and parameters as in E2. We observe a similar pattern of substantial bias

for both sample sizes.

As discussed above, Figures 2a-2f clearly show that the biases present in Qn (γ) are

severe. In these figures we also plot the bias of the bias-corrected HLV-robust statistic

T bn (γ), shown in black with square markers. The bootstrap bias correction seems to

work well for all the cases, substantially alleviating bias. In Figure 2, we observe

that T bn (γ) can still exhibit some bias for specific cases but for E1 and E3, unlike

the bias of Qn(γ), this is centered around zero, while for E2 it is generally smaller

in absolute value. Thus we recommend the use of the bootstrap bias correction in

practice especially when faced with large values of p.

We now study the finite sample rejection frequencies of four competing tests:

T bn (γ), Tn(γ),Qn(γ), and Wn(γ), with specific parameter values as given in the re-

spective figure captions. As shown earlier, the unknown HLV scaling factor V varies

along different ARCH parameters. This motivates our approach of experimenting

with different α values and innovations. The Monte Carlo sizes resulting from the
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experiment are plotted in Figure 3, wherein we place a horizontal dotted line to mark

the nominal size of 5%. We report results for γ = 0.3. The vertical partitions in each

panel of Figure 3 correspond, as discussed earlier, to increasing values of p from left

to right in E1. We cover multiple regression (Figures 3a, 3d), AR fits (Figures 3b,

3e) and sieve regression (Figures 3c, 3f) for n = 250, 500.

For all DGPs, the usual Wald statistic Wn(γ) (diamond markers) over-rejects. Sim-

ply standardizing the test statistic Wn(γ) to Qn(γ), hence ignoring the HLV V , does

not improve matters. In fact, it usually worsens the problem of over-rejection. This

can be seen in the lines with triangle markers. Our HLV-robust statistic Tn(γ) does

much better, as the lines with dot markers indicate. While this shows the importance

of the correction for V that we stress in the paper, there is still a tendency to over-

reject. On the other hand, applying the bootstrap bias correction and using the bias

corrected HLV-robust statistic T bn (γ) achieves excellent size control, as can be seen in

the line with square markers. The discussion holds regardless of whether n = 250 or

n = 500. Thus the importance of our proposed testing procedure is clearly visible.

We now analyze the power features of the competing test statistics for the proposed

DGPs, allowing for breaks of different magnitudes and setting γ = 0.5. After the

break all the coefficients become zero so that the values of d0 govern the size of the

breaks in E1 and E3, while the values of θ do so for E2. The power performance

is plotted in Figure 4, where to conserve space we report results only for n = 400.

Again, we use p = 9 for E2 and E3, while a range of p is employed for E1. The line

marker schemes for each of the competing tests are as described earlier. Examining

the figure, the power of our HLV-robust statistics Tn(γ) (dots) and T bn (γ) (squares)

tracks that of the uncorrected ones as the break size increases for both E2 (center

panel) and E3 (right panel). For E1 (left panel), we only report results for d0 = 2

for clarity. We observe that Wn(γ) tends to have the highest power but our statistics

still perform reasonably well with power in excess of 80% even for large p. Recall that

our size experiments earlier indicate that Wn(γ) over-rejects, a phenomenon of which
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high power is likely an artefact. Thus we conclude that our test is able to control size

without sacrificing power to an undue extent.

6.2. Testing a Linear Restriction. This section presents the outcomes of bias,

size and power experiments for testing general linear restrictions, analogous to those

for the Chow test in the preceding discussion. We use the reparameterization of the

linear restriction to the exclusion restriction δ2 = 0, as discussed in Section 5.2. We

focus on E1 with n = 400, p = 8, 12, 16, d0 = 1, error 1 and 2 disturbances and

α = 0.4, 0.55. The results are displayed in Figure 5, with the same marking scheme

as before and three test statistics employed: W e
n, Qen and T e,bn . In all three figures,

each vertical partition marks a different value of p, increasing from left to right.

The left panel of Figure 5 shows that the bootstrap bias correction indeed improves

matters, as was the case for the Chow test. The center panel again demonstrates the

importance of our proposed corrections for size control. W e
n and Qen tend to over-

reject, becoming worse as p increases. T e,bn controls size very well for medium to large

p, while still outperforming W e
n and Qen for smaller p. The right panel shows that

T e,bn sacrifices some power relative to W e
n and Qen, but not unduly so.

6.3. Sup Test for Structural Break. In this section we examine the size and power

performance of the sup test for the presence of a structural break at an unknown date,

which is a special case of the exp test, viz. limc→∞ExpTn(c), see (5.2). Specifically,

we compare supγ∈Γ T
b
n (γ) with supγ∈ΓQn (γ) and supγ∈ΓWn (γ), where the critical

values for the last test come from Andrews (1993). To conserve space, we report

results for E1 and error 1 and 2 disturbances only. We also take α = 0.4, 0.55,

p = 5, 7, 9, n = 400 and Γ = [0.15, 0.85].

The vertical partitions in Figure 6 represent p = 5, 7, 9, (left panel) and d0 = 1, 5, 10

(right panel), increasing from left to right. Examining size control (left panel), the tra-

ditional sup test supWn (γ) (triangles) over rejects, with performance getting poorer

as p increases. The correction for p immediately improves matters, with supQn (γ)

(dots) still over-rejecting but to a lesser degree. Our recommended statistic sup T bn (γ)
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(squares) does best overall as p increases, and achieves quite acceptable size perfor-

mance even when p is moderate. The right panel displays power, with break size

increasing in each vertical partition from left to right as d0 = 1, 5, 10. Our recom-

mended statistic sup T bn (γ) is seen to not unduly sacrifice power relative to supQn (γ).

7. Empirical example

We revisit structural stability in the Hamilton (2003) study of the effect of oil

shocks on economic activities. The autoregressive distributed lag model, ADL(p, p),

with quarterly time series of outputs and several oil price measures is employed. For

real output, the quarterly growth rate of chain-weighted real GDP is used, while the

oil price is the nominal crude oil producer price index, seasonally unadjusted. As

in Hamilton, three oil price measures were considered: the growth rate ot from the

previous quarter, the rectified linear unit, o+
t = ot1 {ot > 0}, and the net oil price

increase, ont , defined as the amount by which log oil prices in quarter t exceed their

peak value over the previous 12 months. If it does not exceed the previous peak, then

ont is taken to be zero. We extend the original sample using the FRED database at

the St. Louis Fed to obtain a sample from January 1949 to October 2019.

First, we reevaluate structural stability of the GDP dynamics using AR(p) fits,

and that of the regression function of GDP growth on oil price change using an

ADL(p, p) model with the three alternative measures of oil price change. As in Hamil-

ton (2003), we do not hypothesize a predetermined break date and use supγ∈Γ T bn (γ)

and supγ∈ΓWn(γ), Γ = [0.15, 0.85]. The p-values of the tests are reported in subtables

(a) and (b) in the upper panel of Table 1, where for supW (γ) these are computed

using the R function of Hansen (1997). We obtain conflicting results: the stan-

dard supW (γ) test supports the presence of structural break in both regression more

strongly than our recommended sup T bn (γ) test. Judging from our Monte Carlo sim-

ulation that illustrates the effect of the degree of the freedom (df) on finite sample

properties of the two tests, supWn(γ) tends to have larger p values in the AR case

(p+ 1 df) than in the ADL case (2p+ 1 df), while sup T bn (γ) would be the opposite.
26



Thus, the evidence for structural instability is no longer as strong, often overturned

at reasonable significance levels.

(a) AR(p) (b) ADL(p, p) stability (c) ADL(p, p) exclusion

GDP ot o+
t ont all oil NL

lags p 4 6 4 6 4 6 4 6 4 6 4 6

sup T bn (γ) 40.4 22.4 7.2 2.9 0.08 1.7 0 0 T e,bn 8.7 26.9 7.6 19
supWn(γ) 7.2 4.1 0 0 2 0 0 0 W e

n 9 4.4 2.8 4.4

IP ot o+
t ont all oil NL

lags p 12 18 12 18 12 18 12 18 12 18 12 18

sup T bn (γ) 35.6 53.4 4.3 6.6 1 1.4 1.4 0.9 T e,bn 27 30.9 11.9 18.5
supWn(γ) 0 0.5 0 0 0 0 0 0 W e

n 1.7 0.8 0.5 0.5

Table 1. 100×p-values of stability and exclusion restriction tests for full sample.
γ ∈ [0.15, 0.85] (a) Tests for stability of GDP or IP dynamics via AR(p) fits. (b)
Tests for stability of ADL(p, p) regressions of GDP or IP on ot, o

+
t or ont . (c) Tests

for exclusion restrictions on all oil price measures (ot, o
+
t , ont ) or nonlinear oil price

measures (o+t , ont .) in ADL(p, p) regressions of GDP or IP on oil prices.

Second, we explore the relevance of the oil price measures and the relevance of

the nonlinear transformations (o+
t , ont ) by testing two exclusion restrictions in the

ADL(p, p) regression that include all the three oil price measures as covariates. The

first exclusion restriction is to set the coefficients of all the measures zero and the

second is to set those of the nonlinear transformations (o+
t , ont ) to zero. This yields

12 and 8 df, respectively, when p = 4, and 18 and 12 df, respectively, when p = 6.

As shown in sub-table (c) of the upper panel of Table 1, our recommended test T e,bn

produces p-values bigger than 0.05 for all cases, suggesting the effect of oil price as

measured by these transformations is not statistically significant, nor are the non-

linear transformations. The standard Wald test for the exclusion restriction is more

supportive of their inclusion but may lack robustness with large df.

As another measure of economic activity we now consider the industrial production

(IP) index. This is available at monthly frequency and thus we consider ADL(12,12)

and ADL(18,18) to include lags of one year and one and a half years, respectively.

With monthly data, the dimensionality becomes more important: the number of
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GDP (a) AR(p) (b) ADL(p, p) stability (c) ADL(p, p) exclusion

SS1 ot o+
t ont all oil NL

lags p 4 6 4 6 4 6 4 6 4 6 4 6

sup T bn (γ) 8.7 0.9 3.8 3.1 0.2 15.8 3.9 11.4 T e,bn 73.8 74.2 92.6 85.6
supWn(γ) 0.7 0 0 0 0 0 0 0 W e

n 65.4 46 78.5 47.5

SS2 ot o+
t ont all oil NL

lags p 4 6 4 6 4 6 4 6 4 6 4 6

sup T bn (γ) 46.6 26.1 4.3 3.3 9.1 2 0 0 T e,bn 11.6 24.2 23.2 34.8
supWn(γ) 45.3 7.1 0 0 0.1 0 0 0 W e

n 0.6 1.4 9.4 11

IP (a) AR(p) (b) ADL(p, p) stability (c) ADL(p, p) exclusion

SS1 ot o+
t ont all oil NL

lags p 12 18 12 18 12 18 12 18 12 18 12 18

sup T bn (γ) 55.7 3.8 1.9 3.3 4.4 11 73.9 54.9 T e,bn 25.3 20.4 7.2 6.3
supWn(γ) 23.4 0.2 0 0 0 0 0 0 W e

n 0.8 0 0.4 0

SS2 ot o+
t ont all oil NL

lags p 12 18 12 18 12 18 12 18 12 18 12 18

sup T bn (γ) 26.4 45.6 3.6 5.6 0.6 0.4 1.6 0.3 T e,bn 24.8 29.5 18.1 27.2
supWn(γ) 0 0 0 0 0 0 0 0 W e

n 0.3 0.1 0.6 1.5

Table 2. 100×p-values of stability and exclusion restriction tests for subsamples.
SS1: 1981:I-2019:IV, SS2: 1950:I-2007:II; γ ∈ [0.15, 0.85]. (a) Tests for stability of
GDP dynamics via AR(p) fits. (b) Tests for stability of ADL(p, p) regressions of
GDP or IP on ot, o

+
t or ont . (c) Tests for exclusion restrictions on all oil price mea-

sures (ot, o
+
t , ont ) or nonlinear oil price measures (o+t , ont .) in ADL(p, p) regressions

of GDP or IP on oil prices.

restrictions we test varies from 13 and 25 in the structural break test for the AR(12)

and ADL(12,12) regressions to 36 and 48 for the exclusion tests in the ADL(18,18)

regression. In fact, Andrews (1993) and Hansen (1997) do not even provide critical

values when df> 20, giving even more reason for our method to be applied. The

results in the lower panel of Table 1 are qualitatively similar to those for the GDP

measure.

Building on studies on major oil shocks such as Hamilton (2009), we also consider

two subsamples: SS1 starts after the 1980 oil shock while SS2 ends before the 2007

oil shock. As for the lag order p, we try both p = 4 and p = 6 for robustness.
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Furthermore, we also test subsample time series and regression stability as well as

exclusion restrictions for the dependent variable IP, using p = 12 and p = 18 as

before. The p-values are reported in Table 2, with the each panel covering GDP and

IP and containing subpanels for SS1 and SS2. Again, we note that evidence against

the null becomes weaker when using our recommended tests sup T bn (γ) or T e,bn , as

compared to the standard Wald statistic approach. Very often the conclusion of the

test is changed when using our approach, but even when this is not the case there

can be large differences in p-values.
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(b) E2 with p = 18, θ = −0.5.
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Figure 1. Simulated V from n = 1000. Error 1: square; Error 2: dot; Error 3: triangle.
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(c) Chow test bias, E3: n = 250.
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(d) Chow test bias, E1: n = 500.
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(e) Chow test bias, E2: n = 500.
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(f) Chow test bias, E3: n = 500.

Figure 2. Bias in Qn(γ) (dot) and T bn (γ) (square, black). For E1, the vertical partitions in (a) and (d) correspond to p = 5, 9
and p = 5, 9, 13, respectively. Within each vertical partition results are ordered lexicographically as (γ ∈ {0.2, 0.3, 0.5}, error ∈
{1, 2}, α ∈ {0.3, 0.57}). E2 and E3: p = 9 for n = 250 and p = 13 for n = 500. Results horizontally ordered lexicographically
as (γ, error , α or θ).
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(a) Chow test size, E1: n = 250, γ = 0.3.
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(b) Chow test size, E2: n = 250, γ = 0.3.
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(c) Chow test size, E3: n = 250, γ = 0.3.
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(d) Chow test size, E1: n = 500, γ = 0.3.
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(e) Chow test size, E2: n = 500, γ = 0.3.

Size Comparison, Sieve , n = 500 , gm = 0.3

variation of DGP

re
je

ct
io

n 
ra

te
s

2 4 6 8 10

0.
05

0.
10

0.
15

Tb
T1
Qn
Wn

(f) Chow test size, E3: n = 500, γ = 0.3.

Figure 3. Size of Chow tests with γ = 0.3 : Wn(γ) (diamond), Qn(γ) (triangle), Tn(γ) (dot) and T bn (γ) (square, black).
Nominal size is 5%. For E1, vertical partitions in (a) correspond to n = 250 and p = 5, 9 and those in (d) correspond to n = 500
and p = 5, 9, 13. Within each vertical partition results are ordered lexicographically as (error ∈ {1, 2}, α ∈ {0.3, 0.57}). For
E2, p = 9 for n = 250 and p = 13 for n = 500. Results horizontally ordered lexicographically as (error ∈ {1, 2}, α ∈
{0.3, 0.57} or θ ∈ {−0.5,−0.1, 0.5}). For E3, p = 9 for n = 250 and p = 13 for n = 500. Results horizontally ordered
lexicographically as (error ∈ {1, 2}, α ∈ {0.3, ..., 0.57}).
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Power Comparison, Sieve , n = 400
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Figure 4. Power of Chow tests, Wn(γ) (diamond), Qn(γ) (triangle), Tn(γ) (dot) and T bn (γ) (square, black): E1 (left), E2
(center) and E3 (right), n = 400, γ = 0.5. Vertical partitions correspond to p = 5, 9, 13 (left), θ = 0.2, 0.4, 0.6, 0.8 (center) and

δ = 0.5p1/4/n1/2(1, 5, 10) (right). Within each vertical partition results are ordered lexicographically as (error ∈ {1, 2, 3}, α ∈
{0.3, 0.5}) for E1 and (error ∈ {1, 2, 3}, α ∈ {0.3, 0.5} or θ) for E2 and E3.
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Figure 5. Bias, Size, and Power of Exclusion Tests in E1: Qen (dot) and T e,bn (square, black). Left to right: vertical partitions
correspond to p = 8, 12, 16. Within each vertical partition results are ordered lexicographically as (error ∈ {1, 2}, α ∈
{0.4, 0.55}).
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Size Comparison of supTests, Multi , n = 500
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Figure 6. E1: Size and Power of Structural break sup tests, supγ∈Γ Wn(γ) (triangle), supγ∈ΓQn(γ) (dot) and supγ∈Γ Tn(γ)
(square, black) in E1: Γ = [0.15, 0.85]. Nominal size is 5%. Vertical partitions correspond to p = 5, 7, 9 (left) and to break size
d0 = 1, 5, 10 (right). Within each vertical partition results are ordered lexicographically as (error ∈ {1, 2}, α ∈ {0.4, 0.55}).
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Appendix A. Proofs of theorems

We begin with some notation. Let

A(γ) = (X∗(γ)′MXX
∗(γ))

−1
X∗(γ)′MX

with X∗(γ) having t-th row x∗t (γ)′ = x′t1 {t/n > γ}, MX is the residual maker for the
matrix X with t-th row x′t, and

B(γ) = RM(γ)−1Ω(γ)M(γ)−1R′.

Also, let Ω̄(γ) = n−1
∑n

t=1 xt(γ)x′t(γ)σ2
t and xt(γ) = (x′t, x

′∗
t (γ))′. It is also convenient

to recall that M̂ = n−1X ′X and define Ŝ(γ) = n−1X ′∗(γ)X(γ). Recall that cross-
referenced items prefixed with ‘S’ can be found in the online supplementary appendix.

A.1. Proofs for Section 3.

Proof of Theorem 3.1 and 3.2. These theorems are marginal convergences of the weak
convergences established under H0 and H` in the proof of Theorem 4.1.

A.2. Proof of Theorem 4.1: For the weak convergence under the null, Section
A.2.1 first establishes the weak convergence of Qn(γ), and then Section A.2.2 proves

V̂ d→
∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s), where W (r) denotes the same limit Gaussian

process as in Theorem ST.2. Then, the claim follows by Theorem ST.2 and the
continuous mapping theorem. After completing the weak convergence under the null,
we prove convergence under the local alternative in Section A.2.3.

A.2.1. Weak convergence of Qn(γ) under H0.

Proof. This step is quite involved and we delegate proofs of many intermediate steps
to Section S.B. Summarizing these steps, Theorem ST.1 therein develops the initial
approximation Qn(γ) = (Rn(γ)− p) /

√
2p + op(1), where Rn(γ) is defined in (3.4).

Then, (SB.44) and Lemma SL.8 yield the second approximation

Rn(γ)− p√
2p

= Sn(γ) + op(1),

uniformly in γ ∈ Γ, where

(A.1) Sn(γ) =
n−1

∑
s 6=t gt(γ)′Ω−1gs(γ)εtεs

γ (1− γ)
√

2p
,

and gt(γ) = xt1 {t/n ≤ γ} − γxt. The claim now follows by a functional CLT for
Sn(γ) established in Theorem ST.2.

A.2.2. Weak convergence of V̂.

Proof. To establish this convergence, by Lemma 1 (c) of Sun (2014) it suffices to show
that

(A.2) V̂ − Ṽ = op(1),
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where Ṽ = 2
n

∑n
t=2

∑n
s=2 k

(
t−s
n/h

)
q̄?s q̄

?
t , q

?
t = (np)−1/2 x′tΩ

−1εt
∑t−1

s=1 xsεs, q̄
?
t = q?t −

n−1
∑n

t=2 q
?
t . Strictly speaking, Sun’s Lemma 1 (c) is stated for the case where the

partial sums of qt are approximated by the partial sums of et, which is iid normal, but
it also holds when it is approximated by the partial sums of antet for any real bounded
array ant by repeating the same argument in the proof. In our case, ant =

√
t/n.

Let ς = n/h, ζ̂t = ĥ′t
∑

s<t ĥs/
√
p, ĥt = Ω̂−1xtêt,

¯̂
ζ/
√
n = n−1

∑n
t=2 qt =

n−1
∑n

t=2 ζ̂t/
√
n, with analogous definitions using Ω and εt for ζt, ht and ζ̄. Then

V̂ − Ṽ = n−2

n−1∑
j=−(n−1)

k (j/ς)n−1

n−|j∧0|∑
t=1+(j∨0)

{(
ζ̂tζ̂t+|j| − ζtζt+|j|

)
+ 2

¯̂
ζ
(
ζ̂t − ζt

)
+

(
¯̂
ζ − ζ̄

)
ζ̂t +

(
¯̂
ζ2 − ζ̄2

)}
.(A.3)

We obtain a bound for

(A.4) ζ̂tζ̂t+|j| − ζtζt+|j| =
(
ζ̂t − ζt

)
ζ̂t+|j| +

(
ζ̂t+|j| − ζt+|j|

)
ζ̂t,

while omitting similar details for the other three terms. To find a bound for (A.4),

first note that ĥt = Op (‖xt‖) = Op

(√
p
)
, by Assumption 3(ii) and finite fourth

moments of xt components (Assumption 3(i)), and because

(A.5) êt = yt − x′tδ̂1(γ) = x′t

(
δ̂1(γ)− δ1

)
+ x′t1 (t/n > γ) δ2` + rt + εt = Op(1).

Hence

(A.6) ζ̂t = ĥ′t
∑
s<t

ĥs/
√
p = Op (n

√
p) .

By the same argument, ht = Op(
√
p) and ζt = Op

(
n
√
p
)

as well.

Now recall that êt−εt = x′t

(
δ̂1(γ)− δ1

)
+x′t1 (t/n > γ) δ2`+rt and

∥∥∥δ̂1(γ)− δ1

∥∥∥ =

Op

(∥∥∥δ̂(γ)− δ
∥∥∥) = Op

(
λ−1
n

√
p/
√
n
)

implying that

(A.7) êt − εt = Op

(
max

{
λ−1
n p/
√
n, p3/4/

√
n
})
.

Thus we obtain
(A.8)

ĥt − ht = Ω−1
(

Ω− Ω̂
)

Ω̂−1xtêt + Ω−1xt (êt − εt) = Op

(
λ−2
n

√
pmax

{
vp, p/

√
n
})
,

using Assumption 3(iii). Using (A.8), we get
(A.9)

ζ̂t−ζt =
(
ĥt − ht

)′∑
s<t

ĥs/
√
p+ĥ′t

∑
s<t

(
ĥs − hs

)
/
√
p = Op

(
λ−2
n n
√
pmax

{
vp, p/

√
n
})
.

Using (A.6) and (A.9) in (A.4), we obtain ζ̂tζ̂t+|j| − ζtζt+|j| =
Op (λ−2

n n2pmax {vp, p/
√
n}). This, along with similarly obtained bounds for
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the remaining terms in (A.3) and Lemma 1 of Jansson (2002), yield

V̂ − Ṽ = Op

(
ς

(∫
R
|k(x)| dx

)
λ−2
n pmax

{
vp, p/

√
n
})

= Op

(
λ−2
n max

{
pvp, p

2/
√
n
})
,

which is negligible by (4.4).

A.2.3. Under the alternative.

Proof. Under H`, we have δ̂2(γ) = A(γ)X∗ (γ0) δ2` + A(γ)ε+ A(γ)r, so that, writing
D (γ, γ0) = A(γ)X∗ (γ0), similar algebra to that used in the online appendix and
Lemmas SL.6-SL.10 yields

Qn(γ) = Sn(γ) +
2nδ′2`D (γ, γ0)′ B̂(γ)−1A(γ)ε√

2p
+

2nδ′2`D (γ, γ0)′ B̂(γ)−1A(γ)r√
2p

+
nδ′2`D (γ, γ0)′

(
B̂(γ)−1 −B(γ)−1

)
D (γ, γ0) δ2`

√
2p

(A.10)

+
nδ′2`D (γ, γ0)′ B̂(γ)−1D (γ, γ0) δ2`√

2p
+ op(1).

For the second term on the RHS of (A.10), note that this equals

2nδ′2`D (γ, γ0)′B(γ)−1A(γ)ε√
2p

+
2nδ′2`D (γ, γ0)′

(
B̂(γ)−1 −B(γ)−1

)
A(γ)ε

√
2p

=
2nδ′2`D (γ, γ0)B(γ)−1A(γ)ε√

2p
+Op

(
λ−2
n n ‖δ2`‖

∥∥n−1X ′ε
∥∥∥∥∥B̂(γ)−B(γ)

∥∥∥ /√p)
=

2nδ′2`D (γ, γ0)′B(γ)−1A(γ)ε√
2p

+Op

(
λ−4
n p1/4 max

{
λ−1
n κp, vp

})
,

proceeding like (SB.38), the second stochastic order above being negligible by (3.1).
By Assumption 1, the first term has mean zero and variance equal to a constant times

τ ′D (γ, γ0)′B(γ)−1A(γ)A(γ)′B(γ)−1D (γ, γ0) τ
√
p

= Op(1/
√
p),

uniformly in γ by Lemmas SL.4 and SL.5 and the calculations therein.
By Assumption 2, the third term on the RHS of (A.10) is

Op

(
n ‖δ2`‖

∥∥n−1X ′r
∥∥ /√p) = Op

(
p−1/4

)
.

The fourth term on the RHS of (A.10) is readily seen to be

Op

(∥∥∥B̂(γ)−1 −B(γ)−1
∥∥∥) = Op (λ−4

n max {λ−1
n κp, vp}), which is negligible by

(3.1). Thus, by (SB.28), (A.10) becomes

Qn(γ) = Sn(γ) +
nδ′2`D (γ, γ0)′B(γ)−1D (γ, γ0) δ2`√

2p
+ op(1)

= Sn(γ) + γ(1− γ)τ ′D (γ, γ0)′MΩ−1MD (γ, γ0) τ + op(1).
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Now, by the definition of its components and steps similar to those elsewhere in the
paper, it is readily seen that ‖D (γ, γ0)− {(γ + γ0(1− γ)− (γ ∨ γ0))/γ(1− γ)} Ip‖ =
op(1), uniformly on Γ and that γ+ γ0(1− γ)− (γ ∨ γ0) = −γγ0 + (γ ∧ γ0) as γ+ γ0−
(γ ∨ γ0) = (γ ∧ γ0) . Thus,

(A.11) Qn(γ)⇒ Q(γ) +
(γγ0 − (γ ∧ γ0))2

γ(1− γ)
lim
n→∞

τ ′MΩ−1Mτ,

on Γ by Theorem ST.2, which gives the distribution of Qn(γ) under H`.

Proof of Theorem 4.2. In Section S.C of the online supplement.

A.3. Proofs for Section 5.

Proof of Theorem 5.1. Follows by Theorem 4.1 and the continuous mapping theo-
rem.

Proof of Theorem 5.2. The proof proceeds exactly as that of Theorem 4.1, but is
simpler due to the absence of γ. We give a brief summary and omit the details.
Because Reβ̂ − r = Rn−1M̂−1

∑n
t=1 xtεt under He

0, we can obtain the approximation

Qen =
n−1 (

∑n
t=1 xtεt)

′
L (
∑n

t=1 xtεt)− p√
2p

+ op(1).

Then, the proof of asymptotic normality follows with wns = ξ′s
∑s−1

t=1 ξt/
√
np as in

Theorem ST.2, but now defining ξt = L1/2xtεt. From this it is readily seen that
E (
∑n

s=1 wns)
2

= Ve + o(1).
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Online supplement to “Robust Inference on Infinite and Growing
Dimensional Time Series Regression”

Abhimanyu Gupta and Myung Hwan ‘Matt’ Seo

S.A. An exponential inequality for partial sums of weakly dependent
random matrices

We develop a stochastic order for a matrix partial sum. Closely related results can
be found in Theorems 4.1 and 4.2 of Chen and Christensen (2015), who establish
such bounds for full matrix sums as opposed to partial sums. Our first theorem is
a Fuk-Nagaev type inequality, using a coupling approach similar to Dedecker and
Prieur (2004), Chen and Christensen (2015) and Rio (2017).

Theorem ST.1. Let {ξi}i∈Z be a β-mixing sequence with support X and r-th mixing
coefficient β(r) and let Ξi,n = Ξn (ξi), for each i, where Ξn : X→ Rd1×d2 is a sequence
of measurable d1×d2 matrix-valued functions. Assume E (Ξi,n) = 0 and ‖Ξi,n‖ ≤ Rn,
for each i, set

s2
n = max

1≤i,j≤n
max

{∥∥E (Ξi,nΞ′j,n
)∥∥ , ∥∥E (Ξ′i,nΞj,n

∥∥)} ,
and define Sk =

∑k
l=1 Ξl,n. Then, for any integer q such that 1 < q ≤ n/2 and

% ≥ qRn,

P

(
sup

1≤k≤n
‖Sk‖ > 4%

)
≤
([

n

q

]
+ 1

)
β(q) + 2 (d1 + d2) exp

(
−%2/2

nqs2
n + qRn%/3

)
.

The required stochastic order now follows by a choice of % in Theorem ST.1:

Corollary SC.1. Under the conditions of Theorem ST.1, if q is chosen as a function
of n such that (n/q) β(q) = o(1) and Rn

√
q log (d1 + d2) = o (sn

√
n) then

sup
1≤k≤n

‖Sk‖ = Op

(
sn
√
nq log (d1 + d2)

)
Proof of Theorem ST.1. For i = 1, . . . , [n/q], define Ui =

∑iq
j=iq−q+1 Ξj,n and U[n/q]+1 =∑n

j=[n/q]q Ξj,n. Now, for an integer j that differs from an integer multiple of q by at

most [q/2], we have sup1≤k≤n ‖Sk‖ ≤ 2[q/2]Rn + supj>0

∥∥∥∑j
i=1 Ui

∥∥∥ . If q is even (re-

spectively odd) then q = 2k (resp. q = 2k + 1) for some positive integer k, implying
[q/2] = [2k/2] = k (resp. [q/2] = [(2k + 1)/2] = k) whence 2[q/2]Rn ≤ qRn (resp.
2[q/2]Rn ≤ (q − 1)Rn). Thus, because % ≥ qRn,

P

(
sup

1≤k≤n
‖Sk‖ > 4%

)
≤ P (2[q/2]Rn > %) + P

(
sup
j>0

∥∥∥∥∥
j∑
i=1

Ui

∥∥∥∥∥ ≥ 3%

)

= P

(
sup
j>0

∥∥∥∥∥
j∑
i=1

Ui

∥∥∥∥∥ ≥ 3%

)
,(SA.1)
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so it suffices to prove that

P

(
sup
j>0

∥∥∥∥∥
j∑
i=1

Ui

∥∥∥∥∥ ≥ 3%

)
≤
([

n

q

]
+ 1

)
β(q) + 2 (d1 + d2) exp

(
−%2/2

nqs2
n + qRn%/3

)
.

Enlarging the probability space as needed, by Lemma 5.1 (Berbee’s Lemma) of Rio
(2017) there is a sequence ξ∗i , 1 ≤ i ≤ [n/q] + 1, such that

(a) The random variable x∗i is distributed as xi for each 1 ≤ i ≤ [n/q] + 1.
(b) The sequences ξ∗2i, 1 ≤ 2i ≤ [n/q] + 1, and ξ∗2i−1, 1 ≤ 2i− 1 ≤ [n/q] + 1, comprise

of independent random variables.
(c) P (ξi 6= ξ∗i ) ≤ β(q + p) for 1 ≤ i ≤ [n/q] + 1.

Denote Ξ∗i,n = Ξn (ξ∗i ), and define U∗i in the obvious manner. Then, we have

(SA.2) sup
j>0

∥∥∥∥∥
j∑
i=1

Ui

∥∥∥∥∥ ≤
[n/q]+1∑
i=1

‖Ui − U∗i ‖+ sup
j>0

∥∥∥∥∥
j∑
i=1

U∗2i

∥∥∥∥∥+ sup
j>0

∥∥∥∥∥
j∑
i=1

U∗2i−1

∥∥∥∥∥ .
Now, by (c), we have

P

[n/q]+1∑
i=1

‖Ui − U∗i ‖ ≥ %

 = P

[n/q]+1∑
i=1

‖Ui − U∗i ‖ ≥

[n/q]+1∑
i=1

%/ ([n/q] + 1)


≤

[n/q]+1∑
i=1

P (‖Ui − U∗i ‖ ≥ %/ ([n/q] + 1))

≤ ([n/q] + 1) β(q + p),

while for all 1 ≤ i ≤ [n/q] + 1 the matrices U∗i =
∑iq

j=iq−q+1 Ξ∗j,n satisfy ‖U∗i ‖ ≤ qRn

and

max
1≤j≤n

max

{∥∥∥∥∥E
(

j∑
i=1

UiU
∗′
i

)∥∥∥∥∥ ,
∥∥∥∥∥E
(

j∑
i=1

U∗
′

i U
∗
i

)∥∥∥∥∥
}
≤ nqs2

n.

Furthermore, the sequence Uj =
∑j

i=1 U
∗
2i is a matrix martingale (because U∗2i is an

independent sequence and EUj = 0) with difference sequence Uj −Uj−1 = U∗2j. Thus,
by Corollary 1.3 of Tropp (2011),

(SA.3) P

(
sup
j>0

∥∥∥∥∥
j∑
i=1

U∗2i

∥∥∥∥∥ ≥ %

)
≤ (d1 + d2) exp

(
−%2/2

nqs2
n + qRn%/3

)
.

The third term on the RHS of (SA.2) is bounded similarly, whence the claim follows.

Proof of Corollary SC.1. In Theorem ST.1, take % = Csn
√
nq log (d1 + d2) for a suf-

ficiently large constant C. Then the claim follows by the condition (n/q) β(q) =

o(1) and because Rn

√
q log (d1 + d2) = o (sn

√
n). To verify that % satisfies that

requirement of Theorem ST.1, note that the latter condition implies Csn
√
n ≥

2



Rn

√
q log (d1 + d2) for sufficiently large n, so % ≥ qRn log(d1 + d2) ≥ qRn for suf-

ficiently large n, assuming d1 + d2 ≥ e ≈ 2.72. The latter condition fails only if the
Ξi,n are scalar.

S.B. For Section 3

We first present an initial approximation of Qn(γ).

Theorem ST.1. Let Assumptions 1-3 hold, and

(SB.1) λ−4
n

√
p
(
λ−1
n κp + vp

)
+ λ−4

n p−1 → 0 as n→∞,
Then, supγ∈Γ |Qn(γ)− (Rn(γ)− p) /

√
2p| = op(1).

Proof. Much of the details are delegated to Lemmas SL.2-SL.10. In particular, we
show in Lemma SL.6 that

(SB.2) Qn(γ) =
nε′A(γ)′B(γ)−1A(γ)ε− p√

2p
+ op(1)

uniformly in γ.
Then, note that

(SB.3) (X∗(γ)′MXX
∗(γ))

−1
= n−1

(
I − M̂−1Ŝ(γ)

)−1

Ŝ(γ)−1,

and

(SB.4) X∗(γ)′MXε = X∗(γ)′ε− Ŝ(γ)M̂−1X ′ε,

because n−1X∗(γ)′X = Ŝ(γ). Using (SB.3) and (SB.4), we may write nε′A(γ)′B(γ)−1A(γ)ε/
√

2p
as

(SB.5)
n−1R1(γ)′R2(γ)′B(γ)−1R2(γ)R1(γ)√

2p

where R1(γ) = Ŝ(γ)−1X ′∗(γ)ε− γ(1− γ)−1M̂−1X ′ε and R2(γ) =
(
I − M̂−1Ŝ(γ)

)−1

.

By adding and subtracting terms we can decompose (SB.5) as
∑4

i=1 ∆i(γ) +Rn(γ),
with

∆1(γ) =

(
R1(γ)−R1(γ)

)′
R2(γ)′B(γ)−1R2(γ)R1(γ)

n
√

2p
,

∆2(γ) =
R1(γ)′R2(γ)′B(γ)−1R2(γ)

(
R1(γ)−R1(γ)

)
n
√

2p
,

∆3(γ) =
R1(γ)′ (R2(γ)− γ−1I)

′
B(γ)−1R2(γ)R1(γ)

n
√

2p
,

∆4(γ) =
R1(γ)′B(γ)−1 (R2(γ)− γ−1I)R1(γ)

γn
√

2p
,

3



where we write R1(γ) = (1− γ)−1M̂−1
(
γ
∑n

t=1 εtxt −
∑[nγ]

t=1 εtxt

)
and

(SB.6)

Rn(γ) =

(∑[nγ]
t=1 εtxt − γ

∑n
t=1 εtxt

)′
M̂−1B(γ)−1M̂−1

(∑[nγ]
t=1 εtxt − γ

∑n
t=1 εtxt

)
γ2 (1− γ)2 n

√
2p

.

By (SB.28), the term sandwiched between the parentheses in the numerator of
(SB.6) is

(SB.7)
(
M̂−1 −M−1

)
B(γ)−1M̂−1 +M−1B(γ)−1

(
M̂−1 −M−1

)
+ γ(1− γ)Ω−1.

Substituting (SB.7) into (SB.6) yields three terms corresponding to the three terms
in (SB.7). The first of these, multiplied by the outside terms in the sandwich formula
in (SB.6), has modulus bounded by a constant times

sup
γ∈Γ

n−1
(
‖X ′ε‖2 + ‖X∗(γ)′ε‖2) ∥∥∥M̂ −M∥∥∥ ‖B(γ)−1‖ ‖M−1‖

∥∥∥M̂−1
∥∥∥2

√
p

= Op

(
λ−4
n

√
pκp
)
,

by Assumption 3 and Lemmas SL.2, SL.4, and also (SB.24), while the second is
similarly shown to be uniformly Op

(√
pκp
)

also. By (SB.1), we conclude that

Rn(γ) = Rn(γ) + op(1),

indicating that the theorem is proved if ∆i(γ) = op(1), i = 1, 2, 3, 4. But by previously
used techniques and Lemmas SL.9 and SL.10, we readily conclude that

sup
γ∈Γ

(∆1(γ),∆2(γ),∆3(γ),∆4(γ)) = Op

(
λ−5
n

√
pκp
)

which are all negligible by (SB.1), proving the theorem.

Write Ω̃(γ) = n−1
∑n

t=1 xt(γ)x′t(γ)ε2
t .

Lemma SL.1. Under Assumptions 1-3, and the conditions of Propositions SP.2 or
SP.1 as applicable,

sup
γ∈Γ

∥∥∥Ω̂(γ)− Ω̃(γ)
∥∥∥ = Op

(
λ−2
n min

{
p3

n
,
ϑ2
pp

n

})
,(SB.8)

sup
γ∈Γ

∥∥∥Ω̃(γ)− Ω̄(γ)
∥∥∥ = Op

(
p√
n

)
.(SB.9)

Proof of Lemma SL.1. The matrix inside the norm on the LHS of (SB.8) can be
decomposed as

∑5
i=1 Ui(γ), with

U1(γ) = n−1

n∑
t=1

xt(γ)x′t(γ)
[
x′t(γ)

(
δ − δ̂(γ)

)]2

,

U2(γ) = n−1

n∑
t=1

xt(γ)x′t(γ)r2
t ,
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U3(γ) = 2n−1

n∑
t=1

xt(γ)x′t(γ)
[
x′t(γ)

(
δ − δ̂(γ)

)]
εt,

U4(γ) = 2n−1

n∑
t=1

xt(γ)x′t(γ)
[
x′t(γ)

(
δ − δ̂(γ)

)]
rt,

U5(γ) = n−1

n∑
t=1

xt(γ)x′t(γ)rtεt.

Recall Lemma SL.3 for supγ∈Γ

∥∥∥δ − δ̂(γ)
∥∥∥ = Op

(
λ−1
n

√
p/n
)
. Now, since the maxi-

mum eigenvalue of a non-negative definite symmetric matrix is less than equal to the
trace,

‖U1(γ)‖ ≤ n−1

n∑
t=1

(x′t(γ)xt(γ))
2
(
δ − δ̂(γ)

)′ (
δ − δ̂(γ)

)
≤ 2pn−1

n∑
t=1

p∑
j=1

x4
tj

∥∥∥δ − δ̂(γ)
∥∥∥2

= Op

(
λ−2
n p2

)
Op (p/n) ,

uniformly in γ, by the fact that supt,j Ex
4
tj <∞ and (SB.26). In a similar fashion,

E sup
γ∈Γ
‖U2(γ)‖ ≤ 2En−1

n∑
t=1

x′txtr
2
t ≤ 2

(
E (x′txt)

2
Er4

t

)1/2

= O
(
λ−2
n p/
√
n
)
.

Similarly and using the fact that E (|εt| |xt) ≤
√
E (ε2

t |xt) = O (1) , we obtain

‖U3(γ)‖ ≤ 4n−1

n∑
t=1

(x′txt)
2 |εt|

∥∥∥δ − δ̂(γ)
∥∥∥2

= Op

(
λ−2
n p3/n

)
,

‖U4(γ)‖ ≤ 4n−1

n∑
t=1

(x′txt)
3/2
∥∥∥δ − δ̂(γ)

∥∥∥ |rt|
≤ 4

∥∥∥δ − δ̂(γ)
∥∥∥(n−1

n∑
t=1

(x′txt)
2

)3/4(
n−1

n∑
t=1

r4
t

)1/4

≤ O

(√
p

n
p3/2 λ

−1
n

n1/4

)
,

‖U5(γ)‖ = 2n−1

n∑
t=1

(x′txt) |rtεt| = Op

(
p/
√
n
)
,

all uniformly in Γ. Thus (SB.8) is established.
To show (SB.9), let xit, i = 1, . . . , p, be a typical element of xt. Then any ele-

ment of Ω̃(γ) − Ω̄(γ) is of the form n−1
∑n

t=1 xit(γ)xjt(γ) (ε2
t − σ2

t ), i, j = 1, . . . , p,
and ε2

t − σ2
t is an MDS by construction. Thus, it has mean zero and variance

n−2
∑n

t=1 Ex
2
it(γ)x2

jt(γ)E
(

(ε2
t − σ2

t )
2 |Ft−1

)
= Op (n−1), by Assumption 1 and the

boundedness of Ex4
it. Thus, E

∥∥∥Ω̃(γ)− Ω̄(γ)
∥∥∥2

= O (p2/n) , and the claim in (SB.9)

follows by Markov’s inequality.
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We establish the weak convergence of

(SB.10) Sn(γ) =
n−1

∑
s 6=t gt(γ)′Ω−1gs(γ)εtεs

γ (1− γ)
√

2p
,

as a process indexed by γ on any compact subset Γ in (0, 1) under the uniform metric.
Let ‘⇒’ denote weak convergence in `∞(Γ).

Theorem ST.2. Under Assumptions 1-5 and (SB.1), Sn(γ)⇒
√
VQ(γ), as n→∞,

on any compact subset Γ in (0, 1).

Proof of Theorem ST.2. First, note that Sn(γ) equals
[
γ (1− γ)

√
2p
]−1

times

1

n

[nγ]∑
s,t=1

s 6=t

x′tΩ
−1xsεtεs −

2γ

n

n∑
s=1

[nγ]∑
t=1

s6=t

x′tΩ
−1xsεtεs +

γ2

n

n∑
s,t=1

s 6=t

x′tΩ
−1xsεtεs

and thus

Sn(γ) =

√
2

γ (1− γ)

[
An(γ)− γ

[
An(1) +An(γ)− Ān(γ)

]
+ γ2An(1)

]
,

=
√

2

(
An(γ)

γ
+
Ān (γ)

(1− γ)
−An(1)

)
,

where

An(γ) =
1

n
√
p

[nγ]∑
s=2

s−1∑
t=1

ξ′tξs,

Ān(γ) =
1

n
√
p

n∑
s=[nγ]+1

s−1∑
t=[nγ]+1

ξ′tξs,

and ξt = {ξti}pi=1 = Ω−1/2xtεt being an mds.
Due to their symmetric nature, the tightness proof is almost the same for both pro-

cesses. We elaborate the tightness of An (γ) , for which we note that An (γ) is a partial
sum process of a heterogeneous martingale difference array wns = ξ′s

∑s−1
t=1ξt/

√
np, and

thus it is sufficient to show

E |An (γ1)−An (γ2)|4 = E

∣∣∣∣∣∣ 1√
n

[nγ2]∑
s=[nγ1]+1

wns

∣∣∣∣∣∣
4

≤ E

(∑
s

E
(
w2
ns|Fs−1

)
/n

)2

+ n−1 max
s
E |wns|4O (|γ2 − γ1|)(SB.11)

= O (|γ2 − γ1|) ,
where we apply the Rosenthal inequality, e.g. Hall and Heyde (1980), for the inequal-
ity and a calculation similar to (SB.14) and (SB.17) for the last equality. Specifically,
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n−1 maxsE |wns|4 ≤ maxsE

(
E((ξ′sξs)

2|Fs−1)
(∑

t1,t2<s
ξ′t1ξt2

)2
)
n−3p−2 = O(n−1/2p2),

by Assumption 4 and the same reasoning as in (SB.17).
Next, we derive finite dimensional convergence by first checking the conditions

of Corollary 3.1 in Hall and Heyde (1980). The first condition is the conditional
Lindeberg condition

(SB.12) For all η > 0,
∑
s

E
((
wns/
√
n
)2

1 (|wns| > η)
∣∣∣Fs−1

)
p→ 0,

for which we check the sufficient Lyapunov condition

(SB.13)
∑
s

E
((
wns/
√
n
)4
∣∣∣Fs−1

)
p→ 0.

The LHS of (SB.13) is positive and, by law of iterated expectations, has mean

n−2
∑
s

Ew4
ns ≤ n−1 max

s
Ew4

ns = O
(
n−1/2p2

)
,

the final bound coming from the tightness argument. This establishes (SB.12).
The second condition of Corollary 3.1 in Hall and Heyde (1980) is

(SB.14)
∑
s

E
(
w2
ns|Fs−1

)
/n− V/2 p→ 0.

Let ∆s = ΥsΞs. Then we want to show n−2p−1
∑

s tr∆s − V/2
p→ 0 but, because

n−2p−1
∑

sEtr∆s → V/2, it suffices to show

(SB.15) n−2p−1
∑
s

(tr∆s − Etr∆s)
p→ 0.

The LHS of (SB.15) has variance
(SB.16)

n−4p−2
∑
s

E (tr∆s − Etr∆s)
2+2n−4p−2

∑
s1<s2

E ((tr∆s1 − Etr∆s1) (tr∆s2 − Etr∆s2)) .

The first term in (SB.16) is bounded by n−4p−2
∑

sE (tr2∆s), and observe that∑
s

E
(
tr2∆s

)
=
∑
s

E
(
tr2 (ΥsΞs)

)
≤

∑
s

E
{
λ

2
(Υs) tr2 (Ξs)

}

≤ E


(∑

s

λ
4

(Υs)

)1/2(∑
s

tr4 (Ξs)

)1/2


≤ Cn1/2E

(∑
s

tr2 (Ξs)

)
.(SB.17)

The above inequalities are obtained as follows: first, the matrix Ξs =
∑

t1,t2<s
ξt1ξ

′
t2

is

symmetric and positive semidefinite as it equals
(∑

t<s Ω−1/2xtεt
) (∑

t<s Ω−1/2xtεt
)′

.
Because Υs is also symmetric psd, Theorem 1 of Fang et al. (1994) yields tr (ΥsΞs) ≤
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λ (Υs) tr(Ξs), whence the remaining inequalities follow by the Cauchy Schwarz in-

equality, (
∑

s a
4
s)

1/4 ≤ (
∑

s a
2
s)

1/2
and Assumption 4.

Because tr
(
Ω−1/2xt1x

′
t2

Ω−1/2
)

= x′t1Ω
−1xt2 , the right side of (SB.17) is

(SB.18) Cn1/2
∑
s

∑
t1,t2<s;t3,t4<s

E
(
x′t1Ω

−1xt2εt1εt2x
′
t3

Ω−1xt4εt3εt4
)
.

The contribution to (SB.18) when t1 = t2 = t3 = t4 is

Cn1/2
∑
s

∑
t<s

E
[(
x′tΩ

−1xt
)2
ε4
t

]
= O

(
n5/2p2

)
,

by Assumptions 1 and 3. Thus, this case contributes O(n−3/2) to (SB.16). Next, the
contribution to (SB.18) from the case (t1 = t2) 6= (t3 = t4) is

Cn1/2
∑
s

∑
t1<t2<s

E
(
x′t1Ω

−1xt1ε
2
t1
E
(
x′t2Ω

−1xt2ε
2
t2

∣∣Ft2−1

))
≤ Cn1/2

∑
s

∑
t1<s

E

(
x′t1Ω

−1xt1ε
2
t1

∑
t2<s

trΥt2

)

≤ Cn3/2p
∑
t1≤n

E

(
x′t1Ω

−1xt1ε
2
t1

∑
t2≤n

λ (Υt2)

)
≤ Cn5/2p

∑
t1≤n

tr
[
E
(
xt1x

′
t1
ε2
t1

)
Ω−1

]
= O

(
n7/2p2

)
,

by Assumption 4, and because trΥt2 ≤ pλ (Υt2). Thus, this case contributesO
(
n7/2p2

)
to SB.17, and therefore O(n−1/2) to (SB.16).

The cases (t1 = t3) 6= (t2 = t4) and (t1 = t4) 6= (t2 = t3) similarly contribute a
constant times

n1/2
∑
s

∑
t1 6=t2

E
(
x′t1Ω

−1xt2εt1εt2
)2 ≤ n1/2

∑
s

∑
t1 6=t2

(
E
(
x′t1Ω

−1xt2εt1εt2
)4
)1/2

= O
(
n7/2p

)
to (SB.18), by Assumption 4 and Jensen’s inequality. This ensures a negligible con-
tribution to (SB.16). Finally,

Cn1/2
∑
s

6=∑
t1,t2<s;t3,t4<s

E
(
x′t1Ω

−1xt2εt1εt2x
′
t3

Ω−1xt4εt3εt4
)

= O

(
n1/2

∑
s

6=∑
t1,t2<s;t3,t4<s

p∑
i,j,k,l=1

|E (xt1,iεt1xt2,jεt2xt3,kεt3xt4,lεt4)|

)

= O

(
n3/2p4 max

s

6=∑
t1,t2<s;t3,t4<s

max
i,j,k,l=1,...,p

|E (xt1,iεt1xt2,jεt2xt3,kεt3xt4,lεt4)|

)
,
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(SB.19)

where
∑6=

t1,t2<s;t3,t4<s
excludes all cases which were considered before. Therefore, in

view of (SB.17) and (SB.19), to establish negligibility of the first term in (SB.16) it
suffices to show

(SB.20) n−5/2p2 max
s

max
i,j,k,l=1,...,p

6=∑
t1,t2<s;t3,t4<s

|E (xt1,iεt1xt2,jεt2xt3,kεt3xt4,lεt4)| = o(1).

The summand on the LHS abve is bounded by

|E (xt1,iεt1xt2,jεt2)| |E (xt3,kεt3xt4,lεt4)|+ |E (xt1,iεt1xt3,kεt3)| |E (xt2,jεt2xt4,lεt4)|
+ |E (xt1,iεt1xt4,lεt4)| |E (xt2,jεt2xt3,kεt3)|
+ |cumijkl (xt1,iεt1 , xt2,jεt2 , xt3,kεt3 , xt4,lεt4)|
= |cij (t1 − t2)| |ckl (t3 − t4)|+ |cik (t1 − t3)| |cjl (t2 − t4)|
+ |cil (t1 − t4)| |ckj (t2 − t3)|
+ |cumijkl (x0,iε0, xt2−t1,jεt2−t1 , xt3−t1,kεt3−t1 , xt4−t1,lεt4−t1)| .

(SB.21)

Because
∑

t1,t2
|cij (t1 − t2)| ≤ n

∑∞
t=−∞ |cij (t)|, by Assumption 5 and (SB.21) the

LHS of (SB.20) is O
(
n2p2/n5/2

)
= o(1), as desired. Thus the first term in (SB.16) is

negligible, and by Assumption 4 we conclude the proof of (SB.15).

We finally derive the limit of the covariance kernel of the process
(
An (γ) , Ān (γ)

)′
.

Note that E (An (γ2)−An (γ1))An (γ1) = 0 for any γ1 < γ2. Thus, we compute

E |An (γ)|2 =
1

n

[nγ]∑
s=1

Ew2
s

=
1

n2

[nγ]∑
s=1

s

(
1

sp
tr

s−1∑
t1,t2=1

E
[
Ω−1xsx

′
sε

2
sΩ
−1xt1x

′
t2
εt1εt2

])

=
([nγ] + 1) [nγ]

2n2
lim

s,p→∞

(
1

sp
tr

s−1∑
t1,t2=1

E
[
Ω−1xsx

′
sε

2
sΩ
−1xt1x

′
t2
εt1εt2

])
+ o (1)

=
γ2V

2
+ o (1) ,

where V is given in (3.2). Thus,

E (An (γ1)An (γ2))→ (γ1 ∧ γ2)2

2
V .

Similarly, note E
(
Ān (γ2)− Ān (γ1)

)
Ān (γ1) = 0 for any γ1 > γ2.

E
∣∣Ān (γ)

∣∣2 = E

∣∣∣∣∣∣ 1

n
√
p

n∑
s=[nγ]+1

s−1∑
t=[nγ]+1

ξ′tξs

∣∣∣∣∣∣
2
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= E

∣∣∣∣∣∣ 1

n
√
p

n−[nγ]∑
s=1

s−1∑
t=1

ξ′t+[nγ]ξs+[nγ]

∣∣∣∣∣∣
2

=
(1− γ)2 V

2
+ o (1) ,

implying that

E
(
Ān (γ1) Ān (γ2)

)
→ (1− (γ1 ∨ γ2))2

2
V

And

E
(
An (γ1) Ān (γ2)

)
=

1 {γ1 > γ2}
n2p

[nγ1]∑
s=[nγ2]+1

trE

ξsξ′s s−1∑
t=1

s−1∑
u=[nγ2]+1

ξtξ
′
u


=

1 {γ1 > γ2}
n2

[nγ1]∑
s=[nγ2]+1

(s− 1− [nγ2])V + o (1)

=
1 {γ1 > γ2}

2
(γ1 − γ2)2 V + o (1) ,

under Assumption 4 that

lim
s,p→∞

 1

sp
tr

s∑
t1=1

[sγ]∑
t2=1

E
(
Ω−1xsx

′
sε

2
s

) (
Ω−1xt1x

′
t2
εt1εt2

) = γV .

Therefore, we conclude that(
An (γ)
Ān (γ)

)
⇒
√
V
2

(
W (γ)
W̄ (γ)

)
.

Finally, apply the continuous mapping theorem to get

Sn(γ) =
√

2

(
An(γ)

γ
+
Ān (γ)

(1− γ)
−An(1)

)
⇒
√
V
(
W (γ)

γ
+

W̄ (γ)

(1− γ)
−W (1)

)
=
√
VQ(γ),

on any compact subset Γ in (0, 1).

We note some preliminary calculations useful for the sequel. Note that

δ̂2(γ) = A(γ)y = δ2 + A(γ)e = δ2 + A(γ)ε+ A(γ)r.

Because δ2 = 0 under H0, we have

(SB.22) Wn(γ) = n (ε+ r)′A′(γ)B̂(γ)−1A(γ) (ε+ r) ,

where B̂(γ) = RM̂(γ)−1Ω̂(γ)M̂(γ)−1R′.
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Lemma SL.2. Under the conditions of Theorem ST.1, for all sufficiently large n,

sup
γ∈Γ

∥∥∥M̂(γ)
∥∥∥ = Op(1), sup

γ∈Γ

∥∥∥M̂(γ)−1
∥∥∥ = Op(λ

−1
n ).

Proof. Note that, by the triangle inequality,∥∥∥M̂(γ)−1
∥∥∥ ≤ ∥∥∥M̂(γ)−1

∥∥∥∥∥∥M̂(γ)−M(γ)
∥∥∥∥∥M(γ)−1

∥∥+
∥∥M(γ)−1

∥∥ ,
so ∥∥∥M̂(γ)−1

∥∥∥(1−
∥∥∥M̂(γ)−M(γ)

∥∥∥∥∥M(γ)−1
∥∥) ≤ ∥∥M(γ)−1

∥∥ ,
using the triangle inequality. Taking limits of the last displayed expression as n→∞
and using Assumption 3, the rate condition (SB.1) yields

∥∥∥M̂(γ)−1
∥∥∥ = Op(λ

−1
n ). Next,

noting that ∥∥∥M̂(γ)
∥∥∥ ≤ ∥∥∥M̂(γ)−M(γ)

∥∥∥+ ‖M(γ)‖ ,
the lemma follows by using Assumption 3.

It is useful to first establish the stochastic order of
∥∥∥δ − δ̂(γ)

∥∥∥.

Lemma SL.3. Under the conditions of Theorem ST.1, supγ∈Γ

∥∥∥δ − δ̂(γ)
∥∥∥ =

Op

(
λ−1
n

√
p/n
)
.

Proof. Note that δ − δ̂(γ) = M̂(γ)−1n−1
∑n

t=1 xt(γ)et and that∥∥∥δ − δ̂(γ)
∥∥∥2

= Op

∥∥∥M̂(γ)−1
∥∥∥2

n−2

∥∥∥∥∥
n∑
t=1

xt(γ)et

∥∥∥∥∥
2
 = λ−2

n Op

n−2

∥∥∥∥∥
n∑
t=1

xt(γ)et

∥∥∥∥∥
2


= λ−2
n Op

n−2

∥∥∥∥∥
n∑
t=1

xt(γ)εt

∥∥∥∥∥
2

+ n−2 ‖X(γ)′r‖2

 ,

uniformly in γ, by Lemma SL.2. Next, E
(
n−2 ‖

∑n
t=1 xt(γ)εt‖2

)
equals

(SB.23) E

(
n−2

n∑
s,t=1

x′t(γ)xs(γ)εsεt

)
,

which is
(SB.24)

n−2

n∑
t=1

E ‖xt(γ)‖2 σ2
t + 2n−2

∑
s<t

E (x′t(γ)xs(γ)E (εsE (εt|εr, r < t))) = Op (p/n) ,

by Assumptions 1 and Ex′t(γ)xt(γ) = O (p). Finally,

(SB.25) n−2 ‖X(γ)′r‖2 ≤ n−2 ‖X(γ)‖2 ‖r‖2 = λ
(
M̂(γ)

)
n−1 ‖r‖2 = Op (1/n) ,
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by (2.2) and Lemma SL.2. Therefore,

(SB.26) sup
γ∈Γ

∥∥∥δ − δ̂(γ)
∥∥∥ = λ−1

n Op

(√
p/
√
n
)
,

by Markov’s inequality.

Observe that because

(SB.27) M(γ)−1 =

[
(1− γ)−1M−1 (1− γ)−1M−1

(1− γ)−1M−1 [γ(1− γ)]−1M−1

]
,

we have

(SB.28) B(γ)−1 = γ(1− γ)MΩ−1M.

Lemma SL.4. Under the conditions of Theorem ST.1,

sup
γ∈Γ
{λ (B(γ))}−1 = O(λ−1

n ) and sup
γ∈Γ

λ (B(γ)) = O(λ−2
n ).

Proof. {λ (B(γ))}−1 = λ (B(γ)−1), which, using (SB.28), is bounded by

Cλ
(
MΩ−1M

)
= C

∥∥MΩ−1M
∥∥ ≤ Cλ (M)2 λ (Ω)−1 = O(λ−1

n ),

uniformly on the compact Γ, using Assumption 3(ii). For the second part of the
claim, because (SB.28) implies B(γ) = [γ(1− γ)]−1M−1ΩM−1, it follows similarly
that λ (B(γ)) is uniformly bounded by a constant times 1

λ
(
M−1ΩM−1

)
=
∥∥M−1ΩM−1

∥∥ ≤ λ (M)−2 λ (Ω) = O(λ−2
n ).

Lemma SL.5. Under the conditions of Theorem ST.2,

sup
γ∈Γ

∥∥∥B̂(γ)
∥∥∥ = Op(λ

−2
n ), sup

γ∈Γ

∥∥∥B̂(γ)−1
∥∥∥ = Op(λ

−1
n ).

Proof. First, define B̃(γ) = RM̂(γ)−1Ω(γ)M̂(γ)−1R′. We will use uniform bounds in
the calculations without explicitly mentioning this in each step to simplify notation.
Proceeding as in the proof of Lemma SL.2, we can write∥∥∥B̂(γ)−1

∥∥∥(1−
∥∥∥B̂(γ)− B̃(γ)

∥∥∥) ≤ ∥∥∥B̃(γ)−1
∥∥∥ ,(SB.29) ∥∥∥B̃(γ)−1

∥∥∥(1−
∥∥∥B̃(γ)−B(γ)

∥∥∥) ≤ ∥∥B(γ)−1
∥∥ .(SB.30)

Next, Lemma SL.2 implies

(SB.31)
∥∥∥B̂(γ)− B̃(γ)

∥∥∥ ≤ ‖R‖2
∥∥∥M̂(γ)−1

∥∥∥2 ∥∥∥Ω̂(γ)− Ω(γ)
∥∥∥ = Op

(
λ−2
n vp

)
.

On the other hand, B̃(γ)−B(γ) equals

R
[
M̂(γ)−1Ω(γ)M̂(γ)−1 −M(γ)−1Ω(γ)M(γ)−1

]
R′.

1If λ(MΩ−1M) ≥ λn, the bound in this lemma becomes O(λ−1
n ).

12



By adding and subtracting terms inside the square brackets, this can be written as

R
[
M(γ)−1

(
M̂(γ)−M(γ)

)
M̂(γ)−1Ω(γ)M̂(γ)−1

]
R′

+RM(γ)−1Ω(γ)M(γ)−1
(
M̂(γ)−M(γ)

)
M̂(γ)−1R′.(SB.32)

By this fact, Assumption 3, Lemmas SL.1 and SL.2, and (SB.1), we deduce from
(SB.32) that

(SB.33)
∥∥∥B̃(γ)−B(γ)

∥∥∥ = Op

(
λ−3
n κp + λ−2

n vp
)

= op(1).

The lemma now follows by taking limits of (SB.29) and (SB.30), and using (SB.31),
(SB.33) and Lemma SL.4.

Lemma SL.6. Under the conditions of Theorem ST.2 and H0,

Wn(γ)√
2p

=
nε′A(γ)′B(γ)−1A(γ)ε√

2p
+ op(1).

Proof. Recall the notation M̂ = n−1X ′X and Ŝ(γ) = n−1X ′∗(γ)X(γ). Notice that
from (SB.22) we obtain
(SB.34)

Wn(γ)√
2p

=
nε′A(γ)′B̂(γ)−1A(γ)ε√

2p
+

2nε′A(γ)′B̂(γ)−1A(γ)r√
2p

+
nr′A(γ)′B̂(γ)−1A(γ)r√

2p
,

with r the n× 1 vector with elements rt. Begin with the modulus of the last term on
the RHS of (SB.34). Recalling the relation in (SB.3) and (SB.4) for A(γ)r, we bound
it by Cn/

√
2p times∥∥n−1X ′r

∥∥2
∥∥∥I − Ŝ(γ)M̂−1

∥∥∥2 ∥∥∥(n−1X∗(γ)′MXX
∗(γ)

)−1
∥∥∥2 ∥∥∥B̂(γ)−1

∥∥∥ .(SB.35)

= Op(λ
−5
n κ2

pn
−1),

where Assumption 2 bounds the first term, Lemma SL.9 yields a bound for the second
and third terms after expanding the third term by (SB.3), and the last term isOp (λ−1

n )
Lemma SL.5. Thus (SB.35) implies that the third term on the RHS of (SB.34) is
op (1).

We now show that the first term on the RHS of (SB.34) is

(SB.36)
nε′A(γ)′B(γ)−1A(γ)ε√

2p
+ op(1).

Indeed, as above,

nε′A(γ)′
(
B̂(γ)−1 −B(γ)−1

)
A(γ)ε

√
2p

=
n
√
p
Op

(∥∥n−1X ′ε
∥∥2
∥∥∥B̂(γ)−1 −B(γ)−1

∥∥∥)
=
√
pOp

(
B(γ)−1

∥∥∥B(γ)− B̂(γ)
∥∥∥ B̂(γ)−1

)
= λ−4

n

√
pOp

(
λ−1
n

∥∥∥M̂(γ)−M(γ)
∥∥∥+(SB.37)
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∥∥∥Ω̂(γ)− Ω(γ)
∥∥∥)

= Op

(
λ−4
n

√
p
(
λ−1
n κp + vp

))
,(SB.38)

by Lemma SL.5, using equations (SB.24), (SB.31) and (SB.33)) in the proofs thereof.
This is negligible by (SB.1).

For the second term on the RHS of (SB.34), apply the Cauchy-Schwarz inequality
and the preceding two results. Then, the second term becomes op(1), establishing the
lemma.

Denote, for convenience, C(γ) = [γ (1− γ)]−1 n−1Σ
1
2G(γ)Ω−1G(γ)Σ

1
2 , where Σ =

diag [σ2
1, . . . , σ

2
n].

Lemma SL.7. Under the conditions of Theorem ST.2, any eigenvalue λ of C(γ)
satisfies

P (|λ(λ− 1)| < η)→ 1,

as n→∞, for any η > 0.

Proof. We have

C(γ)2 = [γ (1− γ)]−1 n−1Σ
1
2G(γ)Ω−1 [γ (1− γ)]−1 n−1G(γ)′ΣG(γ)Ω−1G(γ)′Σ

1
2

= [γ (1− γ)]−1 n−1Σ
1
2G(γ)Ω−1ΩΩ−1G(γ)′Σ

1
2

+ [γ (1− γ)]−1 n−1Σ
1
2G(γ)Ω−1

{
[γ (1− γ)]−1 n−1G(γ)′ΣG(γ)− Ω

}
× Ω−1G(γ)′Σ

1
2

= C(γ) +D(γ),

say. We now prove that

(SB.39) ‖D(γ)‖ = op(1) as n→∞.
In view of Assumptions 1 and 3(i), to prove (SB.39) it suffices to show that

(SB.40)
∥∥[γ (1− γ)]−1 n−1G(γ)′ΣG(γ)− Ω

∥∥ = op(1).

But

n−1G(γ)′ΣG(γ) = n−1(1− 2γ)

[nγ]∑
t=1

xtx
′
tσ

2
t + γ2Ω

= (1− 2γ)

n−1

[nγ]∑
t=1

xtx
′
tσ

2
t − γΩ

+ [γ(1− γ)] Ω,

so (SB.40) follows if
∥∥∥n−1

∑[nγ]
t=1 xtx

′
tσ

2
t − γΩ

∥∥∥ = op(1), which is true by Assumption

3. Thus (SB.39) is established.
Let λ be any eigenvalue of C(γ) and w be the corresponding eigenvector, normalised

to ‖w‖ = 1. Because λw = C(γ)w, we have λC(γ)w = C(γ)2w = [C(γ) +D(γ)]w =
λw +D(γ)w, implying λ(λ− 1)w = D(γ)w. Thus

(SB.41) |λ(λ− 1)| = ‖D(γ)w‖ ≤ ‖D(γ)‖ .
14



Then, for arbitrary η > 0,

P (|λ(λ− 1)| < η) = P (‖D(γ)w‖ < η) ≥ P (‖D(γ)‖ < η)→ 1, as n→∞,
by (SB.39). This completes the proof.

We have Rn(γ) = [γ (1− γ)]−1 n−1ε′G(γ)′Ω−1G(γ)′ε, which in turn equals

(SB.42) [γ (1− γ)]−1 n−1

n∑
t,s=1

gt(γ)′Ω−1gs(γ)εtεs.

Note that tr {C(γ)} is the sum of the eigenvalues of C(γ), which is a symmetric
matrix with rank p. Thus, in view of Lemma SL.7 it has p eigenvalues that approach
1 in probability, with the remainder approaching 0. Thus,

(SB.43)
Rn(γ)− tr (C(γ))√

2p
=
Rn(γ)− p√

2p
+ op(1),

whence using (SB.42) we deduce that (SB.43) equals

(SB.44)
n−1

∑n
t=1 gt(γ)′Ω−1gt(γ) (ε2

t − σ2
t ) + n−1

∑
s 6=t gt(γ)′Ω−1gs(γ)εtεs

γ (1− γ)
√

2p
.

Lemma SL.8. Under the conditions of Theorem ST.2,

(SB.45) sup
γ∈Γ

n−1

n∑
t=1

gt(γ)′Ω−1gt(γ)
(
ε2
t − σ2

t

)
= op(1) as n→∞.

Proof. Conditional on xt, the LHS of (SB.45) has mean zero and variance

n−2

n∑
t=1

(
gt(γ)′Ω−1gt(γ)

)2
E
[(
ε2
t − σ2

t

)2
]

(SB.46)

+ 2n−2
∑
s<t

gs(γ)′Ω−1gs(γ)gt(γ)′Ω−1gt(γ)E
[(
ε2
t − σ2

t

) (
ε2
s − σ2

s

)]
.(SB.47)

The expectation in (SB.47) equals E [(ε2
t − σ2

t )E ((ε2
s − σ2

s) |εs)] = 0, by Assumption
1. Also by Assumption 1, (SB.46) is bounded by a constant times

n−2
∥∥Ω−1

∥∥2
n∑
t=1

‖gt(γ)‖4 ≤ n−2
∥∥Ω−1

∥∥2
n∑
t=1

(
‖xt(γ)‖4 + γ4 ‖xt‖4) = Op

(
λ−2
n

p2

n

)
,

uniformly in γ, the last equality following by Assumption 3(i).

Lemma SL.9. Under the conditions of Theorem ST.2, as n→∞,∥∥∥∥(I − M̂−1Ŝ(γ)
)−1

− γ−1I

∥∥∥∥ = Op

(
λ−1
n κp

)
.

Proof. First note that
∥∥∥(I − M̂−1Ŝ(γ)

)
− γI

∥∥∥ equals∥∥∥(1− γ)I − M̂−1
(
Ŝ(γ)− (1− γ)M

)
− (1− γ)M̂−1M

∥∥∥
15



≤ (1− γ)
∥∥∥M̂−1

∥∥∥(∥∥∥M̂ −M∥∥∥+
∥∥∥Ŝ(γ)− (1− γ)M

∥∥∥)
= Op

(
λ−1
n κp

)
,

by Assumptions 3. Since(
I − M̂−1Ŝ(γ)

)−1

− γ−1I = −γ−1
(
I − M̂−1Ŝ(γ)

)−1 {(
I − M̂−1Ŝ(γ)

)
− γI

}
and

∥∥∥∥(I − M̂−1Ŝ(γ)
)−1
∥∥∥∥ ≤ ∥∥∥M̂∥∥∥∥∥∥∥(n−1

∑[nγ]
t=1 xtx

′
t

)−1
∥∥∥∥ = Op (λ−2

n κp), by Assump-

tion 3, the lemma is established.

Lemma SL.10. Under the conditions of Theorem ST.2, as n→∞,∥∥∥∥∥∥
(
Ŝ(γ)−1X ′∗(γ)ε− γ(1− γ)−1M̂−1X ′ε

)
− M̂−1

(∑[nγ]
t=1 εtxt − γ

∑n
t=1 εtxt

)
1− γ

∥∥∥∥∥∥
= Op

(
λ−2
n

√
npκp

)
.

(SB.48)

Proof. First note that

(1− γ)−1

 [nγ]∑
t=1

εtxt − γ
n∑
t=1

εtxt

 = (1− γ)−1X ′∗(γ)ε− γ(1− γ)−1X ′ε,

so the term inside the norm in (SB.48) equals
(SB.49)(
Ŝ(γ)−1 − (1− γ)−1M̂−1

)
X ′∗(γ)ε = (1−γ)−1M̂−1

(
(1− γ)M̂ − Ŝ(γ)

)
Ŝ(γ)−1X ′∗(γ)ε.

The norm of the RHS of (SB.49) is bounded by a constant times∥∥∥M̂−1
∥∥∥∥∥∥Ŝ(γ)−1

∥∥∥
∥∥∥∥∥∥n−1

[nγ]∑
t=1

xtx
′
t − γM

∥∥∥∥∥∥+
∥∥∥M̂ −M∥∥∥

 ‖X ′∗(γ)ε‖ = Op

(
λ−2
n

√
npκp

)
,

the last equality following from Assumptions 3, Lemma SL.2, and also (SB.24).

S.C. Proof of Theorem 4.2

Proof. Let ε? denote the vector collecting ε?t = êt(γ)ξt, where ξt is an iid sequence of
Rademacher variables. Then,

δ̂?2(γ) = A(γ)ε?,

since δ2 = 0 under H0. Also, we have

(SC.1) W ?
n(γ) = n (ε?)′A′(γ)B̂?(γ)−1A(γ)ε?,

where B̂?(γ) = RM̂(γ)−1Ω̂?(γ)M̂(γ)−1R′ and Ω̂?(γ) is constructed as Ω̂(γ) with the
bootstrap sample.
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We begin with

E?W̄ ?
n(γ) = ntrA′(γ)B̂(γ)−1A(γ)E?ε?(ε?)′,

= ntrA′(γ)B̂(γ)−1A(γ)diag
[
ê1(γ)2, ..., ên(γ)2

]
,(SC.2)

where W̄ ?
n(γ) = n (ε?)′A′(γ)B(γ)−1A(γ)ε?. Note that the term in (SC.2) subtracted

by p is op(p
1/2) uniformly in γ due to Lemma SL.7, Lemma SL.8, and Lemma SL.3.

Next, we show that the order of the difference between E?W̄ ?
n(γ) and E?W ?

n(γ) is
op(p

1/2). Following (SB.38), write

E?|W̄ ?
n(γ)−W ?

n(γ)| ≤ E?
(∥∥n−1/2A′(γ)ε?

∥∥2
∥∥∥B̂(γ)−1 − B̂?(γ)−1

∥∥∥) .
To apply the Cauchy-Schwarz inequality, and to bound E?

∥∥∥B̂(γ)−1 − B̂?(γ)−1
∥∥∥2

, we

derive bounds for E?
∥∥∥B̂?(γ)−1

∥∥∥4

and E?
∥∥∥B̂(γ)− B̂?(γ)

∥∥∥4

. Since both are similar

to the derivations for the sample counterparts in Lemmas SL.1 and SL.5, we only

illustrate the latter. Recall B̂(γ) − B̂?(γ) = R′M̂(γ)−1
(

Ω̂(γ)− Ω̂?(γ)
)
M̂(γ)−1R

and supγ∈Γ

∥∥∥M̂(γ)−1
∥∥∥ = Op(λ

−1
n ) by Lemma SL.2. Following the steps in the proof

of Lemma SL.1, the term Ω̂(γ) − Ω̂?(γ) is given by the sum of U?
1 (γ) and U?

3 (γ)

therein. Due to the triangle inequality and cr inequality, we only show E?
∥∥U?

j (γ)
∥∥4

=

Op(λ
−8
n p12/n4), for j = 1, 3. Note that by the independence of the sequence ξt

E? ‖U?
1 (γ)‖4 ≤

(
n−1

n∑
t=1

(x′t(γ)xt(γ))
2

)4

E?

((
δ? − δ̂?(γ)

)′ (
δ? − δ̂?(γ)

))4

≤ Op(p
8)
∥∥∥M̂(γ)−1

∥∥∥8

n−8
∑

t1,t2,t3,t4

ê2
t1
x′t1xt1 · · · ê

2
t4
x′t4xt4 ,

to yield the desired result and the bound for U?
3 is similarly obtained. Putting these

together yields E?
∥∥∥B̂(γ)−1 − B̂?(γ)−1

∥∥∥2

= Op(λ
−10
n p12/n4).

Next, similar to the preceding bound,

E?
∥∥n−1/2A′(γ)ε?

∥∥4
= Op(λ

−4
n )

(
n−1

n∑
t=1

x′txtê
2
t

)2

= Op(λ
−4
n p2),

as ξt is an iid Rademacher sequence. Then, under the condition (3.1), λ−14
n p14/n4 =

o(p) and this completes the proof.

S.D. Primitive conditions for Examples E2 and E3

For the AR model in E2, a set of primitive conditions is given in the next Proposi-
tion. Gonçalves and Kilian (2007) has emphasized the empirical relevance of allowing
for conditional heteroskedasticity in autoregressive models, which is allowed below by
relaxing Berk (1974)’s condition of an iid error to an mds process. Let L be the lag
operator and b (L) =

∑∞
j=1 bjL

j denote the lag polynomial.
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Proposition SP.1. Suppose that (1) b (z) 6= 0 for any |z| ≤ 1 and b−1(eiλ) exists
and is nonzero for −π < λ ≤ π. (2) {εt} is a stationary mds that possesses a density
of bounded variation, Eεt = 0 and E |εt|κ < C for some κ ≥ 4 and E(ε2

t |Ft−1) is
bounded and bounded away from zero. (3) p3 = o (n). (4)

∑∞
j=p |bj| = o

(
n−1/2

)
. (5)

(σt, yt−1) is ρ-mixing with
∑∞

j=1 ρ(2j) < ∞. Then, Assumptions 1 - 3 are satisfied

with κp = vp = p−1/3.

Proof. Lemma 3 of Berk (1974) established that the minimum eigenvalue of the lim-
iting autocovariance matrix M is bounded away from zero. As for Ω, note that for
some c > 0, which is an a.s. lower bound of E (ε2

t |Ft−1), and any |a| = 1

a′Ωa = E (a′xt)
2
ε2
t = E (a′xt)

2
E
(
ε2
t |Ft−1

)
≥ cE (a′xt)

2
,

to conclude that the minimum eigenvalue of Ω is also bounded away from zero.
Lemma 3.4 of Peligrad (1982) yields E|

∑n
t (z2

t − Ez2
t )| ≤ n

∑
i ρ(2i)Ez4

t for a ρ-
mixing sequence zt. Since zt = σtyt−j for j = 1, ..., p in the current case and (σt, yt−1) is
ρ-mixing, the bound may be set as n

∑
i ρ(0∨(2i−p))Ez4

t ≤ n(
∑

i ρ(2i)+log p)Eσ4
t y

4
t−j

for any j ≤ p Then, ‖Ω̄(γ)− Ω(γ)‖ = Op(n
−1p2 log p). The rest of the proof is given

in Lemma SL.1.

Let Z ⊆ Rk denote the support of zt in E3. The following proposition provides
some more primitive conditions for E3 as given by Chen and Christensen (2015).

Proposition SP.2. Suppose that the following hold: (1) The sequence {zt} is strictly
stationary and β-mixing with β-mixing coefficient β(·). Let q = q (n) be a sequence
of integers satisfying β(q)n/q → 0 as n → ∞ and q ≤ n/2; (2) Z is compact and
rectangular, and supz∈Z ‖xnt(z)‖ = O (ϑp); (3) The xt are tensor-products of power
series, univariate polynomial spline, trigonometric polynomial wavelet or orthogonal
polynomial bases. Then, Assumptions 1 -3 are met with κp = ϑp

√
q(log p)/n and

vp = min
{
p3/n, ϑ2

pp/n
}

.

Proof. We prove that Assumption 3 is met for the partial sum only, with the result
for the full sum following from Corollary 4.2 of Chen and Christensen (2015). By
Assumption 3, we can normalize the xt so that E (xtx

′
t) = Ip without loss of generality.

The result then follows by Corollary SC.1 by taking Ξt,n = n−1 (xtx
′
t − Ip), which

implies that the terms in Theorem ST.1 have bounds: Rn ≤ n−1
(
Cϑ2

p + 1
)

and

s2
n ≤ n−2

(
Cϑ2

p + 1
)
. The second claim follows similarly. The rest of the proof is

given in Lemma SL.1.

The permissible mixing decay rate depends on the dimension p of xt: larger p re-
quires faster mixing decay. Both exponential and geometric decays are allowed. See
the discussions of Assumption 4 and Remark 2.3 in Chen and Christensen (2015)
for more detailed discussion in relation to the sieve basis functions. The sequence q
depends on the mixing decay rate. For instance, if β (q) decays at an exponential
rate, q can be set as log n. If all elements of xt (·) are bounded, then ϑp = p1/2. Under
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suitable conditions, it can be shown that ϑp = p for power series or orthogonal poly-
nomials and ϑp = p1/2 for univariate polynomial splines, trigonometric polynomials
or wavelets, see Newey (1997); Chen and Christensen (2015).
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