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Abstract

We develop a spatial equilibrium model of economic growth with idea diffusion to quantify

the role of technological waves in determining the evolution of the U.S. economic geo-

graphy from 1890 through 2010. Leveraging a comprehensive dataset of historical geo-

located patents, we find that changes in the technological environment coupled with fric-

tional idea diffusion explain more than half (58%) of the variation in U.S. city growth

since 1890. The calibrated model reproduces the rise and fall of the Rust Belt and the

emergence of modern knowledge hubs, and implies heterogeneous geographical effects of

alternative future technological scenarios.
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1 Introduction

The economic geography of countries is in perpetual evolution. In the United States, many

cities and regions that have thrived in the past have progressively lost population and influence

in favor of newly emerging areas. In recent decades, several cities in the Rust Belt, that

had experienced extraordinary growth throughout most of the 20th century, have entered a

prolonged phase of decline. At the same time, a handful of urban areas specialized in knowledge-

intensive sectors, such as information technology and pharmaceuticals, have gained prominence,

becoming increasingly attractive for workers and firms (Glaeser and Gottlieb, 2009; Moretti,

2012). The determinants of these rich dynamics in city growth are still a matter of debate and

remain a central question in urban economics.

In this paper, we develop a quantitative framework to study the impact of technological

waves, defined as long-term swings in the importance of sectors in the innovation space, on the

evolution of the U.S. economic geography over the last 150 years. To measure technological

waves and their effect on the growth trajectory of cities, we leverage a new dataset of historical

U.S. patents geolocated at the city level spanning the period 1870 through 2010. The data reveal

a robust positive relationship between a city’s exposure to technological waves and its ability to

attract population over the following decades. We propose that frictions in the diffusion of ideas

across space and fields of knowledge prevent cities from optimally reallocating resources towards

expanding technologies. Using the same data, we document persistently localized patterns of

patent citations – both in the geographical and knowledge space – that support this argument

and indicate that a city’s ability to embrace new technological opportunities is constrained by

the local availability of complementary ideas.

Motivated by these findings, we formalize the feedback between technological waves and the

evolution of the economic geography in a quantitative spatial-equilibrium model with innova-

tion and frictional knowledge diffusion. The model remains tractable and retains a recursive

structure that allows us to calibrate it using our patents and population data in combination

with a small set of transparent assumptions. We find that technological waves combined with

frictional knowledge diffusion account for more than half (58%) of the variation in U.S. city

growth since 1870. The calibrated model reproduces the rise and fall of the Rust Belt and the

emergence of modern knowledge hubs in the last decades of the 20th century, and implies a

quantitatively sizeable role for local diversification in making cities more resilient to changes

in the technological landscape. To conclude, we investigate how alternative scenarios of fu-

ture technological waves might transform the U.S. economic geography. The model predicts

substantial differences in the geographical effects of scenarios such as the rise of autonomous

vehicles, and the expansion of medical sciences or sustainable agriculture.

The model combines an economic geography setting with a theory of economic growth
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that emphasizes the role of recombination, imitation, and knowledge diffusion, as recently

developed by Lucas and Moll (2014), Perla and Tonetti (2014), and Buera and Oberfield (2020)

among others. In the model, newborn agents make migration and occupational decisions after

forming expectations on their lifetime productivity in the location and sector of their choice.

Productivity is determined by an imitate-or-innovate decision. Agents can either imitate an idea

drawn from the local knowledge distribution, or innovate by improving upon an idea drawn from

the distribution of any other location and sector in the economy. The applicability of an idea

is affected by frictions reflecting both geographical and technological distance. These frictions

imply that knowledge drawn within any location-sector can be converted into new inventions

more effectively than knowledge drawn from other locations and sectors. For this reason, a

city’s stock of knowledge determines not only current productivity but also future innovation

possibilities, making the local growth trajectory sensitive to technological wave shocks. To focus

on this novel interplay between economic geography and idea diffusion, the model purposefully

abstracts from other drivers of city growth such as endogenous residential amenities.

The framework remains tractable for any arbitrary number of locations, sectors, and time

periods, and has a unique equilibrium with an explicit solution. Absent technological shocks,

the model features a unique balanced growth path (BGP). The productivity distribution for

each location-sector endogenously retains a Frećhet structure, and implies an intuitive equation

for the law of motion of its scale parameter. This also allows us to characterize knowledge flows

in closed form through a gravity representation that can be estimated using patent citation

data.

Despite the relative parsimony of the model, the linkages across space and fields of knowledge

that it generates imply non-trivial population dynamics. Before turning to the quantitative ana-

lysis, we study the mechanics of the model by log-linearizing the equilibrium conditions around

the BGP. We use the log-linear dynamics to derive theoretical predictions on the relationship

between technological waves, the evolution of local productivity, and city growth. First, the

growth rate of the scale parameter of the knowledge distribution in each location-sector can

be expressed as the sum of technological wave shocks weighted by the local reliance on the

idea’s sector of origin. This implies that cities specialized in expanding (declining) sectors will

experience higher (lower) local productivity growth. Second, if knowledge flows across sectors

are of second-order importance relative to flows within sectors, a measure of local exposure to

technological waves relative to the overall economy – similar to a shift-share variable – is a

sufficient statistic to predict local population growth. In particular, a city grows if and only if

technological wave shocks weighted by the incidence of each sector in the city are larger than

the corresponding weighted average for the rest of the economy.

We then turn to the quantitative assessment of the role of technological waves – and their

interaction with frictional knowledge diffusion – in explaining the evolution of the U.S. economic
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geography since 1890. We show that the model has a recursive structure that allows us to cal-

ibrate the parameters and to recover the unobserved disturbances – including the technological

wave shocks – by imposing a small set of transparent assumptions.

The calibrated model is successful in capturing key features of the data that are not directly

targeted, and suggests that the endogenous mechanism of knowledge creation and diffusion,

interacted with the estimated technological waves, can account for 58% of the variation in

population growth across U.S. cities between 1890 and 2010. The equation for the dynamics of

the local stock of knowledge allows us to isolate a structural residual that captures all the factors

affecting the evolution of local innovation that cannot be directly ascribed to the endogenous

mechanism of knowledge creation and diffusion. These factors include a variety of forces that

can be either exogenous (e.g., natural events) or endogenous (e.g., opening of new research

facilities) with respect to the local exposure to technological waves. The framework does not

require to make any assumptions on the nature of this structural residual, but allows us to

discern cases in which residual factors amplify or dampen the direct effect of technological

wave shocks.

We further show that the model is successful in accounting for two of the most prominent

transformations of the U.S. economic geography of the last century: the rise of manufacturing-

intensive cities in the early decades of the 20th century, their later decline, and the subsequent

emergence of knowledge hubs specialized in information technology. We find that the mech-

anism of endogenous knowledge creation and diffusion can explain a significant portion of the

growth (and subsequent decline) of the major centers of heavy manufacturing, with residual

forces amplifying the oscillations in their growth trajectory. This experience was mirrored in

recent decades by some of the most rapidly expanding innovation centers in the United States.

The mechanism of knowledge creation and diffusion also implies that the degree of local di-

versification has a central role in determining a city’s resilience to technological waves. Simula-

tions of counterfactual paths of technological waves reveal that more diversified cities experience

significantly less volatile growth trajectories. There are two factors behind this relationship.

First, even in the absence of knowledge flows across fields, more diversified cities have a lower

chance of large exposure to technological wave shocks (either on the positive or negative side)

since negative shocks to some sectors are likely to be compensated by positive shocks to other

sectors. Second, accounting for knowledge flows across fields, more diversified cities have a

broader availability of ideas to draw from, implying that (positive or negative) shocks to indi-

vidual sectors have a lower impact on the evolution local productivity.

Finally, we use the quantitative model to predict how the U.S. economic geography will

evolve in the coming decades under different scenarios for the evolution of the technological

landscape. In particular, we study which cities benefit – and which do not – compared

to the technological status quo, in the following scenarios: (1) a rise in the importance of
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transportation-related technologies, due to the emergence of new modes of transportation such

as autonomous vehicles; (2) an increase in the centrality of pharmaceuticals and biotech in

response to new challenges in global health; (3) a comeback of agriculture as a pivotal sector

in the innovation landscape as a result of regulatory changes and increasing demand for sus-

tainable farming. We find that cities in the Rust Belt benefit from the first scenario, at the

expense of cities in the North-East and the Pacific. The second scenario penalizes knowledge

hubs specialized in IT-related innovation, favoring more diversified areas such as Boston and

the cities in California outside the Silicon Valley. The third scenario prompts a reallocation of

economic activity towards the agricultural areas in the Central states.

Related Literature This paper contributes to multiple strands of the literature. First, the

theory is based on idea flows at the location-sector level, with technological and geographical

frictions in knowledge diffusion playing a key role in explaining city dynamics. While a rich

body of literature has documented the strength and geographical span of localized knowledge

spillovers (among others, Jaffe et al., 1993; Audretsch and Feldman, 1996; Greenstone et al.,

2010) there has been no attempt to perform a quantitative assessment of the importance of these

externalities for understanding long-run city dynamics. One of the main obstacles for providing

such an assessment is the complexity of modeling idea diffusion in a spatial setting. In recent

years, two flourishing bodies of literature have provided major methodological advances in this

direction. First, a number of papers have developed tractable endogenous growth models that

emphasize recombination, imitation, and knowledge diffusion as major drivers of aggregate

productivity growth (e.g., Perla and Tonetti, 2014; Lucas and Moll, 2014; Buera and Oberfield,

2020). Second, a rich body of work on quantitative spatial economics has developed tools

for studying the distribution of economic activity in space, both within cities (e.g., Ahlfeldt

et al., 2015; Heblich et al., 2020) and in a system of locations (e.g., Allen and Arkolakis, 2014;

Desmet et al., 2018b).1 This paper combines insights from these two strands of the literature

and develops a dynamic, multi-sector, endogenous growth model in a spatial economy that is

highly tractable and can be quantitatively disciplined using data on population and patents over

a long time period. While a number of papers have used detailed data on patenting to study

innovation and knowledge flows in firm and industry dynamics (e.g., Akcigit and Kerr, 2018;

Cai and Li, 2019), or developed static models that emphasize localized knowledge spillovers as

the main determinant of the economic geography (e.g., Davis and Dingel, 2019), this paper is,

to the best of our knowledge, the first attempt at quantitatively assessing the importance of

frictions in knowledge diffusion for city dynamics.

1Comprehensive reviews of these bodies of literature are provided by Buera and Lucas Jr (2018) for models
of endogenous growth with idea flows, and by Redding and Rossi-Hansberg (2017) for quantitative spatial
equilibrium models.
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An extensive literature has investigated the forces governing the long-run evolution of the

economic geography, specifically in its propensity to display path dependence and occasional

reversal of fortune (e.g., Brezis and Krugman, 1997; Davis and Weinstein, 2002; Bleakley and

Lin, 2012; Kline and Moretti, 2014), as well as in its responsiveness to aggregate shocks such as

rising sea-level (e.g., Desmet et al., 2018a), and regional or sectoral shocks (e.g., Caliendo et al.,

2018; Hornbeck and Moretti, 2018). The working hypothesis in this paper is that aggregate

changes in the technological landscape, combined with frictional knowledge transmission, have

a first-order impact on the geographical distribution of economic activity. The framework can

account simultaneously for path dependence and reversal of fortune in city dynamics. While the

focus on innovation and idea diffusion is new to this literature, there is a rich body of work that

has analyzed the historical dynamics of the U.S. geography, both from an empirical perspective

(e.g., Bostic et al., 1997; Simon and Nardinelli, 2002; Desmet and Rappaport, 2017) and from

a structural and quantitative viewpoint (e.g., Desmet and Rossi-Hansberg, 2014; Nagy, 2017;

Allen and Donaldson, 2018; Eckert and Peters, 2019).

This paper also contributes to the long-standing debate between the returns to local spe-

cialization (Marshall, 1890) and urban diversity (Jacobs, 1969), and their effect on city growth.

Notable contributions in this literature include Glaeser et al. (1992), whose empirical assess-

ment finds evidence supporting Jane Jacob’s view of urban variety as a key driver of local

employment growth, and Duranton and Puga (2001), who develop a model in which diversified

and specialized cities coexist in equilibrium.2 This paper suggests and quantifies a new channel

through which urban diversification affects long-run city growth, namely, the responsiveness of

a city to changes in the surrounding innovation landscape. It also implies a tradeoff between

larger growth opportunities during favorable waves and more severe downturns during adverse

ones.3 In this sense, the model provides a new lens for interpreting the effect of local policies

directed at increasing local diversity.

The remainder of the paper is organized as follows: Section 2 introduces the data and

presents historical trends and motivational facts on the relationship between city growth and

the technological landscape. Section 3 introduces the model and derives the main theoretical

predictions. Section 4 describes the model calibration and Section 5 presents the quantitative

results. Section 6 discusses avenues for further research and concludes.

2A comprehensive overview of the patterns of specialization across U.S. locations is provided by Holmes and
Stevens (2004).

3Consistently with this interpretation, Balland et al. (2015) find that cities with more diverse knowledge
bases are less sensitive to technological crises, defined as sustained declines in patenting activity.
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2 Data and stylized facts

Technological change is a slow-moving secular process. To study how the rise and fall of

technologies determines the growth and decline of cities, we therefore need to consider a time

period long enough to capture multiple episodes of technological replacement. In this paper,

we exploit a recently assembled dataset of historical patents spanning a period of almost two

centuries to measure technological waves and the position of cities in the innovation space. We

approximate cities using a full partition of the U.S., namely the 1990 commuting zones (CZs),

that we keep fixed throughout the analysis.4

2.1 Data sources

To measure innovative activities at the city level, we collect patents data from the Comprehens-

ive Universe of U.S. Patents (CUSP). The CUSP contains information about patents filed (and

subsequently issued) by the U.S. Patent and Trademark Office (USPTO) between 1836 and

2010, with an estimated coverage above 90% in each year.5 Particularly, the CUSP provides

information about the technology classes, name and location of each inventor (and assignee)

listed on a patent, as well as their filing and issue dates. It assigns patents to the city of

residence of each inventor and does not rely on the county reported in the patent’s text. This

allows us to build geographically consistent measures of innovation over almost two centuries.

To construct consistent population measures for 1990 commuting zones, we follow a three-

step procedure. First, we attempt to assign to each unique location in the historical decennial

censuses – in terms of town, county, and state – their latitude and longitude.6 Second, we

count the number of people living in each town for the subset of locations that we were able to

geolocate in the previous step, and reweight each town in this sub-sample so that the overall

population count matches the county level data.7 Third, we assign the resulting town popula-

4Although commuting flows have certainly changed over time, assuming a stable geography allows us to
abstract from annexations and redefinition of town borders that have been pervasive phenomena throughout
the 19th and 20th century.

5Berkes (2018) provides details about the data collection procedure, as well as summary statistics and stylized
facts related to the underlying data. Andrews (2019), in a comparison of historical patents data, describes it as
“currently the gold standard, in terms of the patent- and inventor-level information included in the published
datasets”. Some slices of the data have already been used in Berkes and Nencka (2020) who study the effect
of Carnegie libraries on the local patenting activity, Clemens and Rogers (2020) who study how procurement
policies affect the characteristics of medical innovation, and Babina et al. (2020) who study the effect of the
Great Depression on innovative activities in the U.S.

6We retrieve the coordinates from Google Maps or, when uniquely available, from an offline database available
at https://nationalmap.gov.

7Some towns in newly annexed territories are occasionally reported with generic names such as Township
43. We drop these observations from the sample and reweight the remaining ones to match the county level
population data.
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tion to 1990 commuting zones.8

Following the same approach, we construct consistent measures of human capital that com-

bine available information on local literacy and education over time. To make this measure

comparable across decades, we rank cities in terms of the relevant measure for that decade and

use the resulting ranking for the analysis. To the best of our knowledge, this paper is the first

to construct consistent local measures of human capital over a time span of over a century.

In both the empirical analysis and the model, we restrict the sample to the subset of

commuting zones in the contiguous United States that accounted for at least 0.02% of the total

population for each decade since 1890. This delivers a sample of 373 commuting zones, that

jointly account for roughly 87% of the U.S. population in 2010.9

Throughout the empirical and structural analysis, observations correspond to 20-year peri-

ods between 1890 and 2010. For each period, we assign demographic characteristics from the

corresponding decennial census (ACS for 2010), and compute patent counts by sector by adding

patents filed in the two decades around the focal year (for example, patents in the 1990 ob-

servation correspond to the total patent count between 1980 and 1999). Sectors are defined as

the technological class-groups obtained by grouping 3-digit IPC classes into 11 class-groups, as

detailed in Appendix Table A.1.

2.2 Historical trends

The last 150 years have witnessed major shifts in the technological landscape. The bottom-

right panel of Figure 1 shows how the distribution of the national patenting output across the

7 main IPC classes has evolved since 1870.10 The share of patents in class A (“Human neces-

sities”) – that includes innovation related to both agriculture and medical sciences – declined

in the first part of the century, as agriculture lost its centrality to classes complementary to

the heavy manufacturing industry, such as B (“Performing Operations; Transporting”) and F

(“Mechanical Engineering”). Class A rebounded in recent decades as innovation in medicine

gained prominence. In the second part of the century, classes G (“Physics”) and H (“Electri-

city”) became more central in the national shares, making up more than 50% of the overall

8As an example, consider the town of Denver, CO, that in 1890 was part of Arapahoe County, a large and
sparsely populated county. By 1990, the city of Denver had separated from the rest of the county to form its
own. The first two steps reveal that a large portion of Arapahoe County’s population in 1890 was located in
Denver. The third step uses this information to correctly assign the largest share of population to the city
and county of Denver. There are two special cases that are worth mentioning. First, when more than 95% of
the area of the historical county falls within a 1990 county, then we assign the whole population to the 1990
commuting zone that contains the 1990 county. Second, when a historical county does not contain any town
that we were able to geolocate reliably, then its population is assigned to 1990 commuting zones based on the
overlapping of their areas.

9As a reference point, this rule requires that cities had a population of at least 10,711 people in 1890 and
60,387 people in 2010.

10The full description of each class is available at https://www.wipo.int/classifications/ipc/en/.
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Figure 1: Composition of the technological output
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Notes: Composition of patenting output across the 7 main IPC classes in Appendix Table A.1. Patent count for
year t is constructed as the sum of patents filed between t− 10 and t+ 9. A: Human necessities. B: Performing
operations; Transporting. C: Chemistry; Metallurgy. E: Fixed Constructions. F: Mechanical Engineering;
Lighting; Heating; Weapons; Blasting. G: Physics. H: Electricity.

innovation output in 2010.11

The composition of patenting not only changes significantly over time, but also varies con-

siderably across cities at any point in time. The top panels of Figure 1 depict two of the

archetypal examples of this heterogeneity. Detroit (top-left) has been specialized in the pro-

duction of patents of class B and F since the early 1900s. In 1930, these two classes made up

about 70% of its patenting portfolio. This pattern has remained broadly unchanged throughout

the century, with a slight shift towards patents of classes G and H since the 1990s. Austin (top-

right) exhibits fairly diversified innovation activities until the 1970s, when the share of patents

of classes G and H started expanding, reaching 90% of the portfolio by 2010. By contrast,

Boston (bottom-left) displays a diversified patenting output that, throughout the decades, has

closely tracked the national trends.

In this paper, we argue that the heterogeneity in the composition of local patenting, com-

bined with frictions to knowledge diffusion, makes cities unevenly positioned to take advantage

of new innovation opportunities. This makes cities’ trajectories sensitive to changes in the

11Classes G and H include the bulk of innovation related to computers, electronics, and information and
communication technology.
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Figure 2: City dynamics
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technological landscape, and contributes to explaining the irregular historical dynamics of U.S.

urban and regional growth. The experiences of Detroit, Austin, and Boston since the late 1800s

exemplify this point. Figure 2 shows the 20-year population growth of those three commuting

zones since 1890, after controlling for Census Division-time fixed effects. Detroit displays the

most striking growth rates in the decades after the advent of the automobile industry around

1910, followed by a long-lasting decline that resulted in a steady loss of population since the

1980s. The commuting zone of Austin experienced a specular trajectory. The city lost popu-

lation in the first half of the 20th century, as the Texas Oil Boom favored areas of the state

that were rich of oil, making Austin slip from the 4th to the 10th place among Texas’s largest

cities.12 However, in recent decades Austin has emerged as one of the leading innovation hubs

in the country, leveraging its richness of science-based firms and a large college-educated pop-

ulation. Finally, the commuting zone of Boston had a still different experience: Throughout

the last century, it has retained a considerably less volatile path, characterized by moderate

population growth interrupted by occasional periods of modest population decline. The con-

sistent diversification of Boston’s patenting output could have made the city less sensitive to

technological waves, explaining the stability of its growth path.13

12https://tshaonline.org/handbook/online/articles/hda03
13Glaeser (2005) provides an overview of the causes of the slow decline of Boston between 1920 and 1980,

and the subsequent re-emergence of the city. The high density of human capital is proposed as the major factor
behind its resilience.
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2.3 Technological waves and the growth and decline of cities

Taken together, Figure 1 and 2 suggest that changes in the importance of technological fields,

here captured by shifts in the national shares, might differentially affect the growth trajectory

of cities based on their patenting portfolios. We now provide a systematic assessment of these

patterns.

In the spirit of Bartik (1991), we define commuting zone n’s exposure to the technological

wave in decade t as the sum across all class-groups s ∈ S of the growth rate in the national

share of each class-group, weighted by the corresponding local share of the same class-group in

the previous period:

Expn,t =
∑
s∈S

Sharen,s,t−1 × gs,t. (1)

In Equation (1), Sharen,s,t−1 is the share of patents filed in commuting zone n of class-group

s at time t − 1, and gs,t is the growth rate in the national share of patents of class-group s

between t−1 and t. Positive (negative) values of Expn,t imply that the initial patenting output

of n is concentrated in class-groups whose national share is expanding (shrinking).

Figure 3 shows a bin-scatter plot of the relationship between the measure of exposure

to the technological wave, Expn,t, and the 20-year growth rate of local population between

1890 and 2010. Both measures are residualized with respect to lagged log-population and

Census Division-time fixed effects, to account for size and convergence effects and for the

differential growth rates of commuting zones across space explained by factors such as the

Westward expansion or the Great Northward Migration. The scatter plot reveals a strong

positive correlation, implying that, over the period considered, cities with a more favorable

exposure to the technological wave have experienced higher population growth than cities in

the same Census Division.

Table 1 reports the regression results. The estimate in Column 2 (the baseline specification

with Census Division-time fixed effects) implies that an increase in the measure of exposure of

one residual standard deviation is associated with an increase of 14.7% of a residual standard

deviation in population growth. In Column 3, we further control for a historically-consistent

measure of local density of human capital.14 This indicator is correlated with population

growth, but has a negligible effect on the estimated coefficient of the exposure measure. In

Appendix Table A.3, we show that results are consistent when splitting the sample into early

(1890-1930) and late (1950-2010) periods.

14This measure corresponds to a within-decade ranking of CZs along a summary index that includes several
measures of human capital. The specific indicators we use change over time depending on the availability of
information in the historical Census. In the early decades, the measure focuses on indicators of literacy and
schooling, while in later decades it emphasizes the local density of workers with high educational attainment.
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Figure 3: Technological waves and city growth
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Notes: Bin-scatter plot of exposure to the technological wave, as defined in Equation (1), and 20-year population
growth, 1890-2010. The bin-scatter plot is residualized with respect to Census Division-time fixed effects and
lagged log-population.

2.4 Frictions to knowledge diffusion across locations and fields of

knowledge

In this paper, we propose that the robust correlation in Table 1 is partly due to the existence

of geographical and technological frictions to the diffusion of ideas, that prevent cities from

optimally reallocating resources to take advantage of technological waves. As a result, cities

whose innovation portfolio is heavily skewed towards expanding fields are better positioned to

embrace new innovation opportunities and will become more attractive for workers and firms.

The fact that knowledge diffusion is highly localized – both geographically and in the know-

ledge space – has been widely documented in the literature on the geography of innovation.

Within this literature, a rich body of work, starting with Jaffe et al. (1993), has provided evid-

ence of this localization by studying the patterns of patent citations (Murata et al., 2014, Kerr

and Kominers, 2015). In Figure 4 we show that the localization of patent citations is visible at

our level of geographical and technological disaggregation, and over the long time span covered

by our patents data.

The heatmap in the left panel of Figure 4 displays, for each technology class-group on the

vertical axis, the probability that a citations from that class-group fall under each of the class-

groups on the horizontal axis. Since patent citations are not consistently available in the earlier
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Table 1: Technological waves and city growth

Growth rate of population

(1) (2) (3)

Exposure to tech. wave .588*** .521*** .468***
(.143) (.143) (.143)

Lagged log-population -.078* -.057 -.070
(.044) (.045) (.046)

Human capital (ranking) .187***
(.067)

Fixed effects T CD×T CD×T

# Obs. 2,611 2,611 2,611

R2 0.24 0.39 0.40

Notes: CZ level regression, 1890-2010. Dependent variable defined as growth rate of population over 20 years.
“T” denotes time fixed effects, and “CD×T” denotes Census Division-time fixed effects. Standard errors
clustered at the CZ level in parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.

decades, we restrict the sample to all the patents filed since 1950.15 The right panel displays

the corresponding citation probabilities for each pair of commuting zones.

Both heatmaps show that citations are strongly concentrated along the diagonal, suggesting

a high degree of technological and geographical localization in the diffusion of ideas. The

heatmaps also reveal that some of the class-groups and commuting zones are more likely to

be cited than others, reflecting a combination of higher size (number of grants) and higher

generality. In the quantitative model, we derive a gravity equation for knowledge flows that

separates the effect of size on bilateral citation probabilities from that of localization and

generality. We use the estimated gravity equation to discipline the parameters controlling the

frictions to idea diffusion.

Appendix Figure B.1 shows that the patterns of localization remain strongly visible when

splitting the data in an early (1950-1979) and a late (1980 onwards) samples. This suggests

that, while improvements in communication technologies might have made the diffusion of ideas

across space more effective, they did not fundamentally alter the strongly localized nature of

knowledge flows.

15A separate section containing referenced patents was formally introduced only in 1947.
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Figure 4: Patent citations across fields of knowledge (left) and locations (right)
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3 Model

In this section, we develop a structural model that embeds endogenous growth through in-

novation and frictional idea diffusion into a quantitative spatial equilibrium framework. The

theory formalizes the feedback between changes in the innovation landscape and the evolution

of the economic geography over time, and rationalizes the reduced-form relationship between

population growth and exposure to technological waves. The model has a recursive structure

that allows us to describe a natural mapping between the model’s objects and the data (in-

cluding a gravity equation for knowledge flows). We use the calibrated model to quantitatively

assess the importance of technological waves and frictional knowledge diffusion in explaining

the historical dynamics of the U.S. economic geography, and to speculate on its evolution in

future decades under plausible scenarios of technological trends.

3.1 Environment

We consider an economy comprising a finite set N of locations and a finite set S of sectors. In

what follows, we refer to N and S as both the sets of locations and sectors, and their cardinality.

Time is discrete and indexed by t. At each point in time, the economy is populated by a mass

Lt of individuals.
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3.1.1 Preferences, endowments, and demographics

In each period, a new generation of individuals is born in the location of their parents and

makes migration and occupational decisions. Individuals live for one period and, at the end of

the period, have ft children. There are no moving costs.

Migration and occupational choices are made to maximize expected utility, subject to idio-

syncratic utility draws that affect the individual desirability of each location-sector pair. Spe-

cifically, at the beginning of the period, each individual i receives a full set of stochastic utility

draws, one for each location-sector in the economy:

xi = {xn,s,i}(n,s)∈N×S .

Each value xn,s,i is a random draw from a Fréchet distribution with shape parameter ζ > 1.

Individuals then choose the location-sector pair (n, s) that provides them with the highest

expected utility, given by:

Un,s,t(xi) = un xn,s,i cn,s,i,t, (2)

where un is the level of time-invariant amenities in city n and cn,s,i,t denotes consumption of

the final good by individual i in location-sector (n, s) at time t.

Since we calibrate the time period to be 20 years, the assumptions on the absence of moving

costs and the demographic structure should be interpreted with this time horizon in mind.

The model can be easily extended to account for overlapping generations and costly moving

decisions.16

3.1.2 Production and innovation technologies

Each agent i is endowed with one unit of labor that she supplies inelastically with productivity

qi. Total output in the economy is given by a linear aggregator over individual productivity

across all locations and sectors:

Yt =
∑
n∈N

∑
s∈S

Ln,s,tE[qn,s,t],

where Ln,s,t denotes the mass of agents in location-sector (n, s) and E[qn,s,t] denotes their average

productivity.

Individual productivity is determined endogenously by a process of knowledge diffusion that

subsumes a choice on whether to imitate or innovate. At the beginning of each period every

16A previous version of this model, that allows for costly migration and overlapping generations, is available
upon request.
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agent i in the new generation receives a full set of idiosyncratic, independently distributed

draws:

zn,s,i =
{
zln,s,i,

{
zxm,r,i

}
m,r∈N×S

}
. (3)

The first term, zln,s,i, represents a random draw from the distribution of productivity among

agents employed in location-sector (n, s) in the previous generation, whose cumulative distri-

bution is denoted by Fn,s,t−1(q). This draw can be interpreted as knowledge that individual

i learns from their teacher, mentor, or manager, and can be imitated and adopted directly in

production.17 If the agent chooses to adopt this idea in production, their lifetime productivity

is

qn,s,i,t = zln,s,i.

The second set of terms, {zxm,r,i}m,r∈N×S, represents a full vector of random draws from

each productivity distribution in all locations and sectors in the previous generation, with

corresponding cumulative distributions {Fm,r,t(q)}m,r∈N×S. Note that this full set of draws

includes local ones (i.e., m = n and r = s). These draws can be interpreted as knowledge

that the agent acquires by various channels of transmission, such as books, radio, television,

internet, or via casual interactions with local or non-local individuals. Although these ideas

cannot be imitated and adopted directly in production, they can be used as an input for

innovation. In particular, an agent employed in (n, s) can use an idea zxm,r,i to innovate and

achieve productivity

qn,s,i,t =
εn,s,t αr,t z

x
m,r,i

d(m,r)�(n,s)

. (4)

In Equation (4), the term αr,t represents the centrality of sector r in the innovation landscape.

The higher the value of αr,t, the more effectively can knowledge in sector r be developed into

innovation for any sector. We refer to changes in αr,t as “technological wave” shocks. The term

d(m,r)�(n,s) captures the geographical and technological frictions that discount the effectiveness

of knowledge transmission between the idea origin (m, r) and the idea destination (n, s). The

term εn,s,t is a structural residual that captures the current effectiveness of innovation in (n, s)

and is common to all innovators in the location-sector pair. It accounts for all the residual

factors that affect the productivity of the local sector but are not otherwise included in (4),

such as the opening of production facilities, universities, and research centers.

There is no market to smooth consumption across generations. Thus, agents live hand-to-

17De la Croix et al. (2018) develop a model in which the institutions controlling the effectiveness of knowledge
transmission between journeymen and apprentices contribute to explain differences across countries in long-run
growth.
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mouth, with consumption of final good given by own production:

cn,s,i,t = qn,s,i,t.

3.2 Equilibrium

3.2.1 Diffusion of knowledge

Agent i in location-sector (n, s) chooses whether to imitate or innovate to maximize her pro-

ductivity given her vector of idiosyncratic idea draws zn,s,i:

qn,s,i,t = max

{
zln,s,i, max

{
εn,s,t αr,t z

x
m,r,i

d(m,r)�(n,s)

}
m,r∈N×S

}
(5)

Equation (5) shows how this process can be divided in two steps. First, the agent chooses the

best innovative idea available to her. Then she compares this idea with her imitation draw,

and picks the one that yields higher productivity for her.

The following assumption will play an important role in keeping the theory tractable:

Assumption 1. The initial productivity distribution Fn,s,0(q) in all location-sector pairs (n, s)

is Fréchet with shape parameter θ > 1 and scale parameter λn,s,0 > 0:

Fn,s,0(q) = e−λn,s,0q
−θ
. (6)

A multivariate Fréchet distribution with common shape parameter is max-stable. This

implies that, under Assumption 1, the resulting distribution over the max of Fréchet draws is

also Fréchet with the same shape parameter.18 Combining (5) with (6), we find that individual

productivity at any time t ≥ 0 is distributed Fréchet with shape parameter θ > 1 and with

scale parameter evolving according to the following law of motion:

λn,s,t = λn,s,t−1︸ ︷︷ ︸
Imitation

+
∑
m∈N

∑
r∈S

λm,r,t−1

(
εn,s,t αr,t
d(m,r)�(n,s)

)θ
︸ ︷︷ ︸

Innovation

. (7)

Equation (7) summarizes the growth dynamics implied by the model. The scale parameter

of the new generation in location-sector (n, s) is equal to the scale parameter of the previous

generation augmented by a second term which captures inventive activities. This second term in

Equation (7) is composed by the sum of scale parameters across all location-sectors weighted by

their applicability to location-sector (n, s). This applicability term includes the importance of

18The same degree of tractability can be achieved without assuming independence, as in Lind and Ramondo
(2019).
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each field of knowledge (αr,t) and the local effectiveness of innovation (εn,s,t), and is discounted

by technological and physical distance between location-sector pairs (d(m,r)�(n,s)).

Equation (7) also implies that, conditional on innovating, the probability that an inventor

in location-sector (n, s) builds upon an idea from any location-sector (m, r) at time t can be

expressed as follows:

ηt(m,r)�(n,s) =
λm,r,t−1

(
αr,t

d(m,r)�(n,s)

)θ
∑

l,p λl,p,t−1

(
αp,t

d(l,p)�(n,s)

)θ . (8)

3.2.2 Migration and occupational choice

At the beginning period t, agents in the new generation observe sectoral and local shocks

({αr,t}r∈S and {εn,s,t}n,s∈N×S) but do not know their idiosyncratic idea draws, so they have to

form expectations about productivity before making their migration and occupational decisions.

Agent i moving to location-sector pair (n, s) has expected utility equal to

E [Un,s,t(xi)] = un xn,s,i E [qn,s,t] . (9)

In equilibrium, qn,s,t is distributed Fréchet with shape parameter θ and scale parameter λn,s,t,

which can be inferred at time t via the law of motion (7), so that

E [qn,s,t] = Γ

(
1− 1

θ

)
λ

1
θ
n,s,t, (10)

where Γ(·) denotes the gamma function. This implies that the probability that any newborn

individual selects location-sector (n, s) is

πn,s,t =

(
un λ

1
θ
n,s,t

)ζ
∑

m,r

(
um λ

1
θ
m,r,t

)ζ . (11)

Thus, the mass of agents in location-sector (n, s) at time t is equal to

Ln,s,t ≡ πn,s,t Lt−1 ft. (12)

For notational convenience, we define πn,t ≡
∑

s∈S πn,s,t and Ln,t ≡
∑

s∈S Ln,s,t as, respect-

ively, the share and mass of individuals living in location n.

3.2.3 Equilibrium Definition

We now have all the ingredients to define an equilibrium of the model.
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Definition 1. For a given set of initial conditions

L0, {un}n∈N , {λn,s,0}n,s∈N×S,

and a given path for the exogenous variables

{ft}t≥0, {αr,t}r∈S,t≥0, {εn,s,t}n,s∈N×S, t≥0,

an equilibrium is a path for the endogenous variables

{λn,s,t, πn,s,t, Ln,s,t}n,s∈N×S, t≥0

that satisfies the following conditions:

1. Migration and occupational probabilities {πn,s,t}n,s∈N×S, t≥0 satisfy equation (11).

2. The path for {λn,s,t}n,s∈N×S, t≥0 satisfies the law of motion of equation (7).

3. Population by location-sector {Ln,s,t}n,s∈N×S, t≥0, satisfies the transition identity (12).

All equilibrium conditions have an explicit solution. Hence, a unique equilibrium exists and

can be written in closed form for any given set of initial conditions and any given path for the

exogenous variables.

3.2.4 Existence and uniqueness of a balanced growth path

We define a balanced growth path (BGP) as an equilibrium in which sectoral importance

αr,t and structural residuals εn,s,t are constant, and the scale parameters λn,s,t grow at the

same rate for all location-sectors. Incidentally, these conditions also imply that migration and

occupational choices (and, as a result, the distribution of people across locations and sectors)

are constant over time.

Notice that Equation (7) can be rewritten in matrix form as

~λt+1 = Λ~λt, (13)

where ~λt is a N × S vector of all scale parameters λn,s,t and Λ is the (N × S)2 diffusion matrix

implied by Equation (7).

From Equation (13), it is immediate to see that, in BGP, ~λt must be an eigenvector of Λ,

with the associated eigenvalue equal to its gross growth rate 1 + g∗λ (we use upper-stars to

denote variables at their BGP value). The Perron-Frobenius theorem guarantees that Λ has

a unique positive eigenvector (and corresponding eigenvalue). A sufficient condition for Λ to
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have only positive entries is that frictions to knowledge diffusion d(m,r)�(n,s) are positive and

finite for each combination of idea origin and destination. This proves the following:19

Proposition 1. Let 0 < d(m,r)�(n,s) < +∞ for all (m, r), (n, s) ∈ N × S. Then, for each set

of constant sectoral importance {α∗r}r∈S and structural residuals {ε∗n,s}(n,s)∈N×S, there exists a

unique balanced growth path in which {λn,s,t}(n,s)∈N×S,t≥0 grow at constant rate g∗λ.

3.3 Log-linearized model dynamics

We now study the dynamics of the model by log-linearizing the equilibrium conditions around

the BGP. We assume that at time t − 1 the economy is in a BGP in which the average pro-

ductivity in each location-sector grows at the same rate and, as a result, the distribution of

people across locations is constant. At time t, the economy is hit by technological wave shocks

{α̂r,t}r∈S.20

First, consider the dynamics of the scale parameter of the local distribution of productivity,

λn,s,t. Log-linearizing Equation (7) yields

λ̂n,s,t =
θ(ε∗n,s)

θ

1 + g∗λ

∑
m,r

(
λm,r
λn,s

)∗(
α∗r

d(m,r)�(n,s)

)θ
α̂r,t. (14)

Notice that, in BGP, the following relationship holds for each location-sector pair (n, s):

g∗λ = (ε∗n,s)
θ
∑
m,r

(
λm,r
λn,s

)∗(
α∗r

d(m,r)→(n,s)

)θ
. (15)

Multiplying and dividing the right-hand side of (14) by g∗λ, and using (8) and (15), we derive

the following proposition that links changes in local sectoral productivity to technological wave

shocks via the strength of the knowledge diffusion link between the perturbed sector and the

receiving location-sector:

Proposition 2. The log deviation of the scale parameter of the productivity distribution of

each location-sector (n, s) from the BGP is equal to the sum over all sectors r ∈ S of the

sectoral shock to r, α̂r,t, weighted by the reliance of innovation in (n, s) on ideas from sector r,

η∗r→(n,s) ≡
∑

m∈N η
∗
(m,r)→(n,s):

λ̂n,s,t =
θg∗λ

1 + g∗λ

∑
r∈S

η∗r�(n,s)α̂r,t. (16)

19Huang and Zenou (2020) is another paper that studies the BGP properties of an endogenous growth model
with idea diffusion across multiple sectors.

20In what follows, we use hats to denote log-deviations from BGP values and stars to denote steady-state
values.
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The existence of geographical frictions in idea diffusion implies that the reliance on ideas

from any given sector r, η∗r→(n,s), depends on the local stock of knowledge in the sector, λn,r.

From Equation (11) it is also immediate to see that this stock of knowledge is tightly related

to the local share of population employed in the same sector.21 For this reason, Proposition

2 implies that the sensitivity of local productivity to shocks to any given sector is increasing

in the weight of the sector in the local economy, and productivity in more diversified locations

will be overall less sensitive to technological wave shocks.

Second, consider the population shares πn,s,t. Combining Equation (11) with the definition

πn,t ≡
∑

s∈S πn,s,t and log-linearizing the resulting expression for any arbitrary deviation of

λm,r,t from their BGP values yields

π̂n,t =
ζ

θ

∑
s∈S

{
(1− π∗n)π∗s|nλ̂n,s,t −

∑
m 6=n

π∗m,sλ̂m,s,t

}
, (17)

where πs|n denotes the probability of being employed in sector s conditional on living in location

n. Equation (17) contains an intuitive condition that controls whether a city grows or shrinks

relative to the rest of the economy. A location grows if and only if changes of local sectoral

productivities, weighted by the incidence of each sector in the city, are larger than the average

corresponding changes for the rest of the economy.

To better illustrate the economic mechanism at play, we now consider a simplified version

of the model in which knowledge flows across sectors are of second-order importance relative

to flows within sectors. Specifically, we impose the following:

Assumption 2. Frictions to knowledge diffusion across sectors are large enough, so that:

η∗s→(n,s) ≈ 1, ∀s ∈ S. (18)

This approximation allows us to define a measure of exposure to technological waves that

only depends on local sectoral shares and aggregate sectoral shocks, resembling the shift-share

variable introduced in Equation (1). We can then combine Equations (16) and (17) to derive

the following:

Proposition 3. Under Assumption 2, the percentage change in the population share of location

n is proportional to its exposure to technological waves relative to the rest of the economy:

π̂n,t =
ζg∗λ

θ(1 + g∗λ)

∑
s∈S

{
(1− π∗n)π∗s|n −

∑
m 6=n

π∗m,s

}
α̂s,t︸ ︷︷ ︸

REn,t ≡ Relative exposure to technological waves

. (19)

21To see this, note that in the limit case of θ = ζ, α∗r = α∗s , and d(n,r)�(n,s) = d̄ for all r, s ∈ S, the reliance
of (n, s) on ideas from r, η∗r→(n,s), is exactly equal to local sectoral share, π∗r|n.
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Proposition 3 rationalizes the reduced-form relationship between exposure to technological

waves and population growth documented in Section 2.3. In particular, notice that if the size of

any given city is negligible compared to the overall economy,22 the variation in the right-hand

side of Equation (19) is driven entirely by the term
∑

s∈S π
∗
s|nα̂s,t, which mirrors the measure

of exposure in Equation (1).

Proposition 3 also implies that n grows (shrinks) if and only if the average local exposure to

the technological wave is larger (smaller) than the average exposure for the rest of the economy:

π̂n,t > 0 ⇐⇒
∑
s∈S

π∗s|nα̂s,t >
∑
s∈S

π∗s|−nα̂s,t, (20)

where πs|−n is the probability of being employed in sector s conditional on living outside of

location n.

3.4 Taking stock

Propositions 2 and 3 show that frictions to knowledge diffusion across geographical areas and

technological fields imply rich and heterogeneous effects of technological waves on the evolution

of local productivity and on the distribution of population across cities. In the remainder of

the paper, we leverage the full structure of the model to quantitatively decompose the effect of

technological waves on the dynamics of city growth since 1890 in the United States, to study

how local diversification mediates the impact of technological waves, and to speculate on the

future evolution of the economic geography under different plausible scenarios of technological

trends.

4 Model calibration

In this section, we bring the model to the data to infer the key structural parameters and the

unobserved exogenous variables. The model has a recursive structure that allows us to estimate

the parameters sequentially by making a limited set of transparent assumptions on how to map

the model’s objects into data on population, income, and patenting.

In the first step of the calibration, we use model inversion to infer time-invariant amenities

un, the path of local productivities λn,s,t, and aggregate fertility ft, and simultaneously pin

down the structural parameters ζ and θ by matching moments on the dispersion of income

and population across cities. We show that the model accurately reproduces the relationship

between city size and income despite not being directly targeted. In the second step, we infer

22Formally, this requires to impose that (1 − π∗n) ≈ 1 and
∑
s∈S,m 6=n π

∗
m,sα̂s,t is approximately equal for all

n ∈ N .
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the costs of knowledge transmission d(m,r)�(n,s) by deriving and estimating a gravity equation

for idea flows using patent citations data. In the third step, we recover technological wave

shocks αs,t and structural residuals εn,s,t through the law of motion for local productivities.

Throughout the model’s calibration, we set 1890 as the starting period and consider the

full model dynamics until 2010. We set the model period to 20 years, we let N be the set of

1990 commuting zones that accounted for at least 0.02% of the total population for each decade

since 1890, and we define sectors as the 11 IPC class-groups detailed in Appendix Table A.1.

The empirical moments used to calibrate the time-invariant parameters correspond to the 1990

observation, for which we have the most recent and complete data on population, income, and

patenting.23

4.1 Amenities and productivity

As a first step, we jointly calibrate the shape parameters of the Frećhet distributions of utility

draws, ζ, and the initial distribution of productivity, θ. Here, we also recover the values of local

amenities un, and the full path of scale parameters λn,s,t and aggregate fertility ft.

4.1.1 Productivity distribution

Consider first the scale parameters of the productivity distribution of each location-sector,

λn,s,t. These objects are at the core of the quantitative analysis: Higher values of λn,s,t imply

higher local income, higher ability to attract population, and higher potential to innovate and

grow more in the future. In this step of the calibration, we postulate (and later validate) a

direct mapping between the stock of patents in a given location-sector and the value of λn,s,t.

Specifically, we assume that, at any point in time, λn,s,t is equal to a function of current and

past patenting:

λn,s,t = Gt × [1 + Patn,s,t + γ Patn,s,t−1]
σ , (21)

where Patn,s,t denotes the total number of patents filed at time t in location-sector (n, s) and

Gt is a time-variant factor.24 The parameter γ controls the weight of past patenting on the

current stock of knowledge. We set this weight equal to 0.5, which assumes that patents

contribute directly to variation in local productivity up to 20 years after filing. The parameter

σ represents the elasticity of λn,s,t to the observed stock of patents. This elasticity converts

the variation in the local stock of patents into meaningful variation in the average productivity

across location-sectors.

23Since we assign patents according to their filing year, patents data and citations in the most recent ob-
servation (2010) might suffer from truncation issues. Similarly, data on income and population for the 2010
observation are only available from the ACS, that offers a less complete picture than the 1990 census.

24We add one to the stock of patents in each sector-city pair to assign a meaningful value to cases in which
patenting is zero.
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Table 2: Parameter values and targets

Parameter Value Target Model Data

σ 0.22 s.d. log-income (across CZs), 1990 0.19 0.19
θ 2.10 s.d. log-income (overall), 1990 0.64 0.64
ζ 5.90 s.d. log-population (across CZs), 1990 1.07 1.07

Notes: S.D. of log-income for the overall population is taken from Krueger and Perri (2006). S.D. of
log-income and log-population across CZs are author’s calculations from the NHGIS.

We calibrate σ and θ to jointly match the standard deviation of log-income per capita across

cities (in the sample of 373 CZs) and in the overall population in 1990, that are equal to 0.21

and 0.64, respectively.25 The constant Gt is set to induce an aggregate growth in income per

capita of 2% per year.26

4.1.2 Amenities, preference draws, and fertility

Consider now local amenities un and the shape parameter of the distribution of utility draws ζ.

Given any guess for ζ, θ, and λn,s,t, we calibrate local amenities to exactly match population

by city in the first period (1890).27 The value of ζ is then calibrated to match the unweighted

standard deviation of log-population across cities in 1990. The intuition for the identification is

that a higher value of ζ implies lower dispersion in the utility draws among newborn agents, so

that differences in the desirability of locations, given by amenities and productivity, are more

strongly reflected in migration choices.28 While we assume time-invariant amenities and do not

match population by city in each period, the joint calibration of θ, ζ, and σ guarantees that

the equilibrium geography reproduces a realistic dispersion of income and population across

locations.

We calibrate the path of fertility ft to match total population by period in the United States.

Notice that, in the absence of moving costs, this is equivalent to assuming that the aggregate

increase in population occurs through migration from abroad, fertility, or a combination of the

two.

25The standard deviation of log-income in the overall population is taken from Krueger and Perri (2006).
26We choose units of the final good so that the geometric average of λ

1
σ
n,s is equal to one in the first period.

27We normalize amenities to have a geometric mean of one.
28This identification of the dispersion of idiosyncratic preference draws follows a similar intuition as Peters

(2019).
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4.1.3 Discussion

Table 2 shows the values of θ, ζ, and σ calibrated through this procedure. The corresponding

data moments are matched exactly by construction. In Appendix Figure B.3 we show compu-

tationally that there are unique values of the three parameters that jointly match those data

moments.

There are two key aspects of this calibration strategy that are worth further discussion.

First, the mapping of λn,s,t to the stock of patenting (Equation 21) includes a size effect in

which larger cities have, other things being equal, higher average productivity. The existence

of a correlation between size and productivity is a well-known empirical regularity (see e.g.

Glaeser and Gottlieb, 2009) that can emerge as a result of a range of theoretical mechanisms

(e.g., sorting, variety, local learning productivity spillovers, higher availability of productive

inputs, etc...). While the model is silent on the underlying mechanism behind this correlation

(besides the fact that more productive cities will attract more population) what is crucial for

the quantitative performance of the model is that the resulting elasticity of population with

respect to income per capita is empirically accurate. Figure 5 shows a bin-scatter plot of the

relationship between log-population and log-income in 1990, both in the model and in the

data. Although this correlation is not directly targeted in the calibration, the model captures

it closely.29

Second, in quantifying the model we assume that residential amenities are time-invariant.

This assumption is crucial for the identification of the shape parameter ζ but comes at the cost

of not matching population by city exactly after the first period. As we show in Section 5, even

without time-varying amenities, the model goes a long way in fitting population growth by city

over the last century. But, given a value for ζ, allowing for time-varying residential amenities

would be an immediate extension of the model.30

4.2 Gravity equation for knowledge flows

In the second step of the calibration, we derive a simple gravity representation for knowledge

flows that we estimate using data on patent citations to recover the parameters controlling

knowledge transmission costs (d(m,r)�(n,s)). Specifically, we parametrize frictions to knowledge

diffusion as multiplicatively separable between a geographical and a technological component:

29The slope of the regression line is equal to 0.155 in the model and 0.127 in the data.
30A further extension would be to allow for amenities that combine endogenous and exogenous components.

A simple formulation would impose un,t = vn,t × Lωn,t, where vn,t is the exogenous component, and ω is the
elasticity of amenities to local population, that can account for congestion forces in the case ω < 0. However,
the relevant value of ω is likely to change over time and across cities, making the identification particularly
challenging.
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Figure 5: Population and Income: Data vs. Model
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Notes: Bin-scatter plot of the relationship between log-population and log-income per capita in the data (red)
and the model (blue) in 1990.

d(m,r)�(n,s) = eδ
0
n,s+δ

G1m 6=n+δ
K
r�s , (22)

where δG controls the effectiveness of knowledge flows across locations relative to flows within

locations, and δKr�s controls the applicability of ideas from sector r for innovation in sector s.

We also include a destination fixed effect (δ0n,s) that we set so that costs are equal to one for

flows within each location-sector. This normalization is inconsequential for our purposes, since

it does not rule out the possibility of systematic differences across receiving location-sectors in

their ability to acquire external ideas for innovation, but it bundles those differences with the

structural error term (εn,s,t).

Combining Equations (8) and (22) and taking logs on both sides yields

log(ηt(m,r)�(n,s)) = φ0
m,r,t + φ1

n,s,t − θδG1m 6=n − θδKr�s, (23)

where φ0 and φ1 represent idea origin and idea destination-time fixed effects, respectively.

Equation (23) illustrates that bilateral citation probabilities ηt(m,r)�(n,s) depend on the com-

posite parameters θδG and θδKr�s. To recover those composite parameters, we estimate Equation
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(23) using data on patent citations across location-sector pairs from the 1990 period (i.e., using

patents filed between 1980 and 1999). We compute ηt(m,r)�(n,s) as the share of citations given

by patents from (n, s) and directed to patents in (m, r).31

Table 3 shows OLS estimates of the composite parameter θδG. In the baseline specification

of Column 1 we replace zero-valued outcomes with the minimum among positive values.32 Using

Column 1 as baseline, in combination with the estimate of θ, we obtain a value for δG = 2.22.

The coefficient implies highly localized knowledge flows, with the effectiveness of transmission

across locations estimated at around 10.9% of the effectiveness of transmission within locations.

Notice that, despite the apparent low effectiveness of transmission, the overall weight of ideas

from any outside location m may still be large in determining innovation in n, since transmission

can happen from all the other locations m 6= n. Column 2 shows the same regression when

only positive values of ηt(m,r)�(n,s) are used in the estimation. The estimate still reveals highly

localized knowledge flows, but the coefficient declines in absolute value, suggesting that, as

expected, zero values are concentrated among pairs of different locations.

The same regression also delivers a full set of bilateral transmission costs across sectors

(δKr�s), that we show in a heatmap in Figure B.2 in the Appendix. As expected, these costs are

estimated to be lower within sectors (along the diagonal of the heatmap), although all pairs of

sectors display some degree of knowledge exchange that, in some cases, is far from negligible,

such as in the cluster of class-groups G1 (“Physics”) and H1 (“Electricity”).

4.3 Technological waves and structural residuals

In the third step of the calibration, we use the estimates of θ and δKr�s and the values of λn,s,t

in combination with the law of motion (7) to recover technological wave shocks (αs,t) and

structural residuals (εn,s,t).

For all periods t, we first guess the full vector of technological wave shocks {αs,t}s∈S. Given

this guess, we use Equation (7) to recover the full set of structural residuals. By construction,

this step rationalizes the path of λn,s,t for any initial guess of {αs,t}s∈S. Hence, to complete the

identification, we need to impose an additional condition. We assume that the average growth

in productivity for each sector in the long-run is fully explained by technological waves and

their interaction with the endogenous process of knowledge creation and diffusion. Idiosyncratic

residuals explain the remaining variation in productivity growth across locations. Specifically,

31Note that the direction of the arrow from (m, r) to (n, s) denotes knowledge flows going from the cited
patent to the citing patent. Every citing patent in our regression has a total weight of one. In other words,
every observation is weighted by the inverse of the total number of citations given by (n, s). In order to
include all patents in the estimation, we further assume that every grant gives at least one citation to its own
location-sector.

32Notice that ηt(m,r)�(n,s) cannot be written as a count divided by an exposure variable, so Equation (23)
cannot be estimated via Poisson Pseudo-Maximum Likelihood.
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Table 3: Gravity equation for knowledge flows

Log share of citations

(1) (2)

Origin CZ 6= Destination CZ -4.654*** -2.270***
(.048) (.021)

Origin location-sector FE yes yes

Destination location-sector FE yes yes

Origin-Destination sector FE yes yes

# Obs. 16,834,609 1,255,496

R2 0.30 0.67

Zero values Set to min No

Notes: OLS estimates. Observations are all the combinations of pairs of location-sectors. The de-
pendent variable is the logarithm of the share of citations given by each destination location-sector to
each origin location-sector, where each cting patent is given a weight of one. All patents are assigned
one citation to their own location-sector. Standard errors clustered at the destination location-sector
level in parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.

we impose adjusted structural residuals to have a weighted average of 1 for each sector and

time period:

E
[
εθn,s,t

]
= 1, ∀s ∈ S, t ≥ 0. (24)

It is important to emphasize that we do not make any assumption on the nature and

properties of the structural residuals, including on whether they are stochastic or deterministic,

what is their spatial and temporal correlation, and whether they are systematically correlated

with the other terms in Equation (7). We discuss this point in detail in the next section.

5 Quantitative results

In this section, we explore the ability of the model to account for the evolution of the U.S. eco-

nomic geography in the period 1890-2010. We start by showing that the interaction between

technological waves and the endogenous mechanism of knowledge creation and diffusion has

a sizeable impact on the long-run growth rate of cities. We examine the importance of this

mechanism in accounting for the two most striking episodes of technological and geographical
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transformation of the last century: The extraordinary rise of manufacturing-intensive cities in

the early decades of the 20th century and their later decline as cities specialized in knowledge-

intensive sectors gained prominence. These two episodes illustrate that technological waves,

interacting with frictions to knowledge diffusion, can explain at the same time path dependence

and reversal of fortune in the growth trajectory of cities. We then use the model to quantit-

atively assess the role of diversification in mediating the effect of technological waves, and to

predict how the economic geography of the U.S. might evolve in the coming decades in response

to possible changes in the technological environment.

5.1 The impact of technological waves on population growth

Figure 6 shows the performance of the model in accounting for the variation in city growth

since 1890. The graph plots the 1890-2010 difference in the log-population of the sample

of commuting zones in the data (horizontal axis) and the model (vertical axis). Since local

amenities are fixed at the initial period, the full model does not replicate the data exactly.

Hence, the 45-degree (black) line can be taken as a benchmark for performance.

The blue line and circles correspond to the complete model with both aggregate technolo-

gical wave shocks (αs,t) and structural residuals (εn,s,t).
33 The slope of the regression line is 0.57

and the correlation between the predicted and actual values is 77%. The red line and circles

correspond to the case where we initialize the equilibrium by feeding the full set of shocks in

the first period of the dynamics. We then keep structural residuals constant and only input

technological wave shocks. In this case, we let the path for λn,s,t to be determined by the endo-

genous law of motion in Equation (7), which reflects the interaction between the state variables

in 1910 and the gradual unfolding of technological waves over time. The predictive power of

the model declines but remains significant: The slope of the line is 0.29, while the correlation is

58%. This correlation can be interpreted as the contribution of technological waves, interacting

with the endogenous process of innovation and knowledge diffusion, in explaining the variation

in population growth over the last century.

Figure 7 shows further evidence of the quantitative importance of technological wave shocks

in shaping the economic geography. We show bin-scatter plots of the relationship between

relative exposure to technological waves and population growth, as predicted by Proposition

3, in which variables are built using the calibrated model objects. The blue line corresponds

to the complete model, in which we feed the full path of technological waves and structural

residuals. The red line corresponds to the counterfactual dynamics, in which we feed the path

of technological waves but keep structural residuals fixed at their 1910 values. The prediction

of Proposition 3 is confirmed in both scenarios. The slope of the relationship in the full

33This corresponds to feeding the true path of λn,s,t as inferred via Equation (21).
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Figure 6: Population growth: Data vs. Model
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Notes: The graph plots the 1890-2010 log-difference in population across CZs in the data (horizontal axis) and
the model (vertical axis). The black line corresponds to the 45-degree line (perfect fit). The blue line shows the
full model (with structural residuals and technological waves). The red line shows the model in which structural
residuals are kept constant to 1910.

model is larger than the one in the counterfactual, suggesting that, on average, residual factors

amplify, rather than attenuate, the impact of technological waves on population growth. These

amplifying factors may include agglomeration economies and positive externalities in local

investment and residential amenities. Note that, although the residual amplifies the effect on

average, the model allows for cases in which the residual attenuates the effect of technological

waves, for instance through progressive taxation and redistributive policies, migration frictions,

land-use restrictions, congestion, and other convex costs of local inputs.

5.2 The rise of manufacturing-intensive cities

We now look specifically at how the calibrated model can account for two of the most striking

episodes of transformation of the economic geography of the U.S. in the last century: The

extraordinary rise of manufacturing-intensive cities in the early 20th century, followed by their

decline and simultaneous rise of knowledge-intensive urban areas.

Figure 8 shows, for a selected subset of cities in the U.S., population growth between

1910 and 1950 under the full model, that includes technological waves and structural residuals

(blue line), and the model in which we only provide the path for technological waves but

keep structural residuals constant at their 1910 value (red line). We normalize data so that the
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Figure 7: Relative exposure to the technological wave and population growth
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Notes: Bin-scatter plot of the relationship between relative exposure to the technological wave and population
growth in the full model (blue) and in the model with only technological wave shocks (red). Variables are
residualized with respect to decade fixed effects.

horizontal axis corresponds to a scenario in which all cities grow at the same rate, as dictated by

aggregate fertility. The plots show that Detroit and Cleveland, the largest urban areas of what

would later be known as the Rust Belt, not only were favorably exposed to the technological

wave in the early part of the century, but were also subject to forces – captured by the structural

residuals – that significantly amplified the effect of their exposure. According to the model,

the 1910 exposure to the technological wave resulted in higher population of 14% in Detroit

and 26% in Cleveland in 1950 (red line). These effects are significantly larger in the model

with the full set of shocks (blue line) that accounts for factors that evolve endogenously to the

local response to the technological wave (such as agglomeration externalities) and exogenous

forces that affect population growth by boosting local innovation and productivity (such as

investment in infrastructure uncorrelated with other local disturbances). Although a systematic

exploration of those factors goes beyond the scope of this paper, the model allows us to infer, for

each episode, whether those forces amplified or dampened on net the effect of the technological

wave. In this scenario, Detroit and Cleveland are 63% and 40% larger in 1950 compared to the

baseline, respectively. A similar path was experienced by Gary, IN, another major center of

the Rust Belt that experienced fast growth in the early 20th century driven by the expansion

of the local steel industry.

During the same period, cities did not uniformly benefit from this transformation in the
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Figure 8: Growth Decomposition: 1910-1950
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Notes: The blue and red lines show log-population in deviation from a trajectory of constant population growth
across cities, as dictated by aggregate fertility. The blue line corresponds to the full model (with structural
residuals and technological wave shocks). The red line corresponds to a model in which the structural residuals
are kept constant to 1910.

technological landscape. As described in Section 2.2, the commuting zone of Austin lost popu-

lation. The red line shows that part of this decline was due to an unfavorable exposure to the

technological wave. However, the blue line shows that, in the period 1910-1930, external forces

were even more penalizing. The Texas Oil Boom created opportunities in the other areas of

Texas, further depressing population growth in Austin. In this period, San Jose was positively,

albeit weakly, exposed to the technological wave, but residual factors, such as a general expan-

sion of the West, strongly contributed its population growth. Finally, the commuting zone of

Seattle was positively affected by the technology cycle, as reflected by the rising importance of

technologies related to shipbuilding first and aviation later between WWI and WWII. However,

in this case, contrary to experiences of Detroit and Cleveland, the model records a negative

contribution from residual factors.

5.3 The emergence of modern knowledge hubs

The experiences of Detroit, Cleveland, and Gary in the first half of the 20th century were not

isolated cases. Several other cities that specialized in heavy manufacturing and were mostly

concentrated in what is now known as the Rust Belt witnessed exceptional growth in population.
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The model suggests that part of this growth can be explained by the availability of local ideas in

fields that were complementary to the prevailing technological wave. We now explore whether

the same factors that led to the remarkable growth of manufacturing-intensive cities contributed

to their later decline to the benefit of emerging knowledge hubs specialized in information

technologies.

The top panels of Figure 9 track the response of the three manufacturing-intensive cities

of Figure 8 in the later part of the century. All those commuting zones experience a negative

direct impact of the technological wave on city population (red line) of roughly 18% in Detroit,

29% in Cleveland, and 31% in Gary. The residual factors in the evolution of productivity led to

more dramatic declines of 52% and 77% in Cleveland and Gary, respectively, but not in Detroit,

where the decline in population in the full model is attenuated (11%). The reason why the

structural residuals impose a more severe loss in the commuting zones of Cleveland and Gary

compared to Detroit is interesting and worth further investigation. One possible explanation is

that the policy response to the decline of the automotive industry compressed the amplification

mechanisms in Detroit but not in Cleveland and Gary.

Throughout the same decades, a handful of cities emerged as modern leading technological

hubs. The commuting zones of Austin, TX and San Jose, CA are archetypal examples of this

expansion. The model suggests that population in Austin and San Jose increased, relative

to the baseline, by 36% and 65%, respectively, as a direct effect of the technological wave

interacted with their local characteristics in 1970. However, the amplification effect coming

from the structural residuals is significantly larger for Austin than it is for San Jose. Why does

the contribution of structural residuals vary so much in these two cases? While an definitive

answer to this question is beyond our scope, a candidate explanation can be found in the

different constraints imposed by local taxation and land-use regulation that characterize those

commuting zones. This hypothesis is in line with the evidence in recent studies, such as Glaeser

and Ward (2009) and Hsieh and Moretti (2019), that document the consequences of land-use

restrictions on the misallocation of people across U.S. cities.

Finally, the commuting zone of Seattle appears to be weakly but negatively affected by

the technological wave, and to receive instead a positive contribution from structural residuals.

This finding is in line with the fact that most of the recent growth in the IT sector in Seattle

is a consequence of local events that happened after 1970 (such as the relocation of Microsoft

to Bellevue in 1979 and the establishment of Amazon in 1994). In fact, we do find a positive

direct effect of the technological wave if we consider the model with the full set of shocks until

1990, and only provide the technological wave shocks in 2010.
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Figure 9: Growth Decomposition: 1970-2010
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across cities, as dictated by aggregate fertility. The blue line corresponds to the full model (with structural
residuals and technological wave shocks). The red line corresponds to a model in which the structural residuals
are kept constant to 1970.

5.4 Diversification and resilience to technological waves

The process of innovation through frictional idea diffusion implies a role for local diversific-

ation in determining cities’ resilience to changes in the technological landscape. There are

two channels that make the growth trajectory of diversified cities less sensitive to technolo-

gical wave shocks, reflecting respectively the existence of frictions to knowledge diffusion across

technological fields and geographical areas.

First, the existence of frictions to knowledge diffusion across technological fields implies

that the path of productivity of any given sector is disproportionately driven by technological

wave shocks to the same sector. This also implies that in diversified cities, whose sectoral

composition is dispersed across multiple sectors, average productivity will be less volatile, since

negative shocks to some sectors are likely to be compensated by positive shocks to other sectors.

Second, the existence of frictions to knowledge diffusion across geographical areas implies

that the reliance of each location-sector on ideas from any given field is an increasing function

of the local availability of ideas from that field. For this reason, in more diversified cities,

innovation in any sector relies on ideas from a broader set of fields. This also implies that the

path of productivity of any local sector is less sensitive to technological wave shocks to specific
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Figure 10: Specialization and growth volatility
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Notes: Relationship between the measure of specialization in Equation (25) and the standard deviation of the
log change in population across 500 simulations.

sectors.

To verify that more diversified cities experience less volatile growth trajectories in response

to technological wave shocks, we perform simulations in which we randomly reshuffle the path

of shocks experienced by each sector, {α̂r,t}r∈S, and compute the corresponding equilibrium

for the economy. We then correlate the standard deviation of population growth across all the

simulations with a measure of local specialization. Specifically, we define local specialization

as the Euclidean distance between the local and nationwide vectors of sectoral shares:

Specn,t =
∑
s∈S

(
πs|n,t −

∑
m∈N

πm,s,t

)2

. (25)

As we show in Proposition C.1, under Assumption 2 and intuitive conditions on the distri-

bution of shocks (Assumption C.1), the theory predicts that this measure of specialization is

approximately proportional to the variance of local population growth.

Figure 10 plots the correlation between Specn,t and the standard deviation of population

growth across 500 simulations in the early period (1910-1950, left panel), and the late period

(1970-2010, right panel) separately. The figure shows a consistently positive correlation, indic-

ating that diversification makes the growth trajectory of cities less sensitive to technological

wave shocks. The correlation is strong (the R2 of the regressions are equal to 0.40 and 0.59,

respectively), and the size of the effect is meaningful. A one-standard deviation increase in

specialization leads to an increase in the standard deviation of 63.7% of a standard deviation

in the early period, and of 77.0% of a standard deviation in the late period.

35



5.5 The U.S. economic geography under future technological waves

The quantitative model can be used to predict the evolution of the U.S. economic geography in

the coming decades in response to transformations in the innovation landscape. In this Section,

we propose plausible scenarios for future technological waves and look at which commuting

zones will be most positively and negatively affected by those changes. In particular, we

project population growth across cities until 2050 under different assumptions on the evolution

of the importance of different sectors (αs,t), and compare the outcome with a baseline in which

the importance for all sectors is kept constant to its 2010 values.

In the first scenario, we assume that sector B2 (”Transporting”) experiences a technological

wave shock of magnitude +8.6% (equal to twice its standard deviation throughout the sample

period) as new advances in transit technologies and autonomous vehicles induce innovation in

transportation to return to a pivotal role. The left map in Figure 11 visually illustrates the

results. Commuting zones in blue (red) experience a net gain (loss) of population compared to

the baseline. Given the current state variables, cities in the Rust Belt are the areas that are

best positioned to take advantage from this transformation. Detroit would experience a 4.6%

increase in population compared to the baseline. Other urban centers of manufacturing related

to (but not specialized in) transportation, would benefit, too, albeit to a lesser extent. For

example, Cleveland and Gary would increase population by 0.3% and 1.5%, respectively. The

knowledge hubs of Austin (-2.2%), San Jose (-2.8%), and Seattle (-1.4%), would all experience

a relative loss of population.

An alternative way of modelling transportation-related technologies gaining prominence in

the innovation landscape is to assume that ideas from B1 become more relevant for innovation

in either G1 (“Physics”) or H1 (“Electricity”), and vice versa. An immediate example of

the increasing inter-dependence of those sectors is the gradual integration of IT components

in electrical and autonomous vehicles. We model this strengthening connection as a drop in

the cost of knowledge transmission (δs�r) by assuming a 10% decline in composite knowledge

frictions (dθ(m,r)�(n,s)) from (to) B4 to (from) both G1 and H1.34 In this case, we keep sectoral

importance (αs,t) at its 2010 value. The right map in Figure 11 displays the results. In this

case, both Detroit (+1.5%) and the prominent knowledge hubs of Austin (+2.0%), San Jose

(+1.6%), and Seattle (+1.9%) experience a relative gain in population. The decline in the

transmission costs between sectors effectively provides better innovation possibilities for cities

specialized in either of the affected fields.

In the second scenario, we simulate a large positive technological wave shock to sector A3

(“Health; Life-Saving; Amusement”, that includes the bulk of innovation related to pharma-

34While the assumption of a proportional 10% decline is arbitrary, this choice only affects the magnitude of
the results but does not alter the qualitative patterns.
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Figure 11: Counterfactuals: Autonomous vehicles

Notes: The map shows log-population in 2050 after a technological wave shock to B2 of magnitude +8.6% (left
map), and a 10% decline in composite knowledge frictions (dθ(m,r)�(n,s)) from (to) B2 to (from) both G1 and

H1 (right map), in deviation from a status quo in which αs,t are kept at their 2010 values. Blue CZs correspond
to a net population gain, red CZs correspond to a net population loss.

ceuticals and medical sciences) possibly in response to new challenges in global health such

as the COVID-19 pandemic. We input a shock of magnitude 23.8%, equal to twice its stand-

ard deviation throughout the sample. The results are depicted in the left map of Figure 12.

The counterfactual suggests that major commuting zones in the North-East, such as Boston

(+8.7%) and Providence (+19.1%), and in California, such as Los Angeles (+7.0%) and San

Francisco-Oakland (+3.6%) would experience a net inflow of population, at the expense of IT

clusters such of Austin (-11.1%), San Jose (-5.7%) and Seattle (-5.2%).

In the third scenario, we assume that sector A1 (“Agriculture”), regains centrality by exper-

iencing a 15.4% technological wave shock (twice its standard deviation throughout the sample).

This is a plausible scenario that can emerge as a result of tightening regulatory constraints and

shifting demand towards sustainable farming, possibly in response to global challenges such as

climate change. Results are in the right map of Figure 12. Under this scenario, the economic

geography of the U.S. experiences a pronounced shift away from the East and West coast and

the Rust Belt, towards the Central States. Among the major commuting zones, Des Moines

(IA) receives the highest net gain (+13.4%). This scenario would represent a significant con-

vergence force in relative population across commuting zones: A regression of log-population

in 2010 with the log-deviation from the baseline in 2050 delivers a coefficient of -1.0%, im-

plying that population would mostly relocate away from larger commuting zones and towards

less-populated ones.

37



Figure 12: Counterfactuals: Pharmaceuticals and Agriculture

Notes: The map shows log-population in 2050 after a technological wave shock to A3 of magnitude
+23.8% (left map), and after a technological wave shock to A1 of magnitude +15.4% (right map), in
deviation from a status quo in which αs,t are kept at their 2010 values. Blue CZs correspond to a net
population gain, red CZs correspond to a net population loss.

6 Conclusions

The economic geography of countries is characterized by rich and uneven dynamics, altern-

ating persistence to occasional reversal of fortunes. Some cities remain large and important

throughout long time spans, while others experience episodes of sharp growth and decline. In

this paper, we explore and quantify the hypothesis that these rich dynamics result in part from

cities’ patterns of specialization across sectors, coupled with the continuous evolution of the

technological landscape. We develop a parsimonious framework that combines elements from

quantitative spatial equilibrium models and theories of endogenous growth through innovation

and idea diffusion. The model remains tractable for any arbitrary number of sectors, loca-

tions, and time periods – making it suitable for quantitative analysis – and delivers a wide

range of predictions on how the economic geography of countries responds to changes in the

technological environment. The reduced-form and structural analysis support the idea that

the interaction of frictional knowledge diffusion with technological waves played a major role

in shaping the evolution of the U.S. economic geography in the last century, accounting for

58% of the variation in population growth across cities between 1890 and 2010. The model can

account for the rise in manufacturing-intensive cities in the Rust Belt, driven by the increase in

the centrality of transportation technologies, and the recent emergence of modern knowledge

hubs, driven by the increase in the centrality of fields related to physics and electricity. We

use the model to speculate on how the U.S. economic geography will evolve under different

technological scenarios, such as a come back of transportation and agriculture and a further

rise in the centrality of medical sciences.
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While we consistently find a large impact of technological waves through frictional knowledge

diffusion, there are some moderating channels from which the model abstracts but could be

embedded without a prohibitive loss of tractability. Extensions can include trade and migration

frictions across locations, production activities that are geographically separated from innova-

tion, the inclusion of local non-tradable goods, and partially endogenous residential amenities

and structural residuals. In particular, the quantitative results suggest that residual factors

contribute significantly to the dynamics of local innovation and to the variation in city growth.

The framework allows us to isolate the direct effect of the technological wave via innovation

and knowledge diffusion, and does not require to make specific assumptions on the nature of

this residual. A possible way to endogenize this error term is to allow innovators to exert effort

to improve their ideas, in the spirit of an endogenous growth theory with expanding varieties

(as in Jones, 2005). An alternative route to unpack the residual term is to account for the

granularity of the locational choices of individual firms. Events such as Microsoft’s relocation

to the Seattle area, or Amazon’s selection of a site for its second headquarters, can have a

major impact in shaping the destiny of cities. Other endogenous forces that enter the residual

include congestion, pecuniary externalities on local assets, and the response of policy to local

shocks. Understanding how these factors contribute to amplifying or dampening the effects of

technological waves is the next step in our agenda.
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A Additional tables

Table A.1: IPC Class-Groups

Class ID Class Group IPC Class Range Label

1 A1 A01-A24 Agriculture - Foodstuffs; Tobacco

2 A2 A41-A47 Personal or Domestic Articles

3 A3 A61-A99 Health; Life-Saving; Amusement

4 B1 B01-B44 Separating; Mixing - Shaping - Printing

5 B2 B60-B68 Transporting

- B3 B81-B99 Microstructural Technology; Nanotechnology

6 C1 C01–C30 Chemistry - Metallurgy

- C2 C40-C99 Combinatorial Technology

- D1 D01-D07 Textiles - Paper

7 E1 E01-E99 Building - Earth or Rock Drilling; Mining

8 F1 F01-F17 Engines or Pumps - Engineering in General

9 F2 F21-F99 Lighting; Heating - Weapons; Blasting

10 G1 G01-G16 Physics

- G2 G21-G99 Nuclear Physics; Nuclear Engineering

11 H1 H01-H99 Electricity

Notes: This table provides label and a mapping to the original IPC classes for the class-groups used for the
empirical and quantitative analysis of this paper. Groups B3, C2, D1, and G2 are excluded from the sample
since they are either negligible in size or they cover innovation in fields, such as nuclear physics, was acquired
only in the later portion of the sample.
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Table A.2: Summary Statistics

Variable Obs. Mean Std. Dev. Min Max

Population 2,984 353,213 897,673 225 1.79e+07

Log-population 2,984 11.93 1.16 5.42 16.70

Population growth 2,611 .254 .356 -.606 4.29

Total patents (CZ) 2,891 1,257.8 5,086.4 0 77,998

Log-total patents 2,878 4.88 2.10 0 11.26

Patents per capita (CZ) 2,891 .001 0.002 0 0.035

Log-patents per capita 2,878 -7.13 1.28 -11.35 -3.35

Notes: Summary statistics are unweighted and refer to the period 1870-2010, with the exception of Population
growth, that refer to the period 1890-2010.
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Table A.3: Technological waves and city growth: Earlier vs. later samples

Growth rate of population

1890-1930 1950-2010

(1) (2) (3) (4) (5) (6)

Relative exposure to tech. wave .665** .566** .572** .323*** .338*** .269***
(.231) (.241) (.245) (.076) (.068) (.064)

Lagged log-population -.216*** -.196** -.194** .031** .036*** .020**
(.075) (.084) (..083) (.012) (.009) (.009)

Human capital (ranking) -.073 .170***
(.150) (.044)

Fixed effects T CD×T CD×T T CD×T CD×T

# Obs. 1,119 1,119 1,119 1,492 1,492

R2 0.34 0.44 0.44 0.06 0.33 0.36

Notes: CZ level regression, 1890-1930 (columns 1-3) and 1950-2010 (columns 4-6). Dependent variable defined
as growth rate of population over 20 years. Observations are weighted by the share of population at the
beginning of the period. “T” denotes time fixed effects, and “CD×T” denotes Census Division-time fixed
effects.. Standard errors clustered at the CZ level in parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.
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B Additional figures

Figure B.1: Patent citations across fields (left) and locations (right), by period

1950-1979
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Notes: Left panels: Probability that patents from the class-group on the vertical axis cite patents from the
class-group on the horizontal axis. Right panels: Probability that patents from the commuting zone on the
vertical axis cite patents from the commuting zone on the horizontal axis.
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Figure B.2: Knowledge transmission costs across sectors

Notes: Estimated (OLS) coefficients δKr�s, from regression of Table 3, column 1. Observations are all the
combinations of pairs of location-sectors. The dependent variable is the logarithm of the share of citations given
by each destination location-sector to each origin location-sector, where each citing patent is given a weight
of one. All patents are assigned one citation to their own location-sector. Rows correspond to citing (idea
destination) sectors. Columns correspond to cited (idea origin) sectors. Number of observations: 16,834,609.
R2: 0.31.
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Figure B.3: Identification of ζ, θ, and σ
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Notes: Moments in the data (horizontal dotted line) and in the model (blue marked line). Each of the plots is
obtained by keeping the other two parameters fixed at their calibrated values. Both model and data refer to
the 1990 observation.
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C Derivations

To rationalize the measure of local specialization in Equation (25), we impose the following

assumption on the distribution of technological wave shocks:

Assumption C.1. Technological wave shocks are uncorrelated across sectors and have a con-

stant variance:

1. Cov(α̂s,t, α̂r,t) = 0 for all s 6= r

2. V ar(α̂s,t) = V for all s ∈ S.

Using Assumption C.1 in combination with Assumption 2 we derive the following theoretical

result, that links the volatility of local population growth to the local degree of specialization:

Proposition C.1. Under Assumptions 2 and C.1, the variance percentage change in the pop-

ulation share of location n is proportional to the local degree of specialization:

V ar(π̂n,t) ∝ (1− π∗n)2
∑
s∈S

(
π∗s|n − π∗s|−n

)2
︸ ︷︷ ︸

Spec∗n ≡ Specialization

. (26)

Proof. Consider the definition of “Relative exposure to technological waves” introduced in

Proposition 3:

REn,t ≡
∑
s∈S

{
(1− π∗n)π∗s|n −

∑
m6=n

π∗m,s

}
α̂s,t. (27)

Factoring out (1− π∗n), and realizing that π∗s|−n ≡
∑

m6=n
π∗m,s
1−π∗n

, we can rewrite REn,t as

REn,t ≡ (1− π∗n)
∑
s∈S

(
π∗s|n − π∗s|−n

)
α̂s,t.

Under Assumption C.1, the technological wave shocks αs,t have zero covariance and common

variance V . Hence, the variance of REn,t is equal to

V ar(REn,t) = V × (1− π∗n)2
∑
s∈S

(
π∗s|n − π∗s|−n

)2
Defining “Specialization” as

Spec∗n ≡ (1− π∗n)2
∑
s∈S

(
π∗s|n − π∗s|−n

)2
,

and using Proposition 3 to have π̂n,t ∝ REn,t yields
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V ar(π̂n,t) ∝ Spec∗n.

Notice that if all cities are negligible in size compared to the overall economy, the measure

in Equation (26) approximates the measure of specialization in Equation (25).
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