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Abstract

Peck and Shell (2003) describe conditions under which constrained-
effi cient risk-sharing arrangements may be run-prone. Their result
hinges critically on the existence of a sequential service constraint.
While sequential service is ubiquitous in retail settings, it is notably
absent in wholesale settings. Since shadow banks live in the wholesale
sector, an implication is that an effi cient risk-sharing shadow bank
is always run-proof. We demonstrate that this need not be the case
when there are fixed costs of intermediation. Effi cient risk-sharing
shadow banks are run-proof when the fixed costs of intermediation
are suffi ciently small but are potentially run-prone when these costs
are suffi ciently large and the propensity of a run is suffi ciently small. If
the probability of a bank run is suffi ciently high, it may be optimal to
render a shadow bank run-proof at the expense of some risk-sharing.
We discuss how the perceived propensity of a bank run may evolve
over time in a manner consistent with Minksy (1992). In particular, a
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period of financial stability may engender complacency over run risk,
a phenomenon that may result in alternating cycles of less and more
stringent financial sector regulations.
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1 Introduction

The use of short-term debt to fund illiquid assets is a common practice in
financial markets. The stability of these “banking”arrangements allegedly
rests uncomfortably on the state of creditor confidence. When confidence
wanes, the structure collapses. But if this is the case, what accounts for the
widespread use of such arrangements? And what, if anything, is the role of
policy?

A traditional view contends that liquidity mismatch serves certain pri-
vate interests at the expense of the broader community. Proponents of the
Chicago Plan– a group of prominent economists who evidently shared this
sentiment– went so far as to recommend the abolition of fractional reserve
banking (Fisher 1936). The legislation that emerged at the time was, for bet-
ter or worse, considerably less drastic. In particular, the Banking Act of 1935
continued to allow fractional reserve banking, but only with the support of
federal deposit insurance. Several decades later, Diamond and Dybvig (1983)
provided the theoretical justification for exactly this type of solution.1

While deposit insurance provides the support needed to comfort small
depositors, suppliers of short-term financing outside the commercial banking
sector do not have similar assurances. The 2007-2008 financial crisis revealed
the fragility of financial intermediaries such as money mutual funds and in-
vestment banks belonging to the so-called shadow banking sector. These
institutions experienced runs by their lenders similar to those in the tradi-
tional retail banking sector in the pre-deposit insurance era (Bernanke 2009,
Gorton 2010 and Gorton and Metrick 2010).

It is tempting to conclude that the insights supplied by Diamond and Dy-
bvig (1983) applies equally to the financial arrangements we observe in the
wholesale shadow banking sector. But the application is not so obvious. In
particular, as demonstrated by Peck and Shell (2003), the fragility of an op-
timal banking arrangement in the Diamond and Dybvig (1983) model relies
critically on the assumption that depositor withdrawal requests are processed
on a first-come, first-served basis. This so-called sequential service constraint

1Although this may seem surprising to some readers, the main message in Diamond and
Dybvig (1983) is that banking arrangements, when optimally designed, are stable. In their
model without aggregate risk, the optimal arrangement entails the use of suspension of
payments and in their model with aggregate risk, the optimal arrangement entails insuring
deposit liabilities.
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is notably absent in wholesale settings where shadow banks typically oper-
ate. And absent sequential service, uninsured short-term financing is always
stable– not subject to runs– in the Diamond and Dybvig (1983) model of
banking (Green and Lin, 2003).2

It is of some interest to note that the empirical literature on shadow bank
instability does not appeal to sequential service in the models used to inter-
pret the data; see, for example, Chen, Goldstein and Jiang (2010), He and
Xiong (2012), Martin, Skeie and von Thadden (2014), Schroth, Suarez and
Taylor (2014), Morris, Shim and Shin (2017) and Foley-Fisher, Narajabad
and Verani (2020). In those set-ups, strategic complementaries that give
rise to instability are determined by exogenous, albeit empirically-motivated,
contractual arrangements. While assuming a particular contractual form–
relative to deriving it– has its uses, the approach has some drawbacks as
well. In particular, as stressed by Green and Lin (2000), it prevents one from
knowing whether banking instability is an unavoidable consequence of the
economy’s underlying structural characteristics or whether it is simply the
by-product of an ad hoc contractual arrangement.3 Our view is that it would
be both prudent and wise for policymakers to consider the former possibility
when contemplating the nature of an optimal regulatory framework.

In this paper, we use a mechanism design approach to study a finite-trader
version of the Diamond and Dybvig (1983) model similar to Green and Lin
(2003) and Peck and Shell (2003). This approach allows us to characterize
risk-sharing arrangements that are optimal relative to the environment. Our
environment differs from standard approaches in two ways: first, we abandon
the sequential service constraint and second, we introduce a fixed cost of in-
termediation.4 As it turns out, this fixed cost generates a type of increasing
returns to scale for banks– a property that is consistent with the evidence

2Ennis and Keister (2010) provide a useful survey of the literature spawned by Diamond
and Dybvig (1983).

3The equilibrium bank run described by Diamond and Dybvig (1983) in the first part
of their paper is entirely the by-product of a sub-optimal contractual arrangement. In-
deed, they explain how an optimal contract eliminates the bank run equilibrium. In the
second part of their paper, they introduce aggregate risk and characterize an effi cient run-
proof contractual arrangement, although their solution is not without controversy (Wallace
1988).

4To be clear, fixed cost may reinforce sequential service as a fundamental source of
instability. Our main results demonstrates that sequential service is not necessary for
bank instability.
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in Mester (2008), Wheelock and Wilson (2017) and Corbae and D’Erasmo
(2018). Banks with this property are in a position to offer long-term depos-
itors attractive returns when fund redemption rates remain low. But when
redemption activity is elevated, the return on any remaining capital net of
the fixed cost declines. The use of short-term debt to finance portfolios with
this property is potentially unstable. In particular, if confidence vanishes and
investors call their loans, the scale of reinvestment collapses, unit costs rise,
and the net return on the remaining portfolio declines– thereby justifying
the initial lack of confidence. This mechanism is absent in Diamond and
Dybvig (1983) because returns there are assumed to be linear.

We find that the presence of fixed costs in intermediation need not imply
that an effi cient risk-sharing shadow banks is run-prone. They are potentially
a contributing factor only if they are suffi ciently large in a well-defined sense.
And even when they are suffi ciently large, a run-prone, effi cient risk-sharing
shadow bank emerges only if the propensity of a bank run is suffi ciently low
in a well-defined sense. If the propensity of a bank run is suffi ciently high,
then it is optimal to run-proof the shadow bank at the expense of some
risk-sharing.

If our theory is correct, then Diamond and Dybvig’s (1983) view concern-
ing the societal benefits of liquidity transformation and their recommenda-
tions for prudential policy extend far beyond their application to depository
institutions. And, not surprisingly, legislators and regulators have enacted
several money market reforms since the 2007-08 financial crisis. In July 2014,
for example, the Securities Exchange Commission announced the requirement
of a floating net asset value (NAV) pricing for institutional money market
funds, as well as the use of liquidity fees and redemption gates to be adminis-
tered in periods of stress to reduce heavy redemption activity.5 In an earlier
version of this paper (Andolfatto and Nosal 2018) we warned that NAV pric-
ing would not in itself render money funds stable, though we expressed a

5A liquidity fee is a payment that the investor incurs to withdrawl
funds; a gate limits the amount of funds an investor can withdraw. See
https://www.sec.gov/News/PressRelease/Detail/PressRelease/1370542347679. These
reforms were motivated largely by an event on September 16, 2008, when the Reserve
Primary Fund “broke the buck.”News of this event triggered a large wave of redemptions
in the money market sector, especially from funds invested in commercial paper. The
wave of redemptions ceased only after the U.S. government announced it would insure
deposits in money market funds. See Kacperczyk and Schnabl (2010).
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more favorable view of liquidity fees and redemption gates.6 However, the
strains exhibited by prime money mutual funds in March 2020 suggest we
were too optimistic on this score.7 Calm was restored to the market only
after the Federal Reserve implemented its emergency lending facilities for
commercial paper and money funds on March 17-18, 2020; see Sengupta and
Xue (2020). These developments suggest that for regulatory purposes, it may
be necessary to treat some shadow banks as de facto depository institutions.
But our theoretical analysis cautions against the notion that any regulatory
reform must necessarily render shadow banks absolutely run-proof.

While our approach is complementary to explanations of bank instability
that rely on sequential service, it is of some interest to highlight their differ-
ent implications along an important dimension. In particular, consider the
risk-free, linear-return asset modeled by Diamond and Dybvig (1983) and,
indeed, employed throughout the literature (e.g., Peck and Shell 2003). This
asset can be reasonably interpreted to be a portfolio of U.S. Treasury securi-
ties. If so, then the Diamond-Dybvig model suggests that government money
funds and narrow banks are potentially subject to runs because of sequential
service. In contrast, our model suggests that government money funds and
narrow banks should be run-proof because the fixed costs of intermediating
a portfolio of U.S. Treasury securities is relatively low.

2 The environment

Our model is based on the Green and Lin (2000, 2003) version of Diamond
and Dybvig (1983). There are two ex post dates, t = 1, 2 and a finite number
N ≥ 3 of ex ante identical individuals. Individuals have preferences defined
over consumption at dates 1 and 2, denoted c1 and c2, respectively.

Individuals receive a preference shock at t = 1 that determines their type:
impatient or patient. An impatient individual only values c1 while a patient
individual only values c2. Let Au(c1) denote the utility payoffassociated with
consuming early, where A is a preference parameter and u(c) = c1−σ/(1− σ)
with σ > 1. The utility payoff associated with consuming later is u(c2). An

6Our view on NAV pricing was made in contrast to Cochrane (2014, pg. 198), who
expressed a more optimistic view of the stabilizing effects of NAV pricing.

7To be fair, we advocated for a rules-based policy, whereas the legislation permits fund
managers to exercise discretion.
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individual is impatient with probability π. The probability that there are
0 ≤ n ≤ N impatient individuals is πn. We assume that types are i.i.d.,
which means that 0 < πn < 1 for all n (the distribution has full support)
and that πn =

(
N
n

)
πn(1− π)N−n. Each individual is endowed with y units of

output. The endowment can be costlessly stored across time. In autarky, an
individual attains the expected utility payoff

WA = N−1

N∑
n=0

πn [nAu (y) + (N − n)u (y)] . (1)

Because preference shocks have an idiosyncratic component, there is an
incentive to pool risk. We refer to a contract that is designed to pool this risk
as a bank because the arrangement pools all of the individuals’endowments
in exchange for liabilities that embed an early-redemption option (at date
1). Because early redemptions are not subject to sequential service, we think
of the arrangement as a shadow bank instead of a conventional retail bank.
There is a second reason to pool resources. In particular, we assume that the
bank has access to a higher return storage technology. Specifically, pooled
resources that are not liquidated at date 1 remain invested in a capital project
that yields a gross rate of return R > 1 per unit invested at date 2. Resources
that are liquidated and paid out early may either be consumed or stored at
a unit rate of return by depositors who wish to redeem their claims early.

Assume, for the moment, that depositor type is publicly observable. Be-
cause there is no sequential service constraint, the bank contract– a time
and state-contingent allocation– takes the form (c1, c2) ≡ {c1(n), c2(n)}Nn=0,
where n denotes the number of impatient individuals at t = 1. The ex ante
utility payoff associated with allocation (c1, c2) is given by

W (c1, c2) = N−1

N∑
n=0

πn [nAu (c1(n)) + (N − n)u (c2(n))] . (2)

An important part of the environment is a “travel itinerary” that de-
scribes the restrictions on communications between depositors and the bank.
The timing of events is as follows. Ex ante, individuals begin by choosing
whether or not to participate in the risk-sharing arrangement, i.e., whether
or not to deposit y at the shadow bank. The payoff to not participating
is given by (1). Individuals participate by depositing their endowments y
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with the bank and accepting the terms of the bank contract (allocation).
Following this decision, individuals disperse to remote locations where they
remain incommunicado until they return to (communicate with) the bank.
An individual can only return to the bank only once, either at t = 1 or t = 2.
One interpretation of this latter assumption is that depositors are “rationally
inattentive” in the sense that it is not economical to be in constant touch
with one’s bank.8 Note that when depositors visit the bank in a given period,
they are serviced at the same time– there is no sequential service constraint.

Our main innovation relative to the literature is the specification of fixed
costs related to the business of banking. Let κ denote the fixed cost incurred
by the bank at dates t = 1 and t = 2. Assuming that all N individuals
become depositors, the value of deposit liabilities issued at t = 1 and cannot
exceed Ny − κ. Consequently, there is the resource constraint at date t = 1,

0 ≤ nc1(n) ≤ Ny − κ (3)

for all n. The resources remaining after t = 1 redemptions is given by
k(n) = [Ny − nc1(n)− κ] . These resources, which remain invested with the
bank, return Rk(n) − κ units of output at t = 2. Hence, there is another
resource constraint at date t = 2,

(N − n) c2(n) = R[Ny − nc1(n)]− (1 +R)κ (4)

for n = 0, 1, ..., N − 1. Note that the fixed cost κ is incurred at date 2 only if
the bank remains in operation after t = 1. In the event that n = N , all funds
are withdrawn at t = 1 so that k(N) = 0. The bank effectively shuts down
at the end of t = 1 when n = N and so does not incur the fixed cost a t = 2.

3 Effi cient risk-sharing

An effi cient allocation (c1, c2) maximizes maximizes (2) subject to (3) and
(4). To simplify the analysis, assume A = R. This restriction has no bearing
on the qualitative nature of the results we report below. Let (cκ1 , c

κ
2) denote

8The concept of “rational inattention”has been employed widely in monetary theory;
see, for example, Sims (2010).
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the effi cient allocation for a given κ.Given our CES preference specification–
and assuming that κ < RNy/(1 +R)– the solution is given by9

cκ1(n) =
RNy − (1 +R)κ

N + n(R− 1)
(5)

cκ2(n) = cκ1(n) (6)

for n = 0, 1, 2, ..., N − 1 and

{cκ1(N), cκ2(N)} = {y − κ/N, 0}. (7)

Note that (7) differs qualitatively from (5)-(6) in that the fixed cost κ is
incurred only in the early period when n = N ; the bank is effectively shut
down as a going concern at the end of t = 1 when n = N .

The restriction A = R is a simplification that serves to equate consump-
tion across periods on a state-by-state basis. Note that (5)-(6) reveal that
consumption at both dates is decreasing in the number of early redemptions.
This property reflects the fact that less funding is available for the higher-
return investment as more depositors withdraw their funds early. Effi cient
risk-sharing implies that both the short and long rates of return on deposits
must decline.

Moreover, note that the following is also true

cκ1(n+ 1) < cκ2(n) (8)

for all n = 0, 1, 2, ..., N − 2. Notice that (8) need not apply for n = N − 1.
When n = N − 1, cκ1(n + 1) incurs the fixed cost for one period only, while
cκ2(n) incurs a fixed cost in both periods. Depending on the size of the fixed
cost, we can have

cκ2(N − 1) =
RNy − (1 +R)κ

N + (R− 1)(N − 1)
≷ cκ1(N) = y − κ/N. (9)

Note that c0
2(N − 1) > c0

1(N) and that cκ2(N − 1) declines more rapidly than
cκ1(N) as κ↗ 0. Evidently, there exists a unique κ0 that solves

cκ02 (N − 1) = cκ01 (N). (10)

9If κ = RNy/(1 +R), the fixed cost is so large that it completely exhausts the pooled
endowment Ny.
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The solution is given by,

κ0 =

[
R− 1

1− (R− 1)/N

]
y > 0. (11)

The implication here is that when the fixed costs of intermediation are suffi -
ciently large, κ > κ0, a single patient depositor, n = N − 1, is left materially
worse off than those who withdrew earlier. If it was possible to do so, it
would be desirable to alert this patient depositor and have them withdraw
funds early along with everyone else. In this way, the fund can be shut down
at the end of t = 1, thereby avoiding the need to incur the t = 2 fixed cost
necessary to keep the fund operating. The ability to communicate in this
manner, however, is rendered impossible by the fact that depositors are not
in constant contact with their bank– recall our discussion above about depos-
itors dispersing to remote locations. Conditions (8)-(11) imply the following
result,

Lemma 1 For all κ < RNy/(1 + R) we have: (i) cκ2(n) ≥ cκ1(n + 1) for
n = 0, 1, 2, ..., N − 2 and (ii) cκ1(N − 1) > cκ2(N) for κ ∈ [0, κ0) and
cκ2(N − 1) < cκ1(N) for κ > κ0.

For the bank to attract depositors, the fixed costs of operations cannot
be too large, otherwise autarky would be preferable. The expected utility
payoff associated with (cκ1 , c

κ
2) is given by

W (cκ1 , c
κ
2) = N−1

N∑
n=0

πn [(R− 1)n+N ]u[cκ1(n)] (12)

Since cκ1(n) are all strictly decreasing in κ, the value functionW (cκ1 , c
κ
2) inher-

its this property. Since W (c0
1, c

0
2) > WA– as defined by (1) when A = R– it

follows that there exists a 0 < κ < ∞ such that W (cκ̄1 , c
κ̄
2) = WA. In what

follows, we restrict attention to fixed costs in the range κ ∈ [0, κ] since κ > κ̄
implies autarky is the best outcome.

Lemma 2 There exists a unique 0 < κ < ∞ defined by W (cκ̄1 , c
κ̄
2) = WA

such that W (cκ1 , c
κ
2) > WA for κ ∈ [0, κ) and W (cκ1 , c

κ
2) < WA for

κ > κ.
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There remains a question regarding the size of κ0 relative to κ. We can
demonstrate that 0 < κ0 < κ for empirically plausible parameters.10 In what
follows, we restrict attention to parameters in this region of the parameter
space so that the following lemma holds,

Lemma 3 0 < κ0 < κ.

3.1 Incentive-compatibility

Let’s now invoke the standard assumption that depositor type is private
information. Unlike other forms of private information that are conceivably
verifiable by a third party at some expense, the cost of verifying a depositor’s
liquidity preference is typically assumed prohibitively high. For this reason,
depositor type must be learned from the depositor through some message or
action. In the context of a banking arrangement, as opposed to a conventional
insurance arrangement, deposit liabilities are demandable at date t = 1.
That is, a demand deposit grants the depositor the right to withdraw funds
on demand at their discretion. The act of withdrawing funds early in the
context of our model may signal the depositor’s unobserved “impatience.”
The question is what motivates depositors to signal their type truthfully?

Let m ∈ {0, 1, ..., N} be the number of depositors visiting the bank at
t = 1. Because type is private information, m is conceptually distinct from
n, the true number of impatient depositors. As is standard in this literature,
we restrict attention to direct mechanisms that condition t = 1 payouts
on m, which is observable. The allocation now takes the form (c1, c2) ≡
{c1(m), c2(m)}Nm=0.

Once depositors have dispersed to their remote locations, they learn their
types at the beginning of t = 1. They then play the following withdrawal
game. Each depositor j ∈ {1, 2, ..., N} simultaneously chooses an action
tj ∈ {1, 2}, where tj denotes the date depositor j visits the bank. Depositor
j only knows the structure of the economy and his own type when choosing tj.

10If R is empirically plausible, e.g., R < 1.5, then it is trivial to show that for any N ≥ 3,
cκ02 (n) > y for all n ≤ N − 3 and cκ01 (n) < y for n = N,N − 1, N − 2. If N is large, then
the expected utility of allocation (cκ01 , c

κ0
2 ) exceeds that of autarky, WA, since the state

and date contingent payoff associated with allocation (cκ01 , c
κ0
2 ) exceeds that of autarky,

y, in the vast majority of states (precisely because N is large). Therefore, κ̄ > κ0.
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A strategy profile t ≡ {t1, t2, ..., tN} implies an m ∈ {0, 1, ..., N}, the number
of depositors that visit the bank at date t = 1. A truth-telling strategy is
a strategy profile in which impatient depositors visit the bank at t = 1 and
patient depositors at visit at t = 2. If all depositors play a truth-telling
strategy, then m = n.

Given an allocation (c1, c2), a strategy profile t constitutes a Bayes-Nash
equilibrium to the withdrawal game if tj = {tj} is a best response for de-
positor j against t−j ≡ {t1, ..., tj−1,tj+1, ..., tN} for all j ∈ {1, 2, ..., N}. An
allocation (c1, c2) is said to be incentive-compatible if the truth-telling strat-
egy is an equilibrium of the withdrawal game, i.e., impatient depositors visit
at date t = 1 and patient depositors at date t = 2.

Note that it is a strictly dominant strategy for impatient depositors to
visit the bank at t = 1 since they do not value consumption t = 2. A patient
depositor, on the other hand, may have an incentive to misrepresent their
type. (Recall that an early withdrawal of funds can be carried into the next
period at a unit rate of return). If all patient depositors are expected to
visit the bank at t = 2, then a patient depositor will not have an incentive to
deviate from the truth-telling strategy if the following incentive-compatibility
condition holds,

N−1∑
n=0

Πnu (c2(n)) ≥
N−1∑
n=0

Πnu (c1(n+ 1)) (13)

where Πn is the conditional probability that there are n impatient individuals
given there is at least one patient individual and

Πn =

(
N−1
n

)
(1− π)N−nπn∑N−1

n=0

(
N−1
n

)
(1− π)N−nπn

.

Lemma 4 If types are i.i.d. and N is large, the effi cient risk-sharing allo-
cation (cκ1 , c

κ
2) is incentive-compatible.

Lemma 4 can be demonstrated as follows. Consider first the set of al-
locations (cκ1 , c

κ
2) when κ ≤ κ0. By Lemma 1, cκ2(n) ≥ cκ1(n + 1) for every

n 6= N , which means that the incentive-compatibility condition (13) is triv-
ially satisfied. Consider next the set of allocations (cκ1 , c

κ
2) when κ ∈ (κ0, κ̄).
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Again, by Lemma 1 we have c2(n) ≥ c1(n+ 1) holds for every n 6= N except
n = N − 1. The incentive constraint (13) can be rewritten as

N−2∑
n=0

(
N − 1

n

)
(1− π)N−nπn[u (c2(n))− u (c1(n+ 1))] ≥

(1− π)NπN−1[u (c1(N))− u (c2(N − 1))] (14)

Note that asN gets large, the right side approaches zero since (1−π)NπN−1 →
0. The inequality will strictly hold since u (c2(n)) − u (c1(n+ 1)) > 0 for
n 6= N − 1 and

∑N−2
n=0

(
N−1
n

)
(1− π)N−nπn approaches 1 as N gets large. In-

tuitively, there are N −1 positively weighted terms on the left-hand side and
one term, multiplied by a very small weight when N is large and finite, on
the right-hand side.

3.2 Run-proof and run-prone banking

We label an allocation (c1, c2) that satisfies (3), (4) and (13) incentive-
feasible. It is clear that for any incentive-feasible allocation, there exists
an equilibrium where all depositors play the truth-telling strategy. There
may, however, exist other equilibrium outcomes associated with the with-
drawal game. Of particular interest is an equilibrium where depositors play
a run strategy as defined by the strategy profile t ≡ {1, 1, ..., 1}. That is,
a run strategy profile is one in which all depositors visit the bank at t = 1
(in particular, all patient depositors misrepresent themselves as impatient).
We say that an incentive-feasible allocation is run-prone if it admits a run
strategy profile as an equilibrium and is run-proof if it does not.

Consider an incentive-feasible allocation (c1, c2) with the property,

c2(N − 1) < c1(N) (15)

Note that condition (15) can hold at the same time (13) is true. Since (c1, c2)
is incentive-feasible, truthtelling is an equilibrium of the withdrawal game.
But the allocation is also run-prone. To see this, consider patient depositor
j’s best response to a proposed run strategy profile t = 1. If depositor j
visits the bank early, tj = 1, then his payoff is c1(N) since everyone else
visits at t = 1. If, instead, depositor j visits the bank at later, tj = 2, his
payoff is c2(N−1) < c1(N). Patient depositor j will therefore choose to visit
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at t = 1, which implies the existence of a run equilibrium.11 It follows that
an allocation (c1, c2) is run-proof if it has the property

c2(N − 1) ≥ c1(N). (16)

4 Shadow banking when fixed costs are low

We say that fixed costs κ are “low”when κ ∈ [0, κ0]. Lemma 1 and (16) lead
us directly to

Proposition 1 When fixed costs κ are low, the allocation (cκ1 , c
κ
2) is run-

proof.

Our model nests the version of the Green and Lin (2000, 2003) model
without sequential service when κ = 0. By Proposition 1, the effi cient risk-
sharing allocation (c0

1, c
0
2) is run-proof– a result proved in Green and Lin

(2000). Our proposition generalizes Green and Lin (2000) by showing that
the effi cient risk-sharing allocation continues to be run-proof when fixed costs
of intermediation are suffi ciently low, as defined above.

Note that the allocations {(cκ1 , cκ2) : κ ∈ [0, κ0]} are run-proof even though
liquidity preference is not observable and depositors can withdraw on de-
mand. Intuitively, the effi cient risk-sharing allocation places increasingly
stringent limits on the amount that can be withdrawn at the end of t = 1 as
the number of depositors requesting early withdrawal, m, increases. That is,
the maximum early-withdrawal amount cκ1(m) is decreasing inm in a manner
that leaves suffi cient resources, R[Ny−mcκ1(m)−κ]−κ, for those who would
rather withdraw their funds at a later date.

The result here is consistent with Diamond and Dybvig’s (1983) conclu-
sion that an optimally-designed banking system is run-proof. To make the
mapping between their paper and ours, note that our mechanism-design ap-
proach takes no stand on how economic activity is divided across private and
public sectors. This is in contrast to Diamond and Dybvig (1983) who assume

11Interestingly, incentive-feasible allocations can be run-prone even in the absence of
sequential service. Note that an ineffi cient allocation (contractual arrangement) is not
necessarily run-prone. The autarkic allocation, for example, is both ineffi cient and run-
proof.
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that while banks are subject to sequential service, the government is not sim-
ilarly constrained. It follows that the government should use its comparative
advantage to support, or even nationalize, the banking sector. They demon-
strate that a federal deposit insurance program helps render the effi cient risk-
sharing banking arrangement run-proof. Our mechanism-design approach
effectively consolidates their private-public sector risk-sharing arrangement.

The Diamond and Dybvig (1983) model is appealing, in part, because
the vision of desperate depositors forming queues to withdraw their funds
resonates for those of us familiar with the way people behaved in historical
retail bank runs. Sequential service, however, seems a poor description of how
exchange occurs at the wholesale level. Money mutual funds, for example,
trade once at the end of every business day. Since all buy and sell orders
for the fund are simultaneously executed and all sell orders receive the same
per share payout, there is no sequential service associated with withdrawal
requests submitted in a given period.12

Since some types of mutual funds exhibit the symptoms of being run-
prone (even those with NAV-pricing protocols), some characteristic other
than sequential service must be responsible this apparent instability. We
offer up fixed costs as an alternative characteristic.

5 Shadow banking when fixed costs are high

We say that fixed costs κ are “high”when κ ∈ (κ0, κ̄]. Lemma 1 and (15)
lead us directly to

Proposition 2 When fixed costs are high, the effi cient risk-sharing alloca-
tion (cκ1 , c

κ
2) is run-prone.

Interestingly, a “high”fixed cost need not be very large, say, relative to
the size of the bank’s deposits Ny. To see this, consider the expression for
κ0 in (11). Notice that as N grows large, κ0 approaches (R − 1)y. This

12The per unit payout that sellers receive may depend on how many other fund investors
want to sell. Nevertheless, whatever that amount is, each seller receives the same payout
per share sold. Our model of shadow banking is consistent with this pricing protocol. It
is also consistent with the way short-term repo arrangements work. Specifically, the repo
lender is repaid either in cash or collateral, without any sequential service consideration.
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means that the high fixed cost necessary to render the effi cient risk-sharing
allocation run-prone in a large bank is approximately equal to the total net
return associated with the deposit of one depositor. This latter number is
tiny relative to the size of the bank’s balance sheet when N is large.

We have established that the effi cient risk-sharing allocation is run-prone
when fixed costs κ are high. This result, however, is not enough to conclude
that a run-prone shadow bank can exist in equilibrium. First, it is not clear
whether a shadow bank would be able to attract depositors if it offered a
run-prone risk-sharing allocation. Second, even if depositors might find the
proposition attractive relative to autarky, it is not clear whether an effi cient
risk-sharing, run-prone shadow bank is the better than an arrangement that
is rendered run-proof at the expense of some risk-sharing.

5.1 Can a run-prone shadow bank attract depositors?

Diamond and Dybvig (1983, pp. 409-410) suggest that investors may be
willing to fund run-prone banks if run risk is suffi ciently small because the
expected risk-sharing services delivered in non-run states of the world dom-
inates the expected costs associated with an infrequent run event. They go
on to suggest that this explains why such arrangements are used in spite of
the danger of runs. The same rationale applies in our analysis.

In what follows, we adopt the “sunspot” equilibrium concept described
in Peck and Shell (2003) and also alluded to in Diamond and Dybvig (1983,
pg. 410). That is, assume there exists an extrinsic event– a “sunspot”–
that is observed by all depositors with some probability θ.13 The sunspot, if
it occurs, is observed after individuals deposit their endowments but before
they learn their types.

A sunspot equilibrium is characterized by the incentive-feasible risk-sharing
allocation (cκ1 , c

κ
2), a probability θ, and a set of withdrawal-game strategy

13A sunspot is a theoretical device that coordinates depositors’beliefs about how all
other depositors are expected to behave in the withdrawal game. There is nothing here
that fundamentally determines the value of θ. It may or may not correspond to the actual
probability of observing the sunspot. One interpretation of θ is that it indexes the cultural
propensity of a society– depositors in this case– to lose faith in their fellow citizens. That
is, 1 − θ measures the degree to which a community is confident that each will “do the
right thing”when the time comes. Or, it may be that θ evolves over time as the history of
financial crises unfolds. We consider this latter interpretation in a follow-up section below.
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profiles contingent on the occurrence of the sunspot. In particular, when the
sunspot is not observed, each depositor believes that the other N − 1 depos-
itors play truthfully. When the sunspot is observed, each depositor believes
that the otherN−1 depositors will visit the bank at t = 1. Because (cκ1 , c

κ
2) is

incentive-compatible, truth-telling is an equilibrium when the sunspot is not
observed. By Proposition 2, type-misrepresentation by patient depositors is
an equilibrium when the sunspot is observed.14

The level of consumption for each depositor when the sunspot is observed
and depositors run is equal to y − κ/N. Let Zκ denote the expected utility
payoff associated with a run, i.e.,

Zκ = N−1

N∑
n=0

πn [nRu (y − κ/N) + (N − n)u (y − κ/N)] ,

which can be rewritten as

Zκ = u (y − κ/N)
N∑
n=0

πn [n(R− 1) +N ] /N. (17)

Notice that Zκ monotonically decreasing in κ. Comparing (17) to the autar-
kic payoff (1) when A = R, we can conclude that

Lemma 5 WA > Zκ for κ ∈ (0, κ] and WA = Z0.15

Let V (cκ1 , c
κ
2 ; θ, κ) denote the expected utility associated with allocation

(c,κ1 , c
κ
2) when it is assumed that depositors play the sunspot strategies de-

scribed above, i.e.,16

V (cκ1 , c
κ
2 ; θ, κ) ≡ (1− θ)W (cκ1 , c

κ
2) + θZκ. (18)

Since bothW (cκ1 , c
κ
2) and Zκ are strictly decreasing in κ, then so is V (cκ1 , c

κ
2 ; θ, κ).

And since W (cκ1 , c
κ
2) > WA when κ < κ (Lemma 2) and WA > Zκ for κ > 0

14Notice that if κ is low, κ ∈ [0, κ0), there cannot exist a sunspot equilibrium.
15Here we are comparing payoffs associated with playing certain strategies. Although

depositors do not, in equilibrium, play the sunspot strategies described above when κ < κ0,
nothing prevents us from calculating and comparing sunspot strategies even if they are
not played in equilibrium.
16Again, in equilibrium, the sunspot strategies will not be played when κ < κ0. Nev-

ertheless, it is still possible to calculate the expected utility associated with playing these
strategies.
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(Lemma 5), it follows that V (cκ1 , c
κ
2 ; θ, κ) is strictly decreasing in the run

propensity, θ, for any κ ∈ (0, κ̄). It also follows that there exists a critical
value θ̃(κ) such that V (cκ1 , c

κ
2 ; θ̃(κ), κ) = WA. If a run-prone shadow bank is

suffi ciently stable in the sense of θ < θ̃(κ), it will be able to attract depos-
itors because the expected utility associated with allocation (cκ1 , c

κ
2) when

depositors play sunspot strategies exceeds that of autarky. Furthermore,
since V (cκ1 , c

κ
2 ; θ, κ) is decreasing in κ, the critical probability θ̃(κ) must also

be decreasing in κ. This implies that a higher-κ shadow bank must also be
a more stable shadow bank in the sense that it must be associated with a
lower θ if it is to attract depositors, compared to a lower-κ shadow bank.
The following summarizes these results,

Lemma 6 For any κ ∈ [0, κ], there exists a 0 ≤ θ̃(κ) ≤ 1 such V (cκ1 , c
κ
2 ; θ̃(κ), κ) =

WA, with V (cκ1 , c
κ
2 ; θ, κ) > WA for θ < θ̃(κ) and V (cκ1 , c

κ
2 ; θ, κ) < WA

for θ > θ̃(κ). Moreover, θ̃(κ) is strictly decreasing in κ, with θ̃(κ) = 0

and θ̃(0) = 1.

We now characterize the equilibrium outcomes for various combinations
of (κ, θ). By Proposition 1, when κ ≤ κ0, the unique equilibrium is the run-
proof allocation (cκ1 , c

κ
2) and this is independent of the value of θ. The set

of these equilibria for various combinations of (κ, θ) is illustrated in Figure
1. By Proposition 2, allocation (cκ1 , c

κ
2) is run-prone when κ ∈ (κ0, κ̄) and

by Lemma 6, allocation (cκ1 , c
κ
2) is preferred to autarky if θ < θ̃(κ) when

κ ∈ (κ0, κ̄). The set of equilibrium run-prone allocations– where depositors
play the sunspot strategies– is identified by the triangular region in Figure
1. Finally, by Lemmas 2 and 6, autarky is the equilibrium outcome when
θ > θ̃(κ) and κ ∈ (κ0, κ̄) or when κ > κ̄, and is illustrated in Figure 1.

The discussion above is predicated on the assumption that depositors
can only choose between the effi cient allocation (cκ1 , c

κ
2) and autarky (y, y).

There is, in fact, another possibility to consider. In particular, it is possible
to construct a run-proof allocation that offers ineffi cient risk-sharing in some
state(s). One can interpret such an allocation as arising from a regulatory
intervention designed to render the shadow bank sector more stable. We can
then ask if such a regulatory intervention is optimal in the sense of improving
depositor welfare.
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Figure 1: Equilibria

5.2 Choosing between run-prone and run-proof shadow
banks

A run-prone, effi cient risk-sharing allocation can attract depositors if the
propensity to run is not too high, θ < θ̃(κ). In this section, we ask whether
a less-effi cient but run-proof allocation might be preferred to the effi cient
run-prone allocation.

The effi cient allocation (cκ1 , c
κ
2) is run-prone– cκ2(N − 1) < cκ1(N)– when

κ ∈ (κ0, κ). This allocation can be rendered run-proof by modifying the
payoffto the late arriving depositor in state n = N−1 to ĉκ2(N−1) ≥ cκ1(N) =
y − κ/N . A run-proof allocation that does the least harm to risk-sharing is
one which sets the modified payoff equal to y − κ/N .17 Of course, making
such a modification for the late arriving depositor necessarily decreases the
payoff to those who withdraw early, meaning that the modified payoff to
early arriving depositors must be reduced from cκ1(N − 1). The important
question is whether the implied loss of risk-sharing from this modification is
worth incurring if it makes the shadow bank run-proof.

17One might interpret this modification as a government intervention but, of course,
it may also be an arrangement that emerges voluntarily from within the shadow bank.
Either way, what is important is the effi cient contractual form and not on its source (i.e.,
whether the regulatory protocols emerge from within or from without the organization).
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Let’s be more specific. Consider the run-proof allocation (ĉκ1 , ĉ
κ
2) where

(ĉκ1(m), ĉκ2(m)) = (cκ1(m), cκ2(m)) for m 6= N − 1 and

ĉκ1(N − 1) =
RNy − (1 +R)κ− (y − κ/N)

R(N − 1)
< y − κ/N (19)

ĉκ2(N − 1) = y − κ/N = ĉκ1(N)

The spirit of the deposit contract (cκ̂1 , c
κ̂
2) is to penalize early redemptions

in heaviest redemption state n = N − 1. The penalty here has the flavor
of a “liquidity fee”reminiscent of what prime institutional money funds in
the United States are sometimes permitted to apply at the discretion of
fund managers. If the liquidity fee is credible (something that may have to
be based on legislation, rather than the discretion of management), then it
ensures that suffi cient resources will be made available for those who are not
in dire need of liquidity. Notice that allocation (ĉκ1 , ĉ

κ
2) is characterized by

ĉκ2(m) ≥ ĉκ1(m + 1) for all n ≤ N − 1, which implies that it is a dominant
strategy for patient depositors to visit the bank at t = 2. This property,
in turn, implies that allocation (ĉκ1 , ĉ

κ
2) can be implemented as a unique

equilibrium.

The ex ante welfare associated with allocation (ĉκ1 , ĉ
κ
2), denoted asW (ĉκ1 , ĉ

κ
2),

is given by,18

W (ĉκ1 , ĉ
κ
2) ≡ N−1{

N−2∑
n=0

πn [(R− 1)n+N ]u[cκ(n)] (20)

+πN−1{(N − 1)Ru [ĉκ1(N − 1)] + u(y − κ/N)}
+πNNRu(y − κ/N)}.

Since allocation (ĉκ1 , ĉ
κ
2) does not provide effi cient risk-sharing in state n =

N − 1, it is necessarily the case that W (cκ1 , c
κ
2) > W (ĉκ1 , ĉ

κ
2) for all κ, which

implies that W (ĉκ̄1 , ĉ
κ̄
2) < WA. Since each element of (ĉκ1 , ĉ

κ
2) is decreasing in

κ, there exists a κ1 < κ̄ such that W (ĉκ11 , ĉ
κ1
2 ) = WA. Hence,

Lemma 7 There exists a 0 < κ1 < κ̄ such that W (ĉκ11 , ĉ
κ1
2 ) = WA, with

W (ĉκ11 , ĉ
κ1
2 ) > WA for κ ∈ [0, κ1) and W (ĉκ11 , ĉ

κ1
2 ) < WA for κ ∈

(κ1, κ̄].

18Depositors always play their truth-telling strategies for the run-proof allocation.
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Since allocation (ĉκ1 , ĉ
κ1
2 ) is identical to allocation (cκ1 , c

κ
2) in all states but

n = N − 1, if we restrict parameters so that R is empirically plausible and
N is suffi ciently large, as we did in our discussion of κ̄, then we can conclude
that19

Lemma 8 κ0 < κ1.

For the discussion in this paragraph, we restrict our attention to κ ∈
(κ0, κ1). We know that allocation (ĉκ1 , ĉ

κ
2) is preferred to autarky (Lemmas 7

and 8) and that allocation (cκ1 , c
κ
2) is run prone (Proposition 1). Furthermore,

since V (cκ1 , c
κ
2 ; θ = 0, κ) > W (ĉκ1 , ĉ

κ
2) and V (cκ1 , c

κ
2 ; θ = 1, κ) = Zκ < WA <

W (ĉκ1 , ĉ
κ
2), there exists a θ̂(κ) that satisfies V (cκ1 , c

κ
2 ; θ̂(κ), κ) = W (ĉκ1 , ĉ

κ
2),

and using (18), we can solve

θ̂(κ) =

[
W (cκ1 , c

κ
2)−W (ĉκ1 , ĉ

κ
2)

W (cκ1 , c
κ
2)− Zκ

]
. (21)

Notice that the numerator of (21) represents the benefit of risk-sharing that
is lost under the run-proof arrangement. The higher this benefit, the more
tolerant depositors are to run risk. The denominator of (21) represents the
value of risk-sharing relative to the value of a run. If the payoff associated
with the run state Zκ increases relative to W (cκ1 , c

κ
2), then the tolerance for

run risk θ̂(κ) increases.

From the discussion above, we have the following result,

Lemma 9 When κ ∈ [κ0, κ1), V (cκ1 , c
κ
2 ; θ, κ) > W (ĉκ1 , ĉ

κ
2) for θ < θ̂(κ) and

V (cκ1 , c
κ
2 ; θ, κ) < W (ĉκ1 , ĉ

κ
2) for θ > θ̂(κ).

Recall that θ̃(κ) is defined by V (cκ1 , c
κ
2 ; θ̃(κ), κ) = WA. SinceW (ĉκ11 , ĉ

κ1
2 ) =

WA, V (cκ1 , c
κ
2 ; θ̂(κ1), κ1) = W (ĉκ11 , ĉ

κ1
2 ) and V (cκ1 , c

κ
2 ; θ̃(κ1), κ1) = WA, it fol-

lows that
19The discussion in footnote 9 for allocation (cκ01 , c

κ0
2 ) can be applied directly here. In

particular, if R is empirically plausible, autarky delivers a higher state contingent expected
utilty than allocation (ĉκ01 , ĉ

κ0
2 ) in states n = N,N−1, N−2, and allocation (ĉκ11 , ĉ

κ1
2 ) and

delivers higher state contingent expected utility than autarky in all states n ≤ N − 3. If
N is large, then the expected utility of allocation (cκ01 , c

κ0
2 ) exceeds autarky, which implies

that κ1 > κ0.
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Lemma 10 θ̂(κ1) = θ̃(κ1).

We can now provide a complete characterization of the equilibrium out-
comes in (θ, κ) space. Since W (ĉκ1 , ĉ

κ
2) < WA for κ > κ1 and W (cκ1 , c

κ
2) >

W (ĉκ1 , ĉ
κ
2) for all κ, we have already established (in see Figure 1) that: (i)

when κ ∈ [0, κ0) the equilibrium is the run-proof allocation (cκ1 , c
κ
2); (ii) when

κ > κ̄, the equilibrium is autarky; and (iii) when κ ∈ (κ1, κ̄), the equilib-
rium is the run-prone allocation (cκ1 , c

κ
2) when θ < θ̃(κ) and autarky when

θ > θ̃(κ). These equilibrium allocations are displayed in Figure 2. From
Lemmas 9 and 10, when κ ∈ (κ0, κ1) the equilibrium is the run-prone al-
location (cκ1 , c

κ
2) when θ < θ̂(κ) and the run-proof allocation (ĉκ1 , ĉ

κ
2) when

θ > θ̂(κ). Figure 2 provides the complete characterization of equilibrium
outcomes.20

Figure 2: Equilibria

Our analysis is meant to gently push back against an uncritical inclination
among economists and policy makers that it is always desirable to eliminate
unstable outcomes, such as bank runs, if there is a way to do so. Our analysis,
which is summarized in Figure 2, indicates that in some circumstances, it may
be better not to completely extinguish the possibility of bank runs. We find

20Notice that Figure 2 shows that θ̃(κ) > θ̂ (κ) for all κ ∈ (κ0, κ1). Since W (cκ1 , c
κ
2 ) >

WA for all κ ∈ (κ0, κ1), this relationship is obvious.

22



that if either fixed costs associated with intermediation are neither trivially
small nor extremely large, and the propensity to run is not “too high,”i.e.,
θ < θ̂(κ), then the best shadow banking arrangements are not run-proof.

6 Central bank liquidity provision

Our mechanism design approach treats the economy as a closed system with
contractual arrangements designed optimally relative to the environment de-
scribing that closed system. The allocation in such a closed system is sup-
ported in one way or another by a variety of private and public institutions,
with the division of responsibilities between private and public sectors inde-
terminate. The mechanism design approach focuses more on identifying the
principles of good governance, not who is responsible for governance.

In this section, we want to think of the shadow bank sector as distinct
from a central bank or government treasury. To do so, we must introduce
another actor into the model that interacts with the shadow bank sector, but
in a limited manner. We want to think of an interaction that resembles a
lender-of-last-resort policy that potentially operates only in high-redemption
states. The limited nature of the intervention can be thought of modeling
the central bank’s desire to minimize its “financial footprint.”We want to
explore how a limited policy of this sort may be used to eliminate bank runs
that are optimal relative to the closed system. We are motivated here by
the events of March 2020 when the Federal Reserve’s emergency provision of
liquidity was designed to prevent runs (instability) on mutual money funds.

Suppose that the run-prone, effi cient risk sharing allocation (cκ1 , c
κ
2) is

optimal in the closed system. Suppose further that the central bank (possibly
with support from the government treasury) seeks to eliminate bank runs by
providing liquidity, via a repo arrangement, to the shadow bank. In this
situation, the central bank will provide resources x > 0 at date 1 to the
shadow bank when m = N − 1; for all other realizations m 6= N − 1, x = 0.
(The central bank minimizes its footprint by providing resources only when
m = N − 1.) The repo contract is “unwound”at date 2 when the shadow
bank repurchases its claim from the central bank with x units of date 2
output.

To ensure that the allocation (cκ1 , c
κ
2) is now run-proof and that the
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shadow bank is able to repay x at date 2, the date 1 liquidity provision
x must be such that the total date 2 investment outcome of the shadow
bank is at least equal to y − κ/N + x + κ when m = N − 1. That is, the
single depositor arriving at date 2 receives a payoff equal to y − κ/N and
the central bank is repaid x, with suffi cient resources remaining to cover the
fixed cost, κ. The minimum level of liquidity provision x that satisfies all
these requirements can determined as follows: Since the amount of resources
invested at date 1 equals Ny+x− (N − 1)cκ1(N − 1), in order to ensure that
x is repaid to the central bank, the date 2 fixed cost κ is covered and that
the depositor arriving at date 2 receives y − κ/N , it must be the case that
R[Ny + x− (N − 1)cκ1(N − 1)] = y − κ/N + x+ κ, which implies that

x̃ =
y − κ/N + κ−R[Ny − (N − 1)cκ1(N − 1)]

R− 1
.

Define the allocation with central bank liquidity provision in state m =
N − 1 as (c̃κ1 , c̃

κ
2), where (c̃κ1(m),c̃κ2(m)) = (cκ1(m),cκ2(m)) for all m 6= N − 1

and (c̃κ1(N − 1),c̃κ2(N − 1)) = (cκ1(N − 1),y − κ/N). The expected utility
associated with allocation (c̃κ1 , c̃

κ
2) is given by

W (c̃κ1 , c̃
κ
2) ≡ N−1{

N−2∑
n=0

πn [(R− 1)n+N ]u[cκ(n)]

+πN−1{(N − 1)Ru [cκ1(N − 1)] + u(y − κ/N)}
+πNNRu(y − κ/N)}

Note that W (c̃κ1 , c̃
κ
2) > V (cκ1 , c

κ
2) = (1− θ)W (cκ1 , c

κ
2) + θZκ, which is the ex-

pected utility associated with the run-prone, effi cient risk sharing allocation.
The former exceeds the latter along two dimensions. First, since allocation
(c̃κ1 , c̃

κ
2) is run-proof, it avoids the low payoff, Zκ, associated with a run.

Second, c̃κ2(N − 1) = y − κ/N > cκ2(N − 1) while c̃κ1(N − 1) = cκ1(N − 1),
meaning that the expected utility for m = N − 1 is greater for allocation
(c̃κ1 , c̃

κ
2) than (cκ1 , c

κ
2). Hence, by providing liquidity– without subsidy– to

the shadow bank, a central bank is able to prevent bank runs while, at the
same time, increasing the welfare of shadow bank stakeholders.
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7 Endogenous complacency

Suppose that society is characterized by a “true”θ but that the true value
is unknown. Suppose further that the economy described above is repeated
over time, t = 0, 1, 2, ...∞. People enter into the initial period with a prior
believe of the value of θ, say, θ0. Let st ∈ {0, 1} denote the sunspot variable
observed at date t, where st = 1 indicates that a sunspot appeared. Then it
is reasonable to expect people to form posterior beliefs that depend on the
history of sunspot realizations together with their initial belief, i.e.,

θt = Pr [θ | st−1, st−2, ...s1, θ0] (22)

In case that θ does not change over time (unlikely), and that prior beliefs
are passed on to future generations in a perfect manner (unlikely), then
society can reasonably be expected to learn of the true propensity to run
over a suffi ciently long period of time. If the true θ is close to zero, even in
this optimistic scenario, learning could take a very long time.

The choice of the best allocation described above now takes place with
θt replacing θ. Imagine a scenario at some date t in which κ0 < κ ≤ κ1 and
θt > θ̂(κ), which is a parameter configuration where depositors are made bet-
ter off by choosing the effi cient risk-sharing run-proof arrangement, (ĉκ1 , ĉ

κ
2).

Next, imagine that depositors do not observe sunspots for several subsequent
periods. Under any reasonable learning protocol, the posterior belief θt will
decline over time.21 After a suffi cient period of tranquility, it is possible that
θt falls below the threshold θ̂(κ). At that time depositors will lobby to have
the onerous regulation relaxed. If successful, the run-proof shadow bank be-
comes run-prone, as run risk is perceived to be suffi ciently small. If and when
a sunspot with its associated run is actually observed, θt may very well jump
back over the threshold θ̂(κ), leading to calls for stricter regulation.

The analysis above demonstrates a diffi culty in designing appropriate
legislation. If the true run propensity is unknown, then the best society can
do is estimate it based on experience. In reality, this likely takes the form of
estimating run propensities based on the frequency of recent financial crises.
As a run-proof financial system is not likely to generate crises, it seems
reasonable to suppose that investors may become increasingly complacent

21Any learning rule failing to display this property would arguably mean that people
fail to learn from experience.
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over time. If so, then this growing complacency may eventually manifest itself
as calls for regulatory reforms that effectively render the financial system run-
prone. This type of cycle is reminiscent of the Minsky (1992) “stability breeds
instability”hypothesis. It is not entirely clear what the solution here might
be, especially as people are likely to differ on their assessment of actual run
propensities. But at least the framework here provides a framework from
which on might understand the predicament.

8 Conclusion

While short-term debt provides creditors with the flexibility they desire, it ex-
poses debtors to the possibility of runs. Diamond and Dybvig (1983) provide
a theory that simultaneously explains the benefit of liquidity transformation
and why banks are potentially run-prone. An indispensable element of their
theory is sequential service. While it is always possible to render risk-sharing
arrangements run-proof, doing so may come at a cost (Peck and Shell 2003).

Shadow banks in the wholesale sector do not follow sequential service
protocols in the manner of their retail counterparts. The Diamond and Dy-
bvig (1983) model therefore implies that shadow banks should be immune
to runs. This conclusion is unwarranted. When the fixed costs of interme-
diation are embedded in an otherwise standard Diamond and Dybvig (1983)
model, we find that shadow banks may be run-prone and, moreover, that
such an outcome is neither inevitable or undesirable. Our approach permits
contractual arrangements (broadly defined to include regulatory measures)
to tailor themselves to the economic environment in a way that preserves
risk-sharing with run-proof demandable debt structures. Nevertheless, our
theory identifies regions in the parameter space where investors face a trade-
off between risk-sharing and stability. In a region where the fixed costs of
intermediation are suffi ciently high and the probability of coordination fail-
ure is low, investors are willing to expose themselves to fragile shadow bank
arrangements.

The theory laid out above suggests that a degree of humility is in order
for both economists and policymakers. It should not be taken for granted
that appropriate policy action always entails a perfectly run-proof, stable
financial structure. To take an extreme example, financial autarky would be
one way to achieve that result but few, if any, would view this as desirable.
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Nevertheless, it is diffi cult to make conclusive statements about the merits of
any given contractual/policy arrangement without knowing approximately
where the economy is situated in the parameter space.

It is also possible, as explained above, that our perceptions of where the
economy is located in the parameter space evolves over time. In particular,
our assessment of run risk may depend largely on the recent history of finan-
cial crisis. A long period of financial stability is likely to engender a degree
of complacency over run risk (Minsky 1992). Since perceptions over the like-
lihood of run risk– the parameter θ in the model above– are likely to vary
across the population, perhaps the only practical and legitimate solution is
to have people vote over an acceptable run tolerance. If so, then one should
expect changes to legislation over time that broadly reflect recent experience.
In particular, one would expect rules to become more stringent soon after a
crisis and to become less stringent as a period of financial stability extends
itself. If this broadly understood when a run occurs, then less energy might
be wasted in political wrangling, leaving more energy to deal with any crisis
and its aftermath in a rational manner.
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10 Appendix: Incentive compatibility

We cannot find model parameters where allocation (cκ1 , c
κ
2) violates (13). To

provide some insight for this outcome, rewrite constraint (13) as

N−2∑
n=0

Πn{u [cκ2(n)]−u [cκ1(n+ 1)]} ≥ πN−1(1−π){u(y)−u [cκ2(N − 1)]}. (23)

Notice that the differences on the left and right sides are strictly positive
and the difference on the right side is weighted by πN−1(1 − π) while the
aggregate weight on the left side is 1 − πN−1(1 − π) � πN−1(1 − π). If, for
example, N is reasonably large– and “large”can be as small as N = 2– then
as the right-side weight is very small relative to the sum of weights on the left
side, incentive constraint (13) is satisfied. We now formalize this intuition
by example.

It is straightforward to show that when u(c) = c1−σ/(1 − σ), u [cκ2(n)] −
u [cκ1(n+ 1)] is decreasing. This implies that

N−2∑
n=0

Πn{u [cκ2(n)]− u [cκ1(n+ 1)]} >

[1− πN−1(1− π)]
1

σ − 1
[(

(N − 1)R + 1

RNy − κ )σ−1 − (
(N − 2)R + 2

RNy − κ )σ−1], (24)

where the right side of this equality is u [cκ2(N − 2)]− u [cκ1(N − 1)], which is
the smallest difference on the left-side of (23), multiplied by

N−2∑
n=0

Πn = 1− πN−1(1− π).

Using our CES utility function (23) can be rewritten as

N−2∑
n=0

Πn 1

1− σ{(
RNy − κ

nR +N − n)1−σ − (
RNy − κ

(n+ 1)R +N − (n+ 1)
)1−σ} ≥

πN−1(1− π)
1

1− σ{y
1−σ − (

RNy − κ
(N − 1)R +N − 1

)1−σ}
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and re-arranged to

N−2∑
n=0

Πn 1

1− σ{(nR +N − n)σ−1 − ((n+ 1)R +N − (n+ 1))σ−1} ≥

πN−1(1− π)
1

1− σ{(
RNy − κ

y
)σ−1 − [(N − 1)R +N − 1]σ−1}.

Notice that the right side is strictly increasing in κ. We will choose κ large; in
particular we will choose κ so that the expected utility of allocation (cκ1 , c

κ
2)

is less than or equal to autarky for any probability weight π. This necessarily
implies that κ ≥ κ1. If (23) holds for this value of κ, then it holds for all
κ ∈ (κ0, κ1) where the incentive constraint (23) is relevant. We set y =
cκ1(1) = cκ2(1), which implies that the expected (cκ1 , c

κ
2) is strictly less than

autarky (the best consumption state, n = 1, provides the autarky payoff,
meaning that all other states provide less than autarky). If, for convenience,
we set y = 1, then y = cκ1(1) = cκ2(1) implies

κ = (R− 1)(N − 1).

We will choose π so that the probability on the right side of (23) is maximized
(if 23 holds for this π, it will hold for any π). The probability πN−1(1 − π)
is maximized for

π =
N − 1

N
.

For convenience let σ = 2. Then if

[NN − (N − 1)N−1]{(N − 1)R + 1− [(N − 2)R + 2]} ≥
(N − 1)N−1{(N − 1)R + 1− [RNy − (R− 1)(N − 1)]} (25)

holds, (23) holds. (25) is obtained by substituting the right side of (24) for
the right side of (23), setting π = (N − 1)/N and κ = (R − 1)(N − 1), and
then rearranging. (25) can be further simplified to

[NN − (N − 1)N−1](R− 1) > (N − 1)N−1(R− 1)(N − 2)

or
NN − (N − 1)N−1 > (N − 1)N−1(N − 2)

which is a valid inequality. Hence, we have chosen κ and π and replaced with
left side of (23) in a way that “works against” inequality (23) holding. Yet
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we we still find that this highly restricted inequality—and hence, inequality
(23)—is satisfied.

Suppose that we have somehow overlooked a reasonable model parame-
terization that implies allocation (cκ1 , c

κ
2) violates (13). In this case the

effi cient contract is determined by maximizing (2) subject to (3), (4) and
(13). The solution to this problem necessarily implies that the allocation
is run-prone. Intuitively, the effi cient contract is determined by increasing
c2(m) from cκ2(m) , m = 0, ..., N − 1 and decreasing c1(m) from cκ1(m),
m = 1, ..., N − 1, until (13) is just satisfied with equality. This necessarily
implies that if cκ2(N − 1) < cκ1(N) = y, the effi cient incentive compatible
contract will also be characterized by c2(N − 1) < c1(N) = y, i.e., the effi -
cient contract is run-prone. The important point here is that if the run-prone
allocation (cκ1 , c

κ
2) is not incentive compatible—i.e., does not satisfy (13)—then

the effi cient incentive-compatible contract will also be run-prone. This is
important because, qualitatively speaking, our results– which are derived on
the basis that (cκ1 , c

κ
2) satisfies (13)– remain valid for the effi cient incentive

compatible allocation if (cκ1 , c
κ
2) does not satisfy (13).
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