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Abstract

Consider an economy with equal amounts of N types of goods,

to be allocated to agents with strict quasi-convex preferences over

lotteries. We show that ex-ante, all Pareto efficient allocations give

almost all agents lotteries over at most two outcomes. Therefore, even

if all preferences are the same, some identical agents necessarily receive

different lotteries. Our results provide a simple criterion to show that

many popular allocation mechanisms are ex-ante inefficient. Assuming

the reduction axiom, social welfare deteriorates by first randomizing

over these binary lotteries. Efficient full ex-ante equality is achieved

if agents satisfy the compound independence axiom.
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1 Introduction

Ten thousand children need to be allocated into ten schools, each accommo-

dating one thousand of them. The schools are not the same, and parents

may rank them in different ways. However, if all children are considered

equal, then a social lottery, where each student has an equal chance to at-

tend each of the ten schools, seems to be the best solution.1 This procedure

is egalitarian — everyone gets the same lottery — and feasible. But is it

efficient? Specifically, is there no other procedure such that ex-ante, before

people know their allocated school, they will get a better lottery?

If individual preferences over the schools are not the same, then this

procedure may be inefficient, for example, if each school is ranked best by

exactly 1000 parents. It is true that if all individuals are expected utility

maximizers and have the same preferences over lotteries (and in particular,

over the schools), then this procedure leads to an efficient allocation. This is

also the case if all have the same quasi-concave preferences, i.e. preferences

for randomization over lotteries. But if preferences are quasi-convex, and a

mixture of two indifferent lotteries is inferior to the mixed lotteries, then we

show that this procedure is never efficient, regardless of whether individual

preferences are the same or not. Such preferences are implied by some well

known alternatives to expected utility theory (for example, Tversky and

Kahneman’s [39] Cumulative Prospect Theory, where risk aversion implies

quasi-convexity. See discussion below).

We analyze first an economy where N types of goods with k units each

need to be allocated, one for each of Nk agents. All agents have strict pref-

erences over the basic goods, and continuous, monotone (with respect to

first-order stochastic dominance), and strictly quasi-convex preferences over

1For example, divide the students into ten groups A1, . . . , A10 of size 1000 each. Choose

with probability 1
10 one of the ten permutations σ1, . . . , σ10 of (1, . . . , 10), where σj(i) =

(i+ j − 1) (mod 10) + 1, j = 1, . . . , 10.
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lotteries. Agents’ preferences over the goods and over lotteries are not nec-

essarily the same. Our first result (Theorem 1) shows that any feasible and

ex-ante Pareto efficient allocation must give all but ‘not too many’ agents

binary lotteries, that is, lotteries with not more than two outcomes. More-

over, the proportion of agents who hold non-binary lotteries vanishes as k

increases.2 In particular, even if all preferences are the same, some identical

agents necessarily receive different lotteries. For the case of identical pref-

erences, we establish existence of an ideal solution: a feasible and efficient

solution, in which all the lotteries used are equally attractive (Theorem 2).

We also derive an upper bound on the number of lotteries used.

We consider some extensions of our basic framework. We first analyze

assignment problems where all agents have the same preferences, but the

number of units to be allocated is not equal to the number of agents. We

then study a continuum economy with the same mass of agents and goods,

where each type has its own quasi-convex preferences over lotteries. In this

part we are looking for no-envy allocations, that is, allocations of lotteries

where no person prefers to receive a lottery obtained by someone else. We

show that under a mild condition on preferences, a feasible and efficient

allocation for the continuum economy with strictly quasi-convex preferences

yields all agents binary lotteries and the set of no-envy allocations is not

empty. Moreover, if all agents have the same preferences, then equality with

such lotteries is obtained (Theorem 4).

The last part of the paper discusses possible merits of random allocations

of the binary lotteries among individuals with identical preferences. The

need for such an extra layer of randomization may be due to lack of con-

fidence in policy makers’ integrity or willingness of the allocating agencies

to demonstrate they are unbiased. We show how individual preferences over

two-stage lotteries imply different answers to this question. If they simplify

2As we show in Proposition 1 of Section 2.1, this result, with a small caveat, essentially

also holds when individuals have different expected utility preferences.

3



such lotteries by multiplying the probabilities of the two stages, this extra

randomization will reduce participants utilities. But if decision makers in-

stead satisfy the compound independence axiom, according to which if they

prefer q to q′ they will prefer to replace q′ with q in any compound lottery

that includes the former as an outcome, then such randomizations will not

change agents’ welfare.

Our analysis depends on the assumption that individual preferences over

lotteries are quasi-convex. Expected utility, where preferences are linear

in the probabilities, is the boundary case. Strict quasi-convexity is for ex-

ample the case with the popular family of rank-dependent utilities models

(Quiggin [31]), which also includes Yaari’s [46] dual theory, as well as Tver-

sky and Kahneman’s [39] Cumulative Prospect Theory, where risk aversion

implies quasi-convexity. Other models which can exhibit quasi-convexity in-

clude quadratic utility (Chew, Epstein, and Segal [11]), and Köszegi and Ra-

bin’s [24] models of reference-dependence. In addition, Machina [25] pointed

out that quasi-convexity occurs if, as is common in many applications such

as insurance purchasing, before the lottery is resolved agents can take ac-

tions that affect their final utility. If the optimal action depends on the

probabilities, the induced maximum expected utility will be convex in the

probabilities, meaning that even if the underlying preferences are expected

utility, induced preferences over the optimal lotteries will be quasi-convex.

The experimental evidence on quasi-convexity versus quasi-concavity is

mixed. Most of the experimental literature that documents violations of

expected utility (e.g., Coombs and Huang [13]) found either preference for

randomization or aversion to it. Camerer and Ho [9] find support for quasi-

convexity over gains and quasi-concavity over losses. An example of behavior

that distinguishes between the two attitudes to mixture is the probabilistic

insurance problem of Kahneman and Tversky [23]. They showed that in

contrast with experimental evidence, any risk averse expected utility max-

imizer must prefer probabilistic insurance to regular insurance. Sarver [33]
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pointed out that this result readily extends to the case of quasi-concave pref-

erences. In contrast, quasi-convex preferences can accommodate aversion to

probabilistic insurance together with risk aversion (for example, risk-averse

rank-dependent utility; see Segal [34]). Sarver further illustrates that quasi-

convex preferences are consistent with increasing marginal willingness to pay

for insurance at some levels of coverage; another plausible property that in

most models requires violation of risk aversion. In the context of group de-

cision making, Dillenberger and Raymond [17] show that quasi-convexity of

preferences in the individual level is equivalent to the consensus effect: indi-

viduals tend to conform to the choices of others in group decisions, compared

to choices made in isolation.

The idea of using lotteries to allocate indivisible goods is not new (see,

for example, Diamond [14], Hylland and Zeckhauser [22], and Rogerson [32]).

Moreover, the possible existence of an optimal solution that induces each

individual to face a binary lottery was already discussed in Hylland and

Zeckhauser [22] under expected utility preferences. Our approach differs from

these works. We show that in a large economy with quasi-convex preferences,

any ex-ante efficient solution must use only binary lotteries. Also, as long

as individuals simplify compound lotteries by multiplying the probabilities,

randomizing among these binary lotteries (thus giving identical people the

same ex-ante lottery) is always suboptimal.

In this paper we employ a strong notion of ex-ante efficiency, which takes

into consideration individual preferences over lotteries. Two weaker notions

of efficiency were previously studied, ordinal efficiency and ex-post efficiency,

both only depend on ordinal rankings of the final goods. As we remark in

Section 2.1, our results imply that many of the popular allocation mechanisms

used in the literature are ex-ante inefficient. For example, random serial

dictatorship, that assigns the order of individuals using uniform distribution,

is inefficient as it typically implies that each individual will face a lottery

with more than two elements in its support. Note that this inefficiency relies
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only on the ordinal property of the preferences over lotteries, namely that

they are quasi-convex in probabilities.

The stronger notion of efficiency we consider, which is natural once indi-

viduals preferences over lotteries are taken into account, makes it harder to

achieve strategy proofness, a property that ensures that it is always optimal

for agents to truthfully report their preferences over lotteries. This raises the

questions of who can use our results and how. We discuss this issue at length

in Section 4. While not always possible, we argue that in many situations

social planners can collect at least partial information about cardinal prop-

erties of preferences, and our results can guide them how to locally improve

upon existing popular methods (a similar approach was suggested by Ab-

dulkadiroğlu, Che, and Yasuda [2]). Moreover, empirical and experimental

data regarding individual preferences can be collected and used in order to

estimate ideal solutions. Such methods are used in various situations, for

example, in medical decision making (Wakker [44]).

The paper is organized as follows. Section 2 lays out the basic problem

in a finite environment and states our main results. Section 3 studies two

possible extensions: the case where the number of agents and units is not

the same, and the case of a continuum economy. Section 4 comments on

the applicability of our approach. In Section 5 we discuss the benefit of a

pre-randomization over the allocation lotteries. Section 6 concludes with a

further discussion of binary lotteries and the applicability of our results. All

proofs are in the Appendix.

2 Finite Economies

Consider an economy with Nk individuals and with k units of each of N > 3

basic goods x1, . . . , xN . Denote by q = (q1, . . . , qN) the lottery (x1, q1; . . . ;

xN , qN) that yields xi with probability qi, i = 1, . . . , N . With a little abuse
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of notation, we identify xi with the lottery that yields it with probabil-

ity 1. Each member n of society has preferences �n over such lotteries,

which are assumed to be continuous, strictly monotonic (with respect to

first-order stochastic dominance), and strictly quasi-convex in probabilities.

This last assumption captures a dislike of probabilistic mixtures of lotteries:

q ∼ q′ and q 6= q′ =⇒ q � αq + (1− α)q′ for all α ∈ (0, 1).

A solution is a list ofN -dimensional probability vectors q =
(
q1, . . . , qNk

)
,

where qn is the lottery faced by person n. We require for all n = 1, . . . , Nk,

N∑
i=1

qni = 1 (1)

That is, the probability that person n will get one of the items is 1. Also,

for i = 1, . . . , N ,

Nk∑
n=1

qni = k (2)

This condition means that with probability 1, each of the k items of each

good will be allocated to someone. The last equation implies

1

Nk

Nk∑
n=1

qn =

(
1

N
, . . . ,

1

N

)
(3)

That is, the average lottery faced by the participants is a uniform distribution

over the N goods. Obviously, this distribution is feasible. The sum of its

components must be 1, as the original lottery satisfies eq. (1). And if the

average lottery is not uniform, then the original allocation is not feasible as

it must violate eq. (2).

Any solution q specifies the probability distribution over final outcomes

for each individual. The Birkhoff–von Neumann Theorem ([4],[43]) guaran-

tees that for any q there is always a social lottery over all possible determin-

istic allocations of the final outcomes that induces the marginal probabilities

of q.3

3We assume throughout that each agent is indifferent between all units of the same
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2.1 Ex-Ante Efficiency

We first characterize solutions q that are feasible, that is, satisfy equations (1)

and (2), and are ex-ante Pareto efficient, in the sense that there is no solution

q̃ such that q̃n � qn for all n and q̃m � qm for some m. As preferences

are continuous over a compact domain, feasible efficient allocations exist.

We show that in such allocations, and without any further assumptions on

individual preferences, all but ‘not too many’ individuals obtain either a

degenerate lottery or a lottery with positive probabilities on two goods only.

Definition 1 A lottery qn is binary if qni > 0 for no more than two outcomes.

Theorem 1 Let q be a feasible and Pareto efficient solution. Then for any

three goods xr, xs, xt, there is at most one person n such that qnr , q
n
s , q

n
t > 0.

This result implies that to detect violations of ex-ante efficiency, it is

enough to observe an allocation in which two individuals receive lotteries that

put positive probabilities on the same three goods. The exact probabilities

are inconsequential.

To illustrate the main argument of the theorem, suppose that two agents

m and n agree on their ranking of three goods xr � xs � xt and that they

both receive lotteries with positive probabilities on these three goods, as in

Figure 1. In this figure, each panel is the projection of the probability sim-

plex on a normalized probability triangle. These triangles depict probability

allocations over the three outcomes xr, xs, and xt for individuals m and n

that do not change the sums q̄m = qmr + qms + qmt and q̄n = qnr + qns + qnt .

Quasi-convex preferences have the property that along any line through a

given point, preferences improve in at least one direction. Without loss of

good, so that we can confine our attention to the allocation of the goods themselves. This

would not be the case if, for example, we were to allocate seats in different flights and

travelers prefer sitting in a window or an aisle seat.
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generality, one of the supporting slopes to the indifference curve of person

n through (qnt , q
n
r ) is weakly steeper than one of the supporting slopes to

the indifference curve of person m through (qmt , q
m
r ). Take a line with slope

between these two values. To make both agents better off, transfer probabil-

ities from one agent to another as depicted in the figure, a violation of the

efficiency assumption. If, instead, individuals’ ordinal rankings of the goods

are not identical, then the two agents can trade in the probabilities of any

two goods that they rank differently to improve ex-ante welfare.

q̄m

q̄m

q̄n

q̄n

qmt qmt +ε

qmr

qmr +τε

qntqnt−ε

qnr

qnr−τε

Figure 1: Changes in the allocations of individuals m and n

1

As we explain below, the arguments above also apply to agents with

different expected utility preferences.

Theorem 1 implies a limit on the number of individuals who can receive

a non-binary lottery.

Corollary 1 The number of individuals who hold non-binary lotteries in

any feasible and efficient allocation is bounded above by
(
N
3

)
.
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The number of subsets of {1, . . . , N} where no two elements have an

intersection with more than two numbers is bounded above by
(
N
3

)
, which

is the case where all subsets have three elements each.4 Since the number

of individuals who hold non-binary lotteries is bounded above by
(
N
3

)
while

the total population size is Nk, their fraction becomes arbitrarily small as k

increases.

While for exposition purposes we confine our attention to the case of strict

quasi-convex preferences, Theorem 1 generally also holds under expected

utility, which is linear (and hence also weakly quasi-convex) in probabilities.5

Under expected utility, if all agents have the same preferences over lotteries,

then there are many efficient solutions, including interior ones. Our results

are thus more prominent once preferences are cardinally different. More

precisely,

Proposition 1 Consider two expected utility agents m and n with utility

functions over final outcomes um and un, respectively. For any three goods

xr, xs, and xt, if q is a feasible allocation with both qnr , q
n
s , q

n
t > 0 and

qmr , q
m
s , q

m
t > 0, and if

um(xs)− um(xt)

um(xr)− um(xs)
6= un(xs)− un(xt)

un(xr)− un(xs)

then q is inefficient ex-ante.

In words, if the slopes of the two agents’ indifference curves in the cor-

responding probability triangles are not the same, then any allocation that

gives both agents lotteries with positive probabilities on these three goods

4This bound may be tighter under further assumptions on individual preferences. See

for example the case of same preferences in Section 2.2.
5Assuming that all individuals are expected utility maximizers, Hylland and Zeck-

hauser [22] use competitive equilibrium with equal incomes to show the existence of a

solution in which almost all agents receive a binary lottery. Our result holds without

relying on any market mechanism.
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is inefficient. The proof is identical to the one given in the appendix for

Theorem 1 and is omitted.

There are many popular mechanisms that can be used to allocate objects

among a group of agents. One example that is broadly used and is easy to

implement is random serial dictatorship. Randomly order the Nk individu-

als and let them choose in their turn the best good still available according

to their personal ranking. It is well known that using this mechanism, the

ultimate ex-post allocation of goods among agents is Pareto efficient (see

for example Abdulkadiroğlu and Sönmez [3]). Theorem 1 implies, however,

that ex-ante this mechanism is typically inefficient. To illustrate, suppose all

individuals have the same ranking over the basic goods and that each indi-

vidual has a probability 1
Nk

to be the ith in the order. Then, each individual

will perceive this as a uniform lottery over all the goods (with probability
1
N

each), which, according to Theorem 1 is inefficient. This argument is also

valid if individuals don’t have the same ordinal preferences over the goods,

in which case the ex-ante lottery induced by random serial dictatorship for

each agent is not necessarily uniform, yet typically has more than two goods

in its support.6 It thus follows that with quasi-convex preferences, random

serial dictatorship is typically inefficient ex-ante.

This suggests a broader point. There are known results that imply the

equivalence of different randomized mechanisms and random serial dictator-

ship (Abdulkadiroğlu and Sönmez [3]; see also Pathak and Sethuraman [29]),

in the sense that they induce the same ex-ante probability distribution over

the final goods. But then those seemingly identical mechanisms are also typ-

ically ex-ante inefficient. If social planners know the individuals’ preferences

over lotteries, and in particular that they are strictly quasi-convex, they can

improve the agents’ welfare ex-ante. For more on this, see Section 4 below.

6An extreme situation is where for each good i there are exactly k people who rank it

first in their ordinal preferences. In this case the (degenerate) lottery is ex-ante efficient,

but then there is no need for a mechanism in the first place.
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Importantly, this argument only relies on simple, observable information:

quasi-convexity of preferences and the size of the supports of the lotteries

that are used.

Assuming expected utility, Bogomolnaia and Moulin [7] show how ran-

dom serial dictatorship, which uses uniform distribution to rank agents, is

not necessarily even ordinally efficient, as it may induce for each agent a

distribution over the goods that is stochastically dominated, with respect to

that agent’s ordinal preferences, by another feasible distribution. Their sug-

gested probabilistic serial mechanism (which is ordinally efficient) is typically

not ex-ante efficient. It is also worth noting that their solution implies that

agents with the same ordinal preferences must receive the same lottery over

goods. In our case, even if all agents have the same cardinal preferences (and

are strictly quasi-convex), necessarily not all of them receive the same lot-

tery, as otherwise, the same binary lottery to all will not allocate all available

goods.

2.2 Same Preferences

When all individuals have the same preferences, it is natural to require that

a just mechanism will offer them the exact same outcome. But since, by

Theorem 1, efficient allocations of lotteries with quasi-convex preferences

are inconsistent with such a requirement, we instead impose equality in the

sense that identical agents receive equally attractive outcomes. That is, if

�1 = . . . =�Nk =�, then q1 ∼ . . . ∼ qNk. We assume in this subsection that

wlog, all agents agree that x1 � . . . � xN .

Definition 2 Let �1 = . . . =�Nk =�. A solution q is ideal if it is feasible,

efficient, and satisfies equality.

The next result uses the floor function, where bxc is the greatest integer

less than or equal to x.
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Theorem 2 Suppose that �1 = . . . =�Nk =�. Then:

1. Ideal solutions exist.

2. The number of different binary lotteries used in any ideal solution is

bounded above by M =
⌊
N2

4

⌋
.

3. An ideal solution yields all but at most M =
⌊
N2(N−2)

8

⌋
agents a binary

lottery.

Below, we outline the main steps involved in the proof.

For part 1, let V be a continuous representation of �. For a solution q

satisfying equality, let V (q) := V (q1) = . . . = V (qNk). Let v = sup{V (q) :

q is a feasible solution satisfying equality}. We show first that since the

domain of possible allocations is compact, there is a solution q∗ for which

v is obtained. We then show that if in a feasible allocation two agents do

not receive the same utility level, say n receives higher utility than m, then

there is a another feasible allocation in which m’s utility goes up, n’s utility

goes down but is still higher than m’s, while the allocation of no one else is

affected. Suppose now that q∗ is inefficient. Then there is an allocation q̃

that is better than q∗ for some and worse for none. Using the above result

we can assume that w, the lowest utility in q̃, is greater than the common

utility in q∗. Define b to be the inf of the size of the utility range for the set

of feasible allocations that give everyone utility w or more. We show that b

is obtained in a feasible allocation q̂, hence b must be zero, as otherwise, by

the above result, the distance between two extreme agents can be reduced.

In other words, q̂ is a feasible allocation satisfying equality, a contradiction

to the definition of q∗, hence q∗ is efficient.

For parts 2 and 3, note that the number of binary lotteries used in any

optimal solution is bounded above by the number of pairwise non-dominated

binary lotteries that can simultaneously be used. If one of the binary lotteries
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used involves outcomes xi and xj with i < j, then since all lotteries on

outcomes better than xi dominate it and all lotteries on outcomes inferior to

xj are dominated by it, such lotteries cannot be part of the ideal solution.

Similarly, the bound on the number of agents who hold non-binary lot-

teries (which for N > 4 is lower than the
(
N
3

)
bound from the general case

of Theorem 1) is the number of non-dominated lotteries with three possible

outcomes that can simultaneously be used. Note that many individuals may

hold the same binary lottery, but only one individual can hold any non-binary

lottery.

The proofs of parts 2 and 3 of Theorem 2 only use the requirement that

the lottery received by one person cannot dominate the lottery received by

another. The actual number of binary lotteries used in an ideal solution can

be much smaller than the upper bound suggested by the theorem. Theorem 3

of Section 3.1 identifies conditions under which the set of binary lotteries in

q is either {(q1, qi)}Ni=2 or {(qi, qN)}N−1i=1 . The number of binary lotteries used

in these cases is N−1, significantly less than the bound obtained in part 2 of

Theorem 2. For example, for N = 10, the conditions of Theorem 3 imply 9

binary lotteries, whereas the bound of Theorem 2 is 25. Note that the lower

bound on the number of binary lotteries to be used is
⌈
N
2

⌉
, where dxe, the

ceiling of the real number x, is the lowest integer greater than or equal to x.

This will be the case when a feasible solution is obtained by a set of lotteries

(q1, qN), (q2, qN−1), . . . that are all equally attractive in �.

3 Extensions

We discuss two possible extensions to our basic framework. We first analyze

assignment problems where all agents have the same preferences, but the

number of units to be allocated is not equal to the number of agents. Second,

we consider a continuum economy with the same mass of agents and goods.
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3.1 Different Number of Units and Agents

Consider again the case where all agents have the same preferences over

lotteries (as in section 2.2) and suppose as before that x1 � . . . � xN . When

there are more units than agents, efficiency implies that if xi � xj, then

ex-post it cannot be the case that units of xj are assigned while some units

of xi are not. Moreover, since quasi-convexity of preferences implies that if

xi � xj, then xi � (xi, α;xj, 1− α) for all α ∈ (0, 1), units of xj will not be

used in any ex-ante lottery if units of xi are not exhausted.

More interesting is the case where there are more agents than units, which

we analyze in Theorem 3 below. We say that the outcome xN is terrible if

even an allocation that yields everybody a lottery that is as good as the

second-worst outcome xN−1 is not feasible, as it is using too much of the

desired goods. The reason why a certain outcome is terrible may be that it is

very bad compared to other results. Another reason may be that individuals

are extremely risk averse, in which case the values of lotteries are heavily

tilted in the direction of the least attractive outcome, even if it is not much

worse than other outcomes.7 In such cases, everyone has to receive the worst

outcome with some positive probability, as otherwise one allocation will have

to be better than xN−1. Equality then requires everyone to receive a lottery

which is better than xN−1, a violation of feasibility.

Formally, let LTi = (qTi , q
T
N) ∼ δxN−1

, i = 1, . . . , N − 1 where qTi + qTN = 1.

That is, LTi is the binary lottery over xi and xN that is indifferent to xN−1.

(For i = N − 1 it is the degenerate lottery yielding xN−1 with probability 1).

The outcome xN is terrible if the hyperplane HT through LT1 , . . . , L
T
N−1 is

above the point ( 1
N
, . . . , 1

N
). Similarly, let LEi = (qE1 , q

E
i ) ∼ δx2 , i = 2, . . . , N

where qE1 +qEi = 1. The outcome x1 is excellent if the hyperplane HE through

LE2 , . . . , L
E
N is below ( 1

N
, . . . , 1

N
).

7We thank Todd Sarver for this insight.
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Theorem 3 Suppose that all Nk agents have the same preferences and that

x1 � . . . � xN . If xN is a terrible outcome, then all the binary lotteries used

by an ideal allocation q are of the form (qi, qN), i = 1, . . . , N − 1, and for a

sufficiently large k, they are all used. Parallel results hold for the case where

x1 is an excellent outcome, with the binary lotteries (q1, qi), i = 2, . . . , N .

If there are more agents than units, define a new good xN+1 which is

“receive nothing.” At least in the case of school allocation, this may well be

a terrible outcome. Theorem 3 implies that in that case, almost all children

face a lottery where there are two possible outcomes: either they go to a

specific school, or they stay at home. In other words, they face uncertainty

regarding acceptance, but not regarding the school into which they will be

accepted. Equality implies that the better the school, the less likely is a

holder of a lottery for this school going to win.

3.2 Continuum Economies

Consider a continuum economy with a unit mass A of N equally sized (with

respect to the Lebesgue measure µ) types of agents A1, . . . ,AN . There is

a unit mass B of N goods x1, . . . , xN to be allocated among them, where

the mass of each unit is 1
N

.8 Each of the individuals of type i has strictly

quasi-convex preferences �i over lotteries over the N goods.

Our aim in this paper is to analyze possible mechanisms for the alloca-

tion of goods which are desired by all, as otherwise there is no need for a

8In fact, we can assume J types of goods, and that both the N types of individuals,

as well as the J types of goods, are not of same size. However if the sizes are rational

numbers, we can assume without loss of generality that J = N and the sizes of the different

goods are the same; and if they are irrational, we’ll obtain our results using continuity,

where the economy is the limit of economies with rational sizes. We therefore assume

throughout J = N and that the sizes of the types of agents and of the goods are all 1
N .

See Footnote 10 below for a further generalization.
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compromise. Our analysis therefore fits best a situation where everyone has

the same preferences over the N goods (even if not the same preferences over

lotteries over these goods). Nevertheless, our mathematical results hold on a

wider range of preferences, with the only restriction that all agents agree that

a certain good, say x1, is best. That is, for all i = 1, . . . , N and j = 2, . . . , N ,

x1 �i xj, but there are no other restrictions on the way individuals rank the

outcomes x2, . . . , xN .

With a little abuse of notation, a point q in the (N−1)-dimensional prob-

ability simplex ∆N−1 represents the lottery (x1, q1; . . . ;xN−1, qN−1;xN , 1 −∑N−1
i=1 qi) and we now denote by qa ∈ ∆N−1 the lottery obtained by person

a. An allocation is a measurable function f : A → ∆N−1. The allocation f

is feasible if
∫
A fi(a)dµ = 1

N
, i = 1, . . . , N − 1 (this is the analogue condition

to eq. (3) of Section 2). It is efficient if there is no allocation g such that ∀i
and ∀a ∈ Ai, g(a) �i f(a), and a positive mass of agents strictly prefer their

outcome under g to their outcome from f . To simplify the presentation, we’ll

use the term “all” for “all but a zero measure of agents.” We are interested in

characterizing allocations that are efficient and satisfy the following No-Envy

criterion.

No-Envy For all a and b, qa �a qb.

No-Envy postulates that in the allocation of lotteries, no individual would

prefer to replace their lottery with that of any other agent.9 Clearly, if

�1= . . . =�N=�, then No-Envy implies equality, in the sense that for all

a, b ∈ A, f(a) ∼ f(b).

No-Envy is appealing on normative grounds. Furthermore, in a standard

(convex) Walrasian setting, it is compatible with the Efficiency requirement

(see, for example, Varian [41]). But in a non-convex economy as ours, it

is not guaranteed that the two coexist (see, for example, Vohra [42] and

9The definition is again in the ex-ante sense, before agents know the realization of the

lotteries they receive.
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Maniquet [26]). We show however that in the present context, the continuum

economy guarantees the existence of no-envy allocations.

Theorem 4 A feasible and efficient allocation for the continuum economy

with strictly quasi-convex preferences yields all agents a binary lottery. The

set of no-envy such allocations is not empty, and if all agents have the same

preferences, then equality with such lotteries is obtained.

We offer here an outline of the proof. The first step shows, similarly to

the proof of Theorem 1, that efficient allocations must yield all agents a bi-

nary lottery. Next, we start from an allocation where everyone is facing the

lottery that gives them an equal chance for each of the goods and employ a

known technique of demand-sets convexification (see Mas-Colell, Whinston,

and Green [28, Section 17.I] which is based on Starr [37]) to obtain a com-

petitive market equilibrium prices and allocations. Given these prices, all

agents will maximize their utility along the same budget set, so No-Envy is

guaranteed. Competitive equilibria are feasible and efficient, hence the claim

of the theorem.

There is however one issue that requires special attention in which our

analysis of the market equilibrium differs from the literature. Formally, the

lottery (x1, q1; . . . ;xN , 1−
∑N−1

i=1 qi) is represented as the vector (q1, . . . , qN−1)

in the N−1-dimensional simplex. This is different from the standard model,

where the domain of preferences is not bounded from above. To see why

this may create a problem, consider Example 1 in the Appendix with N = 3

where x1 � x2 � x3. The preferences of this example are monotonic in the

probabilities q1 and q2 in the sense that if (q′1, q
′
2) 	 (q1, q2), then (q′1, q

′
2) �

(q1, q2). But they do not satisfy monotonicity with respect to first order

stochastic dominance, in the sense that for ε > 0, (q1 + ε, q2 − ε) � (q1, q2),

and equilibrium does not exist. We show in the proof of Theorem 4 that this

stronger version of monotonicity eliminates the existence problem.
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Remark 1 Let T be the number of lotteries used in the proposed solution.

Then for h = 1, 2, ..., T there is a continuum of agents who receive the same

binary lottery, say (xh, ρh; yh, 1−ρh) for some outcomes xh, yh and ρh ∈ [0, 1].

The implementation of this, so that the fraction of the people in this group

that receives xh is ρh, can be guaranteed by using the appropriate law of large

numbers for a continuum of independent random variables. Such approach

appears, for example, in Sun [38], and we adopt here his measure theoretic

framework.10

4 Is the Data Available?

In this paper we are interested in properties of the induced allocation of

lotteries for any given set of preferences, as our aim is to emphasize the

implications of taking individual preferences over lotteries into consideration

in evaluating stochastic allocation mechanisms. To that extent, we ignore the

question of strategy-proofness, that is, how to guarantee that agents truly

reveal their preferences. As Zhou [47] shows, under expected utility, which

is a subset of all quasi-convex preferences, there exists no mechanism that

satisfies symmetry, ex-ante Pareto optimality, and strategy-proofness. As

global strategy proofness cannot be achieved, we ask instead whether there

is any reliable data available to policy makers, and if only vague information

is available, can it still be useful?

The first question to answer is how do decision makers evaluate lotteries?

There is a lot of empirical research trying to answer this question, mostly

with respect to lotteries with monetary payoff (see, for example, the surveys

10We assumed that there are N blocks of agents so that the analysis of the continuum

will parallel the finite case. If there is a continuum of types where the measure of each

type is zero, then as in Mas-Colell, Whinston, and Green [28, p. 629] the actual allocation

doesn’t require the analysis of this remark, as almost all agents will have a unique lottery

in their demand set.
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of Camerer [8] and Starmer [36]). One of the most popular group of models

is based on the idea that the evaluation of the probability of an outcome

depends on its rank in the support of the lottery. This family includes Quig-

gin’s [31] rank-dependent utilities, Yaari’s [46] dual theory, and Tversky and

Kahneman’s [39] cumulative prospect theory. For x1 � x2 � . . . � xN , the

rank dependent functional form is given by

V (q) = u(x1)π(q1) +
∑N

i=2 u(xi)
[
π
(∑i

j=1 qj

)
− π

(∑i−1
j=1 pj

)]
where π : [0, 1] → [0, 1] is strictly increasing and onto. To use the rank de-

pendent model, one needs to know the utilities from the outcomes and the

transformation function the decision maker is using to evaluate the (cumu-

lative) probabilities.

Although not always possible, there are situations where getting informa-

tion about cardinal ranking of alternatives is possible. For example, rankings

of schools are posted yearly in trusted journals. In recent years these rank-

ings include descriptions of some quantitative parameters like total cost and

students to faculty ratio, which may help candidates to infer their intensity

of preference among them.

For the probability transformation function π, one can use known tech-

niques to estimate parameters of specific functional forms or even perform

a parameter-free elicitation within a class of preferences. For example, the

analyst may assume either a general probability weighting function or the

more specific function π(p) = pα for some α > 0 that will be calibrated

together with the cardinal utility of the goods.11 Likewise, it may be possi-

ble to get cardinal utilities using lab experiment. In fact, elicitations of the

probability weighting function were implemented in medical decision analy-

sis (Bleichrodt and Pinto [5], Bleichrodt, Pinto, and Wakker [6]) and were

11In this specification, quasi-convexity is implied if α > 1, so that π is convex. Convex

π captures “pessimism”: for any x, increasing the probability of receiving a prize y � x

decreases the probability weight of x. Furthermore, within the family of rank-dependent

utilities models, convex π is necessary for risk aversion (Chew, Karni, and Safra [12]).
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practically used to improve medical decisions (Wakker [44]). It is well known

that measures of risk aversion tend to be context-specific and vary across do-

mains (see, among others, Weber, Blais, and Betz [45] or Hanoch, Johnson,

and Wilke [20]). Yet, and even though there is not yet a consensus about the

“best” approach to use (Charness, Gneezy, and Imas [10]), methods analo-

gous to those employed in financial, health/safety, recreational, ethical, and

social decisions (as in Weber, Blais, and Betz [45], or the ones discussed in

Finkelstein, Luttmer, and Notowidigdo [18] to estimate health state depen-

dence of the utility functions) can be used in the domain of lotteries over

apartments or schools.

Even without any information about the specific model used by members

of society our results suggest ways for welfare improvements. Sometimes

the social planner has information about other characteristics of the agents

that can be used to assess their intensity of preferences over allocations.

For example, it is plausible that a resident of a certain neighborhood would

put higher premium on attending a school in close proximity compared to

someone who considers only remote schools. Similarly, a religious person will

naturally have stronger preferences for schools that have religious components

in their operations or curriculum compared to someone who does not take

this dimension into consideration.

Such information can be used in the following way. Starting from an

allocation that results from a strictly strategy-proof mechanism with respect

to the ordinal rankings (for example, random serial dictatorship), ex-ante

allocations may yield two agents positive probabilities over the same three

outcomes. The social planner can use insights about individual intensity of

preferences for a local welfare improvement as described in Figure 1, without

scarifying this form of strategy proofness. A related approach was suggested

by Abdulkadiroğlu, Che, and Yasuda [2] to improve individuals’ welfare over

mechanisms that randomly break ties between agents with identical ordinal

preferences over the goods. Confining their attention to expected utility
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preferences and large economies, the authors offered a mechanism that allows

students to signal their cardinal preferences, and showed that it (ex-ante)

Pareto dominates the popular deferred acceptance mechanism. Their new

mechanism is typically ex-ante inefficient and is only ordinally strategy-proof.

5 Ex-ante Lotteries

If preferences are strictly quasi-convex, then giving two identical agents the

same interior outcome must be inefficient, as moving in opposite directions

along a supporting plane of the indifference curve will make both better off.

Instead of equality in outcomes, allocation mechanisms will seek a weaker

notion of equality, where identical agents will be indifferent between their

respective outcomes. This is indeed the conclusion from Theorem 2, where

everyone is indifferent between all allocated lotteries, even though they are

not the same.

But indifference between outcomes does not imply indifference to the

procedures used to allocate these outcomes. A person may be indifferent

between two seemingly identical objects of art left by his grandparents. Yet

realizing that at least one of them must be a faked copy of the original, he

will not trust his cousin, a museum curator, to choose first. In the context

of the school allocation problem, parents may suspect the social planner

of having some private information regarding the schools which will imply

better lotteries for some families favored by the authorities.

There is a simple way to avoid such potential mistrust: Everyone will face

the same lottery P over the set of the binary lotteries. The learned cousin

may know which of the two vases is Ming and which is a modern counterfeit,

but she will not be able to use this information if the allocation is dictated by

the outcome of a fair coin. Similarly, even if the social planner favors some

families, inside information about the schools becomes useless if the lotteries
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of Theorem 2 are allocated by a lottery.12 Given that all individuals will face

the exact same lottery, this procedure guarantees full equality in the ex-ante

stage.

The effectiveness of this procedure crucially depends on the agents’ at-

titude towards multi-stage lotteries. Denote the relevant binary lotteries

q(1), . . . , q(T ). If agents care only about the overall probability distribution

over final outcomes, then they will perceive a compound lottery over lotteries

as a simple lottery over final outcomes, where the probability of each xi is∑
j P (q(j))q(j)(xi). But then, if preferences over simple lotteries are strictly

quasi-convex, all individuals will be worse off compared to their initially held

lotteries.

Suppose however that individuals do not reduce compound lotteries using

the laws of probability but satisfy instead the compound independence axiom

(Segal [35], Dillenberger [15]). This axiom prescribes that if a person prefers

receiving q to q′ for sure, then they will prefer to replace q′ with q in any

compound lottery that has q′ in its support. This implies that if initially

the agent is indifferent between q and q′, they will also be indifferent to any

such replacement. Since, by construction, equality implies that all agents are

indifferent between all lotteries in the suggested allocation, they will also be

indifferent to any lottery over them. In other words, compound independence

guarantees full ex-ante equality among agents without reducing their welfare.

Whether or not compound independence holds — while the reduction of

compound lotteries axiom does not — is an empirical question, which has

been studied in various settings (see, among others, Halevy [19], Abdellaoui,

Klibanoff, and Placido [1], Harrison, Mart́ınez-Correa, and Swarthout [21],

and Masatlioglu, Orhun, and Raymond [27].) To our knowledge, however,

12The emphasize here is on a real randomization rather than an imaginary randomization

that each agent may entertain about his possibility to receive any of the objects. Only the

former will remove agents’ concerns for unfairness or of a biased use of planer’s private

information in the allocation decision.
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it is yet to be examined in scrutiny for the specific context of allocation

mechanisms.13

6 Concluding Remarks

The use of binary lotteries is pervasive in economics. Many experimental

works are conducted with choices among such lotteries (or between them

and sure outcomes), where the main rationale for using binary lotteries is

that they are easily interpretable. Some recent theoretical papers use sim-

plicity criteria to argue for the attractiveness of binary lotteries in terms of

minimizing complexity costs (for example, Puri [30]), and of binary acts, that

are always ‘well-understood’ and can be used as a tool for making difficult

comparisons (Valenzuela-Stookey [40]).

In our setting, that (almost) everyone should receive a binary lottery fol-

lows mathematically from the assumption that all individual preferences are

quasi-convex. As argued above, this gives us a simple necessary condition

that can be used to assess whether an allocation of lotteries is ex-ante effi-

cient. But as a social mechanism, binary lotteries have another independent

attraction of their own. When facing a lottery over a set of outcomes on

which they do not have full information, it is quite natural for people to look

for such information before the lottery is played. If so, it is clearly better for

them to face a lottery with fewer outcomes.

In Section 5 we suggested another layer of social randomization over the

lotteries that will be used. If people reduce lotteries by multiplying the

probabilities then they will probably need to evaluate all N outcomes. But

if they use the compound independence axiom, then they view the first stage

as a lottery over lotteries and will defer evaluating the outcomes till the next

13For a theoretical analysis of allocation mechanisms where the reduction of compound

lotteries axiom is replaced with compound independence, see Dillenberger and Segal [16].
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stage, when they’ll face a lottery over two outcomes only.

Our aim in this paper is to suggest a new way to assess and think of

existing mechanisms. Our approach would be most relevant to applied re-

searchers if indeed agents have quasi-convex preferences in the context of

lotteries over allocations and if our insights can be used even in the absence

of full strategy proofness. While quasi-convex preferences (and obviously the

limit case of expected utility) were heavily used in many theoretical appli-

cations, no comprehensive tests of quasi-convexity in our domain of interest

have been conducted thus far.14 Due to the simplicity of the assumption,

such tests should be easy to perform. But if one may extrapolate from the

appearance of quasi-convex preferences in other domains, then identifying

ways and situations in which local improvements over current methods can

be performed, as we discuss in Section 4, would be our main applied message.

Appendix

Proof of Theorem 1: Suppose that for a = n,m, qar , q
a
s , q

a
t > 0. If the two

individuals do not have the same ordinal preferences over the three goods,

for example, if xr �n xs but xs �m xr, then transfer ε probability of xr

from person m to n and ε probability of xs from n to m to obtain a feasible

allocation which is strictly preferred to the original one by n and m and

indifferent to the original one by everyone else.

Suppose now that for a = m,n, xr �a xs �a xt and as before, that

qar , q
a
s , q

a
t > 0. For a = m,n, let q̄a = qar +qas +qat . As explained in Section 2.1,

the two triangles of Figure 1 depict probability allocations over the three

outcomes for individuals m and n that do not change the sums of these

probabilities. All the changes in this proof are sufficiently small so that

14Similarly, as we pointed out in Section 5, agents’ attitudes towards multi-stage lotteries

in our context have not been studied.
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they can be done without violating eqs. (1) and (2). In both panels, the

probability of xt is measured on the horizontal axis and that of xr on the

vertical one. The only values of q that will be changed are those of qai for

a = m,n and i = r, s, t. We will therefore deal with the induced preferences

over the above triangles and ignore the rest of the probabilities. To simplify

notation, we write (qat , q
a
r ) for (qat , q̄

a− qat − qar , qar ), which by itself stands for

(qat , q̄
a − qat − qar , qar , qa−(t,s,r)).

Without loss of generality, one of the supporting slopes to the indiffer-

ence curve of person n through (qnt , q
n
r ) is weakly steeper than one of the

supporting slopes to the indifference curve of person m through (qmt , q
m
r )

(such slopes exist by the quasi-convexity of the preferences). Let τ be a

slope between these two values. Since preferences are strictly quasi-convex,

we get that for a sufficiently small ε > 0, (qmt + ε, qmr + τε) �m (qmt , q
m
r ) and

(qnt − ε, qnr − τε) �n (qnt , q
n
r ). Observe that eqs. (1) and (2) are still satis-

fied and everyone else is indifferent between the new and the old lotteries, a

violation of efficiency. �

Proof of Theorem 2: Let V be a continuous representation of the common

preferences �.

1. Ideal solutions exist: We prove this part of the theorem through a sequence

of lemmas.

Lemma 1 There is a feasible solution q∗ = (q1,∗, . . . , qNk,∗) satisfying equal-

ity such that for any solution q = (q1, . . . , qNk) satisfying equality, qn,∗ � qn,

n = 1, . . . , Nk.

Proof: The set of feasible solutions satisfying equality is not empty, for ex-

ample, q1 = . . . = qNk = ( 1
N
, . . . , 1

N
). For a solution q satisfying equality, let

V (q) := V (q1) = . . . = V (qNk). Let v = sup{V (q) : q is a solution satisfying

equality} and for h = 1, . . ., let qh = (q1,h, . . . , qNk,h) be a sequence of solu-

tions satisfying equality such that V (qh) → v. For each n and h, qn,h is a
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vector in the compact probabilities simplex ∆N−1, hence it follows by stan-

dard arguments that there is a subsequence of qh, without loss of generality

the sequence itself, such that for all n = 1, . . . , Nk, qn,h → qn,∗. The vector

q∗ = (q1,∗, . . . , qNk,∗) satisfies eqs. (1) and (2), hence it is a solution. Since V

is continuous it satisfies equality, and by the continuity of V , V (qn,∗) = v. It

follows by the definition of v that for any solution q = (q1, . . . , qNk) satisfying

equality, qn,∗ � qn, n = 1, . . . , Nk. �

Lemma 2 Let q be a feasible solution in which for some two individuals m

and n, qn � qm. Then there is a feasible solution q̄ where qn � q̄n � q̄m � qm,

and for ` 6= n,m, q̄` = q`.

Proof: Since qn � qm, it follows by monotonicity with respect to first-order

stochastic dominance (in short, by FOSD) that there are goods r and s such

that xr � xs and such that ε = min{qnr , qms } > 0, as otherwise qm � qn.

In both profiles below, q` does not change for all ` 6= n,m. For ε′ 6 ε, let

q̄n = (qnr −ε′, qns +ε′, qn−r,s) and q̄m = (qmr +ε′, qms −ε′, qm−r,s). For a sufficiently

small ε′ > 0, qn � q̄n � q̄m � qm. �

Lemma 3 The solution q∗ as in Lemma 1 is efficient.

Proof: Let q∗ be as in Lemma 1, and suppose that there is q̃ = (q̃1, . . . , q̃Nk)

such that wlog V (q̃1) > . . . > V (q̃Nk) > V (q1,∗) = . . . = V (qNk,∗), where at

least one of these inequalities is strict. Applying Lemma 2 Nk − 1 times

at most, we can create a feasible allocation q̄ such that for all n, V (q̄n) >

V (q1,∗). Let w = min{V (q̄n)} and define

b = inf
{

max
n
{V (qn)} −min

n
{V (qn)} : q is feasible and min

n
{V(qn)} > w

}
As in the proof of Lemma 1, there is a feasible solution q̂ for which b is

obtained. By Lemma 2, b = 0. This means that q̂ satisfies equality, a

contradiction to the definition of q∗. �
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By Lemma 1, the feasible solution q∗ satisfies equality, and by Lemma 3

it is efficient, hence it is an ideal solution. ♦

2. The number of different binary lotteries used in any ideal solution is

bounded above by M =
⌊
N2

4

⌋
: Let B be the set of binary lotteries used by

an ideal solution q. We show that there is t∗ such that for all non-degenerate

(qr, qs) ∈ B, r 6 t∗ < s.

Case 1: If one of the lotteries in B is degenerate, say δt∗ , then by equality

and FOSD, for any (qr, qs) ∈ B it must be the case that r < t∗ < s.

Case 2: There is no t for which there exists (qr, qs) ∈ B such that t < r < s.

In particular there is no (qr, qs) ∈ B such that 1 < r < s. Then all lotteries

in B must have x1 as one of their outcomes, and therefore for t∗ = 1 we get

that for all (qr, qs) ∈ B, r 6 t∗ < s.

Case 3: There is t for which there exists (qr, qs) ∈ B such that t < r < s.

Suppose that there is no t∗ as above. Then for every t either there is (qr, qs) ∈
B such that r < s 6 t or there is (qr, qs) ∈ B such that t < r < s. We show

that this requirement leads to a violation of equality. Let t̄ be the highest

value of t for which there is (qr, qs) ∈ B such that t̄ < r < s. Let (qr′ , qs′) ∈ B
such that t̄ < r′ < s′. By the definition of t̄, there is no (qr, qs) ∈ B such that

t̄+1 < r < s, hence there is (qr′′ , qs′′) ∈ B such that r′′ < s′′ 6 t̄+1 6 r′ < s′.

By FOSD we obtain a violation of equality, as (qr′′ , qs′′) dominates (qr′ , qs′).

The maximal number of such pairs given t∗ is t∗(N − t∗). This term is

maximized at t∗ = N
2

, where it is equal to
⌊
N2

4

⌋
. ♦

3. An ideal solution yields all but at most M =
⌊
N2(N−2)

8

⌋
agents a binary

lottery: As in Theorem 1, if q is an ideal solution, then for any three goods

xr, xs, xt there is at most one person n such that qnr , q
n
s , q

n
t > 0, otherwise q

is inefficient. Given an ideal solution q, let C be the set of the indexes of the
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non-binary lotteries allocated by it. That is, C = {{r1 < r2 < . . . < rd} :

(qr1 , qr2 , . . . , qrd) is one of the lotteries allocated by q}.
Similarly to part 2 above, we show that there is `∗ such that for all

{r1 < . . . < rd} ∈ C, r1 6 `∗ < rd. If there is no ` for which there exists

{r1 < . . . < rd} ∈ C such that ` < r1, then all lotteries with indexes in C

must have x1 as one of their outcomes, in which case we set `∗ = 1.

Suppose now that there is ` for which there exists {r1 < . . . < rd} ∈ C
such that ` < r1, but there is no `∗ as above. Then for every ` either there

is {r1 < . . . < rd} ∈ C such that rd 6 `, or there is {r1 < . . . < rd} ∈ C such

that ` < r1. Let ¯̀be the highest index for which there is {r1 < . . . < rd} ∈ C
such that ` < r1. Let {r′1 < . . . < r′d} ∈ C be such a set, hence ¯̀+ 1 6 r′1.

By the definition of ¯̀, there is no {r1 < . . . < rd} ∈ C such that ¯̀+ 1 < r1.

There is therefore {s1 < . . . < sc} ∈ C such that sc 6 ¯̀. But as by FOSD

all lotteries with support (xs1 , . . . , xsc) are strictly preferred to all lotteries

with support (xr′1 , . . . , xr′d), equality of all lotteries in C cannot be satisfied,

hence such `∗ exists.

Suppose that there is {r1 < . . . < rd} ∈ C where d > 3. Then either

r1 6 `∗ < r2, or r1 < r2 6 `∗ 6 rd−1 < rd where at least one of the

two weak inequalities is strict, or rd−1 6 `∗ < rd. In the first case, replace

{r1, . . . , rd} with {r1, r2, r3} and {r1, r2, r4}. In the second case, replace it

with {r1, r2, rd} and {r1, rd−1, rd}. And in the third case, replace it with

{r1, r2, rd} and {r1, r3, rd} to expand C while still maintaining the position

of `∗.15 It thus follows that |C| is bounded above by the number of triplets

{r1 < r2 < r3} such that r1 6 `∗ < r3. The maximal number of such triplets

is (
`∗

2

)
× (N − `∗) + `∗ ×

(
N − `∗

2

)
=
`∗(N − `∗)(N − 2)

2

This expression is maximized at `∗ = N
2

, where it is equal to
⌊
N2(N−2)

8

⌋
. �

15Observe that these new lotteries will no longer necessarily satisfy feasibility and effi-

ciency, but they help us establish the bound of the theorem.
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Proof of Theorem 3: Denote by qT and qE the degenerate lotteries that

yield xN and x1 with probability 1, respectively. For q, q′, let [q, q′] = {αq +

(1 − α)q′ : α ∈ [0, 1]}. A set A of lotteries is above set B if for all q ∈ A,

[q, qT ] ∩ B 6= ∅. It is below B if for all q ∈ A, [q, qE] ∩ B 6= ∅. Since HT

is the convex hull of points {(qi, qN)}N−1i=1 , every lottery q is either above or

below HT . By quasi-convexity, if q ∼ δxN−1
then q is above HT , hence so is

q such that q � δxN−1
. By FOSD, for i > j 6= N with qi > 0, (qi, qj) � δxN−1

.

If it is part of a solution q satisfying equality, then by the above argument

all lotteries allocated by q are above HT , hence q is not a feasible solution.

It thus follows that all binary lotteries in an ideal solution must have xN as

one of its two outcomes.

By Theorem 2 part 3, an outcome xi, i 6= N , can receive positive prob-

ability at no more than
⌊
N2(N−2)

8

⌋
lotteries, hence for a sufficiently large k,

some of its occurrences must be in binary lotteries. By the first part of the

theorem, the only possible such lottery is (qi, qN), hence the theorem. The

proof of the case where x1 is excellent is similar. �

Proof of Theorem 4: We show first that an efficient solution yields ev-

eryone a binary lottery. Suppose that q is an efficient solution with γ > 0

mass of individuals receiving non-binary lotteries. Since N is finite, we may

assume without loss of generality that they all receive with positive prob-

abilities each of the three outcomes xr, xs, xt where r > s > t. That is,

µ{a : fi(a) > 0, i = r, s, t} > 0. As µ is σ-additive, it follows that for some

ε > 0, µ(A) > 0, where A = {a : fi(a) > ε, i = r, s, t}.
For every a ∈ A, let Da be the triangle {(qt, qr) ∈ <2

+ : qt + qr 6

q̄a = fr(a) + fs(a) + ft(a)}. Let τa be the slope of a supporting line to

the indifference curve in Da through (ft(a), fr(a)). Let τ ∗ be such that

µ(a : τa > τ ∗), µ(a : τa < τ ∗) 6 1
2
µ(A). Divide A into two sets A1 and

A2 such that µ(A1) = µ(A2) = 1
2
µ(A), for all a ∈ A1, τa > τ ∗ and for all

a ∈ A2, τa 6 τ ∗. We now follow the procedure described in the proof of The-
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orem 1, where individuals m and n are replaced with A1 and A2. It follows

that all agents receive a binary lottery.

Let ΠN−1 = {(π1, . . . , πN−1) ∈ <N−1+ :
∑N−1

i=1 πi = 1} be a prices simplex.

For every π ∈ ΠN−1, π · ( 1
N
, . . . , 1

N
) = 1

N
. For π ∈ ΠN−1, let Di(π) =

{q ∈ ∆N−1 : π· q 6 1
N

and π · q′ 6 1
N

=⇒ q �i q′}, i = 1, . . . , N , and let

D∗i (π) = Conv(Di(π)). These are the convexified demand sets of the various

types given prices π and endowments ( 1
N
, . . . , 1

N
). Observe that since the

preferences �i are strictly quasi-convex, the set Di(π) is a finite set of binary

lotteries. In the continuum economy, these lotteries can be allocated to the

type-i individuals in such proportions to obtain any point in D∗i (π).

Suppose that for some q ∈ Di(π), π · q < 1
N

. If q = (1, 0, . . . , 0) := δx1 ,

then since for all i, x1 is the best outcome, it follows that for all i, Di(π) = δx1

and π cannot be a Walrasian equilibrium price-vector. If q 6= δx1 , then there

is α ∈ (0, 1] such that π · [αδx1 +(1−α)q] = 1
N

. By monotonicity with respect

to FOSD, αδx1 + (1− α)q �i q, a contradiction to the definition of Di(π). It

thus follows that Di(π) = {q ∈ ∆N−1 : π · q = 1
N

and π · q′ 6 1
N

=⇒ q �i q′}.
Clearly the correspondences Di(π) (and therefore D∗i (π)) are upper hemi-

continuous, hence there exists an equilibrium vector π and allocations q∗i in

D∗i (π), i = 1, . . . , N , such that
∑N

i=1 q
∗
i = ( 1

N
, . . . , 1

N
).

These allocations are efficient, feasible, and since all agents face the same

“price” vector π, they satisfy no-envy. The first part of the proof implies

that all agents receive a binary lottery, hence the claim of the theorem. �

Example 1 Consider a continuum economy as in Section 3.2 with N = 3.

The preferences �1, �2, and �3 over ∆2 = {(q1, q2) ∈ <2
+ : q1 + q2 6 1}

can be represented by V1 = V2 = 3q1 + q2 and V3 = 6.25q21 + q22. The initial

lottery held by each person is represented by the point (1
3
, 1
3
) ∈ ∆2. Let the

price of q2 be 1, and denote the price of q1 by π. The convexified demand
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correspondences of the various agents are given by

D1(π) = D2(π) =



(1, 0) π 6 1
2

(1+π
3π
, 0) 1

2
< π < 3

{(3+5α
18

, 5(1−α)
6

) : α ∈ [0, 1]} π = 3

( π−2
3π−3 ,

2π−1
3π−3) π > 3

D3(π) =



(1, 0) π 6 1
2

(1+π
3π
, 0) 1

2
< π < 5

{(2α
5
, 1− α) : α ∈ [0, 1]} π = 5

(0, 1) 5 < π < 6.8

(8α
29
, 29−8α

29
) : α ∈ [0, 1] π = 6.8

( π−2
3π−3 ,

2π−1
3π−3) π > 6.8

Clearly, there is no π such that 1
3
[D1(π) +D2(π) +D3(π)] = (1

3
, 1
3
). �
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