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Abstract

Combining 36 years of satellite derived PM2.5 concentrations with individual-level ad-

ministrative data provided by the U.S. Census Bureau and Internal Revenue Service

(IRS), we provide new evidence on the important role that disparities in air pollution

exposure play in shaping broader patterns of economic opportunity and inequality in

the United States. We first document that early-life exposure to particulate matter

is one of the top five predictors of upward mobility in the United States. Second,

we exploit regulation-induced reductions in pollution exposure from the 1990 Clean

Air Act Amendments to produce new age-specific estimates of pollution-earnings rela-

tionship. Combined with individual-level measures of pollution exposure during early

childhood, we calculate that disparities in air pollution can account for 17-26 percent

of the Black-White earnings gap, 5-27 percent of the Hispanic-White earnings gap, and

6-20 percent of the average neighborhood-earnings effect (Chetty and Hendren, 2018;

Chetty, Hendren, and Katz, 2016). Collectively, our findings indicate that environ-

mental inequality is an important contributor to observed patterns of racial economic

disparities, income inequality and economic opportunity in the United States.
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1 Introduction

Neighborhoods shape economic opportunity (Chetty et al., 2014; Sharkey and Faber, 2014;

Chetty et al., 2016; Galster and Sharkey, 2017; Chetty et al., 2018b; Chetty and Hendren,

2018a,b; Chyn and Katz, 2021). But what it is about neighborhoods that matters for eco-

nomic opportunity is less clear.

One margin that has received little attention is the role of environmental quality. In

the past decade our understanding of the economic consequences of environmental quality

has grown substantially. It is now well established that even acute exposure to pollution

has both immediate and persistent long-run effects on health, educational attainment, learn-

ing, decision-making, productivity, criminal activity, labor force participation, and earnings

(Chay and Greenstone, 2003b; Currie and Neidell, 2005; Graff Zivin, J. and Neidell, M.,

2012; Schlenker and Walker, 2015; Chang et al., 2016; Ebenstein et al., 2016; Isen et al.,

2017; Chang et al., 2018). Higher exposure to particulate matter in early childhood has

even been shown to have persistent effects across generations affecting later-life economic

outcomes for the children of those that were in-utero exposed (Colmer and Voorheis, 2021).

Alongside these causal estimates, it is widely documented that economic and environmental

inequality walk hand-in-hand. Disadvantaged communities are disproportionately exposed

to higher levels of pollution (Commission for Racial Justice, United Church of Christ, 1987;

Mohai et al., 2009; Banzhaf et al., 2019; Colmer et al., 2020; Currie et al., 2020). Taken

together, it is natural to consider how much environmental inequality could contribute to

systemic disparities in economic opportunity and inequality.

To date, understanding the contribution of environmental quality in shaping economic

opportunity has been constrained by data availability. While access to administrative data

has driven research on inequality and opportunity into new frontiers, information about de-

mographic characteristics within administrative records and comprehensive historical data

on environmental quality has lagged behind. We take advantage of recent advances in the

availability of both environmental and administrative data, combining 36 years of satellite-

derived, high-resolution data on particulate matter smaller than 2.5 microns (PM2.5) concen-

trations, with U.S. Census Bureau linked survey data and administrative records, providing

rich information on individuals’ demographic characteristics, residential histories, earnings

and economic mobility.

We begin by presenting a new set of stylized facts. Replicating the analysis conducted

by Chetty et al. (2014), we show that the spatial distribution of early childhood exposure

to particulate matter and the spatial distribution of economic opportunity are strongly cor-

related. This pattern also holds at the individual level. We also document that early life
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PM2.5 exposure is one of the top five predictors of upward mobility in the United States.

To explore the contribution of environmental quality to economic opportunity we engage

in two sets of empirical exercises. Our first analysis provides new estimates of the relationship

between childhood particulate matter exposure on later-life earnings and upward mobility.

Exploiting the introduction of the 1990 Clean Air Act Amendments, we estimate that a 1

µg/m3 reduction in prenatal PM2.5 exposure is associated with a $1,105 increase in later-

life W-2 earnings. This estimate is substantially larger than existing estimates. We argue

this difference is driven by both differences in identifying variation, which plausibly result

in larger effects, and improvements in data quality, which reduce measurement error. We

also estimate that a 1 µg/m3 reduction in prenatal PM2.5 exposure is associated with a 1.29

percentile rank point increase in upward mobility. For context, the raw correlation between

exposure to PM2.5 at birth and upward mobility for the 1981 cohort is 0.17 rank points per

µg/m3 of PM2.5. We estimate pollution-earnings relationships for each age of exposure from

birth to age 12 and show that the relationship between pollution exposure and earnings is

stable up to age 4 and then diminishes quickly. We do not estimate a meaningful relationship

between particulate matter exposure and later-life earnings from age 8 onward.

Next, we engage in three decomposition exercises to explore the contribution of pollution

to broader patterns of economic opportunity and inequality in the United States. First, we

combine our prenatal estimate with individual-level data on pollution exposure at birth to

for the population of the United States in 1981 to calculate how much pollution differences

might contribute to contemporary differences in black-white earnings and intergenerational

income mobility. We calculate that racial gaps in prenatal pollution exposure can account

for 26 percent of the contemporary black-white earnings gap for the 1981 cohort, falling to 17

percent for the 1989 cohort. We show that the decline in the share of the gap explained over

time is a function of a declining black-white PM2.5 gap (23% decline between 1981 and 1989)

and an increase in the black-white earnings gap (18% increase between 1981 and 1989).

Our second and third exercises, more directly examine the contribution of environmen-

tal quality to the overall “neighborhood effect” on earnings. We do this by revisiting the

quasi-experimental and experimental evidence on neighborhood effects presented in Chetty

and Hendren (2018a) and Chetty et al. (2016). In our second analysis, we combine our

age-specific estimates of the pollution-earnings relationship with the predicted effect of a

change in neighborhood mobility on PM2.5 exposure, and the overall effect of a change in

neighborhood on later-life earnings using the “mover’s design” presented in Chetty and Hen-

dren (2018a). Combining estimates, we calculate that the contribution of air pollution to

the overall neighborhood effect is concentrated in early childhood. Air pollution accounts

for up to 50% of the overall neighborhood effect until age 5, after which the contribution
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sharply declines. This is driven by the fact that pollution exposure has no effect on later-life

earnings after the age of 7. Taking the average of the estimates across all ages, we calculate

that PM2.5 can account for up to 20% of the average neighborhood-earnings effect by age 12,

and 10% by age 24. Our findings indicate that the value of different neighborhood amenities

varies over the life cycle. Our third exercise revisits the Moving to Opportunity experi-

ment, run by the U.S. Department of Housing and Urban Development in the mid-1990s.

The MTO experiment offered a randomly selected subset of families living in high-poverty

housing projects subsidized housing vouchers to move to lower-poverty neighborhoods. This

intervention generated exogenous variation in neighborhood environments for otherwise com-

parable families, providing an opportunity to evaluate the effects of improving neighborhood

environments on low-income families (Ludwig et al., 2013; Chetty et al., 2016). Chetty et

al. (2016) estimate that the MTO delivered significant increases in later-life earnings for

children who moved prior to the age of 13. We present new results showing that treated

families experienced persistently lower levels of PM2.5 compared to families that did not

receive the program. Combining the causal effect of MTO on particulate matter exposure

with our estimates of childhood exposure on later life earnings, we calculate that differences

in childhood pollution exposure can account for 6% of the overall MTO–earnings effect. We

caveat that all of these exercises make strong assumptions about the external validity of our

estimated pollution-earnings relationships.

Our findings contribute to the literature on economic inequality and opportunity. Within

this literature, the importance of neighborhoods has been established for the economic op-

portunities of children (Chetty et al., 2016, 2018a; Chyn, 2018; Deutscher, 2019; Chyn and

Katz, 2021). However, the particular bundle of characteristics that makes a neighborhood an

“opportunity bargain” (Chetty et al., 2018a) has largely remained a black box. We provide

new evidence to suggest that environmental quality in early childhood may be an important

factor in explaining the overall “neighborhood effect.” Given existing evidence that neighbor-

hoods affect earnings after the age of 7, our findings suggest that there may be differences

in the value of neighborhood amenities over the life cycle. Environmental quality is par-

ticularly important in early childhood, but other neighborhood factors collectively matter

more in later childhood. That improvements in place, through reductions in air pollution

– a place-based policy – can shape economic opportunity and earnings, provides suggestive

evidence that there may be gains from improving place, rather than requiring that people

move into higher opportunity neighborhoods (Gaubert et al., 2021).

Second, we contribute to the literature on the economic importance of environmental

quality. To date, much of the focus has been on the short and long-term effects of gestational

exposure on health and later life labor market outcomes (Chay and Greenstone, 2003b;
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Currie et al., 2013; Schlenker and Walker, 2015; Isen et al., 2017; Colmer and Voorheis,

2021). Although this literature has consistently found that “pollution matters”, the degree

to which pollution effects contribute to aggregate patterns of economic opportunity has

not been discussed. We are the first to directly connect pollution exposure with aggregate

patterns of economic opportunity and inequality, as well as providing direct evidence of the

effect of prenatal pollution exposure on intergenerational income mobility. This evidence

connects with recent work showing multigenerational effects of pollution exposure Colmer

and Voorheis (2021), deepening our understanding of how environmental quality can have

persistent effects on economic circumstances. We also provide new evidence on the pollution-

earnings relationship over the life cycle, documenting in line with conventional wisdom that

early childhood exposures are especially important in shaping later-life economic outcomes.

Third, we contribute to the literature on race and inequality in the United States (Myrdal,

1944; Duncan, 1968; Black et al., 2015; Margo, 2016; Andrews et al., 2017; Hardy et al., 2018;

Connolly et al., 2019; Chetty et al., 2019; Derenoncourt and Montialoux, 2021; Derenoncourt,

2022). Existing work on race and inequality has either been limited by smaller samples in

survey data, or lack of information on race in administrative records. We construct new

linkages between administrative tax return and Census demographic data, which allow us

to systematically document racial disparities in environmental quality and its consequences

for economic inequality and opportunity. These new linkages open up many interesting new

lines of inquiry to study the intersection of race and inequality in the United States. The

focus of this paper has been on understanding racial disparities in air pollution exposure

and its consequences for economic opportunity. While a large literature has documented

the existence of disparities in exposure across demographic groups (Commission for Racial

Justice, United Church of Christ, 1987; Mohai et al., 2009; Banzhaf et al., 2019; Colmer et

al., 2020; Currie et al., 2020), less is known about how these disparities have evolved over

time, and what the downstream implications of these disparities are. Following Colmer et al.

(2020) and Currie et al. (2020) who use satellite data to explore the trends in environmental

inequality, we show that pre-existing racial disparities in pollution exposure may account for

a non-trivial share of contemporary racial economic disparities.

2 The Correlation Between Environmental Quality and

Economic Opportunity

Despite decades of research on racial and economic disparities in pollution exposure, a sys-

tematic evaluation of the relationship between environmental quality and economic opportu-

5



nity has been hindered by data availability. The main issue is that environmental monitoring

networks are sparse. Fowlie et al. (2019) document that fewer than 20 percent of counties

contain a monitor that is capable of recording fine particulate matter. Hsiang et al. (2018)

calculate that only 40 percent have a monitor capable of recording any of the criteria air

pollutants regulated under the Clean Air Act.

Only recently has systematic data on air pollution over time and space become available

(Di et al., 2016; Van Donkelaar et al., 2016; Meng et al., 2019). These data products

combine spatially continuous satellite measurements of pollution correlates (e.g., aerosol

optical depth) with other observable pollution correlates—such as emissions inventories,

chemical transport models, weather patterns—to provide a high-resolution and consistent

understanding of particulate matter concentrations over time and space. We utilize 36 years

of annual and monthly PM2.5 estimates between 1981 and 2016 for ∼8.6 million U.S. grid

cells that measure 0.01◦ by 0.01◦ (0.9 km by 1.1 km). We spatially intersect this data with

Census tract boundary files and link it to individual-level administrative records.

On average, these estimates match up well with the “ground truth” as measured by EPA

monitors (Colmer et al., 2020). In-sample measures of fit are very high. However, evidence

suggests that satellite-derived measures may deviate from the ground truth in the tails of

the pollution distribution (Fowlie et al., 2019). Specifically, estimates tend to be downward

biased for high concentrations of PM2.5 (Di et al., 2016; Van Donkelaar et al., 2016; Meng

et al., 2019). Given existing evidence on the incidence of high pollution, this suggests that

prediction errors will attenuate measured disparities, providing a lower bound on true gaps

in exposure.

2.1 County-Level Facts

Using this data we explore the correlation between early life pollution exposure and upward

mobility at the county-level. In Figure 1 we plot three maps of the United States. Panel

(a) plots county-level measures of upward mobility for the individuals born between 1978–

1982, first presented by Chetty et al. (2014). Panel (b) plots county-level average daily

PM2.5 concentrations for the year 1981, aggregated by the authors from new data provided

by Meng et al. (2019). Panel (c) plots a heatmap representation of the two measures,

presenting a continuous representation of the pollution-mobility relationship. We see that

there is substantial spatial heterogeneity in both upward mobility and PM2.5 levels. The

most striking observation, however, is the strong visual relationship between the two. In

Figure 2 we formalize this relationship, presenting the bivariate relationship between the

two variables. We estimate a strong negative correlation between early life PM2.5 levels and
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upward mobility. A 1 µg/m3 reduction in PM2.5 is associated with a 0.64 rank point increase

in upward mobility. For context, a 1 µg/m3 increase in PM2.5 would be equivalent to moving

from the 50th to the 75th percentile of the PM2.5 distribution in 2016, and a 0.64 point

increase in upward mobility is approximately one twentieth the size of the black-white gap

in upward mobility from Chetty et al. (2018b).

Second, we document that environmental quality is an important correlate of upward mo-

bility. In Figure 3 we juxtapose the relationship between PM2.5 and upward mobility with

the bivariate relationships between upward mobility and other neighborhood characteristics,

first presented in Chetty et al. (2014). All correlates are standardized for comparability.

We observe that PM2.5 is one of the top five strongest bivariate predictors of upward mo-

bility in the United States. The association between upward mobility and a one standard

deviation increase in PM2.5 is comparable in magnitude to the association between upward

mobility and a one standard deviation increase in the share of residents that are black, a

one standard deviation decrease in the share of workers that live within 15 minutes of work,

a one standard deviation increase in the Gini coefficient, a one standard deviation decrease

in income-adjusted test scores, a one standard deviation increase in the share of high school

dropouts, a one standard deviation decrease in the social capital index, a one standard devi-

ation decrease in the share of households that are married, a one standard deviation increase

in the share of single moms, and a one standard deviation decrease in the teenage labor

force participation rate. We do not claim causality here. Rather, we highlight the empirical

relevance of early-life PM2.5 concentrations as a predictor of upward mobility.

2.2 Individual-Level Facts

We also explore the correlation between prenatal PM2.5 exposure and individual measures

of economic disparities using the Census Bureau’s data linkage infrastructure. The Census

Bureau’s data linkage infrastructure allows us to link data at the address, individual and

firm level. The address-based linkages capitalize on the Census Bureau’s Master Address

File, while the person-based linkages capitalize on a reference file of all individuals who either

have a Social Security Number or have filed taxes with an Individual Taxpayer Identification

Number (ITIN). The unique anonymized keys that are crucial to this data linkage process

– Master Address File Identifiers (MAFIDs) and Protected Identification Keys (PIKs) – are

assigned to administrative records, surveys, decennial census and third-party datasets by

Census staff using the enterprise Personal Validation System (Wagner and Layne, 2014).

Once these keys have been attached to a file, it is then possible to link that file with any

other dataset in the Census Bureau’s data linkage infrastructure.
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For our individual level analyses, we construct a dataset which takes advantage of the

Census Bureau’s linkage infrastructure to follow individuals over time and identify parent-

child relationships. Our individual-level dataset starts from survey responses to the 2001-

2019 American Community Surveys (ACS).1 These surveys provide detailed sociodemo-

graphic information – including age, race, sex, education, occupation and family structure –

for a very large sample of the U.S. population. We then restrict these individual responses

to those born between 1976-1998. From this sample frame we link each birth to their parents

based on filing status in the IRS 1040 universe from 1994-1999.2 We assign the primary tax

filer on this tax form as the child’s parent.

With these parent-child links in hand, we identify the place of birth for each child and the

economic circumstances of each parent at the time of birth. To do this, we link each parent

to their 1040 tax returns in the years 1969, 1974, 1979, 1984 and 1989. We then assign place

of birth (resolved at the census tract, zip code and county) and parental income information

from the form filed in the year closest to the child’s birth. Due to the incomplete coverage of

tax data held by Census before 1989 we can’t rule out measurement error in birth location;

however, our results are robust to using place of birth at the county level from the Census

Numident and to restricting the sample to those born in the exact filing years.3

Finally, we identify later-life economic outcomes for each child. We link all individuals

to form W-2s and 1040s between 2010–2018. We then calculate total annual earnings by

summing all earnings and deferred compensation across all W-2s received by an individual

in a given year. Labor earnings only captures employee compensation. Earnings from inde-

pendent contractors or self-employed individuals do not appear in this measure. To address

this, we also measure Adjusted Gross Income from the form 1040 in which an individual

appears as a primary or secondary tax filer. This measure includes all income sources.

Using this data we construct an individual level measure of economic mobility which

is similar in spirit to the Chetty et al. (2014) measure used in our county-level analysis.

Specifically, we calculate the difference between a child’s income rank and their parent’s

rank in the parental income distribution.4 This measure captures a relative mobility concept,

which we argue is the relevant concept for this time period, as it abstracts from changes in

the cross-sectional income distribution and the distribution of income growth which arose

during our sample period. In subsequent analysis we will also consider the relationship

1≈ 93 percent of individuals in the ACS can be assigned a PIK, the unique linkage key needed to link
individuals across datasets.

2While the IRS required the reporting of SSNs and other personally identifiable information for depen-
dents after the 1986 tax reforms, this information was not digitally captured until the 1990s.

3The Census Numident is an administrative records file derived from Social Security Administration SS-5
forms that is the universe of all individuals who have applied for a Social Security Number.

4We use Adjusted Gross Income as our measure of income.
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between environmental quality and absolute measures of economic well-being such as labor

market earnings.

We show the correlation between individual level upward mobility—the difference be-

tween an individual’s rank at age 30 and their parent’s rank around the child’s birth—and

an individual’s prenatal exposure to PM2.5 for a single cohort of individuals born in 1981.

Panel B of figure 2 presents the bivariate relationship between these individual-level vari-

ables. As with our county-level analysis, we estimate a negative relationship, however there

is substantially more heterogeneity. In particular, the non-parametric relationship between

individual mobility and PM2.5 exposure exhibits more of a U-shaped pattern, with higher

levels of upward mobility at high levels of PM2.5 exposure. The previous aggregate analysis

may have obscured this, as many of the largest counties (e.g. Los Angeles County, CA) are

also highly polluted. However, given that this is the unconditional association we are not

able to give any clear interpretation to why this pattern arises. Note that the best linear

approximation of this non-linear relationship (the line of best fit shown in Figure 2) between

early-life air pollution exposure and upward mobility remains negative with a slope of 0.19

in rank points. In the following section, we set out to identify the causal effect of prenatal

PM2.5 exposure on earnings and our measures of economic opportunity. We then combine

these estimates with individual-level measures of environmental and economic disparities to

quantify the contribution that air pollution may play in accounting for observed economic

disparities in the United States.

3 The Effect of Early-Life PM2.5 Exposure on Earn-

ings and Economic Mobility: Evidence from the 1990

Clean Air Act Amendments

To identify the causal effect of particulate matter on earnings we exploit plausibly exogenous

variation in prenatal air pollution exposure that arises from the introduction of the 1990s

Clean Air Act Amendments (CAAA). By leveraging improvements in the measurement of

PM2.5 exposure and a more detailed set of administrative records, we are able to refine the

approach taken by a number of previous studies (Chay and Greenstone, 2003a; Isen et al.,

2017; Voorheis, 2017; Colmer and Voorheis, 2021).
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3.1 Data

Our sample frame for this analysis comes from the 2001-2019 American Community Survey

(ACS), which we link to longitudinal information from administrative records.

To analyze the effects of the 1990 CAAA, we refine this analysis dataset to a subsam-

ple of U.S.-born ACS respondents who were born between 1989-1996, a time period that

spans the enactment of the nonattainment designations we leverage in our research design,

while ensuring that the youngest cohort will have meaningful labor market activity in our

contemporary IRS data (individuals born in 1996 were 23 in tax year 2019).

To measure prenatal exposure to ambient air pollution, we utilize the most detailed

geographic information available. The pre-1989 Form 1040 data housed at the Census Bureau

contains information on the exact address of parents when they filed their tax returns (street

address, city, state and zip code). We first attempt to geocode these addresses to the Census

tract level using the Master Address File IDs (MAFIDs) assigned to the 1040s. However,

not all cases can be assigned a MAFID, so we additionally use the zip code information

in the Form 1040 data to locate individuals (either to assign them to a zipcode tabulation

area (ZCTA), or a county). This provides three potential levels of geography to assign

pollution exposure: Census tract, ZCTA, or county. We focus on the county level results to

be consistent with the descriptive evidence, and present results using alternative exposure

definitions in sensitivity analysis.

We measure economic outcomes primarily through income information available in IRS

data. We focus on two measures of income: total annual earnings (including deferred com-

pensation) from Form W-2, and adjusted gross income from Form 1040. As we have multiple

endpoint observations for individuals (annually from 2016-2019), we create a stacked dataset,

with each row corresponding to a year in which income is earned. This will allow us to control

for year-of-birth by year-of-income unobservables, accounting for lifecycle earnings patterns

(since individuals affected born after the nonattainment designations will always be younger

than those born before). We adjust all income amounts to 2012 dollars, which allows for

easy direct comparisons with Chetty et al. (2018a) and Isen et al. (2017).

3.2 Research Design

Exposure to air pollution is correlated with many observable and unobservable characteristics

that are also correlated with long-run economic and social outcomes. To identify the causal

effect of prenatal pollution exposure we need to identify exogenous variation. We do this

by exploiting plausibly exogenous, regulation-induced variation in prenatal PM2.5 exposure.

Specifically, we exploit the introduction of new regulatory particulate matter standards that
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affected some counties, but not others, following the introduction of the 1990 Clean Air Act

Amendments. This style of research design builds on a well-established literature (Chay

and Greenstone, 2003a; Isen et al., 2017; Voorheis, 2017; Currie et al., 2020; Colmer and

Voorheis, 2021).

The Clean Air Act was first implemented in 1963, but limited federal oversight of state

efforts led to disappointing results. It wasn’t until Congress enacted the Clean Air Act

Amendments of 1970 and established the EPA, dramatically increasing federal powers to

address air pollution, that the regulation started to have an effect. The 1970 Amendments

relied on “command and control” regulations, using criteria that focused on the health bene-

fits of cleaner air without consideration of the economic costs. The legislation was instigated

through the national ambient air quality standards (NAAQS), which set the maximum allow-

able levels of “criteria air pollutants” – sulfur dioxide, carbon monoxide, nitrogen dixoide,

lead, particulates, and ozone. Based on these standards the EPA determines the set of

counties that are in “nonattainment”. The consequences of nonattainment are severe. State

governments have to implement a pollutant-specific plan describing how nonattainment coun-

ties will be brought into compliance. If a state does not act or develops an inadequate plan,

then federal funding for the state air pollution control program, highway construction, and

sewage treatment plants can be withheld. The EPA can also ban permits required for new or

modified constructions that could source pollution, or impose its own federal plan on nonat-

tainment counties. These powers are sufficiently broad that even the threat of regulatory

action has been associated with reductions in pollution Keohane et al. (2009).

Since the 1970 amendments, there have been several other major amendments, alongside

hundreds of additional policy designations as scientific consensus about the harms of pol-

lution and feasible compliance technologies have evolved. Our focus is on the 1990 Clean

Air Act Amendments, which updated the national ambient air quality standards, broadened

the enforcement powers of the EPA, and created new market-based mechanisms, such as the

sulfur dioxide allowance-trading program to address acid rain. The 1990 amendments also

resulted in the regulation of “toxic” air pollutants. 189 hazardous air pollutants were iden-

tified and emission standards were implemented that provided “an ample margin of safety

to protect publish health,” by minimizing the amount of toxic pollution that was released

into the air.

Our identifying variation comes from the updating of the NAAQS standards, which

affects some counties but not others through nonattainment designations.5 New standards

were introduced for particulates smaller than 10 microns (PM10) and for nitrogen oxides

(NOx). Note that these standards did not directly target the fine particulates measured in

5The other changes that arose from the 1990 CAAA were common across all counties.
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our data (PM2.5). Rather, these regulations affected all particles smaller than 10 microns

and NOx an important precursor to the formation of fine particles (NOx reacts with other

atmospheric chemicals to create fine particulates). The introduction of these new standards

resulted in new counties falling into nonattainment, providing regulation-induced variation

in particulate matter exposure.

We estimate the effect of these new nonattainment designations on prenatal PM2.5 ex-

posure using a difference-in-differences research design. We define an indicator variable to

be equal to one if an individual’s county of birth becomes subject to the new nonattain-

ment designations (zero otherwise) and interact this with an indicator variable each cohort.6

Treated individual’s are those that were conceived in nonattainment counties following the

introduction of the 1990 CAA.

We estimate the following specification,

PM2.5i,c,s,m,t = α1(Nonattainmentc,1990 × 1[t > 1991]) (1)

+αc + αs,t + αm + αt,y + φX ′i + δX ′ct+ νi,c,s,t

where i indexes each individual, c indexes the county of birth, s indexes the state of

birth, m indexes the month of birth, and t indexes the year of birth, i.e., the cohort.

Prenatal exposure to PM2.5 is measured for each individual i, where PM2.5i,c,s,m,t is the

average particulate matter concentration that individual i was exposed to in county of birth c

in month m and year t. PM2.5 is measured in µg/m3. We regress this measure of exposure on

a time-invariant county indicator equal to 1 if a county is designated in nonattainment of the

updated 1990 PM10 and NOx standards, Nonattainmentc,1990, and interact this term with

an indicator equal to 1 for the years after the 1990 CAA amendments went into affect, 1[t >

1991]. The interaction term is therefore equal to 1 for individuals born in nonattainment

counties following the implementation of the 1990 CAAA. The parameter of interest is α1,

which under the assumption of parallel trends and non-interference, provides an estimate

of the average treatment effect on the treated for nonattainment designation on prenatal

TSP exposure in the years after CAAA regulations went into effect. We include county-of-

birth fixed effects to control for time-invariant unobserved determinants of prenatal pollution

exposure and state-of-birth × year fixed effects to control for time-varying determinants

of prenatal pollution exposure that are common across all individuals born in state s in

year t. We also include month-of-year fixed effects to control for seasonality in exposure.

6We observe that nonattainment counties are either in nonattainment of the PM10 standard or both the
PM10 and NOx standard.
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Year-of-birth by tax year fixed effects, αt,y are included to account for lifecycle earnings

effects in the second-stage of our analysis, these fixed effects have no effect in the first-stage

analysis, but are stated here to be consistent across the first-stage and second-stage empirical

specification. Following the existing nonattainment designation literature we also include

additional controls: X ′j is a vector of individual characteristics, including age, race, and sex,

as well as prenatal exposure to temperature and rainfall. X ′ct is a vector of county-level

characteristics, measured in 1980, interacted with linear and quadratic time trends. Across

all specifications we cluster our standard errors by the an individual’s county of birth—the

level at which we measure exposure.

Consistent with previous research exploring the 1970 and 2005 Clean Air Act Amend-

ments we show that prenatal exposure to the new nonattainment designations is associated

with substantial and persistent reductions in prenatal PM2.5 exposure. Following the intro-

duction of the 1990 CAA we estimate that prenatal exposure to PM2.5 concentrations in

nonattainment counties fell by 1.32 µg/m3 (Table 1). This reduction is similar in magnitude

to the declines in prenatal TSP exposure following the 1970 Clean Air Act Amendments.7

Further, we note that the nonattainment designations did not affect ground level Ozone in

regressions using modelled O3 data from Kim et al. (2020), as shown in column 5 of Table 1,

and had only marginal effects on ground level NO2 (column 4). This is consistent with the

overlapping nonattainment designations reducing nitrate or ammonium particulates via pre-

cursor chemicals in a way that did not affect other fates of these precursors (e.g. combining

with VOCs to form ozone).

Figure 6 presents cohort-specific estimates from a distributed-lag model. We see that

before the new regulations, individuals in nonattainment counties were not differentially

exposed to PM2.5, providing support for the parallel trends assumption. Following the im-

plementation of the 1990 CAA, we estimate a sharp and persistent drop in prenatal PM2.5

exposure. The reductions are driven by counties that are in non-attainment of both the

PM10 and NOx standard. This does not mean that the PM10 nonattainment by itself wasn’t

effective, just that it wasn’t targeted to reduce levels of PM2.5, a more granular measure of

particulates.

We use this plausibly exogenous variation as an instrument to identify the effects of

prenatal PM2.5 exposure on later-life economic outcomes. We estimate the following speci-

fication,

7TSP concentrations fell in nonattainment counties by ≈10 µg/m3. The crude ratio between PM2.5 and
TSP is 0.22.
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Yi,c,s,m,t,y = βP̂M2.5i,c,s,m,t (2)

+αc + αs,t + αm + αt,y + φX ′i + δX ′ct+ εi,c,s,m,t,y

We consider three main outcomes: 1) individual labor market earnings as measured on

form W-2; 2) tax unit adjusted dross income (AGI, which we will abuse notation and refer to

as family income) as measured by form 1040; and 3) a measure of upward economic mobility

– the difference in AGI ranks between an individual around age 30 and their parent (at the

time of the individual’s birth).

We have shown that the first-stage is relevant and that the relationship between nonat-

tainment and PM2.5 exposure is plausibly identified, assuming parallel trends. If we assume

that the exclusion restriction holds, the coefficient of interest, β, identifies the effect of a

one-unit increase in CAAA-driven prenatal PM2.5 exposure on later-life earnings.

The exclusion restriction assumption – that the 1990 CAAA only affected later-life out-

comes through reductions in prenatal PM2.5 exposure may not hold. It is possible that

nonattainment designations affected outcomes in ways other than the estimated reductions

in pollution. Isen et al. (2017) and Colmer and Voorheis (2021) make the point that nonat-

tainment designations could affect economic competitiveness (Greenstone, 2002; Greenstone

et al., 2012; Walker, 2011, 2013). However, existing evidence suggests that the effects on

the broader local economy are small, affecting less than 0.7 percent of the total workforce

(Walker, 2013). By contrast, the reduction in pollution benefited everyone in non-attainment

counties. While we can’t rule out that the 1990 CAAA contributed to a decline in economic

conditions in nonattainment counties, we are able to control for parental Adjusted Gross

Income in the year of birth. To the degree that this is insufficient we argue that since effects

on competitiveness would be expected to have the opposite effect on health to reductions in

pollution exposure, it is plausible that the 2SLS estimates understate the effects of prenatal

PM2.5 exposure. The reduced form effect of nonattainment remains valid and is interpreted

as the net effect of the nonattainment designations on later-life outcomes. Our reduced form

and corresponding 2SLS estimates produce very similar results, suggesting that violations of

the exclusion restriction are unlikely to be a first-order concern. Another possible violation

of the exclusion restriction, is that PM2.5 is also correlated with other pollutants that also

affect health and development. In this case our estimates reflect the compound effect of the

correlated pollutants, rather than just PM2.5. While we can’t rule out this concern, Table 1

shows that the effect of nonattainment on PM2.5 is driven by the combination of PM10 and

NOX nonattainment designations (column 1). NOX is an important precursor for PM2.5 but
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is less important in shaping PM10. Consistent with this we do not estimate a statistically

significant effect of the additional NOX designation on PM10 concentrations, despite the fact

that PM10 and PM2.5 concentrations are likely to be strongly correlated (column 2). In ad-

dition, we do not estimate meaningful effects of these nonattainment designations on other

pollutants, such as NO2 (column 5) and Ozone (column 6).

3.3 Results

Table 2 summarises our estimates of the effect of regulation-induced decreases in PM2.5 on

later-life economic outcomes. In column 1 we see that a 1 µg/m3 reduction in prenatal PM2.5

exposure is associated with a $1,105 increase in later life W-2 earnings; the reduced form

effect of prenatal exposure to nonattainment is associated with a $1,553 increase in later

life W-2 earnings.8 In column 2 we observe a similar estimate for the relationship between

prenatal PM2.5 exposure and later-life AGI, however, it is less precisely estimated – a 1

µg/m3 reduction in prenatal PM2.5 exposure is associated with a $1,313 reduction in annual

AGI. Column 3, presents the association between prenatal PM2.5 exposure and our measure

of upward mobility. We estimate that a 1 µg/m3 reduction in prenatal PM2.5 exposure is

associated with a 1.28 rank point increase in upward mobility, approximately one-tenth of

the size of the black-white mobility gap in Chetty et al. (2018b).

Our results are quantitatively and qualitatively robust to a large array of sensitivity

analyses, including changes to the spatial resolution of pollution exposure (Table A1) and

to alternative transformations of the outcome variables (Table A2). We also present cohort-

specific estimates of the reduced form relationship. As with the first stage distributed-lag es-

timates, there are no statistically significant or economically meaningful differences between

individuals born in treatment and control counties before the nonattainment designations

went into effect, providing additional support for the parallel trends assumption. Consistent

with the overall post-treatment estimates presented in Table 2, we see that all cohorts born

in nonattainment counties following the introduction of the 1990 CAAA have higher later-

life earnings, relative to those born in attainment counties. We observe a similar pattern

for our cohort-specific estimates of nonattainment on AGI (Panel c of Figure 6) and upward

mobility (Panel d of Figure 6). Consistent, with the existing literature on the Clean Air Act,

cohort-specific estimates are less precisely estimated (Isen et al., 2017; Colmer and Voorheis,

2021).

Our estimated effects are substantially larger than previous estimates of the long-term

8The first-stage estimate predicts a 1.383 µg/m3 reduction in PM2.5, which combined with our second-
stage estimate would predict a $1,528 effect of pollution reductions from nonattainment. This suggests that
any violations of the exclusion restriction are unlikely to be a first-order concern.
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effect of prenatal pollution exposure. Isen et al. (2017) estimate that a 10 µg/m3 reduction

in Total Suspended Particulates, induced by the 1970 Clean Air Act Amendments was asso-

ciated with a $352 increase in earnings. Total Suspended Particulates – defined as the total

mass of particles smaller than 100 microns – are much coarser than PM2.5. Consequently,

we need to re-scale existing estimates to make a proper comparison. Using all EPA monitor

observations from monitor sites that had co-located active PM2.5 and TSP monitors, we cal-

culate a crude scaling factor between TSP concentrations and PM2.5 concentrations as 4.35.

A 10 µg/m3 reduction in TSP corresponds to a 2.29 µg/m3 decrease in PM2.5. As such, the

Isen et al. (2017) estimate is consistent with a $153.60 increase in earnings per µg/m3 of

PM2.5.9 Our baseline estimate on W-2 earnings is 7 times larger.

There are a number of plausible origins for the increase in magnitude. We argue that

our estimates differ due to differences in the policy variation used — the EPA’s regulations

after the 1990 Clean Air Act focus on finer particulates than the regulations after the 1970

Clean Air Act. Since finer particles are more damaging to health, the 1990s nonattainment

designations may have had a much larger effect on health than the 1970s nonattainment

designations. While the crude reduction in particles is similar across the two policies, the

actual reduction in PM2.5 from the 1990 CAAA is likely much larger than the reductions in

1970 as it would have been easier and lower cost to reduce coarser particulates. One possible

confounder to this interpretation is that we use a different assignment of place of birth to

Isen et al. (2017) and Colmer and Voorheis (2021) — we use information on the location an

individual’s parent filed taxes rather than the place of birth reported to the Social Security

Administration. We believe that using tax data locations may more accurately capture

exposure, since SSA locations may correspond to the hospital a child was born in rather

than their residence. Any classical measurement error in exposure will have attenuated

previous estimates. In Table A3 we show that, if anything, estimates are larger when using

the Numident place of birth. Another possibility is that our data on exposure is different

from the previous literature. As noted earlier, the satellite-derived data product performs

similarly to the ground-based monitors in areas where the monitor network has coverage.

Importantly, however, the satellite derived data product allows us to observe exposure for

all counties, including those not monitored. This in turn means that our sample is closer

to being nationally representative (since it includes individuals born in all counties, not a

selected sample born in monitored counties). Comparisons between column 1 and column

3 of Table A3 show that our results are similar in magnitude when we restrict to monitor

counties. In addition, we continue to estimate larger effects than Isen et al. (2017) and Colmer

and Voorheis (2021) when using monitor data on PM10 concentrations (Table A3, columns

9$351.74/2.29 = $153.60.
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5 and 6). The estimates on PM10 are in between our estimates using PM2.5 concentrations

and the Isen et al. (2017) estimates using total suspended particles, further supporting the

claim that differences in our estimates arise from the reduction in smaller, more damaging

particulates. Finally, we note that our results are robust to omitting individuals in counties

directly neighboring nonattainment counties (see Table A4), which suggests spillovers do not

play an meaningful role in driving our results.

3.4 Age-Specific Estimates of the PM2.5-Earnings Relationship

Thus far, all our results have focused on the effect of exposure to particulate matter in utero

as a determinant of later life outcomes. In our research design, we operationalize this by

comparing individuals who received one additional year of cleaner air at age 0 (children born

in nonattainment counties) to those who did not receive this improvement (children born in

counties not in nonattainment). However, given our rich data, it is also possible to examine

the impacts of exposure to pollution at later ages on later life outcomes. To do this, we

compare children living in nonattainment counties at a given age to those in attainment

counties, isolating the effect of an additional year of clean air at age 1,2,3.... To do this, we

modify our research design to estimate the following equation:

Yi,c,s,m,tk,y = βkP̂M2.5i,c,s,m,tk (3)

+αc + αs,tk + αm + αt,y + φX ′i + δX ′ctk + εi,c,s,m,tk,y

which is now indexed by tk, the year in which a child i turns age k.

We estimate these IV regressions for each age 1,2,....12, and trace out the age-specific

effects (βk) of pollution exposure on later life earnings. These age specific effects are shown

graphically in Figure 5, along with the age 0 (in utero) effect from Table 2. As with the

baseline results, the age-specific results measure PM2.5 exposure at the county level. Expo-

sure to an additional 1 µg/m3 of PM2.5 has slighter smaller effects on adult earnings than

exposure in utero through age 4, after which estimated effect sizes decrease dramatically.

By age 8, we do not estimate any meaningful effect of PM2.5 on adult earnings, with a high

degree of precision. This pattern provides direct evidence on the conventional wisdom that

exposure to environmental hazards in early childhood is of particular importance.
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4 Exploring the Contribution of Air Pollution to Eco-

nomic Opportunity

To better understand how much broader patterns of economic opportunity are explained by

variation in air quality, we engage in three quantitative thought experiments. First, we com-

bine our causal estimates of the effect of early life PM2.5 exposure on earnings and economic

mobility with observed patterns of individual-level pollution and economic disparities. The

objective of this exercise is to calculate how much early-life pollution exposure can account

for racial earnings gaps. Second, we leverage plausibly exogenous variation in early life pol-

lution exposure, arising from a mover’s design – exploiting differences in the age in which

children moved – to explore how much of the overall “neighborhood earnings effect” could

be accounted for by air quality during childhood. Finally, we exploit exogenous variation in

early pollution exposure from the Moving to Opportunity randomized experiment, compar-

ing those that move to those that don’t, as an alternative lens through which to calculate

how much of the overall “neighborhood earnings effect” could be accounted for by air quality

in early childhood

4.1 How Much Does Prenatal Pollution Exposure Contribute to

Black-White Earnings Gaps?

Our first analysis combines our estimates of the long-run economic effects of prenatal pollu-

tion exposure with cohort-specific disparities in PM2.5 exposure. With these measures, we

provide an estimate of the role that disparities in air quality at birth play in contributing

to later-life economic disparities. Specifically, we consider how much racial gaps in pollution

exposure at birth contribute to contemporary gaps in the level of income.

We use our linked dataset to estimate the cohort-specific Black-White and and Hispanic-

White gaps in PM2.5 exposure at birth – for each cohort between 1981 and 2016. The

Black-White prenatal PM2.5 gap has fallen from 2.91 µg/m3 in 1981 to 1.48 µg/m3 in 2016

(Figure 6a). The Hispanic-White prenatal PM2.5 gap has fallen from 1.43 µg/m3 in 1981 to

0.72 µg/m3 in 2016 (Figure 6b); however, unlike the Black-White gap, which shows a stable

decline over time, the Hispanic-White gap has fluctuated a lot more across cohorts and does

not appear to follow a declining trend.

We then use our linked dataset to calculate the cohort-specific racial earnings gaps at

age 30 using Form W-2 data.10 We calculate that the Black-White earnings gap has steadily

10We average all non-missing annual W-2 observations for an individual for the year in which they turned
30.
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increased from $11,277 for the 1981 cohort to 12,107 for the 1989 cohort (Figure 6d). We

calculate that the Hispanic-White earnings gap has decreased from $6,871 for the 1981 cohort

to $6,303 for the 1989 cohort (Figure 6d).

Using our central estimate of the effect of PM2.5 exposure on earnings, assuming constant

marginal damages for each race group and cohort, we calculate that $3,215 (29 percent) of

the $11,277 Black-White earnings gap and $1,580 (18 percent) of the $6,871 Hispanic-White

income can be accounted for by PM2.5 disparities at birth.11 Across cohorts between 1981

and 1981, we can explain 20-28 percent of the Black-White earnings gap (Figure 6e) and

5-38 percent of the Hispanic-White earnings gap Figure (6f). The share of the Black-White

earnings gap that can be accounted for by PM2.5 disparities at birth has declined steadily

over time – the earnings gap has increased over time. By contrast, the share of the Hispanic-

White earnings gap that can be accounted for by PM2.5 disparities at birth has remained

more stable. In recent years, the Hispanic-White income gap has shrunk which, combined

with a more stable Hispanic-White prental PM2.5 gap, has led to a greater share of the

income gap being allocated to prenatal PM2.5.

We note caveats. These calculations combine non-marginal changes in pollution exposure

with an out-of-sample estimate of the marginal pollution-earnings relationship. We also

assume constant marginal damages, i.e., a linear dose response function. If the dose response

function is convex, marginal damages will decrease as the pollution gap shrinks. In this case,

our calculations will overstate the contribution of early life pollution exposure. If the dose

response function is concave, marginal damages will increase as the pollution gap shrinks. In

this case, our calculations will understate the contribution of early life pollution exposure.

Given the size of the pollution gaps, we do not think that assuming linearity in the dose

response function is plausible over this range. Existing evidence on the shape of the dose

response function based on credible research designs has not uncovered strong evidence of

non-linearities.

4.2 How Much Does Air Pollution Contribute to the Effect of

“Neighborhood” on Earnings?

In addition to providing evidence on the contribution of air pollution to contemporary racial

economic disparities, we also explore the contribution of air pollution to the overall effect

of “neighborhood” on later-life earnings. Unlike our analysis of racial disparities, which

exploited descriptive differences in exposure, we exploit quasi-experimental and experimental

11If we use the upper and lower bounds of the 95 percent confidence interval for our earnings estimate,
we can account for between $401 (3.6 percent) and $6,026 (53 percent) of the Black-white earnings gap and
between $197 (2.87 percent) and $2,691 (43 percent) of the Hispanic-White earnings gap.
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variation in pollution exposure, resulting from movements between neighborhoods. This

allows us to combine marginal changes in pollution exposure with our marginal estimate of

the pollution-earnings relationship.

4.2.1 Evidence from a Mover Design

Our first approach combines our age-specific estimate of the pollution-earnings relationship

with mover design inspired by Chetty and Hendren (2018a). This approach exploits varia-

tion in the timing of children who moved to better/worse neighborhoods at different ages.

Approaches that compare individuals that move to those that don’t face strong identifica-

tion assumptions given selection into moving. By contrast, the mover design relies on a less

stringent identification assumption. Instead of having to assume away selection effects, we

instead have to assume that any selection effects associated with moving don’t vary with

the age of the child when the family moved. Chetty and Hendren (2018a) and others have

provided evidence to support this assumption.

To calculate the contribution of air quality to the overall effect of neighborhood on earn-

ings we need three components. First, we need to estimate the age-specific relationship

between predicted neighborhood mobility and earnings. Second, we need to estimate the

relationship between predicted neighborhood mobility and PM2.5 concentrations, providing

the expected change in pollution from a change in neighborhood mobility. Finally, we need

age-specific estimates of the relationship between PM2.5 and later-life earnings, which we

described in section 3.4.

Our approach mirrors Chetty and Hendren (2018a). Using linked IRS 1040 records, we

track residential histories and income histories for individuals born between 1981 and 1995

from ages 0 through 24. We then extract three pieces of information: 1) individual family

income and earnings at age 24, 2) county of birth, and 3) the first county of residence

we observe for a child that differs from their county of birth through age 12. Using this

information, we calculate cohort-specific income ranks in adulthood, and define two sets of

children: permanent residents of a county (defined as individuals who still live in the their

county of birth at age 12), and movers (individuals who move once between age 0 and 12).12

Using these ranks, we calculate the average income rank for permanent residents of each

county in the United States for each cohort. This allows us to construct a key measure: the

predicted economic mobility of an origin-destination county pair, ∆ods = r̄ds − r̄os, where

o indexes origin counties, d indexes destination counties, and s indexes cohorts. Following

Chetty and Hendren (2018a), we take this to be a summary measure of the opportunity of

12We set 12 as the age defining permanent residents to match the age profile effects of pollution exposure,
which we estimate through age 12.
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a neighborhood.

The movers design estimates the relationship between neighborhood opportunity and

later life outcomes by estimating the following regression for movers:

Earningsi = αqodsk +
24∑
k=0

γk∆ods + εi (4)

where i indexes individuals, q indexes parent income quintiles at birth, o and d index origin

and destination counties, s indexes cohorts and k indexes age at first move. αqodsk are par-

ent income quintile-by-cohort-by-age-by-county pair fixed effects. Estimating this equation

produces age specific effects of neighborhood opportunity on earnings in adulthood – the γk

coefficients. Figure 7a visualizes these estimated coefficients for ages 0 through 24. Mov-

ing to a higher opportunity neighborhood has declining impacts on adult earnings through

around age 12, after which effects are flat and close to zero.

To understand how much of these neighborhood opportunity effects might be driven by

pollution exposure, we need to understand the relationship between neighborhood opportu-

nity as measured here and fine particulate matter. Figure 7b presents a binned scatterplot

and linear association between the average PM2.5 difference between origin and destination

counties for each cohort and the ∆ods estimates from the movers design. A 1 percentile point

increase in predicted neighborhood opportunity is associated with a 0.08 µg/m3 decrease in

PM2.5.13

We combine estimates of these two parameters, with our estimates of the age-specific

effect of PM2.5 on adult earnings (βk from equation 3, shown in Figure 5) to calculate the

share of the movers design effect that can be attributed to PM2.5 for each age group,

PM2.5 Share =
β̂k × ∆̂PM2.5

γ̂k
(5)

Figure 7c presents this share fore each age between 0 and 12. For very young children,

pollution exposure can account for as much as 50 percent of the overall neighborhood op-

portunity effect. After age 4, there are sharp declines in the fraction of neighborhood effects

explained. None of the variation in neighborhood effects for children older than 8 can be

attributed to pollution. If we average across all children through age 12, we can attribute

13We do not estimate a full mover’s design specification with PM2.5 as the outcome because there shouldn’t
be any meaningful difference in the level of PM2.5 exposure for someone who moves earlier to someone who
moves a bit later (other than through changes in trends. By using the cross-sectional relationship between
predicted mobility and PM2.5 we capture differences in exposure that arise from the number of years an
individual is exposed to higher/lower pollution. Our estimates in Figure 5 indicate that air quality in early
childhood matters more than later childhood.
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20% of the movers design effects to pollution. In addition to highlighting the contribution

of air pollution to the overall effect of neighborhood on earnings, this finding indicates that

there should be differences in willingness-to-pay for different neighborhood amenities over

the life-cycle.

4.2.2 Evidence from the Moving to Opportunity Experiment

Our second approach exploits experimental variation in pollution exposure from the Moving

to Opportunity (MTO) randomized experiment. The MTO experiment was conducted by the

U.S. Department of Housing and Urban Development (HUD) in the mid 1990s. The objective

was to examine whether moving public housing recipients to lower poverty neighborhoods

improved the economic and social outcomes of adults. Families were tracked over time, and

HUD collected outcomes for both children and adults at the end of the experiment.

The MTO experiment randomized recipients into three groups: the treatment group

received a voucher that could only be used in a low poverty neighborhood; the Section 8

group received a voucher that could be used anywhere; the control group did not receive a

voucher.

Evaluations during and after the experiment found little evidence of improvements in

the economic circumstances for the treatment groups (Kling et al., 2007; Sanbonmatsu L et

al., 2011). However, more recent work documents that children in the treatment group who

were younger than 13 when they moved experienced higher incomes as adults (Chetty et al.,

2016).

We calculate the extent to which improvements in air quality may have contributed to this

earnings effect. We do this by estimating whether voucher-induced movements resulted in

lower exposure to PM2.5 and combine estimates of the change in pollution with our estimates

of the PM2.5–earnings relationship.

Data We use data from HUD on the individuals that participated in the Moving to Op-

portunity experiment. We focus on those that were younger than 13 years old at time of

randomization. Following Chetty et al. (2016), we restrict the sample to those older than 23

in tax years 2008 - 2012.

We identify demographic information, survey responses, and survey weights from the

MTO Final Analysis dataset provided by HUD. We construct quarterly address history over

the duration of the MTO experiment (1994 - 2010) for all participants using the MTO Final

Evaluation Residential Address History dataset. This dataset provides the census tract that

every MTO participant lived in during the experiment.

We merge the MTO participants’ residential histories to the Census tract level measures
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of PM2.5 concentrations discussed above. We define an individual’s pollution exposure as the

duration weighted average of each quarter’s PM2.5 exposure up to the age of 18, or calculate

annual average pollution exposure for each year through age 18.

We also merge the MTO participants to income information from IRS tax data to mea-

sure their economic outcomes. We follow Chetty et al. (2016) and focus on two outcomes:

individual earnings, which we measure using annual average wage income from Form W-2s,

and tax unit level total income, which we measure as the adjusted gross income reported on

form 1040. For comparability with previous literature, we measure this income information

from the years 2008–2012.

Research Design We estimate OLS regressions of the form:

Yi,s = α + β1Expi,s + β2S8i,s + δs + εi,s (6)

where Yi,s denotes outcomes for individual i in randomization site s. The outcomes we focus

on are time-weighted PM2.5 pollution exposure, wage income, and adjusted gross income.

Expi and S8i are whether the individual was assigned to the experimental or Section 8 groups

and δs is a set of randomization site fixed effects. We weight regressions using the standard

MTO final analysis weights, which adjust for differences in sampling probabilities across

sites and over time. We cluster standard errors by family, the level at which randomization

occurred.

Randomization site fixed effects account for inherent differences between the five random-

ization sites (Baltimore, Boston, Chicago, New York, and Los Angeles), which is particularly

important in this context because of differing baseline pollution levels between cities.

β1 and β2, respectively, provide estimates of the association between being offered the

experimental voucher or the Section 8 voucher and our outcomes of interest, relative to the

control group. Because some families do not use the vouchers, the estimates capture the

intent to treat effect.

MTO Results Table 3 presents estimates of the relationship between take-up of vouchers

and income, for individuals whose families received the voucher before the age of 13. In

column 1, we estimate that children whose parents were part of the experimental group

have annual W-2 earnings that are $2,790 higher than the control group. We estimate no

statistically significant effects of assignment to the Section 8 group. These findings very

closely match the estimates in Chetty et al. (2016).

In column 2, we turn to the effects of MTO randomization group assignment on adjusted

gross income (AGI). Wage earnings are a component of AGI, though they come from different
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IRS datasets. The AGI results match the W-2 results: children whose parents were part of

the experimental group have annual AGI earnings that are $4,298 higher than the control

group. Likewise, we estimate no significant effect of Section 8 vouchers on annual AGI

earnings.

In column 3, we estimate the relationship between take-up and post-treatment PM2.5

exposure. We estimate that being offered the experimental voucher is associated with a

0.407 µg/m3 reduction in PM2.5 exposure, relative to the control group. This is a 3 percent

reduction in exposure relative to the mean. Section 8 voucher recipients do not appear to

experience significant reductions in exposure relative to the control group.

How Much of the MTO-Earnings Effect can be explained by MTO-induced re-

ductions PM2.5 Exposure? We have shown that receiving MTO low poverty vouchers

reduced children’s lifetime pollution exposure and increased earnings. The MTO experiment

increased earnings by $2,790 for children whose family were offered the voucher before the

age of 13; and decreased exposure to PM2.5 by 0.4 µg/m3. Combining our estimate of the

reduction in pollution with the average effect of PM2.5 on earnings between birth and age

12, we calculate that, on average, $167 (6 percent) of the earnings effect can be accounted

for by reductions in childhood PM2.5 exposure.

5 Conclusion

We have shown, across datasets and research designs, that exposure to ambient air pollution

is closely related to economic opportunity in the United States. We document that early

life exposure to fine particulate matter is one of the top five predictors of intergenerational

income mobility in the United States. We argue that this strong correlation, at least in part,

reflects a causal relationship between air quality and economic opportunity. We provide

evidence for this claim in two parts: first, we present new evidence that plausibly exoge-

nous shocks to early life pollution exposure arising from nonattainment designations enacted

following the 1990 Clean Air Act Amendments have large effects on later life economic out-

comes. These estimates are much larger than existing estimates of the pollution-earnings

relationship, which we argue is largely driven by the smaller particulates under study, which

are more damaging to health than the larger particles studied in previous analyses (Isen

et al., 2017; Colmer and Voorheis, 2021). Taking advantage of our rich longitudinal data,

we also present new estimates on the pollution-earnings relationship from birth through to

age 12, rather than focusing solely on prenatal exposure. We provide direct evidence that

pollution exposure in early childhood is much more damaging than later childhood exposure.
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Second, we combine our estimates of the pollution earnings relationship with individual-

level information on race, residence, and later-life earnings to explore the degree to which

differences in exposure to pollution by race and neighborhood contribute towards contempo-

rary racial economic disparities and the overall effect of neighborhood on economic oppor-

tunity. We show that racial gaps in prenatal PM2.5 exposure can account for a meaningful

share of contemporary racial economic disparities and are a non-trivial contributor to the

overall effect of neighborhood on later-life earnings. Collectively, our results suggest that

exposure to environmental hazards in early childhood are an important determinant of later

life economic opportunity in the United States.

These results underline the importance of understanding disparities in pollution expo-

sure: environmental inequality exacerbates economic inequality. However, these results also

provide hope. We know very little about how to reduce racial disparities and ensure economic

opportunity. By contrast, evidence suggests that we have been very successful in reducing

air pollution over the last few decades (Figure 6a, Colmer et al. (2020), and Currie et al.

(2020)). Our findings provides evidence that improving air quality meaningfully improves

economic opportunity and reduces contemporary racial disparities in the United States.
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Tables and Figures

Figure 1: Spatial Variation in Upward Mobility and Environmental Quality
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(b) PM2.5
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Source: Author’s calculations using data from Meng et al. (2019) and Chetty et al. (2014). The maps summarize the county-level
distribution of upward mobility and pollution exposure. The top panel maps the county-level measures of upward mobility (the
predicted rank for a child born to parents at the 25th percentile) from Chetty et al. (2014). The middle panel maps county-level
annual average PM2.5 concentrations in 1981. County-level averages are calculated by intersecting the gridded data from Meng
et al. (2019) with Census tracts and then calculating a tract population weighted average for each county. The bottom panel
maps the two county-level variables together using a bivariate color palette.
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Figure 2: The Bivariate Relationship between early life PM2.5 Exposure and Upward Mobility

(a) County-level

(b) Individual-level

Source: Author’s calculations using data from Meng et al. (2019), Chetty et al. (2014), IRS 1040s, ACS 2001-2019. Panel a)
summarizes the bivariate relationship between county-level PM2.5 and county-level predicted upward mobility (child rank -
parent rank). Panel b) summarizes the bivariate relationship between individual-level PM2.5 exposure compared to individual
level upward mobility (child rank - parent rank). Each point reflects the average upward mobility and PM2.5 within each
vigintile bin of the PM2.5 distribution. Error bars reflect the 95 percent confidence intervals calculated with robust standard
errors clustered at the county of birth level.

32



Figure 3: The Relative Importance of PM2.5 as a Correlate of Upward Mobility

Source: Author’s calculations using data from Meng et al. (2019) and Chetty et al. (2014). See figure 1 for more details.
This figure shows bivariate correlations between county-level upward mobility and county-level PM2.5, as well as correlations
between upward mobility and other county-level characteristics from Chetty et al. (2014).
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Figure 4: Cohort-Specific Estimates of the Relationship between Prenatal Nonattainment
Exposure and Our Main Outcomes.

(a) Prenatal PM2.5 Exposure (b) W2 Earnings ($2012)

(c) AGI ($2012) (d) Upward Mobility

Source: IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations using data from Meng et al. (2019).
These figures present cohort-specific estimates of the association between prenatal exposure to nonattainment designations and
our main outcomes of interest. Panel a) presents estimates of the association between prenatal exposure to nonattainment and
prenatal PM2.5 exposure. This is the first-stage of our analysis. Panel b) presents estimates of the association between prenatal
exposure to nonattainment and later-life W2 earnings. Panel c) presents estimates of the association between prenatal exposure
to nonattainment and later-life AGI. Panel d) presents estimates of the association between prenatal exposure to nonattainment
and later-life upward mobility, measured as the difference in AGI income rank between children and their parents. Error bars
reflect the 95 percent confidence intervals calculated with robust standard errors clustered at the county of birth level.
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Table 1: The Association between Prenatal Nonattainment Exposure and Pollution Exposure

(1) (2) (3) (5) (5)
PM2.5 PM10 PM2.5 NO2 O3

(at birth) (at birth) (at age 18) (at birth) (at birth)

PM10 Nonattainment -0.1542 -3.281*** 0.084*** -0.1863 -0.4509
(0.1199) (0.7765) (0.02) (0.2061) (0.3743)

PM10 and NOx Nonattainment -1.383*** -2.983 0.058 -0.8837* -1.038
(0.3375) (2.511) (0.0566) (0.4651) (0.8248)

Fixed Effects Birth County, Birth-State × Year, Birth Month

Individual Controls Yes Yes Yes Yes Yes

County-level Controls Yes Yes Yes Yes Yes

Observations 3,570,000 2,278,000 3,118,000 3,570,000 3,570,000

First Stage F-Stat 9.74 10.43 – – –

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Source: IRS 1040s,
IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations using data from Meng et
al. (2019). This table shows the first stage effect of prenatal exposure to nonattainment PM10 and
NOx designations on PM2.5 exposure at birth (column 1), PM10 exposure at birth, using a restricted
sample of monitor counties (column 2), and PM2.5 exposure measured at age 18 (column 3). Columns
4 and 5 use CACES modelled data to do a falsification test for whether the nonattainment designation
affected other pollutants (NO2 and O3).
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Table 2: The Association Between Prenatal PM2.5 and Adult Economic Outcomes

(1) (2) (3)
W-2 Earnings AGI Upward Mobility

Panel A: IV

PM2.5 (µg/m3) -1105** -1313* -0.0128**
(493.2) (693.4) (0.005855)

Panel B: Reduced Form

Nonattainment × Post 1553*** 1922** 0.01103**
(531.9) (868.8) (0.005443)

Fixed Effects Birth County, Birth Year × Tax Year,
Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Observations 10,610,000 13,710,000 13,710,000

Control Mean $25,490 $35,340 0.66

First Stage F-Stat 9.69 9.74 9.74

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Source:
IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations
using data from Meng et al. (2019). This table shows the second stage effect of
PM2.5 on earnings, AGI and upward mobility in panel A, and the reduced form effect
of nonattainment PM10 and NOx designations on on earnings, AGI and upward
mobility in panel B. Column 1 uses a sample consisting of individuals born between
1989-1996 who have W-2 earnings between 2016-2019. Columns 2 and 3 use a sample
consisting of individuals born between 1989-1996 who are a primary or secondary
1040 filer between 2016-2019. Upward mobility in column 3 is defined as the child’s
AGI rank in 2016-2019 subtracted from their parent’s AGI rank in their year of
birth.
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Figure 5: Age Specific Effects of PM2.5 on Adult Earnings

37



Figure 6: Cohort-Specific Estimates of PM2.5 Gaps, Earnings Gaps, and the Share of Earn-
ings Gaps that can be Explained by PM2.5 Disparities at Birth.

(a) Black-White Prenatal PM2.5 Gap (b) Hispanic-White Prenatal PM2.5 Gap

(c) Black-White Income Gap ($2012) (d) Hispanic-White Income Gap ($2012)

(e) PM2.5 Share of Black-White

Income Gap (%)

(f) PM2.5 Share of Hispanic-White

Income Gap (%)

Source: IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations using data from Meng et al. (2019).
Panel a) presents the Black-White gap in prenatal PM2.5 concentrations for each birth cohort between 1981 and 2016. Panel
b) presents the Hispanic-White gap in prenatal PM2.5 concentrations for each birth cohort between 1981 and 2016. Panel c)
presents the Black-White Income gap at age 30 in 2012 dollars for each birth cohort between 1981 and 1989. Panel d) presents
the Hispanic-White earnings gap at age 30 in 2012 dollars for each birth cohort between 1981 and 1989. Panel e) presents the
share of the Black-White earnings gap that can be accounted for by combining the Black-White prenatal PM2.5 gap and our
central estimate of the relationship between prenatal PM2.5 exposure and later-life earnings around age 30. Panel f) presents
the share of the Hispanic-White earnings gap that can be accounted for by combining the Hispanic-White prenatal PM2.5 gap
and our central estimate of the relationship between prenatal PM2.5 exposure and later-life earnings around age 30.
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Figure 7: Movers Design Results

(a) Predicted Mobility–Earnings Effect (b) Predicted Mobility–PM2.5 Effect

(c) PM2.5 Share of Neighborhood Mobility Effect on Earnings

Source: IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations using data from Meng et al. (2019).
Panel a) presents the relationship between predicted neighborhood mobility and later-life earnings, by age of first move. Panel b)
presents the relationship between predicted neighborhood mobility and neighborhood PM2.5 concentrations. Panel c) presents
the share of the mover design effect on earnings that can be attributed to PM2.5 for each age group. This is the result of
combining the estimates in panel a) and b) with our age-specific effects of PM2.5 on later life earnings in Figure 5. This share
is calculated for each age group using equation 5.

39



Table 3: The Association between MTO Treatment Take-Up, Earnings and PM2.5 Exposure

(1) (2) (3)
W-2 Earnings 1040 AGI PM2.5

Exp Group (TOT) 2790∗∗ 4298∗∗∗ -0.407∗∗∗

(1346) (1582) (0.137)

S8 Group (TOT) 926.3 1718 0.0467
(1069) (1141) (0.108)

Site FE Yes Yes Yes

Observations 9,500 9,500 9500

Control Mean $9,598 $11,760 14.83

Notes: Significance levels are indicated as * 0.10 ** 0.05 ***
0.01. Source: HUD MTO, IRS 1040s, IRS W-2s and Meng et al.
(2019). Column 1 show effects on earnings as measured as the
annual earnings across all Form W-2s, while column 2 shows the
effects on AGI income on form 1040s. Column 3 shows the effects
on PM2.5 exposure.
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Online Appendices – Not for Publication

A Additional Results and Robustness Tests

Table A1: Robustness Check: Alternate Spatial Resolutions

(1) (2) (3)
W-2 Earnings W-2 Earnings W-2 Earnings

PM2.5 (µg/m3) -961.2*** -989.1** -1105**
(330) (403.1) (493.2)

Observations 8,945,000 10,610,000 10,610,000
First Stage F-Stat 19.47 14.36 9.69

1040 AGI 1040 AGI 1040 AGI

PM2.5 (µg/m3) -1274*** -1162** -1313*
(487) (564.9) (693.4)

Observations 11,520,000 13,710,000 13,710,000
First Stage F-Stat 19.26 14.44 9.74

Exposure Level Tract Zip Code County

Fixed Effects Birth County, Birth Year × Tax Year,
Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source:
Source: IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s
calculations using data from Meng et al. (2019). See table 2 for more information.
This table shows the relationship between PM2.5 and earnings, using different
definitions of pollution exposure. Column 1 uses PM2.5 exposure resolved to the
Census tract level, while columns 2 and 3 use zip code and county level resolution
respectively.
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Table A2: Robustness Check: Alternative Transformations of the Outcome Variable

(1) (2) (3) (4)
W-2 Earnings AGI Earnings AGI

Panel A: IV

PM2.5 (µg/m3) -0.03004** -0.0207** -0.02827** -0.01375**
(0.01225) (0.01037) (0.01156) (0.01147)

Transformation Log Log IHS IHS

Fixed Effects Birth County, Birth Year × Tax Year,
Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes Yes

County-level Controls Yes Yes Yes Yes

Observations 10,610,000 13,710,000 10,610,000 13,710,000

Control Mean $25,490 $35,340 $25,490 $35,340

First Stage F-Stat 9.69 9.74 9.69 9.74

Notes:Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Source:
IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations
using data from Meng et al. (2019). See table 2 for more information. This table
shows the effect of PM2.5 on earnings and AGI using different transformations of
the dependent variable. Columns 1 and 2 use a logarithmic transformation (which
implicitly excludes zero and negative values), while columns 3 and 4 use an inverse
hyperbolic sine, which allow for zero and negative valued income.
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Table A3: Robustness Check: Alternative Birth Designations, Sample Restrictions, and Pollutants

(1) (2) (3) (4) (5) (6)
W-2 Earnings W-2 Earnings W-2 Earnings W-2 Earnings W-2 Earnings W-2 Earnings

PM (µg/m3) -1,105** -1700** -979** 1,476** -148 -337**
(493.2) (739) (466) (677) (98) (163)

Birth Designation IRS Numident IRS Numident IRS Numident
Sample Full Sample Full Sample Monitor Counties Monitor Counties Monitor Counties Monitor Counties
Pollutant PM2.5 PM2.5 PM2.5 PM2.5 PM10 PM10

Fixed Effects Birth County, Birth Year × Tax Year, Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes Yes Yes Yes

County-level Controls Yes Yes Yes Yes Yes Yes

Observations 10,610,000 10,470,000 7,525,000 8,238,000 6,791,000 7,554,000

First Stage F-Stat 9.69 8.498 10.02 8.985 10.46 9.122
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Table A4: Robustness Check: Omitting Adjacent Counties

(1) (2) (3)
W-2 Earnings W-2 Earnings W-2 Earnings

PM2.5 (µg/m3) -1105** -1223** -816.6*
(493.2) (506.8) (452.1)

Observations 10,610,000 10,420,000 9,123,000
First Stage F-Stat 19.26 23.33 19.66

Sample Full Sample Drop NOX Neighbors Drop NOX and
PM10 Neighbors

Fixed Effects Birth County, Birth Year × Tax Year, Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Source: IRS 1040s, IRS W-2s,
ACS 2001-2019, Census Numident and author’s calculations using data from Meng et al. (2019). See table
2 for more information. This table shows the relationship between PM2.5 and earnings, using differing
samples to address potential spillovers. Column 1 uses PM2.5 reports baseline results from Table 1, Column
2 reports results from an identical regression estimating on a sample that excludes all individuals born in
counties that border NO2 nonattainment counties, while Column 3 repeats this exercise omitting individuals
born in counties that border either NO2 or PM10 nonattainment counties.
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